Skip to main content
Log in

Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

It has recently become more clearly understood that in human brain pathophysiology, neurosteroids play a role in anxiety disorders, premenstrual syndrome, postpartum depression, posttraumatic stress disorder, and depression. In the treatment of major depression, recent clinical studies indicate that the pharmacological profiles of fluoxetine and fluvoxamine are correlated with the ability of these drugs to increase the brain and cerebrospinal fluid content of allopregnanolone (Allo), a potent positive allosteric modulator of gamma-aminobutyric acid (GABA) action at GABAA receptors. Thus, the neurosteroid-induced positive allosteric modulation of GABA action at GABAA receptors is facilitated by fluoxetine or its congeners (i.e., paroxetine, fluvoxamine, sertraline), which may not block 5-HT reuptake at the doses currently prescribed in the clinic. However, these doses are effective in the treatment of premenstrual dysphoria, anxiety, and depression. In socially isolated mice, we tested the hypothesis that fluoxetine, norfluoxetine, and other specific serotonin reuptake inhibitor (SSRI) congeners stereoselectively upregulate neurosteroid content at doses insufficient to inhibit 5-HT reuptake; although they potentiate pentobarbital-induced sedation and exert antiaggressive action. Very importantly, the inhibition of 5-HT reuptake lacks stereospecificity and requires fluoxetine and norfluoxetine doses that are 50-fold greater than those required to increase brain Allo content, potentiate the action of pentobarbital, or antagonize isolation-induced aggression. Based on these findings, it could be inferred that the increase of brain Allo content elicited by fluoxetine and norfluoxetine, rather than the inhibition selective of 5-HT reuptake, may be operative in the fluoxetine-induced remission of the behavioral abnormalities associated with mood disorders. Therefore, the term “SSRI” may be misleading in defining the pharmacological profile of fluoxetine and its congeners. To this extent, the term “selective brain steroidogenic stimulants” (SBSSs) could be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agis-Balboa RC, Pinna G, Veldic M, Costa E, Guidotti A (2005) Brain region- and neuron-specific distribution of 5α-reductase type I (5α-RI) and 3α-hydroxysteroid-dehydrogenase (3α-HSD). Society for Neuroscience Abstract 35:261.12

    Google Scholar 

  • Altamura AC, Moro AR, Percudani M (1994) Clinical pharmacokinetics of fluoxetine. Clin Pharmacokinet 26:201–214

    PubMed  CAS  Google Scholar 

  • Auta J, Romeo E, Kozikowski A, Ma D, Costa E, Guidotti A (1993) Participation of mitochondrial diazepam binding inhibitor receptor in the anticonflict, antineophobic and anticonvulsant action of 2-aryl-3-indoleacetamide and imidazopyridine derivatives. J Pharmacol Exp Ther 265:649–656

    PubMed  CAS  Google Scholar 

  • Barbaccia ML (2004) Neurosteroidogenesis: relevance to neurosteroid actions in brain and modulation by psychotropic drugs. Crit Rev Neurobiol 16:67–74

    Article  PubMed  CAS  Google Scholar 

  • Barbaccia ML, Serra M, Purdy RH, Biggio G (2001) Stress and neuroactive steroids. Int Rev Neurobiol 46:243–272

    PubMed  CAS  Google Scholar 

  • Baulieu EE (1981) Steroid hormones in the brain: several mechanisms. In: Fuxe K, Gustafson JA, Wettenberg L (eds) Steroid hormone regulation of the brain. Pergamon, Elmsford, pp3–14

    Google Scholar 

  • Baulieu EE, Robel P, Schumacher M (2001) Neurosteroids: beginning of the story. Int Rev Neurobiol 46:1–32

    PubMed  CAS  Google Scholar 

  • Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABAA receptor. Nat Rev Neurosci 6:565–575

    Article  PubMed  CAS  Google Scholar 

  • Belelli D, Bolger MB, Gee KW (1989) Anticonvulsant profile of the progesterone metabolite 5α-pregnan-3α-ol-20-one. Eur J Pharmacol 166:325–329

