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HOLOMORPHIC PROJECTIVE CONNECTIONS ON COMPACT

COMPLEX THREEFOLDS

INDRANIL BISWAS AND SORIN DUMITRESCU

Abstract. We prove that a holomorphic projective connection on a complex projective
threefold is either flat, or it is a translation invariant holomorphic projective connection
on an abelian threefold. In the second case, a generic translation invariant holomorphic
affine connection on the abelian variety is not projectively flat. We also prove that a
simply connected compact complex threefold with trivial canonical line bundle does not
admit any holomorphic projective connection.

1. Introduction

An important consequence of the uniformization theorem for Riemann surfaces is that
any Riemann surface admits a holomorphic projective structure which is isomorphic ei-
ther to the one-dimensional model CP1, or to a quotient of the complex affine line C

by a discrete group of translations, or to a quotient of the complex hyperbolic space H1
C

by a torsion-free discrete subgroup of SU(1, 1) ≃ SL(2,R) [Gu, StG]. In higher dimen-
sions compact complex manifolds do not, in general, admit any holomorphic projective
structure.

Kobayashi and Ochiai in [KO1, KO2] classified compact Kähler–Einstein manifolds ad-
mitting a holomorphic projective connection. Their result says that the only examples
of compact Kähler–Einstein manifolds admitting a holomorphic projective connection are
the standard ones; we recall that the n–dimensional standard examples are the following:
the complex projective space CPn, all étale quotients of complex n–tori and all compact
quotients of the complex hyperbolic n-space Hn

C by a torsion-free discrete subgroup of
SU(n, 1). All of these three types of manifolds are endowed with a standard flat holo-
morphic projective connection, i.e., a holomorphic projective structure, which is locally
modeled on CPn (see Section 2).

Moreover, Kobayashi and Ochiai gave a classification of compact complex surfaces
admitting holomorphic projective connections [KO1, KO2]. Their classification shows that
all those compact complex surfaces also admit flat holomorphic projective connections.
The geometry of flat holomorphic projective structures on compact complex surfaces was
studied by Klingler in [Kl2]. Subsequently, it was proved in [Du2] that all holomorphic
(normal) projective connections on compact complex surfaces are flat.

Here we study the local geometry of holomorphic projective connections on compact
complex manifolds of dimension three and higher. For defining holomorphic projective
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2 I. BISWAS AND S. DUMITRESCU

connections we adopt the terminology of [Gu, MM]; these connections are holomorphic
normal projective connections in the terminology of [Ka, KO1, JR1] (see Section 2).

For compact Kähler–Einstein manifolds, using the classification in [KO1, KO2], and
generalizing, to the non-flat case, some results of Mok–Yeung and Klingler on flat projec-
tive connections, [MY, Kl1], we prove the following (see Section 3.1):

Theorem 1. Let M be a compact Kähler–Einstein manifold of complex dimension n > 1
endowed with a holomorphic projective connection. Then the following hold:

(1) either M is the complex projective space CPn endowed with its standard flat pro-
jective connection;

(2) or M is a quotient of the complex hyperbolic space Hn
C, by a discrete subgroup in

SU(n, 1), endowed with its induced standard flat projective connection;
(3) or M is an étale quotient of a compact complex n–torus endowed with the holo-

morphic projective connection induced by a translation invariant holomorphic tor-
sionfree affine connection on the universal cover Cn. For n ≥ 3, the general
translation invariant holomorphic torsionfree affine connection on Cn is not pro-
jectively flat.

In particular, a holomorphic projective connection φ on a compact Kähler–Einstein
manifold of complex dimension n is either flat, or it is locally isomorphic to the projective
connection induced by a translation invariant holomorphic affine connection on Cn. In
both cases, φ is locally homogeneous; more precisely, the local projective Killing Lie
algebra of the projective connection φ (see Section 2 for definition) contains a copy of the
abelian Lie algebra Cn which is transitive on M .

The third case in Theorem 1 covers all compact Kähler manifolds with vanishing first
Chern class (see Proposition 12). Indeed, on a compact Kähler manifoldM with vanishing
first Chern class, any holomorphic projective connection admits a global representative
which is a holomorphic torsionfree affine connection (see Lemma 7). In this case it is
known that M admits a finite unramified cover which is a compact complex torus [IKO]
(the pull-back, to the torus, of such a global representative affine connection is a trans-
lation invariant holomorphic torsionfree affine connection). This type of results are also
valid in the broader context of holomorphic Cartan geometries [BM2, BM3, Du3, BD4];
see [Sha] for holomorphic Cartan geometries.

Kobayashi and Ochiai proved in [KO4] that holomorphic G–structures modeled on
Hermitian symmetric spaces of rank ≥ 2 on compact Kähler–Einstein manifolds are
always flat (see also [HM] for a similar result for uniruled projective manifolds). The
complex projective space being a Hermitian space of rank one, holomorphic projective
connections constitute examples of holomorphic G–structures modeled on a Hermitian
symmetric space of rank one. Theorem 1 may be seen as a rank one version of the above
mentioned result in [KO4]. However, contrary to the situation in rank ≥ 2, there exist
non-flat holomorphic projective connections on compact complex tori of dimension three
or more (see Proposition 12).

Complex projective threefolds admitting a holomorphic projective connection were clas-
sified by Jahnke and Radloff in [JR1]. Their result says that any such projective threefold
is



HOLOMORPHIC PROJECTIVE CONNECTIONS ON COMPACT THREEFOLDS 3

• either one among the standard ones (the complex projective space CP3, étale
quotients of abelian threefolds and compact quotients of the complex hyperbolic
3-space H3

C by a torsion-free discrete subgroup in SU(3, 1)),
• or an étale quotient of a Kuga–Shimura projective threefold (i.e., a smooth mod-
ular family of false elliptic curves; their description is recalled in Section 2).

As noted in [JR1], each of these projective threefolds also admit a flat holomorphic pro-
jective connection.

We investigate the space of all holomorphic projective connections on Kuga–Shimura
projective threefolds. The main result in this direction is the following (proved in Section
4.1):

Theorem 2. Let M −→ Σ be a Kuga–Shimura projective threefold over a Shimura curve
Σ of false elliptic curves. Then the following hold:

(i) The projective equivalence classes of holomorphic projective connections on M are

parametrized by a complex affine space for the complex vector space (H0(Σ, K
3

2

Σ))
2.

(ii) All holomorphic projective connections on M are flat. The fibers of the Kuga–
Shimura fibration are totally geodesic with respect to every holomorphic projective
connection on M .

Theorem 2 implies that the space of projective equivalence classes of flat holomorphic
projective connections on Kuga–Shimura projective threefolds can have arbitrarily large
dimension (see Remark 15).

Theorem 1 and Theorem 2, combined with the classification in [JR1], give the following
(proved in Section 4.1):

Corollary 3. A holomorphic projective connection φ on a complex projective threefold
is either flat, or it is an étale quotient of a translation invariant holomorphic projective
connection on an abelian threefold. In the second case, a generic translation invariant
holomorphic projective connection on an abelian variety of dimension three is not flat.

Our motivation for Corollary 3 comes from the projective Lichnerowicz conjecture. The
projective Lichnerowicz conjecture roughly says that compact manifoldsM endowed with
a projective connection φ admitting a connected (or, more generally, infinite) essential
group G of automorphisms of (M, φ) (meaning, G preserves φ, but does not preserve
any torsionfree affine connection representing φ) are actually flat (i.e., φ is a flat pro-
jective connection). The literature on this subject is vast: see for instance [Ma], [Ze]
and references therein. In [Ma], the projective Lichnerowicz conjecture was solved in the
Riemannian context (i.e., for the Levi–Civita connection of a Riemannian metric) and for
connected essential groups of projective automorphisms G; in [Ze], the same was proved
for discrete infinite essential groups of projective automorphisms G. For local results in
this direction, see, for instance, Theorem 3.1 in [CM] which implies that analytic projec-
tive connections admitting an essential local projective Killing field are flat (compare this
with [NO]).

We formulate here a version of the projective Lichnerowicz conjecture for holomorphic
pseudo-groups; there is no global transformation group in our formulation; instead we
replace it with the pseudo-group of local biholomorphisms which are the transition maps
of a compact complex manifold endowed with a holomorphic projective connection.



4 I. BISWAS AND S. DUMITRESCU

Conjecture 4. Let M be a compact complex manifold bearing a holomorphic projective
connection φ. Assume that M does not admit any global holomorphic torsionfree affine
connection projectively equivalent to φ. Then φ is flat.

Lemma 7 shows that the assumption in Conjecture 4 is equivalent to the assumption
that the canonical line bundle KM does not admit any holomorphic connection. Moreover,
if M is Kähler, this assumption is equivalent to the assumption that c1(M) 6= 0. So, in
the Kähler setting, Conjecture 4 simplifies to the following:

Conjecture 5. Holomorphic projective connections on compact Kähler manifolds with
nonzero first Chern class are flat.

Theorem 1 gives a positive answer to Conjecture 5 for Kähler–Einstein manifolds, while
Corollary 3 gives a positive answer to Conjecture 5 for projective threefolds.

All simply connected Kähler manifolds, and, more generally, all simply connected man-
ifolds in the Fujiki class C [Fu] (i.e., compact complex manifolds bimeromorphic to a
Kähler manifold [Va]), bearing a holomorphic projective connection are actually complex
projective manifold [BD3, Theorem 4.3]. In view of this, Corollary 3 also gives a posi-
tive answer to Conjecture 4 for simply connected threefolds belonging to the Fujiki class
C. More precisely, a compact simply connected complex threefold in the Fujiki class C
equipped with a holomorphic projective connection is isomorphic to CP3 endowed with
its standard flat projective connection.

For higher dimensions, a classification of complex projective manifolds admitting a flat
holomorphic projective connection was obtained in [JR2]. The classification of complex
projective manifolds admitting a holomorphic projective connection (non necessarily flat)
is still an open question. Notice that Conjecture 5 implies that compact Kähler mani-
folds bearing a holomorphic projective connection also admit flat holomorphic projective
connections (all holomorphic projective connections are actually expected to be flat, ex-
cept the étale quotients of generic translation-invariant projective connections on compact
complex tori).

An interesting class of compact non-Kähler threefolds with trivial canonical bundle and
admitting a flat holomorphic projective connection is provided by parallelizable manifolds
SL(2,C)/Γ, where Γ is a cocompact lattice in SL(2,C), along with the deformations of
SL(2,C)/Γ constructed in [Gh] (which are, in general, not parallelizable manifolds). The
details about the geometry of these projective connections can be found in [Gh] and
[BD1, Section 5]. It should be mentioned that compact complex non-Kähler parallelizable
manifolds admitting a holomorphic projective connection, but not admitting any flat
holomorphic projective connection, were constructed in [BD1, Proposition 5.7].

Section 2 provides an introduction to the geometry of holomorphic projective connec-
tions as well as presentations of the standard models and the Kuga–Shimura threefolds.
In Section 3 we study holomorphic projective connections on Kähler–Einstein manifolds.
Section 4 is about holomorphic projective connections on Kuga–Shimura manifolds, and
contains proofs of Theorem 2 and Corollary 3.

Section 5 deals with the compact non-Kähler threefolds, and the following theorem is
proved there (see Theorem 17).
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Theorem 6. A simply connected compact complex threefold with trivial canonical line
bundle does not admit any holomorphic projective connection

A key ingredient in the proof of Theorem 6 is the result that the projective Killing
Lie algebra of a holomorphic projective connection on a compact complex threefold is
nontrivial (see Proposition 18). We think that the statement proved in Theorem 6 is
likely to be true in higher dimensions. Our Proposition 19 is a step in that direction.

More generally, we conjecture that a simply connected compact complex manifold bear-
ing a holomorphic projective connection is isomorphic to the complex projective space
(endowed with its standard flat structure); this is a version of Conjecture 4 for simply
connected manifolds. We have seen above that this conjecture is verified for complex
threefolds in Fujiki class C, while Theorem 6 verifies it for complex threefolds with trivial
canonical bundle.

