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THERE IS NO “THEORY OF EVERYTHING” INSIDE Eg

JACQUES DISTLER AND SKIP GARIBALDI

ABSTRACT. We analyze certain subgroups of real and complex formsdfighngroupEs,

and deduce that any “Theory of Everything” obtained by erdbeglithe gauge groups of
gravity and the Standard Model into a real or complex formgfacks certain representation-
theoretic properties required by physical reality. Theiargnts themselves amount to rep-
resentation theory of Lie algebras in the spirit of Dynkidfassic papers and are written
for mathematicians.

1. INTRODUCTION

Recently, the preprint[1] by Garrett Lisi has generated aflpopular interest. It boldly
claims to be a sketch of a “Theory of Everything”, based oridiea of combining the local
Lorentz group and the gauge group of the Standard Model ialdaen of Eg (necessarily
not the compact form, because it contains a group isogeondls 2, C)). The purpose of
this paper is to explain some reasons why an entire classcafraodels—which include
the model in[[1]—cannot work, using mostly mathematics wétatively little input from
physics.

The mathematical set up is as follows. Fix a real Lie gréupWe are interested in
subgroup$L(2,C) andG of E so that:

(ToE1) G is connected, compact, and centraligés2, C)
We complexify and then decompogge(E) ® C as a direct sum of representations of
SL(2,C) andG. We identifySL(2, C) ®g C with SLy ¢ x SLy ¢ and write
(1.2) Lie(E) = @ men® Vinn
m,n>1

wherem andn denote the irreducible representatiorbdh ¢ of that dimension and;, ,,
is a complex representation 6f@g C. (Physicists would usually writ2 and2 instead of
2® 1andl ® 2.) Of course,

MRANEQ Vipn 2N Q@mM® Vi
and since the action ¢fL.(2,C) - G onLie(E) is defined oveR, we deduce thal/,, ,, ~
Viu,m- We further demand that
(ToE2) Vinn = 0if m +n > 4, and
(ToE3) Va1 is a complex representation 6t

We recall the definition of complex representation and @rptee physical motivation for
these hypotheses in the next section. Roughly speakin&)Tis a trivial requirement
based on trying to construct a Theory of Everything alonglithes suggested by Lisi,
(TQE2) is the requirement that the model not contain anytiekbigher-spin particles, and
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(ToE3) is the statement that the gauge theory (with gaugepg®) is chiral, as required
by the Standard Model. In fact, physics requires slightlgrsjer hypotheses dn,, ,,, for
m +n = 4. We will not impose the stronger version bf (TQE?2).

Definition 1.2. A candidate ToE subgrougf a real Lie groug is a subgroup generated by
a copy ofSL(2, C) and a subgroug such that[(ToE1) and(ToE2) hold. FoE subgroup
is a candidate ToE subgroup for whi¢h (TOE3) also holds.

Our main result is:

Theorem 1.3. There are no ToE subgroups in (the transfer of) the comEleror in any
real form ofEs.

Notation. Unadorned Lie algebras and Lie groups mean ones over thaugdiers. We
use a subscrip€ to denote complex Lie groups—e.§lL.2 ¢ is the (complex) group of
2-by-2 complex matrices with determinant 1. We can viedrdimensional complex Lie
groupGc as a2d-dimensional real Lie group, which we denote ByGc). (Algebraists
call this operation the “transfer” or “Weil restriction o€alars”; geometers, and many
physicists, call this operation “realification.”) We use hopular notation ofL(2, C) for
the transferR(SL2 ¢) of SLa ¢; it is a double covering of the “restricted Lorentz group”,
i.e., of the identity componeStO(3, 1), of SO(3,1).

1.4. Strategy and main resultsOur strategy for proving Theorem 1.3 will be as follows.
We will first catalogue, up to conjugation, all possible enftiegs ofSL(2, C) satisfying
the hypotheses of (ToE?2). The list is remarkably short. Sigadly, for every candidate
ToE subgroup ok, the groupZ is contained in the maximal compact, connected subgroup
Gmax Of the centralizer o8L(2, C) in E. The proof of Theorern 113 shows that the only
possibilities are:

E Gmax ‘/2,1
ES(—24) Spln(ll) 32
Egs)y  Spin(5) x Spin(7)  (4,8)
(1.5) Eg(—24y Spin(9) x Spin(3)  (16,2)
R(Esc) Eq 56
R(Es ) Spin(12) 32 @ 32/
R(Es ) Spin(13) 64

We then note that the representatigyy of Gmax (and hence, of angz C Gnay) has a
self-conjugate structure. In other words, (TOE3) fails.

2. PHYSICS BACKGROUND

One of the central features of modern particle physics istieaworld is described by
achiral gauge theory

2.1.Let M be a four-dimensional pseudo-Riemannian manifold, ofatigre(3, 1), which
we will take to be oriented, time-oriented and spin. [ebe a compact Lie group. The
data of agauge theory o/ with gauge grou- consists of a connectior, on a principal
G-bundle,P — M, and some “matter fields” transforming as sections of vemtioidle(s)
associated to unitary representation§:of

Of particular interest are thfiermionsof the theory. The orthonormal frame bundle of
M is a principalSO(3, 1) bundle. A choice of spin structure defines a lift to a printipa
Spin(3,1)p = SL(2,C) bundle. LetS;y — M be the irreducible spinor bundles, asso-
ciated, via the defining two-dimensional representatiahitmcomplex conjugate, to this
SL(2, C) principal bundle.
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Thefermions of our gauge theoare denoted
pel(St V), pel(S_aV)

whereV — M is a vector bundle associated to a (typically reduciblejesgntatior of
G.

Definition 2.2. Consider)/, a unitary representation 6f overC—i.e., a homomorphism
G — U(V)—and an antilinear mag: V' — V that commutes with the action 6f. The
map.J is called areal structureon V' if J? = 1; physicists call a representation possessing
a real structureeal. The map.J is called aquaternionic structureon V if J? = —1;
physicists call a representation possessing a quatecrstmicturepseudoreal

Subsuming these two subcases, we will say fiadtas a self-conjugate structui@
there exists an antilinear map: V' — V commuting with the action off and satisfying
J* = 1. Physicists call a representatibnthat does not possess a self-conjugate structure
complex

Remark2.3. We sketch how to translate the above definition into the lagguwf algebraic
groups and Galois descent aslin [2] and§[®,2]. Let G be an algebraic group ov&and
fix a representatiop: G ® C — GL(V') for some complex vector spadé LetJ be an
antilinear map/ — V that satisfies

(2.4) plg) =J 'p(g)J forg e G(C).

