
J. Cryptol. (2012) 25: 601–639
DOI: 10.1007/s00145-011-9105-2

Bonsai Trees, or How to Delegate a Lattice Basis∗

David Cash†

IBM T.J. Watson Research Center, Hawthorne, NY, USA
cdc@gatech.edu

Dennis Hofheinz‡

Karlsruhe Institute of Technology, Karlsruhe, Germany
Dennis.Hofheinz@kit.edu

Eike Kiltz
Department of Mathematics, Ruhr-Universität Bochum, Bochum, Germany

eike.kiltz@rub.de

Chris Peikert
Georgia Institute of Technology, Atlanta, GA, USA

cpeikert@cc.gatech.edu

Communicated by Ivan Damgard

Received 2 November 2010
Online publication 6 September 2011

Abstract. We introduce a new lattice-based cryptographic structure called a bon-
sai tree, and use it to resolve some important open problems in the area. Applications
of bonsai trees include an efficient, stateless ‘hash-and-sign’ signature scheme in the
standard model (i.e., no random oracles), and the first hierarchical identity-based en-
cryption (HIBE) scheme (also in the standard model) that does not rely on bilinear
pairings. Interestingly, the abstract properties of bonsai trees seem to have no known
realization in conventional number-theoretic cryptography.

Key words. Lattices, Hierarchical identity-based encryption, Digital signatures,
Bonsai trees.

1. Introduction

Lattice-based cryptographic schemes have undergone rapid development in recent
years, and are attractive due to their low asymptotic complexity and potential resis-
tance to quantum-computing attacks. One notable recent work in this area is due to
Gentry, Peikert, and Vaikuntanathan [24], who constructed an efficient ‘hash-and-sign’

∗ This paper was solicited from Eurocrypt 2010.
† Part of this work was performed while D. Cash was at Georgia Institute of Technology.
‡ Part of this work was performed while D. Hofheinz was at CWI.

© International Association for Cryptologic Research 2011

mailto:cdc@gatech.edu
mailto:Dennis.Hofheinz@kit.edu
mailto:eike.kiltz@rub.de
mailto:cpeikert@cc.gatech.edu

602 D. Cash et al.

signature scheme and an identity-based encryption (IBE) scheme. (IBE is a powerful
cryptographic primitive in which any string can serve as a public key [50].)

Abstractly, the GPV schemes are structurally quite similar to Rabin/Rabin-Williams
signatures [47] (based on integer factorization) and the Cocks/Boneh–Gentry–Hamburg
IBEs [13,18] (based on the quadratic residuosity problem), in that they all employ a
so-called “preimage sampleable” trapdoor function as a basic primitive. As a result,
they have so far required the random oracle model (or similar heuristics) for their se-
curity analysis. This is both a theoretical drawback and also a practical concern (see,
e.g., [32]), so avoiding such heuristics is an important goal.

Another intriguing open question is whether any of these IBE schemes can be ex-
tended to deliver richer levels of functionality, as has been done in pairing-based cryp-
tography since the work of Boneh and Franklin [10]. For example, the more general no-
tion of hierarchical IBE [23,30] permits multiple levels of secret-key authorities. This
notion is more appropriate than standard IBE for large organizations, can isolate damage
in the case of secret-key exposure, and has further applications such as forward-secure
encryption [16] and broadcast encryption [20,55].

1.1. Our Results

We put forward a new cryptographic notion called a bonsai tree, and give a realization
based on hard lattice problems. (Section 1.2 gives an intuitive overview of bonsai trees,
and Sect. 1.4 discusses their relation to other primitives and techniques.) We then show
that bonsai trees resolve some central open questions in lattice-based cryptography: to
summarize, they remove the need for random oracles in many important applications,
and facilitate delegation for purposes such as hierarchical IBE.

Our first application of bonsai trees is an efficient, stateless signature scheme that
is secure in the standard model (no random oracles) under conventional lattice as-
sumptions. Our scheme has a ‘hash-and-sign’ flavor that does not use the key-refresh/
authentication-tree paradigm of many prior constructions (both generic [26,40] and spe-
cialized to lattice assumptions [34]), and in particular it does not require the signer to
keep any state. (Statelessness is a crucial property in many real-world scenarios, where
distinct systems may sign relative to the same public key.) In our scheme, the verifi-
cation key, signature length, and verification time are all an O(k) factor larger than in
the random-oracle scheme of [24], where k is the output length of a chameleon hash
function, and the O(·) notation hides only a 1 or 2 factor. The signing algorithm is es-
sentially as efficient as the one from [24].1 The underlying hard problem is the standard
short integer solution (SIS) problem dating back to the seminal work of Ajtai [5], which
is known to be as hard as several worst-case approximation problems on lattices (see
also [24,38]). Via SIS, the security of our signature scheme rests upon the hardness of
approximating worst-case problems on n-dimensional lattices to within an Õ(

√
k ·n3/2)

factor; this is only a
√

k factor looser than that of [24].
Our second application is a collection of various hierarchical identity-based encryp-

tion (HIBE) schemes, which are the first HIBEs that do not rely on bilinear pairings.

1 Our signing algorithm performs about k forward computations of a trapdoor function, plus one inversion
(which dominates the running time).

Bonsai Trees, or How to Delegate a Lattice Basis 603

Our main scheme works in the standard model, also making it the first non-pairing-
based IBE (hierarchical or not) that does not use random oracles or qualitatively similar
heuristics. The underlying hard problem is the standard learning with errors (LWE)
problem as defined by Regev, which may be seen as the ‘dual’ of SIS and is also as hard
as certain worst-case lattice problems [41,48]; LWE is also the foundation for the plain
IBE of [24], among many other recent cryptographic schemes.

Additionally, our HIBE is anonymous across all levels of the hierarchy, i.e., a ci-
phertext conceals (computationally) the identity to which is was encrypted. Anonymity
is a useful property in many applications, such as fully private communication [7] and
searching on encrypted data [1,11]. While there are a few anonymous (non-hierarchical)
IBEs [10,13,19,24], only one other HIBE is known to be anonymous [15].

1.2. Overview of Bonsai Trees and Applications

The ancient art of bonsai is centered around a tree and the selective control thereof by
an arborist, the tree’s cultivator and caretaker. By combining natural, undirected growth
with controlled propagation techniques such as wiring and pruning, arborists cultivate
trees according to a variety of aesthetic forms.

Similarly, cryptographic bonsai is not so much a precise definition as a collection of
principles and techniques, which can be employed in a variety of ways. (The informal
description here is developed technically in Sect. 3.) The first principle is the tree itself,
which in our setting is a hierarchy of trapdoor functions having certain properties. The
arborist can be any of several entities in the system—e.g., the signer in a signature
scheme or a simulator in a security proof—and it can exploit both kinds of growth,
undirected and controlled. Briefly stated, undirected growth of a branch means that
the arborist has no privileged information about the associated function, whereas the
arborist controls a branch if it knows a trapdoor for the function. Moreover, control
automatically extends down the hierarchy, i.e., knowing a trapdoor for a parent function
implies knowing a trapdoor for any of its children.