2. Holomorphic projective connections

Recall that using the standard action of PGL(n+1,C) on the complex projective space
CPn, the group of holomorphic automorphisms of CPn is identified with PGL(n+ 1,C).

Let M be a complex manifold of complex dimension n. A holomorphic coordinate
function on M is a pair of the form (U, φ), where U ⊂ M is an open subset and φ :
U −→ CPn is a holomorphic embedding. A holomorphic projective structure on M is
given by a collection of holomorphic coordinate functions (Ui, φi)i∈I such that

•
⋃

i∈I Ui = M , and
• for i, j ∈ I, and each connected component Uij,c ⊂ Ui∩Uj , the transition function

φi ◦ φ−1
j : φj(Uij,c) −→ φi(Uij,c)

coincides with the restriction of some φij,c ∈ PGL(n+ 1,C).

An important consequence of the uniformization theorem for Riemann surfaces is that
any Riemann surface admits a holomorphic projective structure [Gu]. In higher dimension
the situation is much more stringent. All compact Kähler–Einstein manifolds admitting
a holomorphic projective structure actually lie in one of the three standard examples
described below [KO1, KO2].

2.1. The standard examples. The complex projective space CPn is endowed with its
standard holomorphic projective structure. This first of the three standard examples is
the model for any holomorphic projective structure in the following sense.

IfM is a complex simply connected manifold of complex dimension n, any holomorphic
projective structure onM is given by a holomorphic submersion (equivalently, immersion)

dev : M −→ CPn

which is known as the developing map. In particular, if M is also compact, this dev is a
covering map and hence it is a biholomorphism, because CPn is simply connected. There-
fore, the only compact simply connected complex n-manifold endowed with a holomorphic
projective structure is CPn equipped with its standard projective structure.

Assume now that M is endowed with a holomorphic projective structure φ, but it

is not simply connected anymore. Fix a point x0 ∈ M , denote by ̟ : M̃ −→ M the
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corresponding universal covering ofM , and pull-back the holomorphic projective structure

φ to M̃ . Consider the developing map dev : M̃ −→ CPn for ̟∗φ. We have a unique
homomorphism

ρ : π1(M, x0) −→ PGL(n + 1,C)

such that dev is π1(M, x0)–equivariant for the natural action of π1(M, x0) on M̃ and the
action of π1(M, x0) on CPn given by ρ together with the standard action of PGL(n+1,C)
on CPn; this ρ is called the monodromy homomorphism for the projective structure.

The projective structure on CPn induces a projective structure on every open subset
of it. Take an open set Ω ⊂ CPn and a discrete subgroup Γ ⊂ PGL(n + 1,C) that
preserves Ω while acting freely and properly discontinuously on Ω. Then the quotient
complex manifold Ω/Γ inherits a holomorphic projective structure induced by that of Ω.

The remaining two standard examples will be described by choosing appropriately the
pair (Ω, Γ).

Complex affine space and its quotients. Take Ω to be the standard open affine subset
Cn ⊂ CPn. Let Λ ≃ Z2n be some lattice in R2n; it acts on Cn by translations. Since all
affine transformations of Cn are restrictions of projective transformations, the complex
compact torus Cn/Λ inherits a holomorphic projective structure.

Complex hyperbolic space and its quotients. Let us now consider the complex hy-
perbolic space Hn

C of complex dimension n, seen as the Hermitian symmetric space
SU(n, 1)/S(U(n, 1) × U(1)). The group SU(n, 1) coincides with the group of holomor-
phic isometries of Hn

C. The compact dual of Hn
C is CPn acted on by the holomorphic

isometry group PU(n+1) for its standard Fubini–Study Kähler metric. There is a canon-
ical (Borel) embedding of Hn

C as an open subset of its compact dual CPn. The image of
this Borel embedding is the following ball in CPn:

Hn
C := {[Z0 : Z1 : · · · : Zn] | |Z0|2 + |Z1|2 + . . .+ |Zn−1|2 < |Zn|2} ⊂ CPn . (2.1)

The action of SU(n, 1) on Hn
C evidently extends to an action of SU(n, 1) on CPn by projec-

tive transformations. Therefore any quotient of Hn
C by a torsion-free discrete subgroup in

SU(n, 1) is a complex manifold endowed with a holomorphic projective structure induced
by the natural holomorphic projective structure on the open subset Hn

C ⊂ CPn in (2.1).

2.2. False elliptic curves and Shimura curve. The main Theorem in [JR1] asserts
that any complex projective threefold bearing a holomorphic projective structure (or,
more generally, a holomorphic projective connection in the sense of Section 2.3) is

• either one of the above (three-dimensional) standard examples,
• or an étale quotient of a smooth modular family of false elliptic curves.

We present here a construction of these compact Shimura curves of false elliptic curves,
following the description in [LB] and [JR1].

Let B be a totally indefinite quaternion algebra over Q. More precisely, B is the algebra
generated by two elements i, j such that

ij = −ji, i2 = a, j2 = b

for some a, b ∈ Q which are not both negative. Then B is a division algebra, and

B ⊗Q R ≃ M2,2(R) .
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Therefore elements of B may be seen as (2, 2)-matrices with coefficients in some real
quadratic number field.

A false elliptic curve is an abelian surface T such that End(T)⊗Q ≃ B.
Let Λ ≃ Z4 be some lattice in B, and choose a nontrivial anti-symmetric matrix

M =

(
0 α
−α 0

)
∈ B

such that tr(ΛMΛt) ⊂ Z. Denote by H the upper-half of complex plane. For any τ ∈ H,
we construct a complex structure on B ⊗Q R through the R-vector space isomorphism

jτ : B ⊗Q R −→ C2

defined as A 7−→ A ·
(
τ
α

)
. There is a free and proper discontinuous action of Λ on H×C2

given by

λ · (h, (z1, z2)) = (h, (z1, z2) + jτ (λ))

for any λ ∈ Λ. The quotient for this action is a smooth nontrivial family ΞB of abelian
surfaces over H.

Denote by Γ the stabilizer of the lattice

Λ

(
1 0
0 α

)
⊂ SL(2,R) ,

and choose a torsionfree finite index subgroup Γ ⊂ Γ. Any element

γ =

(
a b
c d

)
∈ Γ

acts on H by the conformal map τ 7−→ aτ+b
cτ+d

. We note that the fiber of ΞB over τ is

isomorphic to the fiber of ΞB over aτ+b
cτ+d

through the multiplication by 1
cτ+d

.

It follows that there is an action of the semi-direct product Γ⋉ Λ on H× C2 given by
the map

(γ, λ) · (τ, z1, z2) 7−→
(
aτ + b

cτ + d
,
z1 +mτ + n

cτ + d
,
z2 + kτ + l

cτ + d

)
, (2.2)

for all γ =

(
a b
c d

)
∈ Γ and λ = (m, n, k, l) ∈ Λ. The quotient of H × C2 by this

action of Γ⋉ Λ is a projective abelian fibration

ΞB −→ Σ (2.3)

with base Σ = H/Γ a compact Riemann surface of genus g ≥ 2; since B is a division
algebra, Γ is a Fuchsian group such that H/Γ is compact [Shi].

A projective abelian fibration of the above type is called a Kuga–Shimura projective
threefold.

Considering H× C2 as an open subset of CP3, the action of Γ⋉ Λ on H× C2 in (2.2)
is evidently given by projective transformations. In particular, as it was first observed in
[JR1], a Kuga–Shimura projective threefold is endowed with a flat holomorphic projective
connection.
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2.3. Holomorphic projective connections and Weyl projective tensor. .

Let Z be a complex manifold of complex dimension n > 1. A holomorphic connection
on the holomorphic tangent bundle TZ of Z is called a holomorphic affine connection
on Z (see [At] for holomorphic connection). A holomorphic affine connection ∇ on Z is
called torsionfree if

∇XY −∇YX = [X, Y ]

for all locally defined holomorphic vector fields X and Y on Z. Two holomorphic tor-
sionfree affine connections ∇1 and ∇2 on Z are called projectively equivalent if they have
the same non-parametrized holomorphic geodesics. This condition is equivalent to the
condition that there is a holomorphic 1–form θ ∈ H0(Z, T ∗Z) such that

∇1
XY = ∇2

XY + θ(X)Y + θ(Y )X (2.4)

for any locally defined holomorphic vector fields X, Y on Z (see [MM, p. 3021, Theorem
4.2], [OT, p. 222, Proposition A.3.2]).

LetM be a complex manifold of dimension n > 1. A holomorphic projective connection
on M is given by a collection (Ui, ∇i)i∈I , where

• Ui ⊂ M , i ∈ I, are open subsets with
⋃

i∈I Ui = M , and
• ∇i is a torsionfree affine connection on Ui such that for all i, j ∈ I, the two affine
connection ∇i|Ui∩Uj

and ∇j|Ui∩Uj
on Ui ∩ Uj are projectively equivalent

(compare this with the equivalent definitions in [KO1] and [MM]). We say that the affine
connection (Ui, ∇i) is a local representative of the holomorphic projective connection.

Two holomorphic projective connections (Ui, ∇i)i∈I and (U ′
j , ∇′

j)j∈J are called projec-
tively equivalent if their union {(Ui, ∇i)i∈I , (U

′
j , ∇′

j)j∈J} is again a holomorphic projective
connection.

The above definition coincides with Definition 4.4 in [MM] and also with the definition
given in [Gu, Chapter 8] (see the proof in [MM] showing that the two definitions are
equivalent). It should be mentioned that some authors call those projective connections,
which are locally represented by torsionfree affine connections, as normal [Ka, KO1, JR1].
In their terminology we work, throughout the article, with holomorphic normal projective
connections.

A holomorphic projective connection is called flat if it is projectively equivalent to a
holomorphic projective connection (Ui, ∇i)i∈I , where each ∇i is flat. This means that a
suitable holomorphic coordinate function on Ui takes∇i to the standard connection on Cn.
Once we fix holomorphic coordinate functions on every Ui satisfying the above condition
that it takes ∇i to the standard connection on Cn, the transition functions defined on the
intersections Ui ∩ Uj are projective transformations between open subsets of CPn. Hence
manifolds endowed with a flat holomorphic projective connection are locally modeled on
the complex projective space. Consequently, flat holomorphic projective connections on
M are precisely the holomorphic projective structures on M .

The curvature tensor of a holomorphic affine connection ∇ on M is defined to be

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z , (2.5)
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where X, Y, Z are locally defined holomorphic vector fields on M . So

R ∈ H0(M, (
∧2

T ∗M)⊗ End(TM)) .

The curvature R vanishes identically if and only if ∇ is locally isomorphic to the standard
affine connection of Cn. Let End0(TM) ⊂ End(TM) be the direct summand given
by the endomorphisms of trace zero of the fibers. The trace-free part of R, which is a
holomorphic section of (

∧2 T ∗M) ⊗ End0(TM), is the Weyl projective curvature of ∇.
While the curvature R is not a projective invariant, its Weyl projective curvature W is
evidently a projective invariant.

The Weyl projective tensor of a holomorphic projective connection on M is the Weyl
projective curvature of the local representatives (Ui, ∇i)i∈I of the holomorphic projective
connection. A holomorphic projective connection is flat if and only if the associated Weyl
projective tensor vanishes identically (see [Ei, We] and [Gu, p. 79–83] for the adaptation
of the proof to the holomorphic setting).

The expression of the Weyl curvature in dimension three — the case of interest in this
article — is the following (see, for example, formula (3.4) on [Ga, p. 114]):

W (X, Y )Z = R(X, Y )Z − 1

4
TrR(X, Y)Z− 1

2
(Ricci(Y, Z)X (2.6)

−Ricci(X, Z)(Y))− 1

8
(TrR(Y, Z)X− TrR(X, Z)(Y)) .