We define real, quaternionic, etc., by copying the secondtdrdisentences verbatim from
Definition[2.2.

(In the special case whefeis compact, there is necessarily a positive-definite iaweri
hermitian form onV" andp arises by complexifying some ma&p — U(V); this puts us
back in the situation of Def. 2.2. In the special case witeie connected, the hypothesis
from Def.[2.2 that/ commutes withG(R)—which is obviously implied by[(2]4)—is ac-
tually equivalent to[(Zl4). Indeed, both sides[of[2.4) amrphisms of varieties ovet,
so if they agree oG/(R)—which is Zariski-dense by [2, 18.2(ii)]—then they are elqua
G(C).)

If V has a real structuré, then theR-subspacé”’ of elements o¥ fixed by.J is a real
vector space antl is canonically identified with”’ ® C so thatJ (v’ ® z) = v' ® Z for
v’ € V' andz € C; this is Galois descent. Becayseommutes with complex conjugation
(which acts in the obvious manner 6{C) and viaJ onV), it is the complexification of
a homomorphism’: G — GL(V') defined oveR by [2, AG.14.3]. Conversely, if there
is a representatiofi’’, p’) whose complexification i§V, p), then takingJ to be complex
conjugation ort’ = V' @ C defines a real structure @i, p).

If V has a quaternionic structuse then we define a real structufeonV := V @ V
via j(Ul, ’Ug) = (JUQ, —JUl).

Finally, suppose thafr is reductive and/ is irreducible (as a representation o¥&r
of course). Then by [437], there is a unique irreducible real representalisnwhose
complexification’ @ C containsV as a summand. By Schutndg (W) is a division
algebra, and we have three possibilities:

e Endg(W) =R, W ®C ~V,andV has a real structure.

e Endg(W)=H,WeC~V eV, andV hasiquaternionic structure.

e Endg(W)=C,W®C~V @V whereV # V, andV is complex.
We have stated this remark f6ra group oveiR, but all of it generalizes easily to the case
whereG is reductive over a field” and is split by a quadratic extensioRsof F'.
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Definition 2.5. A gauge theory, with gauge group, is said to bechiral if the representa-
tion R by which the fermiond (2]1) are defined is complex in the alsavese. By contrast,
a gauge theory is said to m®nchiralif the representatio® in 2.1 has a self-conjugate
structure.

Note that whether a gauge theory is chiral depends cruaialyhe choice of7. A
gauge theory might be chiral for gauge gratipbut nonchiralfor a subgroupd C G.
That is, there can be a self-conjugate structurdiacompatible withH, even though no
such structure exists that is compatible with the full gréip

Conversely, suppose that a gauge theory is nonchiral fogdlige groug-. It is also
necessarily nonchiral for any gauge gratipc G.

GUTs. The Standard Model is a chiral gauge theory with gauge group
Gsm = (SU(3) x SU(2) x U(1))/(Z/67Z)

Various grand unified theories (GUTS) proceed by embed@ing is some (usually sim-
ple) group,Ggut. Popular choices foffguT areSU(5) [5], Spin(10), Eg, and the Pati-
Salam group(Spin(6) x Spin(4))/(Z/2Z) [6].

Itis easiest to explain what the fermion representatiof gy is after embedding/su
in Ggur := SU(5). Let W be the five-dimensional defining representatioS6{5). The
representatiofi from[2.] is the direct sum of three copies of

Ry =NWaoW
Each such copy is called a “generation” and is 15-dimensid@ae identifies each of the
15 weights ofR, with left-handed fermions: 6 quarks (two in a doublet, eathhree

colors), two leptons (e.g., the electron and its neutri6@@ntiquarks, and a positron. With
three generationgy is 45-dimensional.

Definition 2.6. As a generalization, physicists sometimes considentgeneration Stan-
dard Mode| which is defined in similar fashion, but witR = R§". Then-generation

Standard Model is a chiral gauge theory, for any positiveParticle physics, in the real
world, is described by “the” Standard Model, which is theecas= 3.

For the other choices of GUT group, the analogue of a gewerdft,) is higher-
dimensional, containing additional fermions that are r@rsat low energies. When de-
composed unddfisyy € Gagur, the representation decomposed®s+ R, whereR' is
a real representation é¢#sy;. In Spin(10), a generation is the 16-dimensional half-spinor
representation. lig, it is a 27-dimensional representation, and for the Pat8aroup
itisthe(4,1,2) & (4,2, 1) representation. In each case, these representationsrapéeso
representations (in the above sensef-gfyT, and the complex-conjugate representation
is called an “anti-generation.”

3. LisI’s PROPOSAL FROMI]

In the previous section, we have described a chiral gaugsttie a fixed (pseudo)
Riemannian structure oi/. Lisi's proposall[l] is to try to combine the spin connection
on M and the gauge connection ¢hinto a single dynamical framework. This motivates
Definition[1.2 of a ToE subgroup.

More precisely, following[l], we fix subgroufs.(2, C) andG — say, withG = Gsm
— satisfying [[ToEL) in some real Lie grodp The action of the central elementl €
SL(2, C) provides & /2Z-grading on the Lie algebra &. ThisZ/27Z-grading allows one
to define a sort of superconnection associatdd fprecisely what sort of superconnection
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is explained in a blog post by the first author [7]). In the peal of [1], we are supposed
to identify each of the generatorsbie(E) as either a boson or a fermion. (See Table 9 in
[1] for an identification of the 240 roots.)

The Spin-Statistics Theorernl [8] says that fermions transfas spinorial representa-
tions ofSpin(3, 1); bosons transform as “tensorial” representations (reptesion which
lift to the double coverSO(3,1)). To be consistent with the Spin-Statistics Theorem, we
must, therefore, require that the fermions belong to-theeigenspace of the aforemen-
tionedZ/27 action, and the bosons to thel-eigenspace.