In our concrete lattice-based instantiation, the functions in the tree are indexed by
a hierarchy of public lattices chosen at random from a certain ‘hard’ family (i.e., one
having a connection to worst-case problems). The lattices may be specified by a variety
of means, e.g., a public key, interaction via a protocol, a random oracle, etc. Their key
property is that they naturally form a hierarchy as follows: every lattice in the tree (ex-
cepting the root) is a higher-dimensional superlattice of its parent. Specifically, a parent
lattice in R

m is simply the restriction of its child(ren) in R
m′

(where m′ > m) to the first
m dimensions. As we shall see shortly, this hierarchical relationship means that a parent
lattice naturally ‘subsumes’ its children (and more generally, all its descendants).

Undirected growth in our realization is technically straightforward, emerging nat-
urally from the underlying hard average-case lattice problems (SIS and LWE). This
growth is useful primarily for letting a simulator embed a challenge problem into one
or more branches of the tree (but it may have other uses as well).

To explain controlled growth, we first need a small amount of technical background.
As explored in prior works on lattice-based cryptography (e.g., [24,25,27,28,41,46]),
a lattice has a ‘master trapdoor’ in the form of a short basis, i.e., a basis made up of rel-
atively short lattice vectors. Knowledge of such a trapdoor makes it easy to solve a host
of seemingly hard problems relative to the lattice, such as decoding within a bounded

604 D. Cash et al.

distance, or randomly sampling short lattice vectors. As described in [24], these two
operations are effectively the inversion algorithms for certain families of injective and
‘preimage sampleable’ trapdoor functions, respectively. The reader may view a short
basis for a lattice as roughly analogous to the factorization of an RSA modulus, though
we emphasize that there are in general many distinct short bases that convey roughly
‘equal power’ with respect to the lattice.

In light of the above, we say that an arborist controls a branch of a bonsai tree if
it knows a short basis for the associated lattice. The hierarchy of lattices is specially
designed so that any short basis of a parent lattice can be easily extended to a short basis
of any higher-dimensional child lattice, with no loss in quality. This means that control
of a branch implicitly comes with control over all its offshoots. In a typical application,
the privileged entity in the system (e.g., the signer in a signature scheme) will know a
short basis for the root lattice, thus giving it control over the entire tree. Other entities,
such as an attacker, will generally have less power, though in some applications they
might even be given control over entire subtrees.

So far, we have deliberately avoided the question of how an arborist comes to control
a (sub)tree by acquiring a short basis for the associated lattice. A similar issue arises in
other recent cryptographic schemes [24,41,46], but in a simpler setting involving only
a single lattice and short basis (not a hierarchy). In these schemes, one directly applies
a special algorithm, originally conceived by Ajtai [4] and recently improved by Al-
wen and Peikert [6], which generates a hard random lattice together with a short basis
‘from scratch.’ At first glance, the algorithms of [4,6] seem useful only for controlling a
new tree entirely by its root, which is not helpful if we need finer-grained control. For-
tunately, we observe that the same technique used for extending an already-controlled
lattice also allows us to ‘graft’ a solitary controlled lattice onto an uncontrolled branch.2

This whole collection of techniques, therefore, allows an arborist to achieve a primary
bonsai aesthetic: a carefully controlled tree that nonetheless gives the appearance of
having grown without any outside intervention. As we shall see next, bonsai techniques
can reduce the construction of complex cryptographic schemes to the design of simple
combinatorial games between an arborist and an adversary.

1.2.1. Application 1: Hash-and-Sign Without Random Oracles

Our end goal is a signature scheme that meets the de facto notion of security, namely,
existential unforgeability under adaptive chosen-message attack [26]. By a standard,
efficient transformation using chameleon hashes [31] (which have efficient realizations
under conventional lattice assumptions, as we show), it suffices to construct a weakly
secure scheme, namely, one that is existentially unforgeable under a static attack in
which the adversary non-adaptively makes all its queries before seeing the public key.

Our weakly secure scheme signs messages of length k, the output length of the
chameleon hash. The public key represents a binary bonsai tree T of depth k in a com-

2 It is worth noting that in [4,6], even the simple goal of generating a solitary lattice together with a short
basis actually proceeds in two steps: first start with a sufficient amount of random undirected growth, then
produce a single controlled offshoot by way of a certain linear algebraic technique. Fittingly, this is analogous
to the traditional bonsai practice of growing a new specimen from a cutting of an existing tree, which is
generally preferred to growing a new plant ‘from scratch’ with seeds.

Bonsai Trees, or How to Delegate a Lattice Basis 605

pact way, which we describe in a moment. The secret key is a short basis for the lat-
tice Λε at the root of the tree, which gives the signer control over all of T . To sign a
string μ ∈ {0,1}k (which is the chameleon hash of the ‘true’ message m), the signer
first derives the lattice Λμ from T by walking the root-to-leaf path specified by μ. The
signature is simply a short nonzero vector v ∈ Λμ, chosen at random from the ‘canon-
ical’ Gaussian distribution, which can be sampled efficiently using the signer’s control
of Λμ. A verifier can check the signature v simply by deriving Λμ itself from the public
key, and checking that v is a sufficiently short nonzero vector in Λμ.

The bonsai tree T is represented compactly by the public key in the following way.
First, the root lattice Λε is specified completely. Then, for each level i = 0, . . . , k − 1,
the public key includes two blocks of randomness that specify how a parent lattice at
level i branches into its two child lattices. We emphasize that all nodes at a given depth
use the same two blocks of randomness to derive their children.

The proof of security is at heart a combinatorial game on the tree between the simu-
lator S and forger F , which goes roughly as follows. The forger gives the simulator a
set M = {μ1, . . . ,μQ} of messages, and S needs to cultivate a bonsai tree (represented
by pk) so that it controls some set of subtrees that cover all of M , yet is unlikely to
control the leaf for whatever arbitrary message μ∗ �∈ M that F eventually produces in
its forgery. If the latter condition happens to hold true, then the forger has found a short
nonzero vector in an uncontrolled lattice, in violation of the underlying assumption.
(This combinatorial game is closely related to the recent “prefix technique” introduced
by Hohenberger and Waters [29]; see Sect. 1.4 for discussion.)

To satisfy the conflicting constraints of the game, S colors red all the edges on the
root-to-leaf paths of the messages in M , and lets all the other edges implicitly be colored
blue. The result is a forest of at most Q · k distinct blue subtrees {B�}, each growing
off of some red path by a single blue edge. The simulator chooses one of these subtrees
B� uniformly at random (without regard to its size), guessing that the eventual forgery
will lie in B�. It then cultivates a bonsai tree so that all the growth on the path up to and
throughout B� is undirected (by embedding its given challenge instance as usual), while
all the remaining growth in T \ B� is controlled. This can be achieved by controlling
one branch at each level leading up to B� (namely, the branch growing off of the path
to B�), and none thereafter.

