Skip to main content
Log in

Differential profile of typical, atypical and third generation antipsychotics at human 5-HT7a receptors coupled to adenylyl cyclase: detection of agonist and inverse agonist properties

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

5-HT7 receptors are present in thalamus and limbic structures, and a possible role of these receptors in the pathology of schizophrenia has been evoked. In this study, we examined binding affinity and agonist/antagonist/inverse agonist properties at these receptors of a large series of antipsychotics, i.e., typical, atypical, and third generation compounds preferentially targeting D2 and 5-HT1A sites. Adenylyl cyclase (AC) activity was measured in HEK293 cells stably expressing the human (h) 5-HT7a receptor isoform. 5-HT and 5-CT increased cyclic adenosine monophosphate level by about 20-fold whereas (+)-8-OH-DPAT, the antidyskinetic agent sarizotan, and the novel antipsychotic compound bifeprunox exhibited partial agonist properties at h5-HT7a receptors stimulating AC. Other compounds antagonized 5-HT-induced AC activity with pK B values which correlated with their pK i as determined by competition binding vs [3H]5-CT. The selective 5-HT7 receptor ligand, SB269970, was the most potent antagonist. For antipsychotic compounds, the following rank order of antagonism potency (pK B) was ziprasidone > tiospirone > SSR181507 ≥ clozapine ≥ olanzapine > SLV-314 > SLV-313 ≥ aripiprazole ≥ chlorpromazine > nemonapride > haloperidol. Interestingly, pretreatment of HEK293-h5-HT7a cells with forskolin enhanced basal AC activity and revealed inverse agonist properties for both typical and atypical antipsychotics as well as for aripiprazole. In contrast, other novel antipsychotics exhibited diverse 5-HT7a properties; SLV-313 and SLV-314 behaved as quasi-neutral antagonists, SSR181507 acted as an inverse agonist, and bifeprunox as a partial agonist, as mentioned above. In conclusion, the differential properties of third generation antipsychotics at 5-HT7 receptors may influence their antipsychotic profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adham N, Zgombick JM, Bard J, Branchek TA (1998) Functional characterization of the recombinant human 5-hydroxytryptamine 7(a) receptor isoform coupled to adenylate cyclase stimulation. J Pharmacol Exp Ther 287:508–514

    PubMed  CAS  Google Scholar 

  • Arnt J, Skarsfeldt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18:63–101

    Article  PubMed  CAS  Google Scholar 

  • Assié MB, Ravailhe V, Faucillon V, Newman-Tancredi A (2005) Contrasting contribution of 5-Hydroxytryptamine 1A receptor activation to neurochemical profile of novel antipsychotics: frontocortical dopamine and hippocampal serotonin release in rat brain. J Pharmacol Exp Ther 315:265–272

    Article  PubMed  CAS  Google Scholar 

  • Auclair A, Galinier A, Besnard J, Newman-Tancredi A, Depoortère R (2007) Putative antipsychotics with pronounced agonism at serotonin 5-HT1A and partial agonist activity at dopamine D2 receptors disrupt basal PPI of the startle reflex in rats. Psychopharmacology 193(1):45–54

    Article  PubMed  CAS  Google Scholar 

  • Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL (1993) Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem 268:23422–23426

    PubMed  CAS  Google Scholar 

  • Bardin L, Kleven MS, Barret-Grévoz C, Depoortere R, Newman-Tancredi A (2006) Antipsychotic-like vs cataleptogenic actions in mice of novel antipsychotics having D2 antagonist and 5-HT1A agonist properties. Neuropsychopharmacology 31:1869–1879

    Article  PubMed  CAS  Google Scholar 

  • Blier P, Ward NM (2003) Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry 53:193–203

    Article  PubMed  CAS  Google Scholar 

  • Bruins Slot LA, Kleven MS, Newman-Tancredi A (2005) Effects of novel antipsychotics with mixed D2 antagonist/5-HT1A agonist properties on PCP-induced social interaction deficits in the rat. Neuropharmacology 49:996–1006

    Article  PubMed  CAS  Google Scholar 

  • Bruins Slot LA, De Vries L, Newman-Tancredi A, Cussac D (2006) Differential profile of antipsychotics at serotonin 5-HT1A and dopamine D2s receptors coupled to extracellular signal-regulated kinase. Eur J Pharmacol 534:63–70

    Article  PubMed  CAS  Google Scholar 

  • Buchanan RW, Kreyenbuhl J, Zito JM, Lehman A (2002) Relationship of the use of adjunctive pharmacological agents to symptoms and level of function in schizophrenia. Am J Psychiatry 159:1035–1043