    Article  PubMed  CAS  Google Scholar 

  • Belelli D, Casula A, Ling A, Lambert JJ (2002) The influence of subunit composition on their interaction of neurosteroids with GABAA receptors. Neuropharmacology 43:651–661

    Article  PubMed  CAS  Google Scholar 

  • Bitran D, Purdy RH, Kellogg CK (1993) Anxiolytic effect of progesterone is associated with increases in cortical allopregnanolone and GABAA receptor function. Pharmacol Biochem Behav 45:423–428

    Article  PubMed  CAS  Google Scholar 

  • Bitran D, Foley M, Audette D, Leslie N, Frye CA (2000) Activation of peripheral mitochondrial benzodiazepine receptors in the hippocampus stimulates allopregnanolone synthesis and produces anxiolytic-like effects in the rat. Psychopharmacology 151:64–71

    PubMed  CAS  Google Scholar 

  • Blier P, de Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220–226

    Article  PubMed  CAS  Google Scholar 

  • Brambilla F, Mellado C, Alciati A, Pisu MG, Purdy RH, Zanone S, Perini G, Serra M, Biggio G (2005) Plasma concentrations of anxiolytic neuroactive steroids in men with panic disorder. Psychiatric Res 135:185–190

    Article  CAS  Google Scholar 

  • Bunney WE, Davis JM (1965) Norepinephrine in depressive reactions. Arch Gen Psychiatry 13:483–494

    PubMed  CAS  Google Scholar 

  • Burke WJ (2004) Selective versus multi-transmitter antidepressants: are two mechanisms better than one? J Clin Psychiatry 65:37–45

    Article  PubMed  CAS  Google Scholar 

  • Castrén E (2005) Is mood chemistry? Nat Rev Neurosci 6:241–246

    Article  PubMed  CAS  Google Scholar 

  • Cheney DL, Uzunov D, Costa E, Guidotti A (1995) Gas chromatographic-mass fragmentographic quantitation of 3α-hydroxy-5α-pregnan-20-one (allopregnanolone) and its precursors in blood and brain of adrenalectomized and castrated rats. J Neurosci 15:4641–4650

    PubMed  CAS  Google Scholar 

  • Coccaro EF, Kavoussi RJ (1997) Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Arch Gen Psychiatry 54:1081–1088

    PubMed  CAS  Google Scholar 

  • Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, Purdy RH, Grisenti P, Biggio G (1998) Role of brain allopregnanolone in the plasticity of gamma-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci USA 95:13284–13289

    Article  PubMed  CAS  Google Scholar 

  • Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113:1237–1264

    Article  PubMed  CAS  Google Scholar 

  • Coppen AJ, Doogan DP (1988) Serotonin and its place in the pathogenesis of depression. J Clin Psychiatry 49:4–11

    PubMed  Google Scholar 

  • Costa E, Guidotti A (1996) Benzodiazepines on trial: a research strategy for their rehabilitation. Trends Pharmacol FHPfa 17:192–200

    Article  PubMed  CAS  Google Scholar 

  • Costa E, Auta J, Guidotti A (2001) Tolerance and dependence to ligands of the benzodiazepine recognition sites expressed by GABAA receptors. In: Mohler H (ed) Pharmacology of GABA and glycine neurotransmission. Springer-Verlag, Berlin Heidelberg New York, pp 227–250

    Google Scholar 

  • Costa E, Auta J, Grayson DR, Matsumoto K, Pappas GD, Zhang X, Guidotti A (2002) GABAA receptors and benzodiazepines: a role for dendritic resident subunit mRNAs. Neuropharmacology 43:925–937

    Article  PubMed  CAS  Google Scholar 

  • Delgado PL (2004) How antidepressants help depression: mechanisms of action and clinical response. J Clin Psychiatry 65:25–30

    PubMed  CAS  Google Scholar 

  • Dong E, Matsumoto K, Uzunova V, Sugaya I, Takahata H, Nomura H, Watanabe H, Costa E, Guidotti A (2001) Brain 5α-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Natl Acad Sci USA 98:2849–2854

    PubMed  CAS  Google Scholar 

  • Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG (2004) Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 127:601–609

    PubMed  CAS  Google Scholar 

  • Dubrovsky BO (2005) Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 29:169–192

