
Math. Z. (2018) 290:63–81
https://doi.org/10.1007/s00209-017-2008-7 Mathematische Zeitschrift

Multifractal analysis of some multiple ergodic averages
in linear Cookie-Cutter dynamical systems

Aihua Fan1,2 · Lingmin Liao3 · Meng Wu4,5

Received: 17 February 2016 / Accepted: 14 November 2017 / Published online: 26 December 2017
© The Author(s) 2017. This article is an open access publication

Abstract In this paper, we study the multiple ergodic averages of a locally constant real-
valued function in linear Cookie-Cutter dynamical systems. The multifractal spectrum of
these multiple ergodic averages is completely determined.

1 Introduction and statement of results

Let T : X → X be a continuous map on a compact metric space X . Let f1, . . . , f� (� ≥ 2)
be � bounded real-valued functions on X . The following multiple ergodic average

1

n

n∑

k=1

f1(T
kx) f2(T

2k x) · · · f�(T �k x)
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64 A. Fan et al.

is widely studied in ergodic theory by Furstenberg [9], Bourgain [2], Host and Kra [10],
Bergelson, Host and Kra [1] and others. Fan, Liao and Ma [6] and Kifer [13] have indepen-
dently studied such multiple ergodic averages from the point of view of multifractal analysis.

Later on, the multifractal analysis of multiple ergodic averages have attracted much
attention. First works are done on symbolic spaces. Let m ≥ 2 be an integer and S =
{0, . . . ,m − 1}. Consider the symbolic space �m = SN

∗
endowed with the metric

d(x, y) = m−min{n,xn �=yn}, ∀x, y ∈ �m .

The first object of study was the Hausdorff dimension of the following level sets ( [6])

E(α) =
{

(xk)
∞
k=1 ∈ �2 : lim

n→∞
1

n

n∑

k=1

xkx2k = α

}
, α ∈ [0, 1].

More generally we may consider the Hausdorff spectrum of the following level sets of
multiple ergodic averages

E�
ϕ(α) =

{
(xk)

∞
k=1 ∈ �m : lim

n→∞
1

n

n∑

k=1

ϕ(xk, xkq , . . . , xkq�−1) = α

}
, α ∈ R (1)

where q ≥ 2, � ≥ 2 are integers and ϕ is a real-valued function defined on {0, . . . ,m − 1}�.
The level set E(α) then corresponds to the set E�

ϕ(α) with special choice q = 2, � = 2
and ϕ(x, y) = xy. See the works of Kenyon, Peres and Solomyak [11,12], Peres, Schmel-
ing, Seuret and Solomyak [16] on some specific subsets of level sets E(α). See Peres and
Solomyak [15] for the multifractal analysis of E(α). Fan, Schmeling and Wu [5,8] have
considered a class of functions ϕ that are involved in (1). Fan, Schmeling and Wu [7] have
also considered some similar averages called V -statistics.

All of the abovementioned results concentrated on the full shift dynamical system (�m, σ )

where theLyapunov exponent of the shift transformation is constant. Recently, Liao andRams
[14] performed the multifractal analysis of a class of special multiple ergodic averages for
some systems with non-constant Lyapunov exponents. More precisely, they considered a
piecewise linear map T on the unit interval with two branches. Let I0, I1 ⊂ [0, 1] be two
intervals with disjoint interiors. Suppose that for each i ∈ {0, 1}, the restriction T : Ii →
[0, 1] is bijective and linear with slop eλi , λi > 0. Let JT be the repeller of T , i.e.

JT :=
∞⋂

n=1

T−n[0, 1].

Then (JT , T ) becomes a dynamical system. As in [5,6,15], Liao and Rams investigated the
following sets

L(α) =
{
x ∈ JT : lim

n→∞
1

n

n∑

k=1

1I1(T
kx)1I1(T

2k x) = α

}
(α ∈ [0, 1]).

By adapting the method of [15], they obtained the Hausdorff spectrum of the above level sets
L(α).

We point out that the methods used in [15] and [14] seem inconvenient to be generalized to
other IFSs with many branches and more general potentials ϕ. Some more adaptive methods
are needed to generalise Liao–Rams’ results. The aim of this paper is to use similar arguments
as in [8] to extend Liao–Rams’ results to the situation that we describe below.

123



Multifractal analysis of some multiple... 65

Let I0, . . . , Im−1 ⊂ [0, 1] be m intervals with disjoint interiors. Let T : ∪m−1
i=0 Ii → [0, 1]

be such that the restriction T|Ii is bijective and linear with slope eλi , λi > 0 (0 ≤ i ≤ m−1).
Denote by JT the repeller of T .

Let � ≥ 2 be an integer, and ϕ be a function defined on [0, 1]� taking real values. We
assume that ϕ is locally constant in the sense that ϕ is constant on each hyper-rectangle
Ii1 × Ii2 × · · · × Ii� (0 ≤ i1, i2, . . . , i� ≤ m − 1).

With an abuse of notation, we write

ϕ(a1, a2, . . . , a�) = ϕ(ii , i2, . . . , i�)

for all (a1, a2, . . . , a�) ∈ Ii1 × Ii2 × · · · × Ii� .
In this paper, we would like to study the following sets

Lϕ(α) :=
{
x ∈ JT : lim

n→∞
1

n

∑
ϕ(T kx, T kq x, . . . , T kq�−1

x) = α

}
, α ∈ R.