    Article  PubMed  Google Scholar 

  • Butini S, Campiani G, De Angelis M, Fattorusso C, Nacci V, Fiorini I (2003) Novel antipsychotic agents : recent advance in the drug treatment of schizophrenia. Expert Opin Ther Pat 13:425–448

    Article  CAS  Google Scholar 

  • Chidiac P, Hebert TE, Valiquette M, Dennis M, Bouvier M (1994) Inverse agonist activity of β-adrenergic antagonists. Mol Pharmacol 55:490–499

    Google Scholar 

  • Depoortere R, Boulay D, Perrault G, Bergis O, Decobert M, Francon D, Jung M, Simiand J, Soubrie P, Scatton B (2003) SSR181507, a dopamine D2 receptor antagonist and 5-HT1A receptor agonist. II: behavioural profile predictive of an atypical antipsychotic activity. Neuropsychopharmacology 28:1889–1902

    PubMed  CAS  Google Scholar 

  • Depoortere R, Bardin L, Auclair AL, Kleven MS, Prinssen E, Colpaert F, Vacher B, Newman-Tancredi A (2007) F15063, a potential antipsychotic with D2/D3 antagonist, 5-HT1A agonist and D4 partial agonist properties: II) Activity in models of positive symptoms of schizophrenia. Br J Pharmacol 151:253–265

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Jasper JR, Chang DJ, Martin GR (1997) The 5-HT7 receptor: orphan found. Trends Pharmacol Sci 18:104–107

    Article  PubMed  CAS  Google Scholar 

  • Ehlen JC, Grossman GH, Glass JD (2001) In vivo resetting of the hamster circadian clock by 5-HT7 receptors in the suprachiasmatic nucleus. J Neurosci 21:5351–5357

    PubMed  CAS  Google Scholar 

  • Furchgott RF (1966) The use of b-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor–agonist complexes. Adv Drug Res 3:21–35

    Google Scholar 

  • Galici R, Miller KM, Bonaventure P, Lovenberg TW (2006) Effects of SB-269970, a 5-HT7 receptor antagonist, in mouse models predictive of antipsychotic activity. Program no 93.1 Abstact Viewer/itinerary planner. Society for Neuroscience, Atlanta, GE

  • Guscott M, Bristow LJ, Hadingham K, Rosahl TW, Beer MS, Stanton JA, Bromidge F, Owens AP, Huscroft I, Myers J, Rupniak NM, Patel S, Whiting PJ, Hutson PH, Fone KC, Biello SM, Kulagowski JJ, McAllister G (2005) Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharmacology 48:492–502

    Article  PubMed  CAS  Google Scholar 

  • Guthrie CR, Murray AT, Franklin AA, Hamblin MW (2005) Differential agonist-mediated internalization of the human 5-hydroxytryptamine 7 receptor isoforms. J Pharmacol Exp Ther 313:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Hedlund PB, Sutcliffe JG (2004) Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol Sci 25:481–486

    Article  PubMed  CAS  Google Scholar 

  • Hedlund PB, Danielson PE, Thomas EA, Slanina K, Carson MJ, Sutcliffe JG (2003) No hypothermic response to serotonin in 5-HT7 receptor knockout mice. Proc Natl Acad Sci USA 100:1375–1380

    Article  PubMed  CAS  Google Scholar 

  • Hedlund PB, Kelly L, Mazur C, Lovenberg T, Sutcliffe JG, Bonaventure P (2004) 8-OH-DPAT acts on both 5-HT1A and 5-HT7 receptors to induce hypothermia in rodents. Eur J Pharmacol 487:125–132

    Article  PubMed  CAS  Google Scholar 

  • Hedlund PB, Huitron-Resendiz S, Henriksen SJ, Sutcliffe JG (2005a) 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol Psychiatry 58:831–837

    Article  PubMed  CAS  Google Scholar 

  • Hedlund PB, Semenova S, Geyer MA, Sutcliffe JG, Markou A (2005b) Inactivation or blockade of the 5-HT7 receptor blocks PCP-induced disruption of prepulse inhibition: relevance for antipsychotic drug action. Program no 914.5. Abstract Viewer/itinerary planner. Society for Neuroscience, Washington, DC

  • Heidmann DE, Szot P, Kohen R, Hamblin MW (1998) Function and distribution of three rat 5-hydroxytryptamine7 (5-HT7) receptor isoforms produced by alternative splicing. Neuropharmacology 37:1621–1632