1.2.2. Application 2: Hierarchical Identity-Based Encryption

Bonsai trees also provide a very natural and flexible approach for realizing HIBE.
For simplicity, consider an authority hierarchy that is a binary tree, which suffices for
forward-secure encryption and general HIBE itself [16]. The master public key of the
scheme describes a binary bonsai tree, which mirrors the authority hierarchy. The root
authority starts out by controlling the entire tree, i.e., it knows a trapdoor short basis
for the lattice at the root. Each authority is entitled to control its corresponding branch
of the tree. Any entity in the hierarchy can delegate control over an offshoot branch to
the corresponding sub-authority, simply by computing and revealing a short basis of the
associated child lattice. In this framework, encryption and decryption algorithms based
on the LWE problem are standard.

For the security proof, the simulator again prepares a bonsai tree so that it controls
certain branches (which should cover the adversary’s queries), while allowing the undi-

606 D. Cash et al.

rected growth of others (corresponding to the adversary’s target identity). This can be
accomplished in a few ways, with different advantages and drawbacks in terms of the se-
curity notion achieved and the tightness of the reduction. One notion is security against
a selective-identity attack, where the adversary must declare its target identity before
seeing the public key, but may adaptively query secret keys afterward. In this model,
the simulator can cultivate a bonsai tree whose growth toward the (known) target iden-
tity is undirected, while controlling each branch off of that path; this setup makes it easy
for the simulator to answer any legal secret-key query.

A stronger notion is security against a fully adaptive attack (“full security”), where
the adversary may choose its target identity after making its secret-key queries. (See
Sect. 2.2 for a precise definition.) There are generic combinatorial techniques for con-
verting selective-identity-secure (H)IBE schemes into fully secure ones; we show how
to apply and optimize these techniques to our HIBE. First, we use the approach of Boneh
and Boyen [8] to construct a fully secure HIBE scheme in the random oracle model. The
basic idea is to hash all identities; this way, the target identity can be dynamically em-
bedded as the answer to a random oracle query. Secondly, we demonstrate that other
tools of Boneh and Boyen [9] can be adapted to our setting to yield a fully secure HIBE
scheme without random oracles. This works by hashing identities to branches of a bon-
sai tree, where a probabilistic argument guarantees that any given identity hashes to a
controlled branch with a certain probability. We can adjust this probability in the right
way, so that with non-negligible probability, all queried identities hash to controlled
branches, while the target identity hashes to an uncontrolled branch. In our probabilistic
argument, we employ admissible hash functions (AHFs), as introduced by [9]. How-
ever, as we will explain in Sect. 5.4.4, their original AHF definition and proof strategy
do not take into consideration the statistical dependence of certain crucial events. We
circumvent this with a different AHF definition and a different proof.

Based on the above description, the reader may still wonder whether secret-key del-
egation is actually secure, i.e., whether the real and simulated bases are drawn from the
same probability distribution. In fact, they may not be! For example, under the most
straightforward method of extending a basis, the child basis actually contains the par-
ent basis as a submatrix, so it is clearly insecure to reveal the child. We solve this issue
with an additional bonsai principle of randomizing control, using the Gaussian sampling
algorithm of [24]. This produces a new basis under a ‘canonical’ distribution, which en-
sures that the real system and simulation coincide. The randomization increases the
length of the basis by a small factor—which accumulates geometrically with each dele-
gation from parent to child—but for reasonable depths, the resulting bases are still short
enough to be useful when all the parameters are set appropriately. (See Sect. 1.3 for
more details.)

For achieving security under chosen-ciphertext attacks (CCA security), a transforma-
tion due to Boneh, Canetti, Halevi, and Katz [12] gives a CCA-secure HIBE for depth d

from any chosen plaintext-secure HIBE for depth d + 1. Alternatively, we observe that
the public and secret keys in our HIBE scheme are of exactly the same ‘type’ as those
in the recent CCA-secure cryptosystem of [41], so we can simply plug that scheme into
our bonsai tree/HIBE framework. Interestingly, the two approaches result in essentially
identical schemes.

Bonsai Trees, or How to Delegate a Lattice Basis 607

Application Model Public key Secret key Signature Assumption

Hash-and-sign [24] RO Õ(n2) Õ(n2) Õ(n) Õ(n)-SIS

Hash-and-sign Standard Õ(kn2) Õ(n2) Õ(kn) Õ(
√

k · n)-SIS

Application Model Public key Secret key Ciphertext 1/α for LWE

IBE [24] RO Õ(n2) Õ(n2) Õ(n) Õ(n)

IBE Standard Õ(kn2) Õ(n2) Õ(kn) Õ(
√

k · n)

HIBE (depth d) RO Õ(d2n2) Õ(d5n2) Õ(d3n)
√

dn · Õ(d
√

n)d

HIBE (depth d) Standard Õ(d3kn2) Õ(d5k2n2) Õ(d3kn)
√

dn · Õ(d
√

kn)d

Fig. 1. Complexity of our bonsai tree applications in comparison with prior work; n is the main security
parameter and k is the output length of a chameleon hash function (for the signature scheme) or collision-re-
sistant hash function (for the IBEs). “RO” means random oracle model under fully adaptive attack, while
“Standard” means standard model under selective-identity attack (standard-model schemes with adaptive se-
curity are omitted). “Public key,” “secret key,” etc. refer to their lengths in bits; for the HIBEs, these quantities
are the maximum possible over all levels of the hierarchy. The column labeled “1/α for LWE” refers to the
inverse error rate of the underlying LWE problem used in the proofs of security.

1.2.3. Variations

This paper focuses almost entirely on bonsai trees that are related, via worst- to average-
case reductions, to general lattices. Probably the main drawback is that the resulting
public and secret keys are rather large. For example, the public key in our signature
scheme is larger by a factor of k (the output length of a chameleon hash function)
than that of its random-oracle analog [24], which is already at least quadratic in the
security parameter. Fortunately, the principles of bonsai trees may be applied equally
well using analogous hard problems and tools for cyclic/ideal lattices (developed in,
e.g., [33,35,36,44,45,52]), with little to no essential changes to the proofs. This approach
can ‘miniaturize’ the bonsai trees and most of their associated operations by about a
linear factor in the security parameter. The resulting schemes are still not suitable for
practice, but their asymptotic behavior is attractive.

1.3. Complexity and Open Problems

Here we discuss some additional quantitative details of our schemes (see Fig. 1 for a
summary), and describe some areas for further research.

Several important quantities in our bonsai tree constructions and applications depend
upon the depth of the tree. The dimension of a lattice in the tree grows linearly with its
depth, and the size of the trapdoor basis grows roughly quadratically with the dimension.

Accordingly, in our HIBE schemes, the dimension of a ciphertext vector grows lin-
early with the depth of the identity to which it is encrypted. Moreover, the Euclidean
length of a user’s trapdoor basis increases geometrically with its depth in the tree (more
precisely, with the length of the delegation chain), due to the basis randomization that
is performed with each delegation. To ensure correct decryption, the inverse noise pa-
rameter 1/α in the associated LWE problem, and hence the approximation factor of
the underlying worst-case lattice problems, must grow with the basis length. In par-
ticular, a hierarchy of depth d corresponds (roughly) to an nd/2 approximation factor

608 D. Cash et al.

for worst-case lattice problems, where n is the dimension. Because lattice problems are
conjectured to be hard to approximate to within even subexponential factors, the scheme
may remain asymptotically secure for depths as large as d = nc, where c < 1.