Our aim is to determine the Hausdorff dimension of Lϕ(α).
For simplicity of notation, we restrict ourselves to the case � = 2 (the same arguments

work for arbitrary � ≥ 2 without any problem). For any s, r ∈ R, consider the non-linear
transfer operator N(s,r) on R

m+ defined by

(N(s,r)t
)
i =

⎛

⎝
m−1∑

j=0

esϕ(i, j)−rλ j t j

⎞

⎠
1/q

, (i = 0, . . . ,m − 1). (2)

for all t = (t j )
m−1
j=0 ∈ R

m+. In [8], a family of similar operators Ns (s ∈ R) was defined.
Notice that the Lyapunov exponents λ j ’s are now introduced in the definition of N(s,r).

It will be shown in Proposition 1 (see Sect. 2) that the equation N(s,r)t = t admits a unique
strictly positive solution (t0(s, r), . . . , tm−1(s, r)). We then define the pressure function by

P(s, r) = (q − 1) log
m−1∑

j=0

t j (s, r)e
−rλ j .

It will also be shown (Proposition 1) that P is real-analytic and convex, and even strictly
convex if ϕ is non-constant and the λ j ’s are not all the same.

Let A and B be the infimum and the supremum respectively of the set
{
a ∈ R : ∃(s, r) ∈ R

2 such that
∂P

∂s
(s, r) = a

}
. (3)

Let Dϕ = {
α ∈ R : Lϕ(α) �= ∅}

. Our main result is as follows.

Theorem 1 Under the assumptions made above, we have

(i) We have Dϕ = [A, B].
(ii) For any α ∈ (A, B), there exists a unique solution (s(α), r(α)) ∈ R

2 to the system
{
P(s, r) = αs
∂P
∂s (s, r) = α.

(4)

Furthermore, s(α) and r(α) are real-analytic functions of α ∈ (A, B).
(iii) The following limits exist:

r(A) := lim
α↓A

r(α), r(B) := lim
α↑B r(α).
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66 A. Fan et al.

(iv) For any α ∈ [A, B], we have
dimH Lϕ(α) = r(α).

The paper is organized as follows. In Sect. 2, we first prove that the non-linear transfer
operatorN(s,r) admits a unique positive fixed point t (s, r) which is real-analytic and convex
as a function of (s, r). Then we recall the class of telescopic product measures studied in
[8,12]. From each fixed point t (s, r), we construct a special telescopic product measure,
which will play the role of a Gibbs measure in our study of Lϕ(α). In Sect. 3, we study the
local dimensions of the telescopic product measures defined by t (s, r) and the formula of
their local dimensions will be given. Sect. 4 is devoted to the proof of (ii) of Theorem 1. The
assertions (i), (iii) and (iv) of Theorem 1 are proven in Sect. 5.

2 Non-linear transfer equation and a class of special telescopic product
measures

Recall that S = {0, 1, . . . ,m − 1} and �m = SN
∗
. For i ∈ S, let fi : [0, 1] → Ii be the

branches of T−1. Define the coding map 	 : �m → [0, 1] by
	((xk)

∞
k=1) = lim

n→∞ fx1 ◦ fx2 · · · fxn (0).
Then we have 	(�m) = JT . Define the subset Eϕ(α) of �m which was studied in [5,8]:

Eϕ(α) :=
{

(xk)
∞
k=1 ∈ �m : lim

n→∞
1

n

n∑

k=1

ϕ(xk, xkq) = α

}
.

Then with a difference of a countable set, we have Lϕ(α) = 	(Eϕ(α)).

In [5,8], a family of Gibbs-type measures called telescopic product measureswere used to
compute the Hausdorff dimension of Eϕ(α). Here we construct a similar class of measures in
order to determine the Hausdorff dimension of Lϕ(α). In the following, we suppose that ϕ is
non-constant (otherwise the problem is trivial) and that the λ j ’s are not the same (otherwise
the problem is reduced to the case considered in [5,8]).

2.1 Non-linear transfer operator

In this subsection, we present some properties of the non-linear transfer operator N(s,r),
which will be used later.

Proposition 1 For any s, r ∈ R, the equationN(s,r)y = y admits a unique solution t(s, r) =
(t0(s, r), . . . , tm−1(s, r))with strictly positive components, which can be obtained as the limit
of the iteration N n

(s,r)1 =: tn(s, r), where 1 = (1, 1, . . . , 1). The functions ti (s, r) and the

pressure function P(s, r) are real-analytic and strictly convex on R
2.

Proof (i) Existence and uniqueness of solution. Since esϕ(i, j)+rλ j > 0 for all 0 ≤ i, j ≤
m − 1, the existence and uniqueness of solution are deduced directly from the following
lemma.

Lemma 1 [8, Theorem 4.1] For any matrix A = (A(i, j))0≤i, j≤m−1 with strictly positive
entries, there exists a unique fixed vector x = (x0, . . . , xm−1) ∈ R

m with strictly positive
components to the operator N : R

m+ → R
m+ defined by
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Multifractal analysis of some multiple... 67

∀y ∈ R
m+, (Ny)i =

⎛

⎝
m−1∑

j=0

A(i, j)y j

⎞

⎠
1/q

, (i = 0, . . . ,m − 1).

Furthermore, the fixed vector x can be obtained as x = limn N n(1).

(ii) Analyticity of (s, r) �→ t(s, r). This has been proven in [8, Proposition 4.2] for the case
when all λi ’s are the same. We adapt the proof given there with minor modifications.
We consider the map G : R

2 × R
m+ → R

m defined by

∀z = (z0, . . . , zm−1) G((s, r), z) = (
Gi ((s, r), z)

)m−1
i=0 ,

where

Gi ((s, r), z) = zqi −
m−1∑

j=0

esϕ(i, j)−rλ j z j .