In the expression in (2.6),

Ricci ∈ H0(M, T∗M⊗2) (2.7)

is the Ricci curvature that sends η ⊗ ν ∈ TxM
⊗2 to the trace of the endomorphism of

TxM defined by ξ 7−→ R(x)(ξ, η)ν. Also, in (2.6),

TrR ∈ H0(M,
∧2

T∗M)

sends η ∧ ν ∈
∧2 TxM to the trace of the endomorphism of TxM defined by ξ 7−→

R(η, ν)ξ.

We have TrR(X, Y) = Ricci(Y, X)− Ricci(X, Y), and hence the Weyl tensor in (2.6)
can be expressed in terms of just the Ricci tensor (this is exactly the formula (3.4) on
[Ga, p. 114]):

W (X, Y )Z = R(X, Y )Z +
1

4
(Ricci(X,Y)Z− Ricci(Y,X)Z)

+
1

8
[(3Ricci(X,Z) + Ricci(Z,X))Y − (3Ricci(Y,Z) + Ricci(Z,Y))X] .

We note that Ricci is not a projective invariant, while, in contrast, as mentioned before,
W is projectively invariant. Moreover, the Weyl tensor W possesses the same tensorial
symmetries as R. In particular, W ∈ H0(M,

∧2 T ∗M) ⊗ End0(TM)) satisfies the first
Bianchi identity which says that

W (X, Y )Z +W (Y, Z)X +W (Z, X)Y = 0 (2.8)

for all locally defined holomorphic vector fields X, Y, Z on M .
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The local symmetries for a holomorphic projective connection are given by the local
(projective) Killing field. For a holomorphic projective connection φ on M , a local holo-
morphic vector field K on M is a local projective Killing field (or briefly Killing field,
when there is no ambiguity) if the local flow for K preserves φ. When the local flow for
K preserves a holomorphic affine connection ∇ representing φ, then K is called a local
affine Killing field.

The local Lie algebra formed by all local projective Killing fields has finite dimension.
The dimension of the projective Killing Lie algebra for (M, φ) is at most (n + 1)2 − 1,
where n = dimCM . This maximal bound is realized only for projectively flat manifolds:
in this case the local projective Killing Lie algebra is isomorphic to the Lie algebra of
PGL(n+ 1,C).

3. Holomorphic projective connections on Kähler-Einstein manifolds

In this Section we study holomorphic projective connections on compact Kähler–Einstein
manifolds and prove Theorem 1.

According to [KO1, KO2], the only compact Kähler–Einstein manifolds of dimension
n admitting a holomorphic projective connection are the standard ones: the complex
projective space CPn, the compact quotients of the complex hyperbolic n-space Hn

C by
a torsion-free discrete subgroup in SU(n, 1) and the étale quotients of compact complex
n-tori.

The case of holomorphic projective connections on quotients of Hn
C will be settled in

Corollary 9. The case of the complex projective space CPn will be settled in Corollary 11
(more general results are known from [Ye, JR1, BM1]). Both of these results are direct
consequences of Lemma 8 which parametrizes the space of projective classes of holomor-
phic projective connections on a complex manifold (compare this with [Kl1, Proposition
5.7] and [MY, Proposition 2.1] for the flat case).

Holomorphic projective connections on compact complex tori are studied in Proposition
12.

Let us first state a technical result which will be useful in the sequel (compare it
with [BD1, p. 7449, Lemma 5.6] where the sufficient condition was proved for compact
manifolds with trivial canonical bundle).

Lemma 7. Let φ be a holomorphic projective connection on a complex manifoldM . Then
M admits a holomorphic torsionfree affine connection ∇ which is projectively equivalent
to φ if and only if the canonical line bundle KM admits a holomorphic connection. If M
is compact and Kähler, this condition is equivalent with the condition that c1(M) = 0.
In particular, the above condition is automatically satisfied if KM is trivial.

Proof. The proof is obtained as a direct consequence of the results in [KO1] (see also [Gu]).
There exists a holomorphic affine connection representing the projective connection φ if
and only if the cocycle (3.2) in [KO1] defined as d log∆ij, where ∆ij is the 1-cocycle of
the canonical bundle KM , vanishes in the cohomology group H1(M, ΩM ) of the sheaf of
holomorphic one-forms (see the explicit formula (3.6) on [KO1, p. 78–79]). This vanishing
condition is satisfied if and only if the canonical line bundle KM admits a holomorphic
connection (it coincides with the condition that the Atiyah class for KM vanishes [At,
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Theorem 5, p. 195]; see also [Gu, p. 96–97] for an alternative approach). For compact
Kähler manifolds, this condition is equivalent to the condition that c1(M) = 0 [At,
Proposition 12, p. 196].

If KM = OM , the existence of a (global) holomorphic torsionfree affine connection
representing φ was proved in [BD1, p. 7449, Lemma 5.6]. For the convenience of the
reader, we include here a short proof which will be needed in the proof of Proposition 19.

Let M =
⋃

i∈I Ui be an open cover of M such that on each Ui there is a holomorphic
torsionfree affine connection ∇i projectively equivalent to the given projective connection
φ. In particular, ∇i and∇j are projectively equivalent on Ui

⋂
Uj. Let ω be a holomorphic

volume form onM (i.e., ω is a trivializing holomorphic section of KM). On each Ui, there

exists a unique holomorphic torsionfree affine connection ∇̃i projectively equivalent to ∇i

such that ω is parallel with respect to ∇̃i [OT, Appendix A.3]. By uniqueness, ∇̃i and

∇̃j agree Ui

⋂
Uj for all i, j ∈ I. Consequently, the connections {∇̃i} together define a

global holomorphic torsionfree affine connection on M which is projectively equivalent to
φ. �

The i–fold symmetric product of a vector bundle V would be denoted by Si(V ). For a
complex manifold M , let

div : S2(T ∗M)⊗ TM −→ T ∗M (3.1)

be the map constructed by combining the natural homomorphism

S2(T ∗M)⊗ TM −→ T ∗M ⊗ End(TM)

with the trace map Tr : End(TM) −→ OM . The resulting map in (3.1) is denoted by
div (not to be mixed with the earlier map dev) because it can be seen as a divergence
operator defined on the space of quadratic vector fields (see [OT, p. 180]). Now define

(S2(T ∗M)⊗ TM)0 := kernel(div) ⊂ S2(T ∗M)⊗ TM . (3.2)

A section of (S2(T ∗M)⊗ TM)0 will be called trace-free.

The next lemma generalizes to the non-flat case a known result for flat projective
connections; compare it with [Kl1, Proposition 5.7] and [MY, Proposition 2.1], and notice
that the bundle π∗Hom(L, S) in [MY, Proposition 2.1] is isomorphic to (S2(T ∗M)⊗TM)0
defined in (3.2).

Lemma 8. Let M be a complex manifold of complex dimension n > 1 endowed with
a holomorphic projective connection. Then the space of projective equivalence classes of
holomorphic projective connections on M is identified with H0(M, (S2(T ∗M) ⊗ TM)0)
(see (3.2)).

Proof. Fix a point x0 ∈ M , and let

̟ : M̃ −→ M

be the corresponding universal cover of M . Let φ be holomorphic projective connection

on M . Let ̟∗φ be the holomorphic projective connection on M̃ obtained by pulling back
φ.
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First assume that the canonical bundle of M̃ is holomorphically trivial. Now Lemma
7 implies that ̟∗φ is represented by a (globally defined) torsionfree holomorphic affine
connection. Let ∇0 be such a global representative.

Now consider another holomorphic projective connections φ′ on M . Let ∇ be a holo-

morphic affine connection on M̃ that represents ̟∗φ′. Then

Θ := ∇−∇0 ∈ H0(M̃, S2(T ∗M̃)⊗ TM̃) . (3.3)

It should be mentioned that Θ lies in the subspace

H0(M̃, S2(T ∗M̃)⊗ TM̃) ⊂ H0(M̃, (T ∗M̃)⊗2 ⊗ TM̃)

because both ∇ and ∇0 are torsionfree.

The natural action of π1(M, x0) on M̃ is evidently by ∇0–projective transformations.
Although this action does not preserve the connection ∇0, the action of any element
γ ∈ π1(M) does send ∇0 to an affine connection

∇γ (3.4)

which is projectively equivalent to ∇0, meaning there is a holomorphic one-form φγ ∈
H0(M̃, T ∗M̃) such that

(∇γ)XY = ∇0
XY + φγ(X)Y + φγ(Y )X

(see (2.4)). If Θ in (3.3) is invariant under the action of π1(M, x0) on M̃ , then γ ∈
π1(M, x0) sends ∇ = ∇0 + Θ to the projectively equivalent connection ∇γ + Θ, where
∇γ is the connection in (3.4). This immediately implies that the action of π1(M, x0) on

M̃ does factor through the ∇-projective transformations. Consequently, ∇ descends to
M as a holomorphic projective connection.

Therefore, the π1(M, x0)–invariance of Θ is a sufficient condition for ∇0+Θ to descend
to M as a holomorphic projective connection.

We shall prove that the trace-free part of Θ is π1(M, x0)–invariant if and only if ∇
descends to M as a holomorphic projective connection.

There is a natural injection

J : T ∗M̃ −→ S2(T ∗M̃)⊗ TM̃ (3.5)

that sends any l ∈ T ∗
y M̃ to the homomorphism J (l) : S2(TyM̃) −→ TyM̃ defined by

u⊗ v 7−→ l(u)v + l(v)u. It is straightforward to check that for div in (3.1),

div ◦ J = (n+ 1)Id ,

and hence the decomposition into a direct sum

S2(T ∗M̃)⊗ TM̃ = (S2(T ∗M̃)⊗ TM̃)0 ⊕ Im(J )

is obtained, where (S2(T ∗M̃)⊗ TM̃)0 = kernel(div) (as in (3.2)). The projection

F : S2(T ∗M̃)⊗ TM̃ −→ (S2(T ∗M̃)⊗ TM̃)0 (3.6)

for the above decomposition coincides with the map defined by Θ 7−→ Θ− 1
n+1

(J ◦ div),
where J is constructed in (3.5) (see [OT, p. 180]).
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Next from the definition of the projectively equivalent connections (compare with the

expression of J ) it follows that the action of π1(M, x0) on M̃ is via projective equivalent
maps with respect to ∇0 + Θ if and only if π1(M, x0) preserves the trace-free part of Θ.

Therefore, the holomorphic affine connection ∇0 + Θ on M̃ descends to a well-defined
holomorphic projective connection on M if and only if

F(Θ) ∈ H0(M̃, (S2(T ∗M̃)⊗ TM̃)0)

is π1(M, x0)–invariant, where F is the projection in (3.6). Consequently, the space of
projective equivalence classes of holomorphic projective connections on M is identified
with the space of holomorphic sections of (S2(T ∗M)⊗ TM)0.

Now consider the general case where M is any complex manifold endowed with a holo-
morphic projective connection φ0. Let (Ui, ∇0

i )i∈I be a covering ofM by local representa-
tives of φ0, where ∇0

i is a holomorphic torsionfree affine connection on Ui that represents
φ0|Ui

. Of course on each intersection Ui

⋂
Uj the connections ∇0

i and ∇0
j are projectively

equivalent. On each open subset Ui, the canonical line bundle KUi
= KM |Ui

admits a
holomorphic affine connection induced by ∇0

i .

Next take another holomorphic projective connection φ on M . By Lemma 7, on each
open subset Ui there exists a holomorphic torsionfree affine connection ∇i representing
φ|Ui

. Define

Θi := ∇i −∇0
i

on each Ui; it is a holomorphic section of S2(T ∗M)⊗TM over Ui. By the above consider-
ations, the trace zero-part F(Θi), where F is constructed in (3.6), does not depend on the
choices of the local representatives ∇0

i and ∇i. This implies that the local sections F(Θi)
and F(Θj) coincide on Ui

⋂
Uj . Consequently, the local sections F(Θi) glue together com-

patibly to produce a global holomorphic section of (S2(T ∗M) ⊗ TM)0 (defined in (3.2))
over M .