Our HIBE scheme that enjoys security under a full adaptive-identity attack requires
large keys and has a somewhat loose security reduction. In particular, the attack simu-
lation partitions an (implicit) bonsai tree into controlled and undirected branches. This
is done in the hope that all user secret key queries correspond to controlled branches
(so the simulation can derive the corresponding secret key), and that the target iden-
tity refers to an undirected branch (so the attack can be converted into one on the LWE
problem). This simulation approach (dubbed ‘partitioning strategy’ in [54]) involves,
to a certain extent, guessing the adversary’s user secret key and challenge queries. The
result is a rather loose security reduction.

In contrast, recent works have achieved tight reductions (and even small keys, in some
cases) for pairing-based (H)IBEs under various assumptions [21,22,54], and a variant
of the GPV IBE (in the random oracle model) also has a tight reduction, but their ap-
proaches do not seem to translate to our setting. The issue, essentially, is that our simu-
lator is required to produce a ‘master trapdoor’ for each queried identity, which makes it
difficult to embed the challenge problem into the adversary’s view. In prior systems with
tight reductions, secret keys are less ‘powerful,’ so the simulator can embed a challenge
while still knowing at least one secret key for every identity (even the targeted one).

A final very interesting (and challenging) question is whether bonsai trees can be
instantiated based on other mathematical foundations, e.g., integer factorization. At a
very fundamental level, our lattice-based construction seems to rely upon a kind of
random self-reducibility that the factorization problem is not known to enjoy.

1.4. Related Techniques and Works

This paper represents a combination of two concurrent and independent works by the
first three authors [17] and the fourth author [42], which contained some overlapping
results and were accepted to Eurocrypt 2010 under the condition that they be merged.

The abstract properties of bonsai trees, as hierarchies of trapdoor functions, appear
to have no known realization in conventional number-theoretic cryptography. However,
our applications use several combinatorial techniques that are similar to those from
several prior works.

The analysis of our signature scheme may be seen as a refinement of the recent “prefix
technique” of Hohenberger and Waters [29] for standard-model signatures. Our scheme
and its proof appear quite different from their main RSA-based construction, but is
closely related (at least at a combinatorial level) to their construction based on bilinear
pairings. Interestingly, in both of these constructions the scheme itself does not deal with
message prefixes at all; they only show up in the security proofs. The main difference
between our simulation strategies is that, in the prefix technique, the simulator in a
static chosen-message attack sets up the public key by guessing a uniformly random
prefix of a random queried message, in the hope that the adversary’s forged message
will start with that prefix (but its next bit will be different). With this strategy, some of
the simulator’s potential guesses may prevent it from being able to sign all the queried
messages, thus causing the simulation to fail. (Fortunately, a noticeable fraction of the
simulator’s guesses avoid this outcome, so the reduction goes through correctly.) In

Bonsai Trees, or How to Delegate a Lattice Basis 609

contrast, our simulator looks at all the queried messages, and sets up the public key so
that it always knows how to sign all of them (and potentially many others). This is done
by constructing a forest of subtrees as described in Sect. 1.2.1.

The structure of our HIBE is also similar, at a combinatorial level, to that of prior
pairing-based HIBEs, in that the simulator can ‘control’ certain edges of an implicit tree
by choosing certain random exponents itself. However, there are no trapdoor functions
per se in pairing-based constructions; instead, the pairing is used to facilitate key agree-
ment between the encrypter and decrypter. Our approach, therefore, may be seen as a
blending of pairing-based techniques and the trapdoor techniques found in [13,18,24].

Following the initial dissemination of our results in [17,42], several extensions and
additional applications have been found. Rückert [49] modified our signature scheme
to make it strongly unforgeable, and constructed hierarchical identity-based signatures.
Agrawal and Boyen [2] constructed a standard-model IBE based on LWE, which is se-
cure under a selective-identity attack; their construction has structure similar to ours, but
it does not address delegation, nor does it give an efficient signature scheme. Agrawal,
Boneh, and Boyen [3] improved the efficiency of our (H)IBE schemes (under a quan-
titatively stronger LWE assumption), and Boyen [14] used similar techniques to obtain
shorter signatures (under a stronger SIS assumption).

2. Preliminaries

2.1. Notation

For a positive integer k, [k] denotes the set {1, . . . , k}; [0] is the empty set. We denote
the set of integers modulo an integer q ≥ 1 by Zq . For a string x over some alphabet,
|x| denotes the length of x. For an alphabet X and nonnegative integer n, define X≤n =⋃n

i=0 Xi , and X<n similarly. We say that a function in n is negligible, written negl(n),
if it vanishes faster than the inverse of any polynomial in n. We say that a probability
p(n) is overwhelming if 1 − p(n) is negligible.

The statistical distance between two distributions X and Y (or two random variables
having those distributions), viewed as functions over a countable domain D, is defined
as maxA⊆D|X (A) − Y (A)|.

Column vectors are named by lower-case bold letters (e.g., x) and matrices by upper-
case bold letters (e.g., X). We identify a matrix X with the ordered set {xj } of its column
vectors, and let X‖X′ denote the (ordered) concatenation of the sets X,X′. For a set X
of real vectors, we define ‖X‖ = maxj‖xj‖, where ‖·‖ denotes the Euclidean norm.

For any (ordered) set S = {s1, . . . , sk} ⊂ R
m of linearly independent vectors, let S̃ =

{s̃1, . . . , s̃k} denote its Gram–Schmidt orthogonalization, defined iteratively as follows:
s̃1 = s1, and for each i = 2, . . . , k, the vector s̃i is the component of si orthogonal to
span(s1, . . . , si−1). In matrix notation, there is a unique QR decomposition S = QR
where the columns of Q ∈ R

m×k are orthonormal (i.e., QtQ = I ∈ R
k×k) and R ∈ R

k×k

is right-triangular with positive diagonal entries; the Gram–Schmidt orthogonalization
is S̃ = Q · diag(r1,1, . . . , rk,k). Clearly, ‖s̃i‖ ≤ ‖si‖ for all i.

2.2. Cryptographic Definitions

The main cryptographic security parameter through the paper is n, and all algorithms
(including the adversary) are implicitly given the security parameter n in unary.

610 D. Cash et al.

For a (possibly interactive) algorithm A, we define its distinguishing advantage be-
tween two distributions X and Y to be |Pr[A(X) = 1] − Pr[A(Y) = 1]|. We use the
general notation Advatk

SCH(A) to describe the advantage of an adversary A mounting
an atk attack on a cryptographic scheme SCH, where the definition of advantage is
specified as part of the attack. Similarly, we write AdvPROB(A) for the advantage of
an adversary A against a computational problem PROB (where again the meaning of
advantage is part of the problem definition).

Chameleon Hash Functions Chameleon hashing was introduced by Krawczyk and
Rabin [31]. For our purposes, we need a slight generalization in the spirit of “preimage
sampleable” (trapdoor) functions [24].