It is clear that G is real-analytic. By Lemma 1, for any fixed (s, r) ∈ R
2, t(s, r) is the

unique positive vector satisfying

G((s, r), t(s, r)) = 0.

By the Implicit Function Theorem, to prove the analyticity of (s, r) �→ t(s, r), we only
need to show that the Jacobian matrix

M(s) =
(

∂Gi

∂z j

(
(s, r), t(s, r)

))

0≤i, j≤m−1

is invertible for all (s, r) ∈ R
2. To this end, we consider the following matrix

M̃(s) =
(
t j (s, r)

∂Gi

∂z j
((s, r), t(s, r))

)

0≤i, j≤m−1
,

obtained by multiplying the j-th column of M(s) by t j (s, r) for each 0 ≤ j ≤ m − 1.
Then det(M(s)) �= 0 if and only if det(M̃(s)) �= 0. Thus it suffices to prove that M̃(s) is
invertible. We will show that M̃(s) is strictly diagonal dominating. Then by Gershgorin
Circle Theorem (see e.g. [17, Theorem 1.4, page 6]), M̃(s) is invertible.
Recall that a matrix is said to be strictly diagonal dominating if for every row of the
matrix, the modulus of the diagonal entry in the row is strictly larger than the sum of
the modulus of all the other (non-diagonal) entries in that row.
Now we are left to show that for any 0 ≤ i ≤ m − 1,

∣∣∣∣ti (s, r)
∂Gi

∂zi
((s, r), t(s, r))

∣∣∣∣ −
∑

0≤ j≤m−1
i �= j

∣∣∣∣t j (s, r)
∂Gi

∂z j
((s, r), t(s, r))

∣∣∣∣ > 0. (5)

In fact, we have

∂Gi

∂z j
((s, r), t(s, r)) =

{
qtq−1

i (s, r) − esϕ(i,i)−rλi if j = i,
esϕ(i, j)−rλ j otherwise.

Then, substituting the last expression into (5), we deduce that the left hand side of (5) is
equal to

qtqi (s, r) −
m−1∑

j=0

esϕ(i, j)−rλ j t j (s, r). (6)
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68 A. Fan et al.

By the fact that t(s, r) is the fixed vector of N(s,r), (6) is equal to (q − 1)tqi (s, r) which
is strictly positive.

(iii) Convexity of t(s, r) and P(s, r). When all λi ’s are the same, the convexity results of
t(s, r) and P(s, r) have been proven in detail in Sections 4 and 5 of [8] by studying
the operator N(s,r). The main idea there is to prove by induction the convexity of each
(s, r) �→ tn(s, r). Then the limit t(s, r) = limn tn(s, r) is also convex. For the strict
convexity of t(s, r), one uses analyticity property and the fact that a convex analytic
function is either strictly convex or linear.
We will omit the proofs which are elementary and are just minor modifications of those
of [8]. One can refer to Sections 4, 5 and also 10 of [8].

��
To end this subsection, we give the following remark on the monotonicity of the function

r �→ P(s, r).

Remark 1 Observe that for any fixed s ∈ R, the function r �→ N n
(s,r)1̄ is decreasing for all

n. Thus for all 0 ≤ i ≤ m − 1, the function r �→ ti (s, r) is also decreasing, and so is the
function r �→ P(s, r).

2.2 Construction of telescopic product measures and law of large numbers

An important tool for the study of the multiple ergodic average of ϕ, introduced in [11,12]
and used in [5,8,14,15], is the telescopic product measure. This class of measures will also
be the main ingredient of our proofs concerning the estimate of Hausdorff dimension of
Lϕ(α). Let us recall the definition of the telescopic product measure. Consider the following
partition of N

∗:

N
∗ =

⊔

i≥1,q�i


i with 
i = {iq j } j≥0.

Then we decompose �m as follows:

�m =
∏

i≥1,q�i

S
i .

Let μ be a probability measure on �m . We consider μ as a measure on S
i , which is
identifiedwith�m , for every i with q � i . Letμi be a copy ofμ on S
i andPμ = ∏

i≤n,q�i μi .
More precisely, for any word u of length n we define

Pμ([u]) =
∏

i≤n,q�i

μ([u|
i
]),

where [u] denotes the cylinder set of all sequences starting with u and

u|
i
= uiuiq · · · uiq j , iq j ≤ |u| < iq j+1.

We call Pμ the telescopic product measure associated to μ.
Below, we construct a special class of Markov measures whose initial laws and transi-

tion probabilities are determined by the fixed point (ti (s, r))i∈S of the operator N(s,r). The
corresponding telescopic product measure will play a central role in the study of Eϕ(α).

Recall that (ti (s, r))i∈S satisfies

ti (s, r)
q =

m−1∑

j=0

esϕ(i, j)−rλ j t j (s, r), (i = 0, . . . ,m − 1).
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Multifractal analysis of some multiple... 69

The functions ti (s, r) allow us to define a Markov measure μs,r with initial law πs,r =
(π(i))i∈S and probability transition matrix Qs,r = (pi, j )S×S defined by

π(i) = ti (s, r)e−rλi

t0(s, r)erλ0 + · · · + tm−1(s, r)erλm−1
, pi, j = esϕ(i, j)−rλ j

t j (s, r)

ti (s, r)q
. (7)

We denote by Ps,r the telescopic product measure associated to μs,r . Recall that 	 is the
coding map from �m to [0, 1]. Define

νs,r = 	∗Ps,r = Ps,r ◦ 	−1.