Conversely, take any Θ ∈ H0(M, (S2(T ∗M) ⊗ TM)0). On each open subset Ui, con-
sider the holomorphic affine connection ∇0

i + Θi, where Θi is the restriction of Θ to Ui.
Over Ui

⋂
Uj , the difference (∇0

i + Θi) − (∇0
j + Θj) between the two holomorphic affine

connections is a holomorphic section of S2(T ∗M)⊗TM over Ui

⋂
Uj that lies in the image

of the homomorphism J in (3.5). This implies that the restrictions of (∇0
i + Θi)|Ui∩Uj

and (∇0
j +Θj)|Ui∩Uj

are projectively equivalent. Therefore, the collection (Ui, ∇0
i +Θi)i∈I

defines a holomorphic projective connection on M , which will be denoted by φ.

By construction, the holomorphic projective connection φ constructed above is projec-
tively equivalent to φ0 if and only if the corresponding section Θ vanishes identically. �

Corollary 9. Let M be a quotient of the complex hyperbolic space Hn
C by a torsion-free

lattice with finite covolume in SU(n, 1), with n > 1. Then there is a unique holomorphic
projective connection on M , namely the standard flat one.

Proof. It was proved in [Kl1, Proposition 4.10], and earlier in [MY, Section 3] for the
cocompact case, that H0(M, (S2(T ∗M) ⊗ TM)0) = 0. Therefore, M has at most one
holomorphic projective connection by Lemma 8. �

Remark 10. Note that Lemma 8 does not hold for n = 1. Indeed, it is classically
known that the space of holomorphic projective structures on a Riemann surface Σ is
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an affine space for the vector space of holomorphic quadratic differentials on Σ (see [Gu]
or Chapter 8 in [StG]). Lemma 8 is a higher dimensional version of this classical result.
Also, Corollary 9 does not hold for n = 1 for the same reason.

Corollary 11. The complex projective space CPn admits a unique holomorphic projective
connection, namely the standard flat one.

Proof. If n = 1, a holomorphic projective connection is automatically flat. Since the
complex projective line is simply connected, the developing map for a projective struc-
ture produces an isomorphism of the projective structure with the standard projective
structure of CP1.

Now assume that n > 1. We will prove that

H0(CPn, S2(T ∗CPn)⊗ TCPn) = 0 . (3.7)

The Fubini–Study metric on CPn is Kähler–Einstein. So the Hermitian structure on
S2(T ∗CPn) ⊗ TCPn induced by the Fubini–Study metric is Hermitian–Einstein. On the
other hand,

degree(S2(T ∗CPn)⊗ TCPn) < 0

[LT, p. 50, Theorem 2.2.1]. Hence (3.7) holds by stability. Therefore, Lemma 8 implies
that CPn has a unique holomorphic projective connection: it is the standard one. �

The following proposition (statement (ii)) studies holomorphic projective connections
on compact complex tori. Statement (i), which was already known in the broader context
of holomorphic Cartan geometries (see for example, [BM2, BM3, BD4, Du3]), shows that
compact complex tori cover the case of Kähler manifolds with trivial first Chern class.

Proposition 12.

(i) Let M be a compact Kähler manifold with c1(M) = 0 bearing a holomorphic
projective connection φ. Then M admits a finite unramified cover T which is
a compact complex torus; the pull-back of φ on T is projectively equivalent to a
(translation invariant) holomorphic torsionfree affine connection.

(ii) A generic holomorphic projective connection on a compact complex torus of com-
plex dimension n > 2 is not projectively flat.

Proof. (i) By Calabi’s conjecture proved by Yau, [Ya],M admits a Ricci flat Kähler metric.
Using this, Bogomolov–Beauville decomposition theorem,[Be, Bo], shows thatM admits a
finite unramified cover ψ : M ′ −→ M such that the canonical line bundle KM ′ is trivial.
Now Lemma 7 says that the holomorphic projective connection ψ∗φ is represented by a
holomorphic affine connection on M ′. Since M ′ is Kähler, it is known that M ′ admits
a finite unramified cover T which is a complex torus [IKO]. Any holomorphic affine
connection on T is known to be translation invariant [IKO] (see also the proof below).

(ii) Let Tn be a compact complex torus of complex dimension n > 2. Since the canon-
ical bundle KTn of the torus is trivial, Lemma 7 says that every holomorphic projective
connection on Tn is represented by some globally defined holomorphic affine connection.

Denote by (z1, · · · , zn) a holomorphic linear coordinate function on Tn and by ∇0

the standard flat holomorphic affine connection of Tn (induced by that of Cn using this
coordinate function). Any holomorphic affine connection on Tn is of the form ∇0 + Θ,
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where Θ ∈ H0(Tn, S2(T ∗Tn) ⊗ TTn). Since the holomorphic tangent bundle TTn is
holomorphically trivial, such a section Θ is a sum of terms of the form fk

ijdzidzj
∂

∂zk
, where

fk
ij are constant functions on Tn with values in C. The coefficients fk

ij are classically
called the Christoffel symbols of the affine connection. In particular, the holomorphic
affine connection ∇0 +Θ is translation-invariant.

First assume n = 3. For the convenience of computations, let us denote by (z1, z2, τ)
the holomorphic linear coordinate function on T3.

Denote by ΘA,B,C,D,E the holomorphic section of S2(T ∗T3)⊗ TT3 corresponding to the
following Christoffel symbols:

f z1
τ,τ = A, f z2

τ,τ = B ,

f z1
z1,z1

= 2f τ
τ,z1

= 2f z1
z1,z2

= C ,

f z2
z2,z2

= 2f τ
τ,z2

= 2f z2
z1,z2

= D ,

f τ
τ,τ = 2f z1

z1,τ
= 2f z2

z2,τ
= E ,

with A, B, C, D, E ∈ C; all other remaining coefficients are set to zero.

Consider the associated holomorphic affine connection

∇A,B,C,D,E = ∇0 +ΘA,B,C,D,E .

We will prove in Appendix the following technical

Lemma 13. ∇A,B,C,D,E is projectively flat on T3 if and only if C = D.

Equivalently, the Weyl projective tensor W of ∇A,B,C,D,E vanishes identically on T3 if
and only if C = D. In particular, for generic A,B,C,D,E the connection ∇A,B,C,D,E is
not projectively flat on T3.

Now consider the general connection on T3 given by

∇ = ∇0 +Θ ,

where Θ ∈ H0(T3, S2(T ∗T3)⊗ TT3). The vanishing of the Weyl tensor for ∇ is an alge-
braic (quadratic) equation in the Christoffel symbols fk

ij. Since all connections ∇A,B,C,D,E

with C 6= D have nonzero Weyl tensor, the space of flat projective connections has posi-
tive codimension in the space of all connections. Consequently, the general connection is
not flat.

Now consider the case where the complex dimension of the torus is n > 3. Denote by
(z1, z2, τ = z3, z4, · · · , zn) a global linear holomorphic coordinate function on Tn. Con-
sider the holomorphic projective connection represented by ∇A,B,C,D,E

n = ∇0+ΘA,B,C,D,E
n ,

where
ΘA,B,C,D,E

n ∈ H0(Tn, S2(T ∗Tn)⊗ TTn)

is defined below by the Christoffel symbols:

f z1
τ,τ = A, f z2

τ,τ = B ,

f z1
z1,z1

= 2f τ
τ,z1

= 2f z1
z1,z2

= C ,

f z2
z2,z2

= 2f τ
τ,z2

= 2f z2
z1,z2

= D ,

f τ
τ,τ = 2f z1

z1,τ
= 2f z2

z2,τ
= E ,

where A, B, C, D, E ∈ C; the remaining symbols are trivial.
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Identify Cn with the universal cover of Tn, and equip Cn with the connection given
by the connection ∇A,B,C,D,E

n on Tn using this identification. By construction, the three
dimensional linear subspace

{(z1, · · · , zn) ∈ Cn | z4 = . . . = zn = 0} ⊂ Cn

is totally geodesic, and the induced connection on this subspace is the connection∇A,B,C,D,E

studied earlier. For C 6= D, the connection ∇A,B,C,D,E is not projectively flat, and hence
∇A,B,C,D,E

n is not projectively flat either.

The same argument as in the dimension three case proves that the generic connection
∇ on Tn (meaning ∇ lying in a Zariski dense open set, whose complement of a proper
algebraic subvariety defined by quadratic equations) is not flat. �

Ye proved in [Ye] that Fano manifolds bearing a holomorphic projective connection are
flat, isomorphic to the standard complex projective space. This was generalized in [JR1]
to compact Kähler manifolds admitting nontrivial rational curves. More recently this
result was extended to the more general context of holomorphic Cartan geometries (see
Theorem 2 in [BM1]).

Moreover, Hwang and Mok proved in [HM] (Theorem 2 and Proposition 8) that unir-
uled projective manifolds bearing a holomorphic G–structure modeled on a Hermitian
symmetric spaces of rank ≥ 2 are flat, and globally isomorphic to the corresponding
Hermitian symmetric space endowed with its standard G–structure.

3.1. Proof of Theorem 1. Let M be a compact Kähler–Einstein manifold of complex
dimension n > 1 endowed with a holomorphic projective connection. By the classification
result of Kobayashi and Ochiai, [KO1, KO2], M is biholomorphic to one of the standard
models: either to CPn, or to a compact quotient of Hn

C by a torsion-free discrete subgroup
of SU(n, 1) or to an étale quotient of a compact complex n-torus.

Corollary 11 proves that the only holomorphic projective connection on CPn is the flat
standard one (this was already known; see [Ye, JR1, BM1]).

Corollary 9 proves that for n > 1, the only holomorphic projective connection on
compact quotients ofHn

C by a torsion-free discrete subgroup of SU(n, 1) is the flat standard
one. The result was already known for flat holomorphic projective connections [MY] (see
also [Kl1]); Corollary 9 uses arguments from their proof.

Proposition 12 shows that a holomorphic projective connection on a complex compact
n-torus is represented by a global translation-invariant torsionfree holomorphic affine con-
nection. Moreover, Proposition 12 proves that, for n > 2, the generic translation invariant
holomorphic affine connection on a compact complex n-torus is not projectively flat. This
completes the proof of Theorem 1.

4. Projective connections on Kuga-Shimura threefolds

As mentioned in the introduction, complex projective threefolds admitting holomorphic
projective connections have been classified by Jahnke and Radloff in [JR1]. Their result
says that the only examples are either the standard ones or an étale quotient of a Kuga–
Shimura projective threefold (see Section 2). The holomorphic projective connections on
the standard examples were studied in Section 3.
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In this Section we study holomorphic projective connections on Kuga–Shimura three-
folds and prove Theorem 2 and Corollary 3.

Proposition 14. The projective equivalence classes of holomorphic projective connections
on a Kuga–Shimura projective threefold M −→ Σ are parametrized by a complex affine

space on the vector space H0(Σ, K
3

2

Σ)
⊕2, where KΣ is the canonical bundle of the base

Riemann surface Σ (see (2.3)).

Proof. Let

̟ : M̃ = H× C2 −→ M (4.1)

be the universal cover of M . Let φ be a holomorphic projective connection on M . By

Lemma 7, the holomorphic projective connection ̟∗φ on M̃ is represented by a torsionfree

holomorphic affine connection ∇ on M̃ .

Let ∇0 be the standard flat affine connection of H×C2 (seen as an open subset in C3).
Then

Θ = ∇−∇0 ∈ H0(M̃, S2(T ∗M̃)⊗ TM̃) ,

because both ∇ and ∇0 are torsionfree.