    Article  PubMed  CAS  Google Scholar 

  • Favale E, Rubino V, Mainardi P, Lunardi G, Albano C (1995) Anticonvulsant effect of fluoxetine in humans. Neurology 45:1926–1927

    PubMed  CAS  Google Scholar 

  • Gee KW, Bolger, MB, Brinton RE, Coirini H, McEwen BS (1988) Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action. J Pharmacol Exp Ther 246:803–812

    PubMed  CAS  Google Scholar 

  • Gigli GL, Diomedi M, Troisi A, Marciani MG, Pasini A (1996) Fluoxetine and seizures. Neurology 47:303

    PubMed  CAS  Google Scholar 

  • Girdler SS, Straneva PA, Light KC, Pdersen CA, Morrow LA (2001) Allopregnanolone levels and reactivity to mental stress in premenstrual dysphoric disorder. Biol Psychiatry 49:788–797

    Article  PubMed  CAS  Google Scholar 

  • Griffin LD, Mellon SH (1999) Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci USA 96:13512–13517

    Article  PubMed  CAS  Google Scholar 

  • Guidotti A, Costa E (1998) Can the antidysphoric and anxiolytic profiles of selective serotonin reuptake inhibitors be related to their ability to increase brain 3 alpha, 5alpha-tetrahydroprogesterone (allopregnanolone) availability? Biol Psychiatry 44:865–873

    Article  PubMed  CAS  Google Scholar 

  • Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, Costa E (2001) The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5α-dihydroprogesterone in psychiatric disorders. Brain Res Rev 37:110–115

    Article  PubMed  CAS  Google Scholar 

  • Guidotti A, Auta J, Davis JM, Dong E, Grayson DR, Veldic M, Zhang X, Costa E (2005) GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology 180:191–205

    Article  PubMed  CAS  Google Scholar 

  • Hirschfeld RM (2000) History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 61:4–6

    PubMed  CAS  Google Scholar 

  • Jain NS, Hirani K, Chopde CT (2005) Reversal of caffeine-induced anxiety by neurosteroid 3α-hydroxy-5α-pregnane-20-one in rats. Neuropharmacology 48:627–638

    Article  PubMed  CAS  Google Scholar 

  • Khisti RT, Chopde CT (2000) Serotonergic agents modulate antidepressant-like effects of the neurosteroid 3α-hydroxy-5α-pregnan-20-one in mice. Brain Res 865:291–300

    Article  PubMed  CAS  Google Scholar 

  • Khisti RT, Chopde CT, Jain SP (2000) Antidepressant-like effect of the neurosteroid 3α-hydroxy-5α-pregnan-20-one in mice forced swim test. Pharmacol Biochem Behav 67:137–143

    Article  PubMed  CAS  Google Scholar 

  • Kuroda Y, Watanabe Y, McEwen BS (1994) Tianeptine decreases both serotonin transporter mRNA and binding sites in rat brain. Eur J Pharmacol 268:R3–R5

    Article  PubMed  CAS  Google Scholar 

  • Lambert JJ, JA Peters, GA Cottrell (1987) Actions of synthetic and endogenous steroids on the GABAA receptor. Trends Pharmacol Sci 8:224–227

    Article  CAS  Google Scholar 

  • Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA (2003) Neurosteroid modulation of GABAA receptors. Prog Neurobiol 71:67–80

    Article  PubMed  CAS  Google Scholar 

  • Le Mellédo J-M, Baker GB (2002) Neuroactive steroids and anxiety disorders. J Psychiatry Neurosci 27:161–165

    PubMed  Google Scholar 

  • Leon AC (2004) Are two antidepressant mechanisms better than one? issues in clinical trial design and analysis. J Clin Psychiatry 65:31–36

    PubMed  CAS  Google Scholar 

  • Majewska MD (1992) Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol 38:379–395

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Ojima K, Watanabe H (1996) Neurosteroidal modulation of social-isolation stress-induced decrease in pentobarbital sleep in mice. Brain Res 708:1–6