We will use the following law of large numbers which is proved in [8].

Theorem 2 (Theorem 2.6 in [8]) Let μ be any probability measure on �m and let F be a
real-valued function defined on S × S. For Pμ a.e. x ∈ �m we have

lim
n→∞

1

n

n∑

k=1

F(xk, xkq) = (q − 1)2
∞∑

k=1

1

qk+1

k−1∑

j=0

EμF(x j , x j+1).

3 Local dimension of νs,r

For a Borel measure μ on a metric space X , the lower local dimension of μ at a point x ∈ X
is defined by

D(μ, x) := lim inf
r→0

logμ(B(x, r))

log r
.

If the limit exists, then the limit will be called the local dimension of μ at x , and denoted by
D(μ, x).

In this section, we study the local dimension of νs,r . The main results of this section are
Propositions 3, 4, and 5. Proposition 3 gives estimates of the local dimensions of νs,r on the
level set Lϕ(α). Proposition 4 proves that νs,r is supported on Lϕ( ∂P

∂s (s, r)). In Proposition 5,
it is shown that νs,r is exact dimensional, i.e., the local dimension of νs,r exists and is constant
almost surely. The exact formula of this constant is given as well.

We first give an explicit relation between the mass Ps,r ([xn1 ]) and the multiple ergodic
sum

∑n
j=1 ϕ(x j , xq j ). For x ∈ �m , define

Bn(x) =
n∑

j=1

log tx j (s, r).

Proposition 2 We have

logPs,r ([xn1 ]) = s

� n
q �∑

j=1

ϕ(x j , x jq) −
(
n − �n

q
�
)

P(s, r)

q − 1
− r

n∑

j=1

λx j − qB� n
q �(x) + Bn(x).

Proof For q � i , let 
i (n) = 
i ∩ [1, n]. By the definition of Ps,r , we have

− logPs,r [xn1 ] = −
∑

q�i,i≤n

logμs,r [xn1 |
i (n)].
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70 A. Fan et al.

We classify 
i (n) (q � i, i ≤ n) according to their length |
i (n)|. We have
minq�i,i≤n |
i (n)| = 1 and maxq�i,i≤n |
i (n)| = �logq n�. Observe that |
i (n)| = k if
and only if n

qk
< i ≤ n

qk−1 . Therefore

− logPs,r [xn1 ] = −
�logq n�∑

k=1

∑

n
qk

<i≤ n
qk−1 ,q�i

logμs,r [xn1 |
i (n)]. (8)

Denote t∅(s, r) := ∑m−1
j=0 t j (s, r)e−rλ j . For simplicity, we also write t∅ and t j for t∅(s, r)

and t j (s, r) and keep their dependences on s and r in mind.
By the definition of μs,r , for i with n

qk
< i ≤ n

qk−1 , we have

logμs,r [xn1 |
i (n)] = log
txi e

−rλxi

t∅
+

k−1∑

j=1

log

(
e
sϕ(xiq j−1 ,xiq j )−rλx

iq j
txiq j

tqxiq j−1

)

= sSn,iϕ(x) − (q − 1)Sn,i t (x) + log txiqk−1 − r Sn,iλ(x) − log t∅,

where Sn,iϕ(x) = ∑k−1
j=1 ϕ(xiq j−1 , xiq j ), Sn,i t (x) = ∑k−1

j=1 log txiq j−1 and Sn,iλ(x) =∑
j∈
i (n) λx j . Substituting the above expressions in (8) and noticing that n

qk
< i ≤ n

qk−1 is

equivalent to n
q < iqk−1 ≤ n, we obtain

logPs,r [xn1 ] = s
∑

q�i,i≤n

Sn,iϕ(x) − (q − 1)
∑

q�i,i≤n

Sn,i t (x) +
∑

n
q ≤�<n

log tx�

−r
∑

q�i,i≤n

Sn,iλ(x) − 
{q � i, i ≤ n} log t∅

= s

� n
q �∑

j=1

ϕ(x j , x jq) − (q − 1)

� n
q �∑

j=1

log tx j +
n∑

�=� n
q �+1

log tx�

−r
n∑

j=1

λx j −
(
n − �n

q
�
)
log t∅.

We then end the proof by observing that (q − 1) log t∅(s, r) = P(s, r) and

−(q − 1)

� n
q �∑

j=1

log tx j +
n∑

�=� n
q �+1

log tx�
= −qB� n

q �(x) + Bn(x).

��
3.1 Local dimensions of νs,r on level sets

As an application of Proposition 2, we obtain an upper bound for the local dimension of
νs,r on Lϕ(α) in Proposition 3 below. The following elementary result will be useful for the
estimates of local dimension of νs,r .

Lemma 2 Let (an)n≥1 be a bounded sequence of non-negative real numbers. Then

lim inf
n→∞

(
a� n

q � − an
)

≤ 0.
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Multifractal analysis of some multiple... 71

Proof Let bl = aql−1 − aql for l ∈ N
∗. Then the boundedness implies

lim
l→∞

b1 + · · · + bl
l

= lim
l→∞

a1 − aql

l
= 0.

This in turn implies lim inf l→∞ bl ≤ 0. Thus

lim inf
l→∞

(
a� n

q � − an
)

≤ lim inf
l→∞ bl ≤ 0.

��
Proposition 3 For any x ∈ Eϕ(α), we have

lim inf
n

log νs,r (	[xn1 ])
log |	[xn1 ]| ≤ r + lim sup

n

P(s, r)/q − αs/q

(
∑n

j=1 λx j )/n
.