A family of chameleon hash functions is a collection H = {hi : M × R → Y } of
functions hi mapping a message m ∈ M and randomness r ∈ R to a range Y . The
randomness space R is endowed with some efficiently sampleable distribution (which
may not be uniform). A function hi is efficiently computable given its description,
and the family has the property that for any m ∈ M, for hi ← H and r ← R, the
pair (hi, hi(m, r)) is uniform over (H, Y) (up to negligible statistical distance). The
chameleon property is that a random hi ← H may be generated together with a trap-
door t , such that for any output y ∈ Y and message m ∈ M, it is possible (using t) to
efficiently sample r ∈ R (under the R’s distribution) conditioned on the requirement
that hi(m, r) = y. Finally, the family has the standard collision-resistance property,
i.e., given hi ← H it should be hard for an adversary to find distinct (m, r), (m′, r ′) ∈
M × R such that hi(m, r) = hi(m

′, r ′).
In Sect. 4 we realize chameleon hash functions (in the above sense) using lattices, via

bonsai techniques.

Signatures A signature scheme SIG for a message space M is a tuple of PPT algo-
rithms as follows:

• Gen outputs a verification key vk and a signing key sk.
• Sign(sk,μ), given a signing key sk and a message μ ∈ M, outputs a signature

σ ∈ {0,1}∗.
• Ver(vk,μ,σ), given a verification key vk, a message μ, and a signature σ , either

accepts or rejects.

The correctness requirement is: for any μ ∈ M, generate (vk, sk) ← Gen and σ ←
Sign(sk,μ). Then Ver(vk,μ,σ) should accept with overwhelming probability (over all
the randomness in the experiment).

We recall two standard notions of security for signatures. The first, existential un-
forgeability under static chosen-message attack, or eu-scma security, is defined as fol-
lows: first, the forger F outputs a list of query messages μ1, . . . ,μQ for some Q. Next,
(vk, sk) ← Gen and σi ← Sign(sk,μi) are generated for each i ∈ [Q], then vk and σi

(for each i ∈ [Q]) are given to F . Finally, F outputs an attempted forgery (μ∗, σ ∗). The
advantage Aeu-scma

SIG (F) of F is the probability that Ver(vk,μ∗, σ ∗) accepts and μ∗ �= μi

for all i ∈ [Q], taken over all the randomness of the experiment.
Another notion, called existential unforgeability under adaptive chosen-message at-

tack, or eu-acma security, is defined similarly, except that F is first given vk and may
adaptively choose the messages μi .

Bonsai Trees, or How to Delegate a Lattice Basis 611

Using a family of chameleon hash functions (as defined above), there is a generic con-
struction of eu-acma-secure signatures from eu-scma-secure signatures; see, e.g., [31].
Furthermore, the construction results in an online/offline signature scheme; see [51].
The basic idea behind the construction is that the signer chameleon hashes the mes-
sage to be signed, then signs the hashed message using the eu-scma-secure scheme (and
includes the randomness used in the chameleon hash with the final signature).

Key-Encapsulation Mechanism (KEM) We present all of our encryption schemes in
the framework of key encapsulation, which simplifies the definitions and leads to more
modular constructions. A KEM for keys of length � = �(n) is a triple of PPT algorithms
as follows:

• Gen outputs a public key pk and a secret key sk.
• Encaps(pk) outputs a key κ ∈ {0,1}� and its encapsulation as σ ∈ {0,1}∗.
• Decaps(sk, σ) outputs a key κ .

The correctness requirement is: for (pk, sk) ← Gen and (κ, σ) ← Encaps(pk),
Decaps(sk, σ) should output κ with all but negl(n) probability.

In this work we are mainly concerned with indistinguishability under chosen-
plaintext attack, or ind-cpa security. The attack is defined as follows: generate
(pk, sk) ← Gen, (κ∗, σ ∗) ← Encaps(pk), and κ ′ ← {0,1}� (chosen uniformly and in-
dependently of the other values). The advantage Advind-cpa

KEM (A) of an adversary A is its
distinguishing advantage between (pk, σ ∗, κ∗) and (pk, σ ∗, κ ′).

Hierarchical Identity-Based Encryption (HIBE) In HIBE, identities are strings (tu-
ples) over some alphabet I D. Hence hierarchical identities of maximal depth d ∈ N are
of the form I D≤d = ⋃d

i=0 I Di . A HIBE for keys of bit length � = �(n) is a tuple of
PPT algorithms as follows:

• Setup(1d) outputs a master public key mpk and root-level secret key skε . Here d

is the maximal depth of the hierarchy, specified in unary. (In the following, d and
mpk are implicit parameters to every algorithm, and every user secret key skid is
assumed to include id itself.)

• Extract(skid, id′), given a user secret key for identity id ∈ I D<d = ⋃d−1
i=0 I Di that

is a proper prefix of id′ ∈ I D≤d , outputs a user secret key skid′ for identity id′.
• Encaps(id) outputs a key κ ∈ {0,1}� and its encapsulation as σ ∈ {0,1}∗, to iden-

tity id.
• Decaps(skid, σ) outputs a key κ .

The correctness requirement is: for any identity id ∈ I D≤d , first generate (mpk, skε) ←
Setup(1d), then generate skid via any legal sequence of calls to Extract starting from
skε , then generate (κ, σ) ← Encaps(id). Then Decaps(skid, σ) should output κ with
overwhelming probability (over all the randomness in the experiment).

There are several attack notions for HIBE. One simple notion is indistinguishability
under a chosen-plaintext, selective-identity attack, or sid-ind-cpa security. The attack
is defined as follows: first, the adversary A is given 1d and names a target identity
id∗ ∈ I D≤d . Next, (mpk, skε) ← Setup(1d), (κ, σ ∗) ← Encaps(id∗), and κ ′ ← {0,1}�
are generated. Then A is given (mpk, κ∗, σ ∗), where κ∗ is either κ or κ ′. Finally, A may

612 D. Cash et al.

make extraction queries, i.e., it is given oracle access to Extract(skε, ·), subject to the
constraint that it may not query any identity that is a prefix of (or equal to) the target
identity id∗. The adversary’s advantage Advsid-ind-cpa

HIBE (A) is its distinguishing advantage
between the two cases κ∗ = κ and κ∗ = κ ′.

A related notion is security against an adaptive-identity attack, known as aid-ind-cpa
or “full” security. Here the adversary is first given mpk and has oracle access to
Extract(skε, ·) both before and after choosing its target identity id∗; as above, the ad-
versary may never query any identity that is a prefix of the id∗ it eventually names.
Finally, both of the above notions may be extended to chosen-ciphertext attacks in the
natural way; since our focus is on chosen-plaintext security, we omit precise definitions.

2.3. Lattices

In this work, we use m-dimensional full-rank integer lattices, which are discrete additive
subgroups of Z

m having finite index, i.e., the quotient group Z
m/Λ is finite. A lattice

Λ ⊆ Z
m can equivalently be defined as the set of all integer linear combinations of m

linearly independent basis vectors B = {b1, . . . ,bm} ⊂ Z
m:

Λ = L(B) =
{

Bc =
∑

i∈[m]
cibi : c ∈ Z

m

}

.

When m ≥ 2, there are infinitely many bases that generate the same lattice.
Every lattice Λ ⊆ Z

m has a unique canonical basis H = HNF(Λ) ∈ Z
m×m called its

Hermite normal form (HNF). The only facts about the HNF that we require are that it is
unique, and that it may be computed efficiently given an arbitrary basis B of the lattice
(see [39] and references therein). We write HNF(B) to denote the Hermite normal form
of the lattice generated by basis B.