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Uzunova V, Pinna G, Taki K, Uzunov DP, Watanabe H, Mienvielle J-M, Guidotti A, Costa E (1999) Permissive role of brain allopregnanolone content in the regulation of pentobarbital-induced righting reflex loss. Neuropharmacology 38:955–963

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Nomura H, Murakami Y, Taki K, Takahata H, Watanabe H (2003) Long-term social isolation enhances picrotoxin seizure susceptibility in mice: up-regulatory role of endogenous brain allopregnanolone in GABAergic systems. Pharm Biochem Behav 75:831–835

    Article  CAS  Google Scholar 

  • Matsumoto K, Pinna G, Puia G, Guidotti A, Costa E (2005) Social isolation stress-induced aggression in mice: a model to study the pharmacology of neurosteroidogenesis. Stress 8:85–93

    PubMed  CAS  Google Scholar 

  • McEwen BS, Olié JP (2005) Neurobiology of mood, anxiety, and emotions as revealed by studies of a unique antidepressant: tianeptine. Mol Psychiatry 10:525–537

    Article  PubMed  CAS  Google Scholar 

  • Mennini T, Mocaer E, Garattini S (1987) Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunyn Schmiedebergs Arch Pharmacol 336:478–482

    Article  PubMed  CAS  Google Scholar 

  • Mienville JM, Vicini S (1989) Pregnenolone sulfate antagonizes GABAA receptor mediated currents via a reduction of channel opening frequency. Brain Res 489:190–194

    Article  PubMed  CAS  Google Scholar 

  • Mocaer E, Rettori MC, Kamoun (1988) Pharmacological antidepressive effects and tianeptine-induced 5-HT uptake increase. Clin Neuropharmacol 2:S32–S42

    Google Scholar 

  • Mongeau R, Blier P, de Montigny C (1997) The serotonergic and noradrenergic systems of the hippocampus: their interactions and the effects of antidepressant treatments. Brain Res Rev 23:145–195

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ (2002) Neurobiology of depression. Neuron 34:13–25

    Article  PubMed  CAS  Google Scholar 

  • Ojima K, Matsumoto K, Tohda M, Watanabe H (1995) Hyperactivity of central noradrenergic and CRF systems is involved in social isolation-induced decrease in pentobarbital sleep. Brain Res 684:87–94

    Article  PubMed  CAS  Google Scholar 

  • Owens MJ (2004) Selectivity of antidepressants: from the monoamino hypothesis of depression to the SSRI revolution and beyond. J Clin Psychiatry 65 (4):5–10

    PubMed  CAS  Google Scholar 

  • Pasini A, Torotorella A, Gale K (1996) The anticonvulsant action of fluoxetine in substantia nigra is dependent upon endogenous serotonin. Brain Res 724:84–88

    Article  PubMed  CAS  Google Scholar 

  • Paul SM, Purdy RM (1992) Neuroactive steroids. FASEB J 6:2311–2322

    PubMed  CAS  Google Scholar 

  • Pearlstein T (2002) Selective serotonin reuptake inhibitors for premenstrual dysphoric disorder. The emerging gold standard? Drugs 62:1869–1885

    Article  PubMed  CAS  Google Scholar 

  • Phillipps GH (1975) Structure–activity relationships in steroidal anaesthetics. J Steroid Biochem 6:607–613

    Article  PubMed  CAS  Google Scholar 

  • Pinna G, Galici R, Schneider HH, Stephens DN, Turski L (1997) Alprazolam dependence prevented by substituting with the β-carboline abecarnil. Proc Natl Acad Sci USA 94:2719–2723

    Article  PubMed  CAS  Google Scholar 

  • Pinna G, Uzunova V, Matsumoto K, Puia G, Mienville JM, Costa E, Guidotti A (2000) Brain allopregnanolone regulates the potency of the GABAA receptor agonist muscimol. Neuropharmacology 39:440–448

    Article  PubMed  CAS  Google Scholar 

  • Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A (2003a) In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci USA 100:2035–2040

    Article  PubMed  CAS  Google Scholar 

  • Pinna G, Liskevych U, Doueiri M-S, Costa E, Guidotti A (2003b) Antidepressants in doses that increase neurosteroid biosynthesis but fail to inhibit 5-HT reuptake, reduce expression of aggression in socially isolated (SI) mice. Society for Neuroscience Abstract 33:664.2