Proof Since νs,r (	[xn1 ]) = Ps,r ([xn1 ]), by Proposition 2 we can write log νs,r (	[xn1 ]) as

s

� n
q �∑

j=1

ϕ(x j , x jq) − (n − �n
q

�) P(s, r)

q − 1
− r

n∑

j=1

λx j − qB� n
q �(x) + Bn(x).

On the other hand, log |	[xn1 ]| = −∑n
j=1 λx j . Thus, for x ∈ Eϕ(α)

lim inf
n

log νs,r (	[xn1 ])
log |	[xn1 ]|

≤ lim sup
n

P(s, r)/q − αs/q

(
∑n

j=1 λx j )/n
+ r + lim inf

n

q
n B� n

q �(x) − 1
n Bn(x)

(
∑n

j=1 λx j )/n
.

Then, we end the proof by applying Lemma 2 to the sequence 1
n Bn(x):

lim inf
n

(
q

n
B� n

q �(x) − 1

n
Bn(x)

)
≤ 0.

��
Remark 2 Denote λmin = mini λi and λmax = maxi λi . Let

λ̃(x) := lim inf
n→∞

1

n

n∑

j=1

λx j .

Then λ̃(x) ∈ [λmin, λmax] and

lim sup
n

P(s, r)/q − αs/q

(
∑n

j=1 λx j )/n
= P(s, r)/q − αs/q

λ̃(x)
.

Hence we deduce from Proposition 3 that for any x ∈ Lϕ(α)

D(νs,r , x) ≤ r + P(s, r)/q − αs/q

λ̃(x)
, (s, r) ∈ R

2. (9)

We have estimated the local dimension of νs,r on the level set Lϕ(α). In the following
proposition we show that νs,r is supported on Lϕ( ∂P

∂s (s, r)).
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Proposition 4 For Ps,r -a.e. x = (xi )∞i=1 ∈ �m, we have

lim
n→∞

1

n

n∑

k=1

ϕ(xk, xkq) = ∂P

∂s
(s, r). (10)

In particular, νs,r (Lϕ( ∂P
∂s (s, r))) = 1.

Proof We first prove the statement (10). By Theorem 2, we have for Ps,r -a.e. x ∈ �m

lim
n→∞

1

n

n∑

k=1

ϕ(xk, xkq) = (q − 1)2
∞∑

k=1

1

qk+1

k−1∑

h=0

Eμs,r ϕ(xh, xh+1). (11)

Thus we only need to prove that the right hand side of (11) equals to ∂P
∂s (s, r). Observe that

Eμs,r ϕ(xh, xh+1) can be expressed as

πQh Q̃(1),

with

π =
(
ti (s, r)e−rλi

t∅(s, r)

)

i∈S
, Q =

(
esϕ(i, j)−rλ j

t j (s, r)

ti (s, r)q

)

(i, j)∈S×S

and

Q̃ =
(
esϕ(i, j)−rλ j ϕ(i, j)

t j (s, r)

tqi (s, r)

)

(i, j)∈S×S

.

Recall that (ti (s, r))i is the fixed point of Ns,r :

tqi (s, r) =
m−1∑

j=0

esϕ(i, j)−rλ j t j (s, r), (i, j) ∈ S × S. (12)

Taking the derivative with respect to s of both sides of (12), we get

qtq−1
i (s)

∂ti
∂s

(s, r) =
m−1∑

j=0

(
esϕ(i, j)−rλ j ϕ(i, j)t j (s, r) + esϕ(i, j) ∂t j

∂s
(s, r)

)
.

Dividing both sides of the above equation by tqi (s, r), we obtain

m−1∑

j=0

esϕ(i, j)−rλ j ϕ(i, j)
t j (s, r)

tqi (s, r)
= q

∂ti
∂s (s, r)

ti (s, r)
−

m−1∑

j=0

esϕ(i, j)
∂t j
∂s (s, r)

tqi (s, r)
. (13)

Let w and v be two vectors defined by

w = q

(
∂t0
∂s (s, r)

t0(s)
, . . . ,

∂tm−1
∂s (s, r)

tm−1(s)

)t

and

v =
⎛

⎝
m−1∑

j=0

esϕ(0, j)
∂t j
∂s (s, r)

tq0 (s)
, . . . ,

m−1∑

j=0

esϕ(m−1, j)
∂t j
∂s (s, r)

tqm−1(s)

⎞

⎠ .
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Then, by (13), we have

Q̃(1) = w − v.

Observe that Qw = qv, therefore

k−1∑

h=0

πQh Q̃(1) =
k−1∑

h=0

πQh(w − v)

= πw + q
k−1∑

h=1

πQh−1v −
k−1∑

h=0

πQhv

= πw + qSk−1 − Sk,

(14)

where we denote Sk = ∑k−1
h=0 πQhv for k ≥ 1 and S0 = 0. Denote by α(s) the right hand

side of (11). Observe that Sk/qk → 0 when k → ∞. Substituting (14) in (11), we obtain

α(s) = (q − 1)2
∞∑

k=1

1

qk+1 (πw + qSk−1 − Sk)

= (q − 1)2
∞∑

k=1

1

qk+1πw

= q − 1

q
πw = (q − 1)

∑m−1
j=0

∂t j
∂s (s, r)e−rλ j

t∅(s, r)
= ∂P

∂s
(s, r).

Now we show that νs,r (Lϕ( ∂P
∂s (s, r))) = 1. Since (10) holds for Ps,r a.e. x we have

Ps,r

(
Eϕ

(
∂P

∂s
(s, r)

))
= 1.