The following lemma will be useful in our constructions.

Lemma 2.1 [37, Lemma 7.1, p. 129]. There is a deterministic poly-time algorithm
ToBasis(S,B) that, given a full-rank set (not necessarily a basis) S of lattice vectors in
Λ = L(B), outputs a basis T of Λ such that ‖t̃i‖ ≤ ‖s̃i‖ for all i.

2.3.1. Hard Lattices and Problems

We will work with a certain family of integer lattices whose importance in cryptogra-
phy was first demonstrated by Ajtai [5]. Let n ≥ 1 and modulus q ≥ 2 be integers; the
dimension n is the main cryptographic security parameter throughout this work, and
all other parameters are implicitly functions of n. An m-dimensional lattice from the
family is specified relative to the additive group Z

n
q by a parity check (more accurately,

“arity check”) matrix A ∈ Z
n×m
q . The associated lattice is defined as

Λ⊥(A) =
{

x ∈ Z
m : Ax =

∑

j∈[m]
xj · aj = 0 ∈ Z

n
q

}

⊆ Z
m.

One may check that Λ⊥(A) contains qZ
m (and in particular, the identity 0 ∈ Z

m) and is
closed under addition, hence it is a full-rank subgroup of (and lattice in) Z

m. For any y

Bonsai Trees, or How to Delegate a Lattice Basis 613

in the subgroup of Z
n
q generated by the columns of A, we also define the coset

Λ⊥
y (A) = {

x ∈ Z
m : Ax = y

} = Λ⊥(A) + x̄,

where x̄ ∈ Z
m is an arbitrary solution to Ax̄ = y.

It is known (see, e.g., [48, Claim 5.3]) that for any fixed constant C > 1 and any
m ≥ Cn lgq , the columns of a uniformly random A ∈ Z

n×m
q generate all of Z

n
q , except

with 2−Ω(n) = negl(n) probability. (Moreover, the subgroup generated by A can be
computed efficiently.) Therefore, throughout the paper we sometimes implicitly assume
that such a uniform A generates Z

n
q .

We recall the short integer solution (SIS) and learning with errors (LWE) problems,
which may be seen as average-case problems related to the family of lattices described
above.

Definition 2.2 (Short Integer Solution). An instance of the SISq,β problem (in the �2
norm) is a uniformly random matrix A ∈ Z

n×m
q for any desired m = poly(n). The goal

is to find a nonzero integer vector v ∈ Z
m such that ‖v‖2 ≤ β and Av = 0 ∈ Z

n
q , i.e.,

v ∈ Λ⊥(A).

Let χ be some distribution over Zq . For a vector v ∈ Z
�
q of any dimension � ≥ 1,

Noisyχ (v) ∈ Z
�
q denotes the vector obtained by adding (modulo q) independent samples

drawn from χ to each entry of v (one sample per entry). For a vector s ∈ Z
n
q , As,χ is the

distribution over Z
n
q × Zq obtained by choosing a vector a ∈ Z

n
q uniformly at random

and outputting (a,Noisyχ (〈a, s〉)). In this work (and most others relating to LWE), χ is
always a discretized normal error distribution parameterized by some α ∈ (0,1), which
is obtained by drawing x ∈ R from the Gaussian distribution of width α (i.e., x is chosen
with probability proportional to exp(−πx2/α2)) and outputting �q · x� mod q .

Definition 2.3 (Learning with Errors). The LWEq,χ problem is to distinguish, given
oracle access to any desired m = poly(n) samples, between the distribution As,χ (for
uniformly random and secret s ∈ Z

n
q) and the uniform distribution over Z

n
q × Zq .

We write AdvSISq,β (A) and AdvLWEq,χ (A) to denote the success probability and dis-
tinguishing advantage of an algorithm A for the SIS and LWE problems, respectively.

For appropriate parameters, solving SIS and LWE (on the average, with non-
negligible advantage) is known to be as hard as approximating certain lattice prob-
lems, such as the (decision) shortest vector problem, in the worst case. Specifically, for
q ≥ β ·ω(

√
n logn), solving SISq,β yields approximation factors of Õ(β ·√n) [24,38].

For q ≥ (1/α) · ω(
√

n logn), solving LWEq,χ yields approximation factors of Õ(n/α)

(in some cases, via a quantum reduction); see [41,48] for precise statements.

2.3.2. Gaussians over Lattices

We briefly recall Gaussian distributions over lattices, specialized to the family described
above; for more details see [24,38]. For any s > 0 and dimension m ≥ 1, the Gaus-
sian function ρs : R

m → (0,1] is defined as ρs(x) = exp(−π‖x‖2/s2). For any coset

614 D. Cash et al.

Λ⊥
y (A), the discrete Gaussian distribution DΛ⊥

y (A),s (centered at zero) over the coset

assigns probability proportional to ρs(x) to each x ∈ Λ⊥
y (A), and probability zero else-

where.
We summarize several facts from the literature about discrete Gaussians over lattices,

again specialized to our family of interest.

Lemma 2.4. Let S be any basis of Λ⊥(A) for some A ∈ Z
n×m
q whose columns gener-

ate Z
n
q , let y ∈ Z

n
q be arbitrary, and let s ≥ ‖̃S‖ · ω(

√
logn).

1. [38, Lemma 4.4]: Prx←D
Λ⊥

y (A),s
[‖x‖ > s · √m] ≤ negl(n).

2. [44, Lemma 2.11]: Prx←D
Λ⊥(A),s

[x = 0] ≤ negl(n).

3. [48, Corollary 3.16]: a set of O(m2) independent samples from DΛ⊥(A),s contains
a set of m linearly independent vectors, except with negl(n) probability.

4. [24, Theorem 3.1]: For x ← DZm,s , the marginal distribution of y = Ax ∈ Z
n
q is

uniform (up to negl(n) statistical distance), and the conditional distribution of x
given y is DΛ⊥

y (A),s .
5. [24, Theorem 4.1]: there is a PPT algorithm SampleD(S,A,y, s) that generates a

sample from DΛ⊥
y (A),s (up to negl(n) statistical distance).

For Item 5 above, a recent work of Peikert [43] gives an alternative SampleD al-
gorithm that is more efficient and fully parallelizable; it works for any s ≥ σ1(S) ·
ω(

√
logn), where σ1(S) is the largest singular value of S (which is never smaller

than ‖̃S‖, but is also not much larger in most important cases; see [43] for details).

3. Principles of Bonsai Trees

In this section we lay out the framework and main techniques for the cultivation of
bonsai trees. There are four basic principles: undirected growth, controlled growth, ex-
tending control over arbitrary new growth, and randomizing control.