    Google Scholar 

  • Pinna G, Costa E, Guidotti A (2004a) Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids. Proc Natl Acad Sci USA 101:6222–6225

    Article  PubMed  CAS  Google Scholar 

  • Pinna G, Agis-Balboa RC, Doueiri M-S, Guidotti A, Costa E (2004b) Brain neurosteroids in gender-related aggression induced by social isolation. Crit Rev Neurobiol 16:75–82

    Article  PubMed  CAS  Google Scholar 

  • Pinna G, Agis Balboa RC, Carboni G, Matsumoto K, Grayson DR, Costa E, Guidotti A (2004c) Altered GABAA receptor pharmacology in socially isolated mice. Society for Neuroscience Abstract. 34:571.15

    Google Scholar 

  • Pinna G, Costa E, Guidotti A (2005) Changes in brain testosterone and allopregnanolone biosynthesis elicit aggressive behavior. Proc Natl Acad Sci USA 102:2135–2140

    Article  PubMed  CAS  Google Scholar 

  • Pisu MG, Serra M (2004) Neurosteroids and neuroactive drugs in mental disorders. Life Sci 74:3181–3197

    Article  PubMed  CAS  Google Scholar 

  • Potts BD, Parli J (1992) Analysis of the enantiomers of fluoxetine and norfluoxetine in plasma and tissue using chiral derivatization and normal-phase liquid chromatography. J Liquid Chromatogr 15:665–681

    CAS  Google Scholar 

  • Puia G, Santi M R, Vicini S, Pritchett DB, Purdy RH, Paul SM, Seeburg PH, Costa, E. (1990) Neurosteroids act on recombinant human GABAA receptors. Neuron 4:759–765

    Article  PubMed  CAS  Google Scholar 

  • Puia G, Vicini S, Seeburg PH, Costa E (1991) Influence of recombinant gamma-aminobutyric acid — a receptor subunit composition on the action of allosteric modulators of gamma-aminobutyric acid-gated Cl-currents. Mol Pharmacol 39:691–696

    PubMed  CAS  Google Scholar 

  • Puia G, Ducic I, Vicini S, Costa E (1993) Does neurosteroid modulatory efficacy depend on GABAA receptor composition? Receptors Channels 1:135–142

    PubMed  CAS  Google Scholar 

  • Puia G, Mienville J-M, Matsumoto K, Takahata H, Watanabe H, Costa E, Guidotti A (2003) On the putative physiological role of allopregnanolone on GABAA receptor function. Neuropharmacology 44:49–55

    Article  PubMed  CAS  Google Scholar 

  • Reddy DS, Rogawski MA (2000) Chronic treatment with the neuroactive steroid ganaloxone in the rat induces anticonvulsant tolerance to diazepam but not to itself. J Pharmacol Exp Ther 295:1241–1248

    PubMed  CAS  Google Scholar 

  • Reddy DS, Woodward R (2004) Ganaxolone: a prospective overview. Drugs Future 29:227–242

    Article  CAS  Google Scholar 

  • Reddy DS, O’Malley BW, Rogawski MA (2005) Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology 48:14–24

    Article  PubMed  CAS  Google Scholar 

  • Romano S, Judge R, Dillon J, Shuler C, Sundell K (1999) The role of fluoxetine in the treatment of premenstrual dysphoric disorder. Clin Ther 21:615–633

    Article  PubMed  CAS  Google Scholar 

  • Romeo E, Auta J, Kozikowski AP, Ma D, Papadopoulos V, Puia G, Costa E, Guidotti A (1992) 2-Aryl-3-indoleacetamides (FGIN-1): a new class of potent and specific ligands for the mitochondrial DBI receptor (MDR). J Pharmacol Exp Ther 262:971–978

    PubMed  CAS  Google Scholar 

  • Rowlett JK, Platt DM, Lelas S, Atack JR, Dawson GR (2005) Different GABAA receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. Proc Natl Acad Sci USA 102:915–920

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R (2003) Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology 28:139–168