Hence

νs,r

(
Lϕ

(∂P

∂s
(s, r)

))
= Ps,r

(
	−1

(
Lϕ

(∂P

∂s
(s, r)

)))

= Ps,r

(
Eϕ

(∂P

∂s
(s, r)

))
= 1.

��
Let λ(s, r) be the expected limit with respect to Ps,r of the average of the Lyapunov

exponents 1
n

∑n
k=1 λωk with ω ∈ �m . By Theorem 2, we have

λ(s, r) = (q − 1)2
∞∑

k=1

1

qk+1

k−1∑

j=0

Eμs,r λω j .

As an application of Proposition 4, we show that the measure νs,r is exact dimensional and
we have the following formula for its dimension.

Proposition 5 For νs,r -a.e. x we have

D(νs,r , x) = r + P(s, r) − s ∂P
∂s (s, r)

qλ(s, r)
.
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Proof We only need to show that for Ps,r -a.e. y ∈ �m

lim
n→∞

logPs,r ([yn1 ])
log |	([yn1 ])| = r + P(s, r) − s ∂P

∂s (s, r)

qλ(s, r)
. (15)

Since |	([yn1 ])| = e− ∑n
k=1 λyk , from the discussion preceding Proposition 5, we get for

Ps,r -a.e. y

lim
n→∞

log |	([yn1 ])|
n

= −λ(s, r). (16)

On the other hand, by Theorem 2, Propositions 2 and 4, we have for Ps,r -a.e. y

lim
n→∞

logPs,r ([yn1 ])
n

= s

q

∂P

∂s
(s, r) − 1

q
P(s, r) − rλ(s, r). (17)

Combining (16) and (17), we get (15).
��

4 Further properties of the pressure function and study of the system (4)

The main result of this section is Proposition 6 below on the solution of the system (4).
Wewill use the following lemma concerning the range of the partial derivatives of P(s, r).

Recall the definition (3).

Lemma 3 For any r ∈ R, we have
{

∂P

∂s
(s, r) : s ∈ R

}
= (A, B)

Proof Fix r0 ∈ R. Since s �→ P(s, r) is convex, It suffices to show that

lim
s→+∞

∂P

∂s
(s, r0) = B and lim

s→−∞
∂P

∂s
(s, r0) = A.

We only give the proof for the case when s goes to +∞. The case for s tending to −∞ is
similar. The proof will be done by contradiction. Suppose that there exists ε > 0 such that

∂P

∂s
(s, r0) ≤ B − ε for all s ∈ R.

By the Mean Value Theorem, for any s > 0, we have

P(s, r0) − P(0, r0) ≤ s(B − ε). (18)

By the definition of B, there exists (s′, r ′) ∈ R
2 such that ∂P

∂s (s′, r ′) = B − ε/2. By
Proposition 4, νs′,r ′(Lϕ(B − ε/2)) = 1, so Lϕ(B − ε/2) �= ∅. Let x ∈ Lϕ(B − ε/2). By
Proposition 3 and Remark 2, we have

D(νs,r0 , x) ≤ r0 + P(s, r0)/q − (B − ε/2)s/q

λ̃(x)
.

Substituting (18) in the above inequality, we get

D(νs,r0 , x) ≤ r0 + P(0, r0)/q − εs/2q

λ̃(x)
.
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Since λ̃(x) ∈ [λmin, λmax] ⊂ (0,+∞), the second term in the right hand side of the
above inequality tends to −∞ when s → +∞. Hence, for s large enough we must have
D(νs,r0 , x) < 0. But this is impossible since νs,r0 is a probabilitymeasure. Thus, we conclude
that lims→+∞ ∂P

∂s (s, r0) = B.
��

Proposition 6 For any α ∈ (A, B), there exists a unique solution (s(α), r(α)) ∈ R
2 to the

system
{
P(s, r) = αs
∂P
∂s (s, r) = α,

(19)

Moreover the functions s(α), r(α) are analytic on (A, B).

Proof (1) Existence and uniqueness of the solution (s(α), r(α)). Fix α ∈ (A, B). By
Lemma 3 and the strict convexity of s �→ P(s, r), for any r ∈ R, there exists a unique
s = s(α, r) ∈ R such that

∂P

∂s
(s(α, r), r) = α. (20)

In the following, we will show that there exists a unique solution r = r(α) ∈ R to the
equation

P(s(α, r), r) = αs(α, r).

Set h(r) := P(s(α, r), r) − αs(α, r). By (20)

h′(r) = ∂P

∂s
(s(α, r), r)

∂s(α, r)

∂r
+ ∂P

∂r
(s(α, r), r) − α

∂s(α, r)

∂r

= ∂P

∂r
(s(α, r), r).

Note that we can take the partial derivative of s with respect to r by the implicit function
theorem. For fixed s the function r �→ P(s, r) is strictly decreasing, since it is strictly
convex and decreasing (Remark 1). Hence ∂P

∂r (s(α, r), r) < 0 and thus h(r) is also
strictly decreasing. For the rest of the proof, we only need to show limr→+∞ h(r) < 0
and limr→−∞ h(r) > 0, then we conclude by applying the Intermediate Value Theorem.
By Proposition 5, we have

dim νs(α,r),r = r + P(s(α, r), r) − s(α, r)α

qλ(s(α, r), r)
.