In fact, to agree with 2]1, we should require that thieeigenspace (when tensored with
C) decompose as a direct sum of two-dimensional represengatoverC) of SL(2, C),
corresponding to “left-handed” and “right-handed” fermspin the sense 6f2.1.

Interpretations of V,,, ,, and (ToEZ). In the notation of[(1]1), th&, ,,, with m + n odd,
correspond to fermions; those with + n even correspond bosons. In Lisi’s setup, the
bosons are 1-forms al/, with values in a vector bundle associated to the aforermeati
Spin(3, 1) principal bundle via then ® n representation (withn + »n even). Thel, ,
with m + n = 4 are special; they correspond to the gravitational degréégedom in
Lisi's theory.(3® 1) @ (1 ® 3) is the adjoint representation 81.(2, C); these correspond
to the spin connection. The 1-form with values in the 2 representation is the vierbin

It is a substantial result from physics (see sections 1314 &f [Q]) that a unitary
interacting theory is incompatible with massless parsiagkhigher representatiom(+n >
6). Our hypothesid (ToE2) reflects this and also forbids girees (n + n = 5). In §10,
we will revisit the possibility of admitting gravitinos.

Explanation of (ToE3). Our hypothesig (ToE3) says that the candidate “Theory of Ev-
erything” one obtains from subgrouf& (2, C) andG as in [ToE1) must behiral in the
sense of Definition 2%

In private communication, Lisi has indicated that he olggotour condition[(ToHE3),
because he no longer wishes to identify all 248 generatofsed) as particles (either
bosons or fermions). In his new—and unpublished—formaigtonly a subset are to be
identified as particles. In particuldr; ; is typically a reducible representation @fand,
in his new formulation, only a subrepresentation corredgda particles (fermions). This
is not the approach followed in[1], where all 248 generasmesidentified as particles and
where, moreover, 20-odd of these are claimed to be new asagiidcovered particles—a
prediction of his theory. As recently as April 2009, Lisitegiated this prediction in an
essay published in théinancial Times [11].

Our paper assumes that the approachlof [1] is to be followwtittzat all 248 generators
are to be identified as particles, hence {ToE3). In any cass i one identifies only a
subset of the generators as particles, all the fermions consé from the —1)-eigenspace,
which is too small to accommodate 3 generations, as we now.sho

In making this identification, we have tacitly assumed #at is one-dimensional. This is, in fact, required
for a unitary interacting theory. We will not, however, ingeothis additional constraint. Suffice to say that it is
not satisfied by any of theandidate ToE subgrougper Definitio_L.2) ofs.

20f course, there are many other features of the Standard INteatea candidate Theory of Everything must
reproduce. We have chosen to focus on the requirement thétebry be chiral for two reasons. First, itis “phys-
ically robust”: Whatever intricacies a quantum field theorgty possess at high energies, if in@chiral, there is
no known mechanism by which it could reduce tchiral theory at low energies (and there are strong arguments
[10] that no such mechanism exists). Second, chirality @le#&anslated into a mathematical criterion—our
(ToEJ). This allows us to study a purely representatiomitisic question and side-step the difficulties of making
sense of Lisi’s proposal as a dynamical quantum field theory.
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No-go based on dimensionsThe fermions of Lisi's theory correspond to weight vectors
in V,,, », with m 4+ n odd. In particular, the weight vectors i ; andV; 2 correspond
(as in§2.1) to left- and right-handed fermions, respectively. cBithere are8 x 15 =
45 known fermions of each chirality> 1 must be at least 45-dimensional, and similarly
for V1 2. Thus, the—1-eigenspace of the central elementSif(2, C), which contains
2®1®Va1)®(1®2® Vi2), must have dimension at leask 2 x 45 = 180.
WhenE is a real form ofEg, the —1-eigenspace has dimension 112 or 128 (this is
implicit in Elie Cartan’s classification of real forms &% as in [12, p. 518, Table VB,so
no identification of the fermions as distinct weight vector&.ie(E) (as in Table 9 in[[1])
can be compatible with the Spin-Statistics Theorem andxtstemce of three generations.
These dimensional considerations do not, however, ruléhe@upossibility of accom-
modating a 1- or 2-generation Standard Model (per Definfid@) in a real form oftss.
That requires more powerful considerations, which are thgest of our main theorem.
We now turn to the proof of that theorem.

4. sly SUBALGEBRAS AND THEDYNKIN INDEX

4.1.In [15, §2], Dynkin defined thendexof an inclusionf : g; — go of simple complex
Lie algebras as follows. Fix a Chevalley basis of the two lalgs, so that the Cartan
subalgebrd; of g; is contained in the Cartan subalgeljraof g,. The Chevalley basis
identifiesh, with the complexification); ® C of the coroot latticeR);” of g;, and the
inclusion f gives an inclusio)y ® C — QY ® C. Fix the Weyl-invariant inner product
(,)i on QY so that(a",aV); = 2 for short corootsxV. Then theDynkin indexof the
inclusion is the ratiq f(aV), f(a¥))2/(aY,a"); wherea" is a short coroot ofy;. For
example, the irreducible representatign — sl,, has index";") by [15, Eq. (2.32)].

4.2. We now consider the cagg = sl and write simplyg and Q" for g and QY.
The coroot lattice ofl, is Z and the image of 1 under the mdp— Q" is an element
h € b called thedefining vectoof the inclusion. Irg8 of his paper (or se€ [18VI11.11]),
Dynkin proved that, after conjugating by an element of theeuorphism group ofi, one
can assume that the defining vectosatisfies the strong restrictions:

h = Z ps6¥  for ps real and non-negative[15, Lemma 8.3],
EEIN

whereA denotes the set of simple rootsgénd further that
(4.3) 5(h) €{0,1,2} forallé € A.

But note that for each simple roét the fundamental irreducible representatiorg ofith
highest weight dual t6V restricts to a representationgif with ps as a weight, hences
is an integer.

As a consequence of these generalities and specificallyfibma 8.2], one can iden-
tify an sl subalgebra of up to conjugacy by writing the Dynkin diagram gfaind putting
the numbes(h) from (4.3) at each vertex; this is tmearked Dynkin diagranof the s,
subalgebra.