We saw in the proof of Lemma 8 that F(Θ) ∈ H0(M̃, (S2(T ∗M̃)⊗ TM̃)0)
π1(M), where

F is the projection in (3.6). Conversely, every element of H0(M̃, (S2(T ∗M̃)⊗TM̃)0)
π1(M)

defines a holomorphic projective connection on M . Consequently, the space of projec-
tive equivalence classes of holomorphic projective connections on M is identified with

H0(M̃, (S2(T ∗M̃)⊗ TM̃)0)
π1(M) (see the proof of Lemma 8). We will first compute

H0(M̃, S2(T ∗M̃)⊗ TM̃)π1(M) ,

and then compute the locus in it of the trace-free ones.

As seen in Section 2.2, π1(M) is a semi-direct product Γ ⋉ Λ, where Γ is a Fuchsian

group and Λ ≃ Z⊕4. We recall from (2.2) that the action of π1(M) on M̃ is given by:

(γ, λ) · (τ, z1, z2) 7−→
(
aτ + b

cτ + d
,
z1 +mτ + n

cτ + d
,
z2 + kτ + l

cτ + d

)
(4.2)

for all γ =

(
a b
c d

)
∈ Γ and λ = (m, n, k, l) ∈ Λ. It follows that the action of the

same element (γ, λ) ∈ π1(M) on the standard basis of holomorphic one-forms on M̃ is
given by:

(dτ, dz1, dz2)

7−→
(

1

(cτ + d)2
dτ,

1

cτ + d
dz1 −

cz1 −md+ nc

(cτ + d)2
dτ,

1

cτ + d
dz2 −

cz2 − kd+ lc

(cτ + d)2
dτ

)
.

The action of the element (γ, λ) ∈ π1(M) on the dual basis is computed to be the
following:

(
∂

∂τ
,
∂

∂z1
,
∂

∂z2
) 7−→

(
(cτ + d)2

∂

∂τ
+ (cτ + d)(cz1 −md + nc)

∂

∂z1

+ (cτ + d)(cz2 − kd+ lc)
∂

∂z2
, (cτ + d)

∂

∂z1
, (cτ + d)

∂

∂z2

)
.
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The expression for the general section of S2(T ∗M̃)⊗ TM̃ is a sum of type

3∑

i,j,k=1

fk
ijdxidxj

∂

∂xk
,

where x1, x2, x3 are chosen among the global coordinates (τ, z1, z2) ∈ H ⊗ C2 and fk
ij

are holomorphic functions defined on H × C2 such that fk
ij = fk

ji. Therefore, in global

coordinates (τ, z1, z2) of the universal cover M̃ = H×C2, the expression for the general

section of S2(T ∗M̃)⊗ TM̃ is a sum of 18 terms:

f z1
τ,τdτ ⊗ dτ ⊗ ∂

∂z1
+ f z2

τ,τdτ ⊗ dτ ⊗ ∂

∂z2

+f τ
τ,τdτ ⊗ dτ ⊗ ∂

∂τ
+ f z1

z1,τ
dz1 ⊗ dτ ⊗ ∂

∂z1
+ f z2

z2,τ
dz2 ⊗ dτ ⊗ ∂

∂z2
+ . . .

This tensor is trace-free if and only if the following three conditions hold:

f z1
z1,z1

+ f τ
z1,τ

+ f z2
z1,z2

= 0 ,

f z1
z2,z1

+ f τ
z2,τ

+ f z2
z2,z2

= 0 ,

f z1
τ,z1

+ f τ
τ,τ + f z2

τ,z2
= 0 .

The action of any λ = (m, n, k, l) ∈ Z⊕4 = Λ on M̃ is given by

λ · (τ, z1, z2) 7−→ (τ, z1 +mτ + n, z2 + kτ + l)

(see (4.2)). In particular, the action of the normal subgroup Λ ⊂ π1(M) is trivial on the
τ -coordinate and it preserves the fibration defined by the projection

H× C2 −→ H . (4.3)

The symbol functions fk
ij are evidently invariant under the action of Λ. In particular, the

functions fk
ij are constants on the fibers of the projection in (4.3), i.e., every fk

ij depends
only of the parameter τ .

We now compute the components of the tensor Θ enforcing the invariance condition
under the action π1(M).

Take any (γ, λ) ∈ π1(M). Identifying the coefficient of dz1⊗dz2⊗ ∂
∂z1

in the expressions

of Θ and (γ, λ)∗Θ we get:

f z1
z1,z2

(τ) =
1

cτ + d
f z1
z1,z2

(
aτ + b

cτ + d
) .

This implies that f z1
z1,z2

is a holomorphic section ofK
1

2

Σ , meaning the holomorphic weighted-
form f z1

z1,z2
(τ)dτ descends to M and the descended section coincides with the pull-back of

a holomorphic section of K
1

2

Σ through the Kuga–Shimura fibration in (2.3).

Identifying the coefficient of dτ ⊗ dτ ⊗ ∂
∂z1

in the expressions of Θ and (γ, λ)∗Θ we get:

f z1
τ,τ (τ) =

1

(cτ + d)3
f z1
τ,τ (

aτ + b

cτ + d
) +

1

(cτ + d)3
f z1
z1,z1

(
aτ + b

cτ + d
)(cz1 −md+ nc)2+

1

(cτ + d)3
f τ
τ,τ (

aτ + b

cτ + d
)(cz1 −md+ nc) +

1

(cτ + d)3
f τ
z1,z1

(
aτ + b

cτ + d
)(cz1 −md + nc)3
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+
1

(cτ + d)3
f z1
z2,z2

(
aτ + b

cτ + d
)(cz2 − kd+ lc)2

+2
1

(cτ + d)3
f τ
z1,z2

(
aτ + b

cτ + d
)(cz1 −md+ nc)2(cz2 − kd+ lc)

+2
1

(cτ + d)3
f z1
z1,τ

(
aτ + b

cτ + d
)(−cz1 +md− nc) + 2

1

(cτ + d)3
f z1
z2,τ

(
aτ + b

cτ + d
)(−cz2 + kd− lc)

−2
1

(cτ + d)3
f τ
z1,τ

(
aτ + b

cτ + d
)(cz1−md+nc)2−2

1

(cτ + d)3
f τ
z2,τ

(
aτ + b

cτ + d
)(cz1−md+nc)(cz2−kd+lc)

+2
1

(cτ + d)3
f z1
z1,z2

(
aτ + b

cτ + d
)(cz1 −md+ nc)(cz2 − kd+ lc) .

Since the polynomial in the right hand side of the above equation must be independent
of z1 and z2, this yields

f τ
z1,z1

= f τ
z1,z2

= f τ
z2,z1

= f z1
z2,τ

= f z1
τ,z2

= f z2
z1,τ

= f z2
τ,z1

= 0 ,

f z1
z1,z2

= f z1
z2,z1

= f τ
τ,z2

= f τ
z2,τ

,

f z1
z1,z1

= 2f τ
z1,τ

= 2f τ
τ,z1

,

f τ
τ,τ = 2f z1

z1,τ
= 2f z1

τ,z1
.

Also, we get that f z1
τ,τ is a holomorphic section of K

3

2

Σ , meaning the holomorphic weighted-
form f z1

τ,τ descends to M and the descended section coincides with the pull-back of a

holomorphic section of K
3

2

Σ through the Kuga–Shimura fibration in (2.3).

Performing the same computation for the coefficient of dτ ⊗ dτ ⊗ ∂
∂z2

we get that

f τ
z2,z2

= 0 ,

f z2
z1,z2

= f z2
z2,z1

= f τ
τ,z1

= f τ
z1,τ

,

f z2
z2,z2

= 2f τ
z2,τ

= 2f τ
τ,z2

,

f τ
τ,τ = 2f z2

z2,τ
= 2f z2

τ,z2
.

We also get that f z2
τ,τ is a holomorphic section of K

3

2

Σ in the sense explained above.

We now identify the coefficient of dτ ⊗ dτ ⊗ ∂
∂τ
. Since we already know that f τ

z1,z1
=

f τ
z2,z2

= f τ
z1,z2

= 0, the equation is:

f τ
τ,τ(τ) = f τ

τ,τ (
aτ + b

cτ + d
)

1

(cτ + d)2
+ 2f τ

z1,τ
(
aτ + b

cτ + d
)

1

(cτ + d)2
(−cz1 +md− nc)

+2f τ
z2,τ

(
aτ + b

cτ + d
)

1

(cτ + d)2
(−cz2 + kd− lc) .

This implies that f τ
z1,τ

= f τ
z2,τ

= 0, and f τ
τ,τ is a holomorphic section of KΣ in the sense

explained above.

Let us now identify the coefficient of dz1 ⊗ dz1 ⊗ ∂
∂z1

. Since f τ
z1,z2

= 0, we get that

f z1
z1,z1

(τ) = f z1
z1,z1

(
aτ + b

cτ + d
)

1

(cτ + d)
.

It follows that f z1
z1,z1

is a holomorphic section of K
1

2

Σ in the sense explained above.

Consider the coefficient of dz2 ⊗ dz2 ⊗ ∂
∂z2

; we obtain the same result for f z2
z2,z2

.
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The conclusion is that the only non-vanishing coefficients are:

f τ
τ,τ = 2f z1

z1,τ
= 2f z2

z2,τ
∈ H0(Σ, KΣ) ;

f z1
τ,τ , f

z2
τ,τ ∈ H0(Σ, K

3

2

Σ) .

Therefore, we have a canonical identification

H0(Σ, K
3

2

Σ)
⊕2 ⊕ H0(Σ, KΣ)

∼−→ H0(M̃, S2(T ∗M̃)⊗ TM̃)π1(M) . (4.4)

For A, B ∈ H0(Σ, K
3

2

Σ) and C ∈ H0(Σ, KΣ), the corresponding element

ΘA,B,C ∈ H0(M̃, S2(T ∗M̃)⊗ TM̃)π1(M) (4.5)

by the isomorphism in (4.4) is given by

f z1
τ,τ = A , f z2

τ,τ = B, f τ
τ,τ = 2f z1

z1,τ
= 2f z2

z2,τ
= C .

It can be shown that ∇A,B,C and ∇A,B,0 are projectively equivalent. Indeed, define φτ

to be the holomorphic one-form on H× C2 such that

φτ (
∂

∂τ
) =

1

2
C and φτ (

∂

∂zi
) = 0

for i = 1, 2. It follows that

∇A,B,C
X Y −∇A,B,0

X Y = φτ (X)(Y ) + φτ (Y )X (4.6)

for all locally defined holomorphic vector fields X, Y ; see (6.2). From (4.6) it follows that
∇A,B,C and ∇A,B,0 are projectively equivalent.

For the section ΘA,B,C in (4.5), we have div(ΘA,B,C) = 2Cdτ , where div is constructed
as in (3.1). Consequently, the trace-free condition div(ΘA,B,C) = 0 holds if and only if

C = 0 .

In fact, the trace-free part of ΘA,B,C is

F(ΘA,B,C) = ΘA,B,0 ∈ H0(M̃, (S2(T ∗M̃)⊗ T ∗M̃)0) ,

where F is the projection in (3.6).

Therefore, from the isomorphism in (4.4) we have a canonical identification

H0(Σ, K
3

2

Σ)
⊕2 ∼−→ H0(M̃, (S2(T ∗M̃)⊗ TM̃)0)

π1(M) (4.7)

that sends any (A, B) ∈ H0(K
3

2

Σ)
⊕2 to ΘA,B,0 in (4.5).

Recall that ∇A,B,0 = ∇0+ΘA,B,0 is a π1(M)–invariant holomorphic projective connec-

tion on M̃ . Therefore, it descends to a holomorphic projective connection ∇A,B on M .
Moreover, we have seen that the space of projective equivalence classes of holomorphic

projective connections on M is identified with H0(M̃, (S2(T ∗M̃)⊗ T ∗M̃)0)
π1(M). There-

fore the projective connection ∇A,B is projectively equivalent to ∇A′,B′

if and only if
(A, B) = (A′, B′); we take the base projective connection ∇0,0 to be the standard flat

projective connection induced by the open embedding of M̃ in CP3. �
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Remark 15. There are Kuga–Shimura projective threefolds over Shimura (compact) curves
of arbitrarily large genus (see, for instance, [KV, Section 5]). Using Riemann-Roch theo-

rem we deduce that dimH0(Σ, K
3

2

Σ)
⊕2 = 4(genus(Σ) − 1), so it can be arbitrarily large.