Observe that for any r ∈ R, we have always 0 ≤ dim νs(α,r),r ≤ 1 and 0 < λmin ≤
λ(s(α, r), r) ≤ λmax. Therefore we have

lim
r→+∞ h(r) = lim

r→+∞
(
dim νs(α,r),r − r

)
qλ(s(α, r), r) < 0.

Similarly,

lim
r→−∞ h(r) > 0.

(2) Analyticity of (s(α), r(α)). Consider the map

F =
(
F1
F2

)
=

(
P(s, r) − αs
∂P
∂s (s, r) − α

)
.
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The jacobian matrix of F is equal to

J (F) :=
(

∂F1
∂s

∂F1
∂r

∂F2
∂s

∂F2
∂r

)
=

(
∂P
∂s − α ∂P

∂r
∂2P
∂s2

∂2P
∂r∂s

)
.

Thus we have

det(J (F))|s=s(α),r=r(α) = −∂2P

∂s2
· ∂P

∂r
�= 0.

Then by the Implicit Function Theorem, s(α) and r(α) are analytic.
��

5 Proof of Theorem 1

5.1 Computation of dimH Lϕ(α) for α ∈ (A, B)

We will use the following Billingsley Lemma.

Lemma 4 (see e.g. Proposition 4.9. in [3]) Let E ⊂ �m be a Borel set and let μ be a finite
Borel measure on �m.

(i) If μ(E) > 0 and D(μ, x) ≥ d for μ-a.e x, then dimH (E) ≥ d;
(ii) If D(μ, x) ≤ d for all x ∈ E, then dimH (E) ≤ d.

Theorem 3 For any α ∈ (A, B), we have

dimH Lϕ(α) = r(α).

Proof By (9) and the equality P(s(α), r(α)) = αs(α), we have

D(νs(α),r(α), x) ≤ r(α) for all x ∈ Lϕ(α).

Then Lemma 4 implies that

dimH Lϕ(α) ≤ r(α).

By Proposition 4 and the equality ∂P
∂s (s(α), r(α)) = α, we know that

νs(α),r(α)(Lϕ(α)) = 1.

On the other hand, by Proposition 5,

D(νs(α),r(α), x) = r(α) for νs(α),r(α)−a.e. x .

Applying Lemma 4 again, we obtain

dimH Lϕ(α) ≥ r(α).

��
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5.2 Range of {α : Lϕ(α) �= ∅}

Proposition 7 We have {α : Lϕ(α) �= ∅} ⊂ [A, B].
Proof We prove it by contradiction. Suppose that Lϕ(α) �= ∅ for some α > B. Let x ∈
Lϕ(α). Then by (9) and taking r = 0, we have

D(νs,0, x) ≤ P(s, 0) − αs

qλ̃(x)
for all s ∈ R. (21)

On the other hand, by the mean value theorem, we have

P(s, 0) − αs = ∂P

∂s
(ηs, 0)s − αs + P(0, 0) (22)

for some real numberηs between 0 and s. In the following,we suppose that s > 0. Substituting
(22) in (21), we get

D(νs,0, x) ≤
∂P
∂s (ηs, 0)s − αs + P(0, 0)

qλ̃(x)
≤ (B − α)s + P(0, 0)

qλ̃(x)
.

Since B −α < 0 and λ̃(x) ∈ [λmin, λmax] ⊂ (0,+∞), the last term in the above inequalities
tends to −∞ when s → +∞. But this is impossible since we have always D(νs,0, x) ≥ 0.
Thus we must have Lϕ(α) = ∅ for any α > B. Similarly we can also prove that Lϕ(α) = ∅
for any α < A. ��

As we will show, we actually have the equality {α : Lϕ(α) �= ∅} = [A, B] (see Theo-
rem 4).

5.3 Computation of dimH Lϕ(A) and dimH Lϕ(B)

Now, we consider the level set Lϕ(α) when α = A or B. The aim of this subsection is to
prove the following theorem.

Theorem 4 (i) The following limits exist:

r(A) := lim
α→A

r(α), r(B) := lim
α→B

r(α).

(ii) If α = A or B, then Lϕ(α) �= ∅ and

dimH Lϕ(α) = r(α).

We will give the proof of Theorem 4 for the case α = A, the proof for α = B is similar.

5.3.1 Accumulation points of μs(α),r(α) when α tends to A.

As all components of the vector πs,r and the matrix Qs,r (see formula (7)) are non-negative
and bounded by 1, the set {(πs(α),r(α), Qs(α),r(α)), α ∈ (A, B)} is precompact. Thus there
exists a sequence (αn)n ∈ (A, B) with limn αn = A such that the limits

lim
n→∞ πs(αn),r(αn), lim

n→∞ Qs(αn),r(αn)

exist. Using these limits as initial law and transition probability, we construct a Markov mea-
sure which we denote by μ∞. It is clear that the Markov measure μs(αn),r(αn) corresponding
to πs(αn),r(αn) and Qs(αn),r(αn) converges to μ∞ with respect to the weak-star topology. We
denote by P∞ the telescopic product measure associated to μ∞ and set ν∞ := P∞ ◦ 	−1.
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Proposition 8 We have

ν∞(Lϕ(A)) = 1.

In particular, Lϕ(A) �= ∅.
Proof Since ν∞(Lϕ(A)) = P∞(Eϕ(A)), we only need to show that P∞(Eϕ(A)) = 1, i.e.,
for P∞-a.e. x ∈ �m we have

lim
n→∞

1

n

n∑

k=1

ϕ(xk, xkq) = A.