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203

    PubMed  CAS  Google Scholar 

  • Jasper JR, Kosaka A, To ZP, Chang DJ, Eglen RM (1997) Cloning, expression and pharmacology of a truncated splice variant of the human 5-HT7 receptor (h5-HT7(b)). Br J Pharmacol 122:126–132

    Article  PubMed  CAS  Google Scholar 

  • Jordan S, Koprivica V, Dunn R, Tottori K, Kikuchi T, Altar CA (2004) In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. Eur J Pharmacol 483:45–53

    Article  PubMed  CAS  Google Scholar 

  • Kleven MS, Barret-Grévoz C, Bruins Slot LA, Newman-Tancredi A (2005) Novel antipsychotic agents with 5-HT1A agonist properties: Role of 5-HT1A receptor activation in attenuation of catalepsy induction in rats. Neuropharmacology 49:135–143

    Article  PubMed  CAS  Google Scholar 

  • Krobert KA, Levy FO (2002) The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects. Br J Pharmacol 135:1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Krobert KA, Bach T, Syversveen T, Kvingedal AM, Levy FO (2001) The cloned human 5-HT7 receptor splice variants: a comparative characterization of their pharmacology, function and distribution. Naunyn-Schmiedeberg’s Arch Pharmacol 363:620–632

    Article  CAS  Google Scholar 

  • Landry ES, Lapointe NP, Rouillard C, Levesque D, Hedlund PB, Guertin PA (2006) Contribution of spinal 5-HT1A and 5-HT7 receptors to locomotor-like movement induced by 8-OH-DPAT in spinal cord-transected mice. Eur J Neurosci 24:535–546

    Article  PubMed  Google Scholar 

  • Leucht S, Wahlbeck K, Hamann J, Kissling W (2003) New generation antipsychotics versus low-potency conventional antipsychotics a systematic review and meta-analysis. Lancet 361:1581–1589

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Ichikawa J, Dai J, Meltzer HY (2004) Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharmacol 493:75–83

    Article  PubMed  CAS  Google Scholar 

  • Litosch I, Hudson TH, Mills I, Li SY, Fain JN (1982) Forskolin as an activator of cyclic AMP accumulation and lipolysis in rat adipocytes. Mol Pharmacol 22:109–115

    PubMed  CAS  Google Scholar 

  • Lovenberg TW, Baron BM, De Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW, Danielson PE, Sutcliffe JG, Erlander MG (1993) A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 11:449–458

    Article  PubMed  CAS  Google Scholar 

  • Mahe C, Loetscher E, Feuerbach D, Muller W, Seiler MP, Schoeffter P (2004) Differential inverse agonist efficacies of SB-258719, SB-258741 and SB-269970 at human recombinant serotonin 5-HT7 receptors. Eur J Pharmacol 495:97–102

    Article  PubMed  CAS  Google Scholar 

  • McCreary AC, Glennon JC, Ashby CR, Meltzer HY, Li Z, Reinders JH, Hesselink MB, Long SK, Herremans AH, van Stuivenberg H, Feenstra RW, Kruse CG (2007) SLV-313 (1-(2,3-Dihydro-Benzo[1,4]Dioxin-5-yl)-4-[5-(4-Fluoro-Phenyl)-Pyridin-3ylmethyl]-PiperazineMonohydrochloride) : a novel dopamine D2 receptor antagonist and 5HT1A receptor agonist potential antipsychotic drug. Neuropsychopharmacology 32:78–94

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuro-psychopharmacol Biol Psychiatry 27:1159–1172

    Article  CAS  Google Scholar 

  • Meneses A, Terron JA (2001) Role of 5-HT1A and 5-HT7 receptors in the facilitatory response induced by 8-OH-DPAT on learning consolidation. Behav Brain Res 21:21–28

    Article  Google Scholar 

  • Millan MJ (2000) Improving the treatment of schizophrenia : focus on serotonin (5-HT) (1A) receptors. J Pharmacol Exp Ther 295:853–861

    PubMed  CAS  Google Scholar 

  • Moyer RW, Kennaway DJ (1999) Immunohistochemical localization of serotonin receptors in the rat suprachiasmatic nucleus. Neurosci Lett 271:147–150

    Article  PubMed  CAS  Google Scholar 

  • Mullins UL, Gianutsos G, Eison AS (1999) Effects of antidepressants on 5-HT7 receptor regulation in the rat hypothalamus. Neuropsychopharmacology 21:352–367

    Article  PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Assie MB, Leduc N, Ormiere AM, Danty N, Cosi C (2005) Novel antipsychotics activate recombinant human and native rat serotonin 5-HT1A receptors: affinity, efficacy and potential implications for treatment of schizophrenia. Int J Neuropsychopharmacol 8:1–16