This implies that the space of projective classes of holomorphic projective connections
on a Kuga–Shimura projective threefold can have dimension arbitrarily large. The next
Proposition 16 shows that all these holomorphic projective connections are flat.

Proposition 16. Let M be a projective Kuga–Shimura threefold which fibers over a
Shimura curve Σ. Then all holomorphic projective connections φ on M are flat. The
fibers of the Kuga–Shimura fibration are (flat) totally geodesic for φ.

Proof. Take a holomorphic projective connection φ on M . Let

(A, B) ∈ H0(K
3

2

Σ)
⊕2

be the pair associated to φ by Proposition 14. Recall that ̟∗φ (see (4.1)) is represented
by a holomorphic affine connection

∇A,B := ∇A,B,0 = ∇0 +ΘA,B ,

where ΘA,B := ΘA,B,0 ∈ H0(M̃, (S2(T ∗M̃)⊗T ∗M̃)0)
π1(M) corresponds to the Christoffel

symbols

(f z1
τ,τ , f

z2
τ,τ ) = (A, B) ∈ H0(Σ, K

3

2

Σ)
⊕2

(see (4.5)). As noted in the proof of Proposition 14, the holomorphic weighted-forms

f z1
τ,τ (τ)dτ (respectively, f z2

τ,τ (τ)dτ) defined on M̃ = H × C2 descends to M as the holo-

morphic section A (respectively, B) of K
3

2

Σ .

We now compute the curvature of the associated affine connection ∇A,B = ∇0+ΘA,B.

This computation is formally the same as the computation of the curvature of the con-
nection ∇A,B,0,0,0 in the proof of Proposition 12: see the proof of Lemma 13 in Appendix.
The only difference is that here A and B depend on the variable τ , while in the proof of
Lemma 13 the parameters A and B are two constants. Nevertheless, the curvature tensor
R(X, Y )Z being anti-symmetric in variables (X, Y ) we have R( ∂

∂τ
, ∂

∂τ
) = 0; note that

R( ∂
∂τ
, ∂

∂τ
) is an endomorphism of T ∗M̃ . Therefore, the components of the affine curvature

tensor R do not depend on the derivatives of the functions τ 7−→ A(τ) and τ 7−→ B(τ).

It follows that the computation of the curvature tensor R is the same as for ∇A,B,0,0,0 in
the proof of Lemma 13 in Appendix. In the case where C = D = E = 0, the conclusion
of the computations in the proof of Lemma 13 is that the tensor R, and henceW , vanishes
identically. This proves that ∇A,B is projectively flat.

Moreover, ∇A,B preserves the holomorphic two-dimensional foliation F of M̃ = H×C2

defined, in global coordinates (τ, z1, z2), by dτ = 0. The connection ∇A,B coincide with
∇0 when restriction to F . More precisely, each leaf of F is a fiber {h} × C2 ⊂ H × C2,
and the restrictions of ∇A,B and ∇0 to each fiber coincide. Observe that the projection
on M of the F–leafs are exactly the fibers of the Kuga–Shimura fibration in (2.3). �

4.1. Proofs of Theorem 2 and Corollary 3.
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Proof of Theorem 2. LetM be a Kuga–Shimura projective threefold. Proposition 14 pro-
vides a proof of statement (i) of the theorem, showing that the space of the projective
classes of holomorphic projective connections on M is identified with a complex affine

space for the H0(Σ, K
3

2

Σ)
⊕2.

Proposition 16 proves statement (ii). �

Now we can deduce Corollary 3.

Proof of Corollary 3. Let M be a projective threefold endowed with a holomorphic pro-
jective connection φ. The main result in [JR1] proves that M is either a Kähler–Einstein
threefold (and hence one of the standard examples [KO1, KO2]), or it is an étale quo-
tient of a Kuga–Shimura projective threefold. Theorem 2 shows that on Kuga–Shimura
projective threefolds (and hence also on their étale quotients), all holomorphic projective
connections are flat. Theorem 1 implies that on Kähler–Einstein projective threefolds φ
is flat, except for abelian varieties (and their étale quotients) on which φ is translation
invariant (but generically not flat). �

5. Simply connected complex threefolds with trivial canonical bundle

In this final section we deal with compact complex manifolds of dimension three. For
any cocompact lattice Γ ⊂ SL(2,C), the quotient SL(2,C)/Γ is compact non-Kähler
threefold with trivial tangent bundle admitting a flat holomorphic projective connection.
Ghys constructed their deformations that have canonical bundle trivial and admit a flat
holomorphic projective connection [Gh] (see also [BD1, Section 5]).

A simply connected manifold M with trivial canonical bundle does not admit a flat
holomorphic projective connection. Indeed, the developing map of such a holomorphic
projective structure would realize a biholomorphism between M and the complex pro-
jective space (which has nontrivial first Chern class). For dimension three, the following
stronger result holds.

Theorem 17. A simply connected compact complex threefold with trivial canonical bundle
does not admit any holomorphic projective connection.

To prove Theorem 17, we will make use of the theory of rigid geometric structure as
developed in [Grom, DG]. A holomorphic torsionfree affine connection is known to be
rigid (of order one) in the sense of [Grom, DG] because a local automorphism of the
connection is completely determined by its underlying one-jet at any given point (i.e., the
differential sends parametrized holomorphic geodesic curves to parametrized holomorphic
geodesic curves). A holomorphic projective connection is known to be rigid (of order two)
in the sense of [Grom, DG] because a local automorphism of the connection is completely
determined by its underlying two-jet at any given point.

The algebraic dimension a(N) of a compact complex manifold N is the transcendence
degree of the field of meromorphic functions C(N) over C (see [Ue, p. 24, Chapter 3]).
We have a(N) ≤ dimN , and a(N) = dimN if and only if N is bimeromorphic to a
complex projective variety [Moi]. The manifolds with maximal algebraic dimension are
called Moishezon manifolds.
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The Killing Lie algebra of a holomorphic rigid geometric structure (here the geometric
structure is a holomorphic projective or affine connection) on a compact complex manifold
N of complex dimension n has generic orbits of complex dimension ≥ n − a(N) [Du1,
p. 568, Theorem 3]. This result will be useful in the proof of the following propositions.

Proposition 18. Any holomorphic projective connection φ on a compact complex three-
fold M admits a nontrivial Killing Lie algebra.

Proof. Assume, by contradiction, that the Killing Lie algebra for φ is trivial. Now Theo-
rem 3 in [Du1] says that the manifoldM is Moishezon. But Moishezon manifolds bearing
a holomorphic Cartan geometry (in particular, a holomorphic affine connection [Sha]) are
known to be projective (see Corollary 2 in [BM1]).

On the other hand, Corollary 3 implies that the Killing Lie algebra of a holomorphic
projective connection on a projective threefold is transitive, hence it has dimension at
least three: a contradiction. �

Proposition 19. Let M be a compact complex manifold with trivial canonical bundle
bearing a holomorphic projective connection φ. Then the following five hold:

(i) The Killing Lie algebra of φ is nontrivial.

In the following four, assume that M is simply connected.

(ii) The automorphism group Aut(M, φ) of (M, φ) is a complex Lie group of positive
dimension.

(iii) A maximal connected abelian complex subgroup A in Aut(M, φ) has positive di-
mension.

(iv) The A–orbits in M coincide with those of the maximal (real) compact subgroup
K(A) ⊂ A; they all are compact complex tori.

(v) The A–action on M does not admit any fixed point.

Proof. Denote by n the complex dimension of M . Consider a holomorphic volume form
ω on M ; this means that ω is a holomorphic trivializing section of the canonical bundle
KM . Lemma 7, and its proof, imply that there is a unique torsionfree affine connection
∇ on M such that

• ∇ is projectively equivalent to φ, and
• ω is parallel with respect to ∇.

Let us first prove that that M does not admit any nontrivial rational curve.

Take a holomorphic map f : CP1 −→ M and consider the pull-back f ∗TM equipped
with the holomorphic connection f ∗∇. The connection f ∗∇ is flat (because its curvature
is a (bundle valued) holomorphic two-form). This implies that f ∗TM is holomorphically
trivial, because CP1 is simply connected. Since degree(TCP1) > 0, there is no nonzero
homomorphism from TCP1 to the trivial bundle f ∗TM . In particular, the differential df
of f vanishes identically. This implies that f is a constant map.

(i) To prove by contradiction, assume that the Killing Lie algebra of φ is trivial (in
particular the Killing Lie algebra of ∇ is also trivial). Then Theorem 3 in [Du1] implies
that M is a Moishezon manifold. But Moishezon manifolds with no rational curves are
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known to be projective [Cas, p. 307, Theorem 3.1]. A complex projective manifold bearing
a holomorphic affine connection ∇ is covered by an abelian variety [IKO]. Moreover, the
pull-back of ∇ to the covering abelian variety is translation invariant (see Proposition
12). In particular, ∇ is locally homogeneous, and hence φ is also locally homogeneous; so
the Killing Lie algebra of φ is transitive on M : a contradiction.

Now assume that M is simply connected.

(ii) Each element in the Killing Lie algebra for φ extends to a global holomorphic Killing
vector field for φ (defined on entireM): this was first proved by Nomizu in [No] for Killing
vector fields of analytic Riemannian metrics, and subsequently it was generalized to G–
structures [Am], to rigid geometric structures [DG, Grom] and also to Cartan geometries
[Me, Pe]. This implies that there is a nontrivial connected complex Lie group G acting
by biholomorphisms on M that preserves the holomorphic projective connection φ. This
group G coincides with the connected component, containing the identity element, of the
automorphism group Aut(M, φ). The Lie algebra Lie(G) of G is the Lie algebra of global
holomorphic Killing vector fields for φ.

iii) The nonzero holomorphic section ω of the canonical bundle KM defines a smooth
real volume form on M given by (

√
−1)n · ω ∧ ω.

We will prove that the action of the groupG preserves the smooth measure (
√
−1)n·ω∧ω

on M . To prove this, consider a holomorphic Killing vector field X ∈ Lie(G). The Lie
derivative LXω of ω is a holomorphic section of KM . So there is a constant c ∈ C such
that LXω = c · ω. Hence, if Ψt is the one-parameter subgroup of G generated by X , we
get that

(Ψt)∗ω = exp(ct) · ω

for all t ∈ C; recall that any holomorphic vector field on a compact manifold is complete,
and therefore its flow is defined on all of C. Since the total volume

∫
M
(
√
−1)n · ω ∧ ω of

the manifold M is invariant by any automorphism, it follows that | exp(ct)| = 1 for all
t ∈ C. By Liouville Theorem, the entire function t 7−→ exp(ct) must be constant and
equal to 1 (the value of the function at t = 0 being 1). This implies that c = 0, and ω
is X-invariant. Since the complex Lie group G is connected, it is generated by the flows
of its fundamental vector fields. It follows that every element of G preserves the volume
form.

Moreover since G preserves the holomorphic volume form ω and the holomorphic pro-
jective connection φ, the action of G also preserves the associated torsionfree holomorphic
affine connection ∇ representing φ; it was observed in the proof of Lemma 7 that ∇ is
canonically associated to φ and ω.

Let us now apply the Gromov abelianization trick (see [DG, Section 3.2.A] or [Grom])
and consider the rigid geometric structures which is a juxtaposition of the holomorphic
projective connection φ with a family of global holomorphic vector fields {X1, · · · , Xk} ∈
H0(M, TM) forming a basis of the Lie algebra of G, seen as a subalgebra of TM .