By Theorem 2, for P∞-a.e. x ∈ �m the limit in the left hand side of the above equation
equals M(μ∞) where M is the functional on the space of probability measures defined by

M(ν) = (q − 1)2
∞∑

k=1

1

qk+1

k−1∑

j=0

Eνϕ(x j , x j+1).

The function ν �→ M(ν) is continuous, since the above series converges uniformly on ν and
the function ν �→ Eνϕ(x j , x j+1) is continuous for all j . Since μs(αn),r(αn) converges to μ∞
when n → ∞, we have that

lim
n→∞ M(μs(αn),r(αn)) = M(μ∞).

Recall that the vector (s(α), r(α)) satisfies ∂P
∂s (s(α), r(α)) = α. By Proposition 4, we know

that

M(μs(αn),r(αn)) = αn .

Thus

M(μ∞) = lim
n→∞ αn = A.

��
From Theorem 3, we know that for each α ∈ (A, B), r(α) = dimH Lϕ(α) ∈ [0, 1].

Hence, in particular the set {r(α) : α ∈ (A, B)} is bounded.
We have the following formula for dimH ν∞.

Proposition 9 The limit r(A) := limn r(αn) exists and we have

dim ν∞ = r(A).

Proof Let (αnk )k be any subsequence of (αn)n such that the limit limk r(αnk ) exists. We will
show that this limit is equal to dim ν∞.

We first claim that the measure ν∞ is exact dimensional and its dimension is given by

dim ν∞ = dim(P∞)

λ(P∞)
,

where dim(P∞) is the a.e. local dimension of P∞ and λ(P∞) is the expected limit with
respect to P∞ of the average of the Lyapunov exponents 1

n

∑n
k=1 λωk with ω ∈ �m , i.e.,

λ(P∞) = (q − 1)2
∞∑

k=1

1

qk+1

k−1∑

j=0

Eμ∞λω j .
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To prove the claim, we only need to show that for P∞-a.e. x

lim
n→∞

log ν∞(	[xn1 ])
log |	[xn1 ]| = dim(P∞)

λ(P∞)
.

This is proved by using the facts ν∞(	[xn1 ]) = P∞([xn1 ]), log |	[xn1 ]| = −∑n
j=1 λx j and

applying Theorem 2.
By similar arguments as used in the proof of Proposition 8, we can show that the functions

μ �→ dim(Pμ), μ �→ λ(Pμ)

are continuous on the space of probability measures. Thus, we deduce that

dim ν∞ = lim
k→∞

dim(Pμs(αnk ),r(αnk )
)

λ(Pμs(αnk ),r(αnk )
)

= lim
k→∞ dim νs(αnk ),r(αnk ) = lim

k→∞ r(αnk ),

wherewe have used Theorem 3 for the last equality. Since the subsequence (αnk )k is arbitrary,
we deduce that the limit r(A) := limn r(αn) exists and dim ν∞ = r(A). ��

In the proof of Theorem 4, we will use the following lemma. Recall that for α ∈ (A, B),
the vector (s(α), r(α)) is the unique solution of the Eq. (19).

Lemma 5 There exists A′ ∈ (A, B) such that

s(α) < 0 for α ∈ (A, A′).

Proof Let

D :=
{

∂P

∂s
(0, r) : r ∈ [0, 1]

}
.

Then D is a compact subset of R. Since for any r ∈ R the function s �→ ∂P
∂s (s, r) is strictly

increasing and infs∈R
∂P
∂s (s, r) = A (Lemma 3), we get ∂P

∂s (0, r) > A for all r ∈ R. Thus
we have A′ := min{D} > A. Now, we consider the following subset of D:

D′ :=
{

∂P

∂s
(0, r(α)) : α ∈ (A, B)

}
.

We have inf D′ ≥ A′ > A. For any α < A′, we have
∂P

∂s
(s(α), r(α)) = α < A′ ≤ ∂P

∂s
(0, r(α)).

Using again the fact that the function s �→ ∂P
∂s (s, r) is strictly increasing, we get

s(α) < 0 for α ∈ (A, A′).

��
Now, we can give the proof of Theorem 4.

Proof of Theorem 4 (i) Fix any sequence (βn)n ∈ (A, B) with limn βn = A. Then there
exists a subsequence (βnk )k of (βn)n such that the limits

lim
k→∞ πs(βnk ),r(βnk ), lim

k→∞ Qs(βnk ),r(βnk )

exist. Arguing as in the proof of Proposition 9, we can show that the limit limk r(βnk )

exists and equals to dim ν∞. Thus, we deduce that the limit limα→A r(α) exists and
equals to dim ν∞.
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(ii) We will show that

dimH Lϕ(A) = r(A).

By Propositions 8 and 9 and Lemma 4, we get

dimH Lϕ(A) ≥ r(A).

We now show the reverse inequality. By (9) and Lemma 4 again, we obtain

dimH Lϕ(A) ≤ r + P(s, r) − As

qλ̃(x)
for any (s, r) ∈ R

2.

Note that λ̃(x) ∈ [λmin, λmax] ⊂ (0,+∞), and hence λ̃(x) > 0. For any α ∈ (A, A′), we
have

P(s(α), r(α)) − As(α) = P(s(α), r(α)) − αs(α) + (α − A)s(α) = (α − A)s(α) < 0,

where for the second equality we have used the fact that P(s(α), r(α)) = αs(α) and the last
inequality follows from Lemma 5. Thus, we deduce that

dimH Lϕ(A) ≤ r(α) for all α ∈ (A, A′].
Since αn → A and r(αn) → r(A), we have

dimH Lϕ(A) ≤ lim
n→∞ r(αn) = r(A).

��
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