Here is an alternative formula for computing the index ofsgnsubalgebra from its
marked Dynkin diagram. Write, andm" for the Killing form and dual Coxeter number

3Alternatively, Serre’s marvelous bound on the trace from8, [Th. 3] or [14, Th. 1] implies that for ev-
ery elementz of order 2 in a reductive complex Lie grou@, the —1-eigenspace ofAd(z) has dimension
< (dim G + rank G) /2. In particular, wherG is a real form offls, the —1-eigenspace has dimensigh128.
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of g. We have:

(4.4)  (Dynkinindex — %(h, h) = ﬁﬁg(h, h) = Q;N Y e

positive rootsw of g

where the second equality is by, e.0../[3%], and the third is by the definition af;. One
can calculate the number(h) by writing « as a sum of positive roots and applying the
marked Dynkin diagram fok.

Lemma 4.5. For every simple complex Lie algebgathere is a unique copy efs in g of
index1, up to conjugacy.

This is (equivalent to) Theorem 2.4 in_[15]. We give a diff@reroof for the conve-
nience of the reader.

Proof. The index of ansly-subalgebra i$h, h)/2, where the defining vectdr belongs to
the coroot lattice)" . If g is not of type B, then the coroot lattice is not of type C, anal th
claim amounts to the statement that the vectors of mininmgjttein the coroot lattice are
actually coroots. This follows from the constructions df tloot lattices in[[18512.1].
Otherwiseg has type B and iso,, for some odd: > 5. The conjugacy class of af,-
subalgebra is determined by the restriction of the naturdimensional representation;
they are parameterized by partitionsrofi.e., > n; = n) so that the even; occur with
even multiplicity and somey; > 1, see [[19, 5.1.2] ori [20§6.2.2]. The index of the
compositionsly — so,, — s, is then}_ ("3“) we must classify those partitions such
that this sum equals the Dynkin indexsaf, — sl,,, which is 2. The unique such partition
isS24+2+1+4+---+1>0. O

In the bijection between conjugacy classessif subalgebras and orbits of nilpotent
elementsirg from [19, 3.2.10], the unique orbit of index1,'s corresponds to the minimal
nilpotent orbit described in [19, 4.3.3].

If g has type CFy4, or Gs, then the argument in the proof of the lemma shows that
there is up to conjugacy a unique copysdf in g with index 2, 2, or 3 respectively. For
g of type B,, with n > 4, there are two conjugacy classesstf-subalgebras of index 2.
This amounts to the fact that there are vectors inGheoot lattice that are not roots but
have the same length as a root—specifically, sums of two gliyamthogonal short roots,
cf. Exercise 5 irg12 of [18].

5. COPIES OFsly ¢ IN THE COMPLEX Eg

We now prove some facts about copiesstfc in the complex Lie algebreg of type
Es. Of course, the 69 conjugacy classes of such are known-=5ep[y1182-185] o1 [21,
pp. 430-433]—but we do not need this information.

Fix a pinning foreg; this includes a Cartan subalgebiyaa set of simple roota& :=
{a; | 1 <4 < 8} (numbered

1 3 456 7 8

(5.1) )

as in [22]), and fundamental weights dual to«;. As all roots of theig root system have
the same length, we can and do identify the root system vgttatoot system (also called
the “inverse” or “dual” root system).
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Example 5.2. Taking any root ofg, one can generate a copyddf ¢ in eg with index 1.
Doing this with the highest root gives afy ¢ with marked Dynkin diagram

0 00O O0O0OT1

index 1: 0

Every index 1 copy o0fl, in eg is conjugate to this one by Lemral4.5.

Example 5.3. One can find a copy ofl, ¢ x sl ¢ in eg by taking the first copy to be
generated by the highest root B§ and the second copy to be generated by the highest
root of the obvioudt; subsystem. If you embed, ¢ diagonally in this algebra, you find

a copy ofsl; ¢ with index 2 and marked Dynkin diagram

1 000 O0OO

index 2: 0

Proposition 5.4. The following collections of copies & ¢ in es are the same:

(1) copies such that-1 are weights otg (as a representation afl ¢) and no other
odd weights occur.

(2) copies such that every weightafis in {0, £1, +2}.

(3) copies such that the inclusiat, ¢ C eg has Dynkin index or 2.

(4) copies ofsl; ¢ conjugate to one of those defined in Examplek 5[2°dr 5.3.

Proof. One easily checks that (4) is contained in (1)—(3); we prbeedpposite inclusion.
For (3), we identifyh with the complexificatior) @ C of the (co)root lattice), hence
hwith >~ «; (h)w;. By (@.4), the index ot satisfies:

2 2
—1 1 Wi,
60 2 a(h)® = 60 Ea (% ai(h)<wi,a>> > % (ai(h)2 Ea %)

where the sums vary over the positive roots. We calculatedoh fundamental weight;
the numbel", (wi, o)’ /60:

2 7 15 10 6 3 1
4

As the numbersy;(h) are all 0, 1, or 2, the numbers(5.5) show thaor ansly ¢ with
Dynkin index 1 or 2 must be; (index 2) orws (index 1).

For (2), the highest roat of Eg is @ = ), ¢;a;, Wherec; = c¢g = 2 and the othee;’s
are all at least 3. A&(h) is a weight ofeg relative to a given copy ofl, ¢, we deduce that
ansly ¢ as in (2) must havé = w; orws, as claimed.

(5.5)

Suppose now that we are given &arfor a copy ofsly ¢ as in (1). As+1 occur as
weights, there is at least one 1 in the marked Dynkin diagram.

But note that there cannot be three or more 1's in the marketkinydiagram forh.
Indeed, for every connected subsesf vertices of the Dynkin diagram dfs, >, g «; is
a root [22,8VI1.1.6, Cor. 3b]. If the number of 1's in the marked diagran.of at least
three, then one can picK so that it meets exactly three of thg’s with «;(h) = 1, in
which cas€) ;¢ ;(h) is odd and at least 3, violating the hypothesis of (1).