Denote by A the connected component of the identity element in the automorphism
group of the holomorphic rigid geometric structure

φ′ = (φ, X1, · · · , Xk) .
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Then A is a maximal connected abelian complex Lie subgroup in Aut(M, φ) (see [DA,
Section 3.1 Lemma], for more details).

Applying [Du1, Theorem 3] to φ′ it is deduced that A acts with generic orbits of complex
dimension at least n− a(M). As above, M is not Moishezon, so n− a(M) > 0. Indeed,
recall that we have seen in the proof of point (i) that M Moishezon implies M is covered
by an abelian variety: a contradiction (since M is simply connected).

(iv) Since A preserves a smooth measure on M , its orbits are compact and coincide
with the orbits of its maximal (real) compact subgroup K(A) ⊂ A (see [Grom, Section
3.7] and [DG, Section 3.5.4]).

Choose a point m0 ∈ M , and consider its A–orbit Am0. Then Am0 is biholomorphic
to the homogeneous space A/Am0

, where Am0
is the complex subgroup of A that fixes m0.

Any basis of the quotient space Lie(A)/Lie(Am0
) is invariant by the adjoint representation

of Am0
(because A is abelian) and provides a holomorphic trivialization of the holomorphic

tangent bundle of the homogeneous space A/Am0
. So A/Am0

is a compact parallelizable
manifold [Wa]. Moreover, the holomorphic tangent bundle is trivialized by commuting
vector fields. Therefore A/Am0

is a compact complex torus. Consequently, all A–orbits
are compact complex tori (notice that some orbits could be of dimension zero: these are
fixed points of the A–action).

(v) To prove this by contradiction, assume that m0 ∈ M is fixed by the action of
A on M . To any g ∈ A associate its differential dg(m0) ∈ GL(Tm0

M); this gives the
isotropy homomorphism i : A −→ GL(Tm0

M) at m0. Moreover, since A preserves the
holomorphic torsionfree affine connection ∇, the A action on M is linearizable in local
holomorphic ∇–exponential coordinates in the neighborhood of m0. More precisely, there
exists an open neighborhood U of 0 ∈ Tm0

M and an open neighborhood U ′ of m0 ∈ M
and a biholomorphism β : U −→ U ′, such that β intertwines the actions of i(A) on
U and of A on U ′. In particular, the homomorphism i is injective (i.e., the isotropy
representation of A is faithful).

It is known that i(A) ⊂ GL(Tm0
M) is a complex algebraic subgroup; this is because

i(A) coincides with the stabilizer of a k-jet of the rigid geometric structure φ′ (for k ∈ N

large enough) and the GL(Tm0
M)–action on the space of k-jets of φ′ at m0 is algebraic

(see [Grom, Sections 3.5 and 3.7] and [DG, Sections 3.2A and 3.5] or [Me, Theorem 3.11]).

As before , K(A) ⊂ A is the maximal compact subgroup. Let K(A)0 be the connected
component of K(A) containing the identity element. It is isomorphic to (S1)ℓ = U(1)ℓ

for some ℓ ≥ 1. Let i(K(A))C ⊂ i(A) be the complex Zariski closure of i(K(A)0). This
group i(K(A))C is isomorphic to (C∗)ℓ. We deduce that Tm0

M splits as a direct sum

Tm0
M = L1 ⊕ L2 ⊕ . . .⊕ Ln

of complex i(K(A))C–invariant lines, such that i(K(A))C acts on each Lj , 1 ≤ j ≤ n,
through a multiplicative character

χj : (C∗)ℓ −→ C∗ , (t1, · · · , tℓ) 7−→ t
n
j
1

1 · tn
j
2

2 · . . . · tn
j
ℓ

ℓ

defined by a given (nj
1, · · · , nj

ℓ) ∈ Zℓ.

Since the isotropy representation i is faithful, it follows that at least one of the characters
{χ1, χ2, . . . , χn} is nontrivial. Recall that β intertwines the actions of i(K(A))C on U
and A on U ′. Then there exists points in U ′ \ {m0} such that the A–orbit of any of them
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accumulates at the fixed point m0. This contradicts the fact that the A–orbits in M are
compact. Therefore, the A–action on M does not have any fixed points. �

Let us now give a proof of Theorem 17.

Proof of Theorem 17. To prove by contradiction, assume that there is a complex compact
threefold M with trivial canonical bundle KM and bearing a holomorphic projective con-
nection φ. We are exactly in the situation described by Proposition 19. We keep the same
notations as in Proposition 19. In particular, we have a holomorphic torsionfree affine
connection ∇ on M representing φ, which is preserved by the action of the nontrivial
connected abelian group A of automorphisms.

It was proved in Proposition 19(iv) that all A–orbits are biholomorphic to compact
complex tori. Since M is not homeomorphic to a compact complex torus (it is simply
connected), we deduce that the generic A–orbits are either of complex dimension two, or
of complex dimension one.

These two cases will be dealt separately.

Case of generic A-orbits being of complex dimension two. Take holomorphic Killing
vector fields (X1, X2) which span the tangent space to the A–orbit at a generic point. As
before, let ω be a nonzero holomorphic section of KM . We have the holomorphic one–form
θ on M defined by

θ(x)(v) = ω(x)(v,X1(x), X2(x))

for all x ∈ M and v ∈ TxM . This one–form θ is A–invariant and it vanishes on the A–
orbits. Since the kernel of θ coincides, at the generic point, with the holomorphic tangent
space of the foliation defined by the A–action, the one–form θ satisfies the Frobenius
integrability condition θ ∧ dθ = 0. Moreover, it can be proved that this nontrivial one-
form θ is closed. See the proof of Theorem 4.4 in [BD2] where it is shown that θ is
closed because it is projectable on a compact curve; this can also be deduced from the
description of non-closed integrable one-forms on threefolds given in [Br, Proposition 3].
This implies that H1(M, C) 6= 0, and hence the abelianization of the fundamental group
of M is infinite: a contradiction.

Case of generic A-orbits being of complex dimension one. Proposition 19(v) proves that
the A–action on M does not have any fixed points. It follows from Proposition 19(iv)
that all A–orbits are elliptic curves, on which K(A) acts transitively.

We will prove that K(A) acts freely on M .

To prove this, take any m0 ∈ M , and let I(m0) ⊂ K(A) be the stabilizer of m0

for the action of K(A) on M . Then I(m0) is a compact abelian group fixing m0. Its
action linearizes in local holomorphic coordinates at m0. For any k ∈ I(m0), since K
is abelian, the differential dk(m0) acts trivially on Tm0

(K(A)(m0)) = Tm0
(Am0); recall

that any A–orbit is also a K(A)–orbit. On the other hand, the differential dk(m0) acts
trivially on the quotient space Tm0

M/(Tm0
(Am0)), because any element of A (in particular

k) fixes (globally) each A–orbit (i.e., it acts trivially on the space of A–orbits). Since
compact groups are reductive, it follows that the differential of k is trivial. The isotropy
representation at m0 being faithful (see the proof of Proposition 19(v)), this implies that
k is the identity element. Consequently, I(m0) is trivial, and the K(A)–action on M is
free.
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It follows that M is the total space of a real principal K(A)–bundle over a smooth
real manifold B = M/K(A). The K(A)–orbits are complex manifolds, because they are
A–orbits. This implies that B is also a complex manifold and the projection

δ : M −→ B = M/K(A) (5.1)

is a holomorphic submersion whose fibers are elliptic curves.

We will now prove that the fibration δ in (5.1) is a holomorphic principal elliptic curve
bundle over B.

The space of elliptic curves C together with a symplectic basis of H1(C, Z) is parametrized
by Poincaré upper half-plane H. The base B in (5.1) is simply connected, because M is
so (and the fibers of δ are connected). Therefore, fixing a point b0 ∈ B and a symplectic
basis of H1(δ−1(b0), Z), we get a holomorphic map

Φ : B −→ H
for the family of elliptic curves in (5.1). Since B is compact, this Φ is a constant function.

Therefore, the fibration δ in (5.1) is isotrivial. By the fundamental result of Fischer
and Grauert δ is a holomorphic bundle. Moreover since the fibers of δ are isomorphic
elliptic curves on which K(A) acts freely and transitively (by biholomorphisms), for any
point m0 ∈ M , the orbital map K(A) −→ K(A)m0 induces on K(A) the same complex
structure (that of the fiber type of δ). Hence K(A) gets the complex structure of an
elliptic curve for which the K(A)–action on M is holomorphic; this elliptic curve will be
denoted by K(A). Therefore δ is a holomorphic principal K(A)–bundle.

Since δ is a holomorphic principal K(A)–bundle, and KM is holomorphically trivial, it
follows that KB is holomorphically trivial. It was noted above that B is simply connected.
So B is a K3 surface.

Theorem 1.1 of [BD3] implies that the holomorphic affine connection on M is locally
homogeneous, and hence the fundamental group of M is infinite [BD3, Corollary 1.1]: a
contradiction. Hence M does not admit any holomorphic projective connection. �

We conjecture that a simply connected compact complex manifold bearing a holo-
morphic projective connection is isomorphic to the complex projective space (endowed
with its standard flat projective connection). In particular, we conjecture that simply
connected compact complex manifolds with trivial canonical bundle do not admit any
holomorphic projective connection. The second part of Proposition 19 which led to the
proof of Theorem 17 should be seen as a step in this direction. Some other evidence in
this direction was provided by the main result in [BD2] which says that simply connected
compact complex manifolds do not admit holomorphic Riemannian metrics; in this case
the canonical bundle is automatically trivialized by the volume form associated to the
holomorphic Riemannian metric.

6. Appendix

The aim of this Appendix is to prove the technical Lemma 13, used in the proof of
Proposition 12 (ii), namely :

∇A,B,C,D,E is projectively flat on T3 if and only if C = D.
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Proof. For that we shall compute the projective Weyl curvature tensor of ∇A,B,C,D,E.

We start by computing the affine curvature tensor. To simplify the notation in the com-
putation, ∇A,B,C,D,E is denoted simply by ∇. Recall from (2.5) that the affine curvature
tensor of ∇ is given by the formula

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z .

Substituting for X, Y and Z we get the following explicit expressions:

R(
∂

∂τ
,
∂

∂z1
)
∂

∂z1
= ∇ ∂

∂τ
∇ ∂

∂z1

∂

∂z1
−∇ ∂

∂z1

∇ ∂
∂τ

∂

∂z1
= ∇ ∂

∂τ
(f z1

z1,z1

∂

∂z1
)

−∇ ∂
∂z1

(f τ
τ,,z1

∂

∂τ
+ f z1

τ,,z1

∂

∂z1
)

= f z1
z1,z1

(f τ
τ,,z1

∂

∂τ
+ f z1

τ,,z1

∂

∂z1
)− f τ

τ,z1
∇ ∂

∂z1

∂

∂τ
− f z1

τ,z1
∇ ∂

∂z1

∂

∂z1

= f z1
z1,z1

(f τ
τ,,z1

∂

∂τ
+ f z1

τ,,z1

∂

∂z1
)− f τ

τ,z1
(f τ

z1,τ

∂

∂τ
+ f z1

z1,τ

∂

∂z1
)− f z1

τ,z1
f z1
z1,z1

∂

∂z1

=
C2

4

∂

∂τ
− CE

4

∂

∂z1
.

By symmetry we get

R(
∂

∂τ
,
∂

∂z2
)
∂

∂z2
=

D2

4

∂

∂τ
− DE

4

∂

∂z2
,

and

R(
∂

∂z1
,
∂

∂z2
)
∂

∂z1
= ∇ ∂

∂z1

∇ ∂
∂z2

∂

∂z1
−∇ ∂

∂z2

∇ ∂
∂z1

∂

∂z1
= ∇ ∂

∂z1

(f z1
z1,z2

∂

∂z1
+ f z2

z1,z2

∂

∂z2
)

−∇ ∂
∂z2

(f z1
z1,z1

∂

∂z1
) = f z1

z1,z2
· f z1

z1,z1

∂

∂z1
+ f z2

z1,z2
∇ ∂

∂z1

∂

∂z2
− f z1

z1,z1
∇ ∂

∂z2

∂

∂z1

=
C2

2

∂

∂z1
+ (

1

2
D − C)∇ ∂

∂z1

∂

∂z2
=

C2

2

∂

∂z1
+ (

1

2
D − C)(f z1

z1,z2

∂

∂z1
+ f z2

z1,z2

∂

∂z2
)

=
C2

2

∂

∂z1
+ (

1

2
D − C)(

C

2

∂

∂z1
+
D

2

∂

∂z2
) =

CD

4

∂

∂z1
+
D2 − 2CD

4

∂

∂z2
.