3.1. Undirected Growth

Undirected growth is useful primarily for allowing a simulator to embed an underlying
challenge problem (i.e., SIS or LWE) into a tree. This is done simply by drawing fresh
uniformly random and independent samples ai ∈ Z

n
q from the problem distribution, and

grouping them into (or appending them onto) a parity-check matrix A.
More formally, let A ∈ Z

n×m
q be arbitrary for some m ≥ 0, and let A′ = A‖Ā ∈

Z
n×m′
q for some m′ > m be an arbitrary extension of A. Then it is easy to see that

Λ⊥(A′) ⊆ Z
m′

is a higher-dimensional superlattice of Λ⊥(A) ⊆ Z
m, when the latter is

lifted to Z
m′

. Specifically, for any v ∈ Λ⊥(A), the vector v′ = v‖0 ∈ Z
m′

is in Λ⊥(A′)
because A′v′ = Av = 0 ∈ Z

n
q .

In addition, the columns of A′ may be ordered arbitrarily (e.g., the columns of Ā may
be both appended and prepended to A), which simply results in the entries of the vectors
in Λ⊥(A′) being permuted in the corresponding manner. That is,

Λ⊥(A′ · P) = P · Λ⊥(A′)

Bonsai Trees, or How to Delegate a Lattice Basis 615

for any permutation matrix P ∈ {0,1}m′×m′
, because (A′P)x = A′(Px) ∈ Z

n
q for all

x = Z
m′

.

3.2. Controlled Growth

We say that an arborist controls a lattice if it knows a relatively good (i.e., short) basis for
the lattice. The following lemma says that a random lattice from our family of interest
can be generated under control.3

Proposition 3.1 [6]. There is a fixed constant C > 1 and a probabilistic polynomial-
time algorithm GenBasis(1n,1m,q) that, for poly(n)-bounded m ≥ Cn lgq , outputs
A ∈ Z

n×m
q and S ∈ Z

m×m such that:

• the distribution of A is within negl(n) statistical distance of uniform,
• S is a basis of Λ⊥(A), and
• ‖̃S‖ ≤ L̃ = O(

√
n logq).

3.3. Extending Control

Here we describe how an arborist may extend its control of a lattice to an arbitrary
higher-dimensional extension, without any loss of quality in the resulting basis.

Lemma 3.2. There is a deterministic polynomial-time algorithm ExtBasis with the
following properties: given an arbitrary A ∈ Z

n×m
q whose columns generate the en-

tire group Z
n
q , an arbitrary basis S ∈ Z

m×m of Λ⊥(A), and an arbitrary Ā ∈ Z
n×m̄
q ,

ExtBasis(S,A′ = A‖Ā) outputs a basis S′ of Λ⊥(A′) ⊆ Z
m+m̄ such that ‖S̃′‖ = ‖̃S‖.

Moreover, the same holds even for any given permutation of the columns of A′ (e.g., if
columns of Ā are both appended and prepended to A).

Proof. Let m′ = m + m̄. The ExtBasis(S,A′) algorithm computes and outputs an S′
of the form

S′ =
(

S W
0 I

)

∈ Z
m′×m′

,

where I ∈ Z
m̄×m̄ is the identity matrix, and W ∈ Z

m×m̄ is an arbitrary (not necessarily
short) solution to AW = −Ā ∈ Z

n×m̄
q . Note that W exists by the hypothesis that A

generates Z
n
q , and it may be computed efficiently using, e.g., Gaussian elimination.

We now analyze S′. First,

A′S′ = AS‖(AW + Ā) = 0 ∈ Z
n×m′
q

3 An earlier version of this paper [42] used a core lemma from [6] to directly extend a given random

parity-check matrix A (without known good basis) into a random matrix A′ = A‖Ā with known good basis.
While using that method can improve our applications’ key sizes by a small constant factor, it also makes the
applications more cumbersome to describe, so we opt to use the above proposition instead.

616 D. Cash et al.

by assumption on S and by construction of W, so S′ ⊂ Λ⊥(A′). Moreover, S′ is in fact
a basis of Λ⊥(A′): let v′ = v‖v̄ ∈ Λ⊥(A′) be arbitrary, where v ∈ Z

m and v̄ ∈ Z
m̄. Then

0 = A′v′ = Av + Āv̄ = Av − (AW)v̄ = A(v − Wv̄) ∈ Z
n
q .

Thus v − Wv̄ ∈ Λ⊥(A), so by assumption on S there exists some z ∈ Z
m such that

Sz = v − Wv̄. Now let z′ = z‖v̄ ∈ Z
m+m̄. By construction, we have

S′z′ = (Sz + Wv̄)‖v̄ = v‖v̄ = v′.

Because v′ ∈ Λ⊥(A′) was arbitrary, S′ is therefore a basis of Λ⊥(A′).
We next confirm that ‖S̃′‖ = ‖̃S‖. By the design of S′ and the definition of Gram–

Schmidt orthogonalization, it is easy to check that

S̃′ =
(

S̃ 0
0 I

)

,

because S is full-rank. It follows that ‖S̃′‖ = max{‖̃S‖,1} = ‖̃S‖, because s̃1 = s1 ∈ Z
m

is nonzero.
For the final part of the lemma, we simply compute S′ for A′ = A‖Ā as described

above, and output S′′ = PS′ as a basis for Λ⊥(A′ · P), where P is the given permutation
matrix. The Gram–Schmidt lengths remain unchanged, i.e., ‖s̃′′

i ‖ = ‖s̃′
i‖, because P is

orthogonal and hence the right-triangular matrices in the QR decompositions of S′ and
PS′ are exactly the same. �

3.3.1. An Optimization: Gaussian Sampling via Implicit Extension

In many of our cryptographic applications, a common design pattern is to extend a ba-
sis S of an m-dimensional lattice Λ⊥(A) to a basis S′ of a dimension-m′ superlattice
Λ⊥(A′), and then immediately sample (one or more times) from a discrete Gaussian
over the superlattice. For the construction and analysis of our schemes, it is more con-
venient and modular to treat these operations separately; however, a naive implemen-
tation would be rather inefficient, requiring at least (m′)2 space and time (where m′
can be substantially larger than m). Fortunately, the special structure of the extended
basis S′, together with the recursive “nearest-plane” operation of the SampleD algo-
rithm from [24], can be exploited to avoid any explicit computation of S′, thus saving a
significant amount of time and space over the naive approach.

Let S ∈ Z
m×m be a basis of Λ⊥(A), and let A′ = A‖Ā for some Ā ∈ Z

n×m̄
q ,

where m′ = m + m̄. Consider a hypothetical execution of SampleD(S′,y′, s), where
S′ = (S W

0 I

)
is the extended basis as described in the proof of Lemma 3.2, and S̃′ = (

S̃ 0
0 I

)
.

By inspection, it can be verified that a recursive execution of v′ ← SampleD(S′,y′, s)
simply chooses all the entries of v̄ ∈ Z

m̄ independently from DZ,s , then chooses
v ← SampleD(S,y′ − Āv̄, s), and outputs v′ = v‖v̄. Therefore, the optimized algorithm
can perform exactly the same steps, thus avoiding any need to compute and store W
itself. A similar optimization also works for any permutation of the columns of A′.