For sake of contradiction, suppose that there are two 1sanmarked diagram for,
say, corresponding to simple roetsanda; with ¢ < j. For each, j, one can find a root
G in the list of roots offig of large height in[[22, Plate VII] such that the coefficientsp
anda; in 8 have opposite parity and sum at least 3. (Merely taking be the highest root
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suffices for many(z, j).) This contradicts (1), so there is a unique 1 in the markadrdim
for h, i.e.,a;(h) = 1 for a uniquei.

If a;(h) = 1 for somei # 1,8, then we find a contradiction because there is a doaft
Eg with «;-coordinate 3. Therefore;(h) = 1 only fori = 1 or 8 and not for both. By the
fact used two paragraphs aboye;= . «; is a root ofEg, so(h) = > a;(h) is odd
and must be 1. It follows thdt = w; or ws. O

5.6. Centralizer for index 1. Thesl, ¢ of index 1 ineg has centralizer the obvious
regular subalgebre; of type E;. (A subalgebra isegular if it is generated by the root
subalgebras corresponding to a closed sub-root-system$1%6].) Indeed, it is clear that
e7 centralizes thisl, . Conversely, the centralizer ef; ¢ is contained in the centralizer
of h = wg—i.e.,e7 ® Ch—but does not contaih.

5.7. Decomposings. Suppose we are given a copy« ¢ in eg specified by a defining
vectorh. By applying the 240 roots af to /4 (and throwing in also 0 with multiplicity 8),
we obtain the weights af as a representation ef;, ¢ and therefore also the decomposition
of eg into irreducible representations ¢t ¢ as in, e.g.,[[18§7.2].

Extending this, suppose we are given a copylet x sl ¢ in es, where the two sum-
mands are specified by defining vectorg)in(Here we want the defining vectors to span
the Cartan subalgebras in the images of the #@'s. In particular, they need not be
normalized in the sense &f(4.3).) Computing as in the prtes/jmaragraph, we can decom-
poseeg as a direct sum of irreducible representations n of sly ¢ X sly ¢. Itis easy to
write code from scratch to make a computer algebra systefarpethis computation. We
remark that applying this recipe in the situation from thiedduction gives the dimension
of V. » as the multiplicity ofm @ n.

6. INDEX 2 COPIES OFsly ¢ IN THE COMPLEX Eg

Lemma 6.1. The centralizer of the indexds ¢ in es from Examplé5]3 is a copy 6613
contained in the regular subalgebsa; 4 of es.

Proof. The centralizer of thel, ¢ of index 2 ineg is contained in the centralizer of the
defining vector; this centralizer is reductive with semisimple part theulag subalgebra
5014 Of typeDy. The centralizer oél, ¢ contains the centralizer of th, ¢ x sl ¢ from
Exampld 5.8, which is the regular subalgebra, of typeDg, as can be seen by the recipe
from [15, pp. 147, 148]. Computing as[in'b.7, we see that therakzer ofsly ¢ has
dimension 78 (as is implicitly claimed in the statement &f bamma), so it lies properly
between the regulai> and the regulaso 4.

For concreteness, let us suppose that the structure cte&iagy are as in[[23]. Define
a copy ofsly ¢ by sending({ }) to the sum of the elements in the Chevalley basissof
spanning the root subalgebras correspondingdg and the highest root in the obviolis
subdiagram. This copy 6f ¢ has defining vectats + a3 + 2a4 + 2a5 + 2066 + 2a7. One
checks using the structure constants that4his centralizes the index &, ¢ we started
with, and that together witko - it generates a copy @b,3. In particular, the coroot lattice
of thissoy3 has basig?), . .., 5y, embedded in the (co)root lattice af as in the table:

(6.2) sois | BY B By BY B 8y

€g | a3 Qg4 o5 Qg Q7 —OQ0y— Q3 — 2044 — 2045 — 2a6 — 2047
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We remark that the numbering of the corogis, . .., 5y corresponds to a numbering of
the simple roots ofo,3 as in the diagram

Bi B2 Bz Ba Bs Be

Dimension count shows that this 3 is the centralizer. [l

The claim of the lemma is already in [24, p. 125]. We gave thaitéeof a proof because
it specifies an inclusion afoy3 in es and a comparison of the pinnings of the two algebras
as in [6.2).

The index 2sl; and the copy ofo;3 give ansl, x soi3 subalgebra otg. We now
decomposesg into irreducible representations sf; x so;5. We can do this from first
principles by restricting the roots ef to the Cartan sublagebras«$ (using the marked
Dynkin diagram from Example5.3) and5 (using [6.2)). Alternatively, we can read
the decomposition off the tables in [25] as follows. As in greof of Lemmd6.1s(; is
contained in the regular subalgebfa x sl, x so015 Of eg, and the tables on pages 301 and
305 of ibid. show thats decomposes as a sum of

(6.3) the adjointrepresentation2® 1 ® S;, 1®2®S5_, and 202V,

whereS denotes the half-spin representationsaf andV is the vector representation.
We can restrict the representationss6f x sl, to the diagonaél, subalgebra to obtain a
decomposition otg into representations afl; x so15. Consulting the tables in ibid. for
restricting representations from typg to Dg allows us to deduce the decomposition

(6.4) 1®so13c @ 2®@(spinn & 3®1 @& 3® (vecton

of eg as a representation s, x so;3. From this it is obvious thato; 3 ¢ is the Lie algebra
of a copy ofSpin, 5 in Eg.
The main result of this section is the following:

Lemma 6.5. Up to conjugacy, there is a unique copyS$ifs ¢ x SL ¢ in Eg ¢ so that
each inclusion oBL; ¢ in Eg ¢ has index 2. The centralizer of th#d., ¢ x SLa ¢ has
identity componerfip, ¢ x Spyc-

Proof. As in the proof of LemmB4l5 (or by the method used to prove Bal), there are
two index 2 copies ofl, in so13, coresponding to the partitions

(@ 3+1+1+---+1 and (b) 24+242+2+1+1+---+1

of 13. The recipe in[1%5.3] gives defining vectors for thesg’s, which we can rewrite
in terms of thellg simple roots usind (612):

(@) 26Y +2BY +26Y +26) +26Y + B¢ = —az + a3
(b) ﬁ}/ + 2ﬁ¥ + 355/ + 454\1/ + 45;)/ + 26%/ = —20&2 — Qa3 — 20&4 — Q5

We can pair each of (a) and (b) with the copysof from Exampld 5.8 to get asils x slo
subalgebra oks where bothsly’'s have index 2. Clearly, these represent the only two
Esg-conjugacy classes of such subalgebras. WitH (6.6) in haaeadan calculate the multi-
plicities of the irreducible representationssof x sls in eg as in[5.7.