By symmetry we get

R(
∂

∂z1
,
∂

∂z2
)
∂

∂z2
= −R( ∂

∂z2
,
∂

∂z1
)
∂

∂z2
= −C

2 − 2CD

4

∂

∂z1
− CD

4

∂

∂z2
.

We have

R(
∂

∂τ
,
∂

∂z1
)
∂

∂z2
= ∇ ∂

∂τ
∇ ∂

∂z1

∂

∂z2
−∇ ∂

∂z1

∇ ∂
∂τ

∂

∂z2

= ∇ ∂
∂τ
(f z1

z1,z2

∂

∂z1
+ f z2

z1,z2

∂

∂z2
)−∇ ∂

∂z1

(f τ
τ,z2

∂

∂τ
+ f z2

τ,z2

∂

∂z2
)

=
1

2
C(f τ

τ,z1

∂

∂τ
+ f z1

τ,z1

∂

∂z1
) +

1

2
D(f τ

τ,z2

∂

∂τ
+ f z2

τ,z2

∂

∂z2
)− f τ

z2,τ
∇ ∂

∂z1

∂

∂τ
− f z2

z2,τ
∇ ∂

∂z1

∂

∂z2

=
1

4
C2 ∂

∂τ
+

1

4
CE

∂

∂z1
+

1

4
D2 ∂

∂τ
+

1

4
DE

∂

∂z2
− 1

2
D(f τ

z1,τ

∂

∂τ
+ f z1

z1,τ

∂

∂z1
)

−1

2
E(f z1

z1,z2

∂

∂z1
+ f z2

z1,z2

∂

∂z2
) =

1

4
(C2 +D2 − CD)

∂

∂τ
− 1

4
DE

∂

∂z1
.
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By symmetry,

R(
∂

∂τ
,
∂

∂z2
)
∂

∂z1
=

1

4
(C2 +D2 − CD)

∂

∂τ
− 1

4
CE

∂

∂z2
.

We also compute that

R(
∂

∂z1
,
∂

∂z2
)
∂

∂τ
= ∇ ∂

∂z1

∇ ∂
∂z2

∂

∂τ
−∇ ∂

∂z2

∇ ∂
∂z1

∂

∂τ

= ∇ ∂
∂z1

(f τ
τ,z2

∂

∂τ
+ f z2

τ,z2

∂

∂z2
)−∇ ∂

∂z2

(f τ
τ,z1

∂

∂τ
+ f z1

τ,z1

∂

∂z1
)

= f τ
τ,z2

(f z1
τ,z1

∂

∂z1
+ f τ

τ,z1

∂

∂τ
) + f z2

τ,z2
(f z1

z1,z2

∂

∂z1
+ f z2

z1,z2

∂

∂z2
)

−f τ
τ,z1

(f z2
τ,z2

∂

∂z2
+ f τ

τ,z2

∂

∂τ
)− f z1

τ,z1
(f z1

z1,z2

∂

∂z1
+ f z2

z1,z2

∂

∂z2
)

=
DE

4

∂

∂z1
− CE

4

∂

∂z2
,

and

R(
∂

∂τ
,
∂

∂z1
)
∂

∂τ
= ∇ ∂

∂τ
∇ ∂

∂z1

∂

∂τ
−∇ ∂

∂z1

∇ ∂
∂τ

∂

∂τ

= ∇ ∂
∂τ
(f z1

τ,z1

∂

∂z1
+ f τ

τ,z1

∂

∂τ
)−∇ ∂

∂z1

(f τ
τ,τ

∂

∂τ
+ f z1

τ,τ

∂

∂z1
+ f z2

τ,τ

∂

∂z2
)

= f z1
τ,z1

(f τ
τ,z1

∂

∂τ
+ f z1

τ,z1

∂

∂z1
) + f τ

τ,z1
(f τ

τ,τ

∂

∂τ
+ f z1

τ,τ

∂

∂z1
+ f z2

τ,τ

∂

∂z2
)

−f τ
τ,τ (f

z1
τ,z1

∂

∂z1
+ f τ

τ,z1

∂

∂τ
)− f z1

τ,τf
z1
z1,z1

∂

∂z1
− f z2

τ,τ (f
z1
z1,z2

∂

∂z1
+ f z2

z1,z2

∂

∂z2
)

=
EC

4

∂

∂τ
+ (−E

2

4
− 1

2
C(A+B))

∂

∂z1
+

1

2
B(C −D)

∂

∂z2
.

By symmetry,

R(
∂

∂τ
,
∂

∂z2
)
∂

∂τ
=

ED

4

∂

∂τ
+ (−E

2

4
− 1

2
D(A+B))

∂

∂z2
+

1

2
A(D − C)

∂

∂z1
.

Now we compute the Ricci curvature defined in (2.7):

Ricci(
∂

∂z1
,
∂

∂z2
) = Ricci(

∂

∂z2
,
∂

∂z1
) =

1

4
(C2 +D2) ;

Ricci(
∂

∂τ
,
∂

∂z1
) = Ricci(

∂

∂z1
,
∂

∂τ
) =

1

2
CE ;

Ricci(
∂

∂z2
,
∂

∂τ
) = Ricci(

∂

∂τ
,
∂

∂z2
) =

1

2
DE ;

Ricci(
∂

∂z1
,
∂

∂z1
) =

1

4
(C2 + 2CD−D2) ;

Ricci(
∂

∂z2
,
∂

∂z2
) =

1

4
(D2 + 2CD− C2) ;

Ricci(
∂

∂τ
,
∂

∂τ
) =

1

2
E2 +

1

2
(A + B)(C + D) .
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Recall from (2.6) the formula for the Weyl projective tensor W in dimension three:

W (X, Y )Z = R(X, Y )Z − 1

4
TrR(X, Y)Z− 1

2
[Ricci(Y, Z)X− Ricci(X, Z)(Y)]

−1

8
[TrR(Y, Z)X− TrR(X, Z)(Y)] .

Also, recall that the connection ∇ is projectively flat if and only if the tensor W vanishes
identically. The Weyl projective tensor W is anti-symmetric in (X, Y ) and satisfies the
first Bianchi identity in (2.8).

Since Ricci for ∇ is symmetric, it follows that TrR vanishes identically. Connections
with symmetric Ricci tensor are called equiaffine. The geometrical meaning of it is that
there is a parallel holomorphic volume form [OT, p. 222, Appendix A.3]. The above
formula for Weyl projective tensor for ∇ reduces to

W (X, Y )Z = R(X, Y )Z − 1

2
[Ricci(Y,Z)X− Ricci(X,Z)(Y)].

The computation for W ( ∂
∂z1
, ∂
∂z2

) ∂
∂z2

is as follows:

W (
∂

∂z1
,
∂

∂z2
)
∂

∂z2
= R(

∂

∂z1
,
∂

∂z2
)
∂

∂z2
− 1

2
[Ricci(

∂

∂z2
,
∂

∂z2
)
∂

∂z1
− Ricci(

∂

∂z1
,
∂

∂z2
)
∂

∂z2
)]

=
1

4
(2CD − C2)

∂

∂z1
− 1

4
CD

∂

∂z2
− 1

8
(D2 + 2CD − C2)

∂

∂z1
+

1

8
(C2 +D2)

∂

∂z2

= −1

8
(C −D)2

∂

∂z1
+

1

8
(C −D)2

∂

∂z2
.

Hence

W (
∂

∂z1
,
∂

∂z2
)
∂

∂z2
= −1

8
(C −D)2

∂

∂z1
+

1

8
(C −D)2

∂

∂z2
.

Also,

W (
∂

∂z1
,
∂

∂z2
)
∂

∂z1
= R(

∂

∂z1
,
∂

∂z2
)
∂

∂z1
− 1

2
[Ricci(

∂

∂z2
,
∂

∂z1
)
∂

∂z1
− Ricci(

∂

∂z1
,
∂

∂z1
)
∂

∂z2
)]

=
1

4
CD

∂

∂z1
+

1

4
(D2 − 2CD)

∂

∂z2
− 1

8
(C2 +D2)

∂

∂z1
+

1

8
(C2 + 2CD −D2)

∂

∂z2

= −1

8
(C −D)2

∂

∂z1
+

1

8
(C −D)2

∂

∂z2
.

In conclusion,

W (
∂

∂z1
,
∂

∂z2
)
∂

∂z1
= −1

8
(C −D)2

∂

∂z1
+

1

8
(C −D)2

∂

∂z2
.

We get that

W (
∂

∂z1
,
∂

∂z2
)
∂

∂τ
= R(

∂

∂z1
,
∂

∂z2
)
∂

∂τ
− 1

2
[Ricci(

∂

∂z2
,
∂

∂τ
)
∂

∂z1
− Ricci(

∂

∂z1
,
∂

∂τ
)
∂

∂z2
)] = 0 .

Hence we have

W (
∂

∂z1
,
∂

∂z2
)
∂

∂τ
= 0 .
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By similar direct computations we get that

W (
∂

∂τ
,
∂

∂z1
)
∂

∂z2
=

1

8
(C −D)2

∂

∂τ

and

W (
∂

∂τ
,
∂

∂z1
)
∂

∂τ
=

1

4
(A +B)(D − C)

∂

∂z1
+

1

2
B(C −D)

∂

∂z2
.

Also by direct computation:

W (
∂

∂τ
,
∂

∂z1
)
∂

∂z1
=

1

8
(C −D)2

∂

∂τ

and

W (
∂

∂τ
,
∂

∂z2
)
∂

∂z2
=

1

8
(C −D)2

∂

∂τ
.

Again by a direct computation,

W (
∂

∂z2
,
∂

∂τ
)
∂

∂τ
=

1

2
A(C −D)

∂

∂z1
+

1

4
(A+B)(D − C)

∂

∂z2
.

The other components of theWeyl tensor can be obtained using the first Bianchi identity
in (2.8). Indeed, from

W (
∂

∂z1
,
∂

∂z2
)
∂

∂τ
+W (

∂

∂z2
,
∂

∂τ
)
∂

∂z1
+W (

∂

∂τ
,
∂

∂z1
)
∂

∂z2
= 0

we infer that

W (
∂

∂z2
,
∂

∂τ
)
∂

∂z1
= −1

8
(C −D)2

∂

∂τ
. (6.1)

Notice that the Weyl projective tensor W does not depend on the parameter E. This is
due to the facts that W is a projective invariant and ∇A,B,C,D,E is projectively equivalent
with ∇A,B,C,D,0. Indeed, let φτ be the holomorphic one-form on T3 defined by

φτ (
∂

∂τ
) =

1

2
E and φτ (

∂

∂zi
) = 0

for i = 1, 2. Then

∇A,B,C,D,E
X Y −∇A,B,C,D,0

X Y = φτ (X)(Y ) + φτ (Y )X (6.2)

for all holomorphic vector fields X, Y ; the identity in (6.2) being tensorial it can be easily
verified for any pair of vectors chosen from the basis ( ∂

∂τ
, ∂

∂z1
, ∂

∂z2
). From (6.2) it follows

immediately that ∇A,B,C,D,E and ∇A,B,C,D,0 are projectively equivalent.

From (6.1) and the expression of all components of the Weyl projective tensor, it follows
that W vanishes identically if and only if C = D.

�
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