    Article  CAS  Google Scholar 

  • Newman-Tancredi A, Assié MB, Martel JC, Cosi C, Bruins Slot LA, Palmier C, Rauly-Lestienne I, Colpaert F, Vacher B, Cussac D (2007) F15063, a potential antipsychotic with D2/D3 antagonist, 5-HT1A agonist and D4 partial agonist properties: I) In vitro receptor affinity and efficacy profile. Br J Pharmacol 151:237–252

    Article  PubMed  CAS  Google Scholar 

  • Pauwels PJ, Palmier C, Colpaert FC (1995) Cloned human 5-HT1Dβ receptors mediating inhibition of cAMP in permanently transfected CHO-K1 cells: pharmacological characterisation of agonists, partial agonists and antagonists. Cell Pharmacol 2:49–57

    CAS  Google Scholar 

  • Perez-Garcia GS, Meneses A (2005) Effects of the potential 5-HT7 receptor agonist AS19 in an autoshaping learning task. Behav Brain Res 163:136–140

    Article  PubMed  CAS  Google Scholar 

  • Perez-Garcia G, Gonzalez-Espinosa C, Meneses A (2006) An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation. Behav Brain Res 169:83–92

    Article  PubMed  CAS  Google Scholar 

  • Plassat JL, Amlaiky N, Hen R (1993) Molecular cloning of a mammalian serotonin receptor that activates adenylate cyclase. Mol Pharmacol 44:229–236

    PubMed  CAS  Google Scholar 

  • Pouzet B, Didriksen M, Arnt J (2002) Effects of the 5-HT(7) receptor antagonist SB-258741 in animal models for schizophrenia. Pharmacol Biochem Behav 71:655–665

    Article  PubMed  CAS  Google Scholar 

  • Prinssen EP, Kleven MS, Koek W (1999) Interactions between meuroleptics and 5-HT(1A) ligands in preclinical behavioral models for antipsychotic and extrapyramidal effects. Psychopharmacology 144:20–29

    Article  PubMed  CAS  Google Scholar 

  • Prinssen EP, Colpaert FC, Koek W (2002) 5-HT1A receptor activation and anti-cataleptic effects: high-efficacy agonists maximally inhibit haloperidol-induced catalepsy. Eur J Pharmacol 453:217–221

    Article  PubMed  CAS  Google Scholar 

  • Purohit A, Smith C, Herrick-Davis K, Teiltler M (2005) Stable expression of constitutively activated mutant h5HT6 and h5HT7 serotonin receptors: inverse agonist activity of antipsychotic drugs. Psychopharmacology 179:461–469

    Article  PubMed  CAS  Google Scholar 

  • Rauly I, Ailhaud MC, Wurch T, Pauwels PJ (2000) α2A-adrenoceptor: Gαi1 protein-mediated pertussis toxin-resistant attenuation of Gs coupling to the cyclic AMP pathway. Biol Pharmacol 59:1531–1538

    Article  CAS  Google Scholar 

  • Roberts AJ, Krucker T, Levy CL, Slanina KA, Sutcliffe JG, Hedlund PB (2004) Mice lacking 5-HT7 receptors show specific impairments in contextual learning. Eur J Neurosci 19:1913–1922

    Article  PubMed  Google Scholar 

  • Rollema H, Lu Y, Schmidt AW, Zorn SH (1997) Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 338:R3–R5

    Article  PubMed  CAS  Google Scholar 

  • Rollema H, Lu Y, Schmidt AW, Sprouse JS, Zorn SH (2000) 5-HT1A receptor activation contributes to ziprasidone-induced dopamine release in the rat prefrontal cortex. Biol Psychiatry 48:229–237

    Article  PubMed  CAS  Google Scholar 

  • Romero G, Pujol M, Pauwels PJ (2006) Reanalysis of constitutively active rat and human 5-HT7(a) receptors in HEK-293F cells demonstrates lack of silent properties for reported neutral antagonists. Naunyn-Schmiedeberg’s Arch Pharmacol 374:31–39

    Article  CAS  Google Scholar 

  • Roth BL, Xia Z (2004) Molecular and cellular mechanisms for the polarized sorting of serotonin receptors: relevance for genesis and treatment of psychosis. Crit Rev Neurobiol 16:229–236

    Article  PubMed  CAS  Google Scholar 

  • Roth BL, Craigo SC, Choudhary MS, Uluer A, Monsma FJ, Shen Y, Meltzer HY, Sibley DR (1994) Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 268:1403–1410