In case (a), every irreducible summamd® n hasm + n even. Therefore, this copy
of sly x sl is the Lie algebra of a subgroup Bf isomorphic to(SLy x SLy)/(—1, —1).
(An alternative way to see this is to note that the simpleg@oth odd coefficients are the
same in[(€.6a) and the defining vector in Exanfiplé 5.3.)

(6.6)
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In case (b), we have the following table of multiplicities fo & n:

|1 23 m

120 20 6
n 2[20 16 4

3/ 6 40

In particular, it is the Lie algebra of a copy Bf.2 x SL; in Eg. The centralizer of (b) in
Spin, 5 has been calculated in [26, IV.2.25], and the identity congua isSp, x Sp,, as
claimed. O

(6.7)

We can decomposg into a direct sum of irreducible representations of¢hex sls x
sp, x sp, subalgebra from Lemnfa 6.5 by combining the decompositiony @fto irre-
ducible representations ef; x so;3 from (6.4) with the tables if [25]. Specifically, we
restrict representations frosn, 3 to ansp, x sos subalgebra and then frosmg to sp, x slo,
where thissl; also has index 2. Recall thgi, has two fundamental irreducible represen-
tations: one that is 4-dimensional symplectic and anotiegris 5-dimensional orthogonal;
we denote them by their dimensions. With this notation[adde find:

(68) ‘/2,1 ~ 54, ‘/1,2 ~4®5, ‘/2,3 ~ 1®4, ‘/372 ~4®1, and ‘/2,2 ~ 4®4.

7. CoPles OFSL(2,C) IN A REAL FORM OF Eg

Suppose now that we have a copySif(2, C) inside a real Lie grouft of type Es.
Over the complex numbers, we decompbse(E) ® C into a direct sum of irreducible
representations ¢fL.(2, C) ® C ~ SLs ¢ x SLa ¢; each irreducible representation can be
written asm ® n wherem andn denote the dimension of an irreducible representation of
the first or secon8L; ¢ respectively. The goal of this section is to prove:

Proposition 7.1. Maintain the notation of the previous paragraphLit(E) ® C contains
no irreducible summands. ® n with m + n > 4, then the identity compone#t of the
centralizer ofSL(2, C) in E is a subgroup isomorphic to

(1) Spin(7,5) if E is split; or

(2) Spin(9,3) or Spin(11, 1) if the Killing form ofLie(E) has signature-24.
In either caseLie(Z) @ Cis the regularso;, subalgebra oLie(E) ® C.

Proof. Complexifying the inclusion o8L(2, C) in E and going to Lie algebras gives an
inclusion ofsl, ¢ X sl ¢ in the complex Lie algebre. The hypothesis on the irreducible
summandsn ® n implies that each of the twel; ¢'s has index 1 or 2 by Proposition’b.4.
As complex conjugation interchanges the two componereg,iiust have the same index.

Suppose first that bo#i,’s have index 2. When we decompaseas il 1.1, we find the
representatio ® 3 with positive multiplicity 4 by [6.¥), which violates our ppthesis on
theSL(2, C) subgroup oft.

Therefore bothsly’s have index 1. Lemma4.5 (twice) gives that this x sl; is con-
jugate to the one generated by the highest rodEofrom Exampld 5P (so the second
sl belongs to the centralizer of tyfd&;) and by the highest root of tHe; subsystem and
makes up the first two summands ofdp x sly x so12 subalgebra, the same one used to
find (6.3). That isgo15 centralizessly x sl;. Conversely, the centralizer of the defining
vectors of the two copies afl, has semisimple pasb,; it follows thatLie(Z) ® C is
isomorphic toso 5.

From this and the decompositidn (6.3), we see thids a real form ofSpin;,. As
Lie(E) is a real representation &f, we deduce thal” is also a real representation &f
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but.S; andS_ are not; they are interchanged by the Galois action. Thedirsérvation
shows thatZ is Spin(12 — a, a) for some0 < a < 6. The second shows thatmust be 1,
3, or 5, as claimed in the statement of the proposition.

It remains to prove the correspondence betweand the real forms dfs. Fora = 5,
this is clear: the subgroup generateddly(2, C) andSpin(7, 5) has real rank 6, so it can
only be contained in the split real form.

Now suppose that = 3 or 1 and thaSL(2,C) is in the splitEs; we will show that
the Killing form of E has signature-24. OverC, SL(2,C) is conjugate to the copy of
SLa.c x SLa ¢ in Eg ¢ generated by the highest root B and the highest root of the
natural subsystem of tyde;. Writing out these two roots in terms of tfig simple roots,
we see thatvs andas are the only simple roots whose coefficients have differanitips.

It follows that the element-1 € SL(2, C)—equivalently,(—1,—1) € SLg x SLo—is
hey(—1) hag (—1) in the notation of[[2[7], wheré,,, : C* — E ® C is the cocharacter
corresponding to the coroaty. Now, az and as are the only simple roots with odd
coefficients in the fundamental weight, so the subgroup df ® C fixed by conjugation
by this —1 is generated by root subgroups corresponding to raaach that{w,, a) is
even. These roots form the natufal subsystem oEg, and in this way we se®L(2,C) -
Spin(12 — a, a) as a semisimple subgroup of maximal rank in a copy of a haif-gpup
H in 16 dimensions—the identity component of the centralifer 1.