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R, Holsboer F (1999) Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci 22:410–416

    Article  PubMed  CAS  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of the supporting evidence. Am J Psychiatry 122:509–521

    PubMed  CAS  Google Scholar 

  • Shelton RC (2004) The dual-action hypothesis: does pharmacology matter? J Clin Psychiatry 65:5–10

    PubMed  Google Scholar 

  • Smith SS, Gong QH, Hsu FC, Markowitz RS, ffrench-Mullen JMX, Li X (1998) GABAA receptor α4-subunit supression prevents withdrawal properties of an endogenous steroid. Nature 392:926–930

    Article  PubMed  CAS  Google Scholar 

  • Steiner M, Pearlstein T (2000) Premenstrual dysphoria and the serotonin system: pathophysiology and treatment. J Clin Psychiatry 12:17–21

    Google Scholar 

  • Steiner M, Steinberg S, Stewart D, Carter D, Berger C, Reid R, Grover D, Streiner D (1995) Fluoxetine in the treatment of premenstrual dysphoria. N Engl J Med 332:1529–1534

    Article  PubMed  CAS  Google Scholar 

  • Tallarida RJ, Murray RB, (1987) Manual of pharmacologic calculations with computer programs, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ugale RR, Mittal N, Hirani K, Chopde CT (2004) Essentiality of central GABAergic neuroactive steroid allopregnanolone for the anticonvulsant action of fluoxetine against pentylenetetrazole-induced seizure in mice. Brain Res 1023:102–111

    Article  PubMed  CAS  Google Scholar 

  • Uzunov DP, Cooper TB, Costa E, Guidotti A (1996) Fluoxetine elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc Natl Acad Sci USA 93:12599–12604

    Article  PubMed  CAS  Google Scholar 

  • Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A (1998) Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci USA 95:3239–3244

    PubMed  CAS  Google Scholar 

  • Uzunova V, Wrynn AS, Kinnunen A, Ceci M, Kohler C, Uzunov DP (2004) Chronic antidepressants reverse cerebrocortical allopregnanolone decline in the olfactory-bulbectomized rat. Eur J Pharmacol 486:31–34

    Article  PubMed  CAS  Google Scholar 

  • Valzelli L (1969) In: Garattini S, Sigg SB (eds) Aggressive behavior. Excerta Medica, Amsterdam, pp 70–76

    Google Scholar 

  • Valzelli L (1981) Psychopharmacology of aggression: an overview. Int Pharmacopsychiatry 16:39–48

    PubMed  CAS  Google Scholar 

  • van Broekhoven F, Verkes RJ (2003) Neurosteroids in depression: a review. Psychopharmacology 165:97–110

    PubMed  Google Scholar 

  • Vicini S, Puia G, Mereu G, Seeburg PH, Costa E (1991) Anionic channel regulation by steroids. Neurosteroids and brain function. Fidia Research Foundation Symposium Series 8:119–123

    CAS  Google Scholar 

  • Westenberg HGM (1996) Development in the drug treatment of panic disorder: what is the place of the selective serotonin reuptake inhibitors? J Affect Disord 40:85–93

    Article  PubMed  CAS  Google Scholar 

  • Westenbroek C, Den Boer JA, Veenhuis M, Ter Horst GJ (2004) Chronic stress and social housing differentially affect neurogenesis in male and female rats. Brain Res Bull 64:303–308

    Article  PubMed  Google Scholar 

  • Wong ML, Licinio J (2004) From monoamine to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Disc 3:136–150

    Article  PubMed  CAS  Google Scholar 

  • Wong DT, Bymaster FP, Reid LR, Mayle DA, Krushinski JH, Robertson DW (1993) Norfluoxetine enantiomers as inhibitors of serotonin uptake in rat brain. Neuropsychopharmacology 8:337–344

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institute of Mental Health Grants MH 56890 (to AG) and MH 071667 (to EC) and by a Campus Research Board Award 2-611185 (to GP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziano Pinna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinna, G., Costa, E. & Guidotti, A. Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology 186, 362–372 (2006). https://doi.org/10.1007/s00213-005-0213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0213-2

Keywords

Navigation