    PubMed  CAS  Google Scholar 

  • Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang JM, Schwartz JC (1993) Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci USA 90:8547–8551

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Nishida A, Zensho H, Miyata M, Yamawaki S (1998) Agonist-induced desensitisation of adenylyl cyclase mediated by 5-hydroxytryptamine7 receptors in rat frontocortical astrocytes. Brain Res 784:57–62

    Article  PubMed  CAS  Google Scholar 

  • Smith C, Rahman T, Toohey N, Mazurkiewicz J, Herrick-Davis K, Teitler M (2006) Risperidone irreversibly binds to and inactivates the h5-HT7 serotonin receptor. Mol Pharmacol 70:1264–1270

    Article  PubMed  CAS  Google Scholar 

  • Sprouse J, Reynolds L, Li X, Braselton J, Schmidt A (2004) 8-OH-DPAT as a 5-HT7 agonist: phase shifts of the circadian biological clock through increases in cAMP production. Neuropharmacology 46:52–62

    Article  PubMed  CAS  Google Scholar 

  • Stam NJ, Roesink C, Dijcks F, Garritsen A, van Herpen A, Olijve W (1997) Human serotonin 5-HT7 receptor: cloning and pharmacological characterisation of two receptor variants. FEBS Lett 17:1–9

    Google Scholar 

  • Terron JA (1996) The relaxant 5-HT receptor in the dog coronary artery smooth muscle : pharmacological resemblance to the cloned 5-ht7 receptor subtype. Br J Pharmacol 118:1421–1428

    PubMed  CAS  Google Scholar 

  • Terron JA, Falcon-Neri A (1999) Pharmacological evidence for the 5-HT7 receptor mediating smooth muscle relaxation in canine cerebral arteries. Br J Pharmacol 127:609–616

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR, Gittins SA, Collin LL, Middlemiss DN, Riley G, Hagan J, Gloger I, Ellis CE, Forbes IT, Brown AM (1998) Functional characterisation of the human cloned 5-HT7 receptor (long form); antagonist profile of SB-258719. Br J Pharmacol 124:1300–1306

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR, Middlemiss DN, Taylor SG, Nelson P, Brown AM (1999) 5-CT stimulation of adenylyl cyclase activity in guinea-pig hippocampus: evidence for involvement of 5-HT7 and 5-HT1A receptors. Br J Pharmacol 128:158–164

    Article  PubMed  CAS  Google Scholar 

  • Tsou AP, Kosaka A, Bach C, Zuppan P, Yee C, Tom L, Alvarez R, Ramsey S, Bonhaus DW, Stefanich E, Jakeman L, Eglen RM, Chan HW (1994) Cloning and expression of a 5-hydroxytryptamine7 receptor positively coupled to adenylate cyclase. J Neurochem 63:456–464

    Article  PubMed  CAS  Google Scholar 

  • Van Vliet BJ, Mos J, Van der Heijden JAM, Feenstra R, Kruse CG, Long SK (2000) DU 127090: a highly potent, atypical dopamine receptor ligand—a putative potent full spectrum antipsychotic with low EPS potential. Eur Neuropsychopharmacol 10 (suppl 3):S293

    Article  Google Scholar 

  • Wilson J, Lin H, Fu D, Javitch JA, Strange PG (2001) Mechanisms of inverse agonism of antipsychotic drugs at the D(2) dopamine receptor : use of a mutant D(2) dopamine receptor that adopts the activated conformation. J Neurochem 77:493–504

    Article  PubMed  CAS  Google Scholar 

  • Wood M, Chaubey M, Atkinson P, Thomas DR (2000) Antagonist of meta-chlorophenylpiperazine and partial agonist activity of 8-OH-DPAT at the 5-HT7 receptor. Eur J Pharmacol 396:1–8

    Article  PubMed  CAS  Google Scholar 

  • Yau JL, Noble J, Seckl JR (2001) Acute restraint stress increases 5-HT7 receptor mRNA expression in the rat hippocampus. Neurosci Lett 309:141–144

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Claudie Cathala for the construction of plasmid vectors, Liesbeth Bruins Slot and Peter Heusler for expert helpful advice on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Cussac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauly-Lestienne, I., Boutet-Robinet, E., Ailhaud, MC. et al. Differential profile of typical, atypical and third generation antipsychotics at human 5-HT7a receptors coupled to adenylyl cyclase: detection of agonist and inverse agonist properties. Naunyn-Schmied Arch Pharmacol 376, 93–105 (2007). https://doi.org/10.1007/s00210-007-0182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0182-6

Keywords

Navigation