We claim thatH is isogenous t8O(12,4). As H is a half-spin group with a half-spin
representation defined ov&, it is isogenous t&8O(16 — b,b) for b = 0, 4, or 8 or it
is quaternionic; these possibilities have Killing formssignature—120, —24, 8, or —8
respectively, as can be looked up inl[28], for example. Theiatrepresentation of7,
when restricted t8L(2, C) - Spin(12 — a, a), decomposes as the adjoint representation of
SL(2,C) - Spin(12 — a,a) and2 ® 2 ® V by (6.3). The Killing form onH restricts to a
positive multiple of the Killing form orSL(2, C) - Spin(12 — a,a) (as can be seen over
C by the explicit formula on p. E-14 of [26])—i.e., has signau-44 or —12 fora = 1
or 3—and a form of signatur£2(12 — 2a) on2 ® 2 ® V; the sum of these has signature
0, —24, or —64 sincea = 1 or 3. Comparing the two lists verifies thét is isogenous to
SO(12,4).

The Killing form on H has signature-24. The invariant bilinear form on the half-spin
representation is hyperbolic (becausés isogenous to spin of an isotropic quadratic form
of dimension divisible by 8, seé [29, 1.1]). As a represemadf I, Lie(E) is a sum of
these two representations, and we conclude that the Kiiimg onLie(FE) has signature
—24, as claimed. O

Remark7.2. We can determine the centralizer and the real fordgoélso in the excluded
case in the proof where botti,’s have index 2. As in Lemma_8.5, the centralizer is a
real form of Sp, « x Sp, . The decompositiori (6.8) shows that complex conjugation
interchanges the twBp, ¢ terms, so the centralizer B(Sp, ). Complex conjugation
interchanges the irreducible representations appearif@.d) in pairs (contributing 0 to
the signature of the Killing forma z of E), except for2 ® 2 ® V5 2, which has dimension
82, This last piece breaks up into a 36-dimensional even sgbespad a 28-dimensional
odd subspace, contributing 8 to the signature @find proving that the resulting real form
of Eg is the split one.
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8. NO THEORY OFEVERYTHING IN A REAL FORM OF Eg

In the decompositiod (1l.1) dfie(E) ® C, the integersn,n are positive, So[(TOE?2)
implies
(ToE2") Vion =0if m >4 o0rn > 4.
We prove the following strengthening of the real case of Taebl.3:

Lemma 8.1. If subgroupsSL(2,C) and G of a real formE of Eg satisfy [ToElL) and
(ToEZ]), thenl; - is a self-conjugate representation@f i.e., [TOEB3) fails.

Proof. As in the proof of Proposition 7.1, over the complex numbeggst two copies of
sl; that embed irEg with the same index, which is 1 or 2.

If the index is 1, we are in the case of that proposition. Fieeigenspace ifie(E)
(of the element-1 in the center o8L(2, C)) is a real representation 8L.(2,C) - G, and
G is contained in a copy dfpin(12 — a,a) fora = 1, 3, or 5. As in the proof of the
proposition, there is a representatidhof SL(2, C) x Spin(12 — a, a) defined oveR that
is isomorphic to

2elesSy) & (1205-)
overC. Now G is contained in the maximal compact subgrougspin(12 — a,a), i.e.,
Lie(G) is asubalgebra afo(11), s0(9) x s0(3), orso(7) xso(5). The restriction of the two
half-spin representations 8pin(12 — «a, a) to the compact subalgebra are equivalent [25,
p. 264], and we see that in each case the restrictiquagernionic (To see this, one uses
the standard fact that the spin representatics (¢ + 1) is real for/ = 0,3 (mod 4) and
quaternionic fo¥ = 1,2 (mod 4).) Thatis, the restrictions &f, S_, and their complex
conjugates to the maximal compact subgroup are all equivédeerC), hence the same
is true for their further restrictions @, and [ToEB) fails.

If the index is 2, ther is contained in a real form &p, ¢ x Sp, ¢ by Lemmé&6.b.
When we decomposg as in [1.1), we findz ; andV; 5 as in [6.8). As complex con-
jugation interchanges these two representations, itviallthat complex conjugation in-
terchanges the twBp,  factors, i.e., the centralizer 6f.(2, C) has identity component
the transferR(Sp, ¢) of Sp, ¢. Its maximal compact subgroup is the compact form of
Sp4 ¢ (also known aspin(5)), all of whose irreducible representations are self-cgafe.
Therefore,[[TOER) fails. O

Remark8.2 It is worthwhile noting that, in each of the three cases inp@sition[7.1
(the three cases whefe (TJE2) holds), it is possible to entkgdin the centralizer, thus
showing that[(ToE) is satisfied. Given such an embeddinignple computation verifies
explicitly thatS, has a self-conjugate structure as a representatiohygf

First considerSpin(11,1). There is an obvious embedding 6.yt := Spin(10).
Under this embeddingy; decomposes as the direct sum of the two half-spinor represen
tations, i.e., as a generation and an anti-generation.

For Spin(7,5), there is an obvious embedding of the Pati-Salam grdupyr =
(Spin(6) x Spin(4))/(Z/2Z). Again, S, decomposes as the direct sum of a generation
and an anti-generation.

Finally, Spin(3, 9) containgSU(3) x SU(2) x SU(2) x U(1))/(Z/6Z) as a subgroup.
Under this subgroup,

Sy =10(3,2,2)1/6 ®(3,2,2) 176 + (1,2,2) 12 + (1,2,2)12

where the subscript indicates tlh&1) weights, and the overall normalization is chosen
to agree with the physicists’ convention for the weightstaf Standard Model'¥(1)y .
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Embedding theSU(2) of the Standard Model in one of the tv&lJ(2)s, we obtain an
embedding ofGsm C Spin(3,9) where, againS;. has a self-conjugate structure as a
representation affsy;.

9. NO THEORY OFEVERYTHING IN COMPLEX Eg

We now complete the proof of Theorédmll.3 by proving the follaystrengthening of
the complex case.

Lemma 9.1. If subgroupsSL(2,C) and G of R(Ejs c) satisfy [ToElL) and(ToER’), then
V1,2 is a self-conjugate representation@f i.e., [TOEB) fails.

First, recall the definition of the transfét( H¢) of a complex groug¢ as described,
e.g., in [30,§2.1.2]. Its complexification can be viewed & x Hc¢, where complex
conjugation acts via

(h1, ha) = (ha, h1).
One can viewR(Hc) as the subgroup of the complexification consisting of elestxed
by complex conjugation.

Now consider an inclusiop: SL(2,C) = R(SL2¢) — R(Es,c). Complexifying, we
identify R(SL2 ¢) ® C with SLs ¢ x SLg ¢ and similarly forR(Eg ¢) and write outp as

(9.2) d(h1, ha) = (d1(h1)d2(h2), Y1 (h1)2(ha))

for some homomorphisms;, ¢z, ¥1, 12 : SLoc — Egc. As ¢ is defined ovetR, we
have:

¢(h1, ha) = ¢(ha, hy) = (Y1 (he)2(h1), 1(h2)d2(h1)),
and it follows thaty; (h1) = ¢2(h1) andvz(he) = ¢1(h2). Conversely, given any two
homomorphisms, ¢2: SLs ¢ — Eg ¢ (overC) with commuting images, the same equa-
tions define a homomorphisim SL(2,C) — R(Eg ¢) defined oveRR.

Proof of Lemma9]1Write Z for the identity component of the centralizer of the image
of the mapg; x ¢o: SLy ¢ x SLa ¢ — Es ¢ from (8.2). Clearly,G is contained in the
transferR(Z) of Z. In each of the cases below, we verify that

(9.3) Z is semisimple and-1 is in the Weyl group ofZ.

It follows from this that the maximal compact subgroupR{f7) is the compact real form
Zw of Z and thatZg is aninnerform. Hence every irreducible representatioriZgfis real
or quaternionic, hence every representatio@gfis self-conjugate. That ig_(ToE3) fails,
which is the desired contradiction.

Case 1, or ¢, is trivial. Consider the easiest-to-understand case wherer ¢, is

the zero map, say.. In the notation ofl(91R2)p(h1, ha) = (¢1(h1), ¢1(h2)), i.€.,¢ is the
transfer of the homomorphisth : SLo ¢ — Es ¢. By Propositioi 5.4¢; has index 1 or
2. If ¢1 has index 1, thei is simple of typel; by[5.8, hencd (9]3) holds. f; has index
2, thenLie(Z) is isomorphic teso13 ¢ by Lemmd6.1L, and agaih(9.3) holds.

Case 2: Neithet; nor ¢, is trivial. Now suppose that neitheég nor¢s is trivial. Again,
Propositiort 5.4 implies that; andg, have Dynkin index 1 or 2.

If ¢; andgs both have index 1, then (ovél) the homomorphismd; x ¢ is the one
from the proof of Proposition 7.1 and is the standards subgroup ofEg ¢ and [9.8)
holds.

Now suppose thap; and¢. both have index 2. Ag is an injection, it is not possible
that#; and¢. both vanish on-1 € SL, ¢, and it follows from the proof of Lemmag.5
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that¢; x ¢ is an injection as in the statement of Lemimad 6.5. In particifahas Lie
algebrasp, ¢ x sp, ¢ of type B, x By and [9.8) holds. Note thdi (ToE?) fails in this case
by 6.1).

Suppose finally thap;, has index 1 ang, has index 2. We conjugate so that(sls) is
the copy ofsl; from Examplé 5B, and (by Lemrha 4.5 for the centralizgg of ¢2(sl3))
we can takes, (sl2) to be a copy oél» generated by the highest rootwf; ;. Calculating as
described i 517 gives the following table of multipliciifor the irreducible representation
m ® n of sly x sly in eg:

| 1 2
139 18
n 232 16
3/10 2 0

In particular, theA; x B4 subgroup ofSpin, 5 that centralizes the image of x ¢- is all
of the identity component of the centralizer irls. Again (9.3) holds. (Of coursd, (9.4)
shows that (TOE2) fails.) O

(9.4)

S W

10. ReELAXING (TQEZ2) 10 (TQEZ)

Combining Lemmag 8l1 arld 9.1 gives a proof not only of ThedieBn but of the
following stronger statement.

Theorem 10.1.There are no subgroufd.(2, C)-G satisfying[(ToENL) [{TOEPR’), anf(ToE3)
in the (transfer of the) compldxg or any real form offs. O

We retained hypothesis (ToE?2) in the introduction becahaeis what is demanded
by physics. Technically, it ipossiblefor V; 3 and Vs o to be nonzero in an interacting
theory—so[(ToER) is false buf (ToE2’) still holds—but ontythe presence of local su-
persymmetry (i.e., in supergravity theorigs)|[31]. Listramework is not compatible with
local supersymmetry, so we excluded this possibility above

For real forms offis, weakening[(ToE?2) td (ToEPR’) only adds the caseifs), with
Gmax = Spin(5), where we find

(10.2) V32 = Va3 =4, Vou~>Via=4@16

and we have indicated the irreducible representatioiSgof(5) by their dimensions. Be-
cause the gravitinos transform nontrivially und&p.x and because of their multiplicity,
the only consistent possibility would be a gaug€d= 4 supergravity theory (for a re-
cent review of such theories, see [32]). Unfortunately,rést of the matter content (it
suffices to look aflz ;) is not compatible with\V' = 4 supersymmetry. Even if it were,
N = 4 supersymmetry would, of course, necessitate that theytxonon-chiral, making
it unsuitable as a candidate Theory of Everything.

To summarize the results of this section, the previous siiose and Remark 712, weak-
ening [ToER) to[(ToE2’) adds only three additional entrie3abld 1.b.

E Gmax ‘/3,2 ‘/2,1
' R(Esc) Spin(5) x Spin(5) (4,1) @ (1,4)  (4,5) & (5,4)
R(Esc) SU(2) x Spin(9) (2,1) (2,9) @ (2,16)

In each case the fermion representatidris; ~ Vi, andVs; o ~ V5 3, are pseudoreal
representations @ ..
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11. CONCLUSION

In paragraphl3 above, we observed by an easy dimension ¢@imtt proposed Theory
of Everything constructed using subgroups of a real firof Eg has a sufficient number
of weight vectors in the-1-eigenspace to identify with all known fermions. The probf o
our Theoreni 1]3 was quite a bit more complicated, but it alsesgmuch more. It shows
that you cannot obtainehiral gauge theory foanycandidate ToE subgroup &f whether
E is a real form or the complex form dfs. In particular, it is impossible to obtain even
the 1-generation Standard Model (in the sense of Defirifi@hia this fashion.
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