In the language of the “preimage sampleable” function fA′(v′) := A′v′ ∈ Z
n
q de-

fined in [24], the process described above corresponds to sampling a preimage from

Bonsai Trees, or How to Delegate a Lattice Basis 617

f −1
A′ (y′) by first computing ȳ = fĀ(v̄) = Āv̄ ∈ Z

n
q in the “forward” direction (for ran-

dom v̄ ← DZm̄,s), then choosing a random preimage v ← f −1
A (y′ − ȳ) under the appro-

priate Gaussian distribution, and outputting v′ = v‖v̄.4

3.4. Randomizing Control

Finally, we show how an arborist can randomize its lattice basis, with a slight loss
in quality. This operation is useful for securely delegating control to another entity,
because the resulting basis is still short, but is (essentially) statistically independent of
the original basis.

The probabilistic polynomial-time algorithm RandBasis(S, s) takes a basis S of an
m-dimensional integer lattice Λ and a parameter s ≥ ‖̃S‖ · ω(

√
logn), and outputs a

basis S′ of Λ, generated as follows.

1. Let i ← 0. While i < m,
(a) Choose v ← SampleD(S, s). If v is linearly independent of {v1, . . . ,vi}, then

let i ← i + 1 and let vi = v.
2. Output S′ = ToBasis(V,HNF(S)).

In the final step, the (unique) Hermite normal form basis HNF(S) of Λ is used to ensure
that no information particular to S is leaked by the output; any other publicly available
(or efficiently computable) basis of the lattice could also be used in its place.

Lemma 3.3. With overwhelming probability, S′ ← RandBasis(S, s) repeats Step 1 at
most O(m2) times, and ‖S′‖ ≤ s · √m. Moreover, for any two bases S0,S1 of the same
lattice and any s ≥ max{‖S̃0‖,‖S̃1‖} · ω(

√
logn), the outputs of RandBasis(S0, s) and

RandBasis(S1, s) are within negl(n) statistical distance.

Proof. The bound on ‖S′‖ and on the number of iterations follow immediately from
Lemma 2.4, items 1 and 3, respectively. The claim on the statistical distance follows
from the fact that each sample v drawn in Step 1 has the same distribution (up to negl(n)

statistical distance) whether S0 or S1 is used, and the fact that HNF(S0) = HNF(S1)

because the Hermite normal form of a lattice is unique. �

4. Signatures

Here we use bonsai tree principles to construct a signature scheme that is existentially
unforgeable under a static chosen-message attack (i.e., eu-scma-secure). As discussed
in Sect. 2.2, to convert this into an (offline/online) signature scheme that is unforgeable
under adaptive chosen-message attack (eu-acma-secure), we need a suitable notion of
chameleon hash, which we also construct here.

4 An earlier version of this paper [17] explicitly defined a sampling procedure using this algorithm, and

gave a (somewhat involved) proof that it correctly samples from a discrete Gaussian over Λ⊥(A′). Here,
correctness follows directly by examining the execution of SampleD on the structured basis S′ .

618 D. Cash et al.

4.1. Chameleon Hash

Let n ≥ 1, q ≥ 2 be integers, let m = O(n logq) and L̃ be as in Proposition 3.1, let
s = L̃ · ω(

√
logn) be a Gaussian parameter, and let k ≥ 1 be an integer message length.

Define a message space M = {0,1}k , randomness space R = {r ∈ Z
m : ‖r‖ ≤ s · √m}

with distribution DZm,s (restricted to R, which by Item 1 of Lemma 2.4 changes the
distribution by only negl(n) statistical distance), and range Y = Z

n
q .

For A0 ∈ Z
n×k
q , A1 ∈ Z

n×m
q and A = A0‖A1, define the hash function hA : M × R →

Y as

hA(m; r) = A · (m‖r) = A0m + A1r.

Lemma 4.1. The family H = {hA} (under the uniform distribution over H) is a family
of chameleon hash functions, assuming that SISq,β is hard for β = √

k + 4s2 · m.

Proof. It is easy to verify that all of the required properties described in Sect. 2.2 hold.
First, each hA is efficiently computable given A, and for every m ∈ M, the distribution
of (A, hA(m; r)) for r ← DZm,s is within negl(n) statistical distance of uniform over
H × Y by Item 4 of Lemma 2.4.

For the trapdoor property, a uniformly random (up to negl(n) statistical distance)
instance hA = A0‖A1 may be selected by choosing A0 at random, and generating
(A1,S) ← GenBasis(1n,1m,q), where S is a basis of Λ⊥(A1) and ‖̃S‖ ≤ L̃, as de-
scribed in Proposition 3.1. Then for any y ∈ Z

n
q and m ∈ M, by Item 5 of Lemma 2.4

one can use the basis S to efficiently sample randomness r from (a distribution within
negl(n) statistical distance of) DΛ⊥

u (A1),s
, where u = y − A0m ∈ Z

n
q . By Item 4 of

Lemma 2.4, this is the distribution of r ∈ R conditioned on hA(m; r) = y.
Finally, for the collision-resistance property, note that any collision m‖r �= m′‖r′ ∈

M × R for hA (for uniformly random A) immediately yields a solution z = (m −
m′)‖(r − r′) �= 0 to the instance A of SISq,β , because

Az = hA(m; r) − hA(m′; r′) = 0,

and ‖z‖2 ≤ k + 4s2 · m = β2 by the triangle inequality. �

4.2. Signature Scheme

In addition to the main SIS parameters n and q , our signature scheme also involves:

• a dimension m = O(n logq) and a bound L̃ = O(
√

n logq), as per Proposition 3.1;
• a (hashed) message length k ≥ 1, which induces a ‘total dimension’ m′ = m ·

(k + 1);
• a Gaussian parameter s = L̃ · ω(

√
logn).

The scheme SIG is defined as follows.

• Gen: generate (A0,S0) ← GenBasis(1n,1m,q) (see Proposition 3.1), where A0 ∈
Z

n×m
q is negligibly close to uniform and S0 is a basis of Λ⊥(A0) with ‖S̃0‖ ≤ L̃.

(Recall that the columns of A0 generate all of Z
n
q , with overwhelming probability.)

Then for each (b, j) ∈ {0,1} × [k], choose uniformly random and independent
A(b)

j ∈ Z
n×m
q . Output vk = (A0, {A(b)

j }) and sk = (S0, vk).

Bonsai Trees, or How to Delegate a Lattice Basis 619

• Sign(sk,μ ∈ {0,1}k): let Aμ = A0‖A(μ1)
1 ‖ · · · ‖A(μk)

k ∈ Z
n×m′
q . Output v ←

DΛ⊥(Aμ),s , via

v ← SampleD
(
ExtBasis(S0,Aμ),0, s

)
.

(In the rare event that ‖v‖ > s · √m′ or v = 0 (Lemma 2.4, items 1 and 2, respec-
tively), resample v. Note also that the optimization of Sect. 3.3.1 applies here.)

• Ver(vk,μ,v): let Aμ be as above. Accept if v �= 0, ‖v‖ ≤ s ·√m′, and v ∈ Λ⊥(Aμ);
else, reject.

Completeness is by inspection. Note that the matrix A0 can be omitted from the
public key (thus making the total dimension m · k), at the expense of a secret key that
contains two short bases S(b)

1 of Λ⊥(A(b)
1), for b = 0,1. The scheme and its security

proof are easy to modify accordingly.

4.3. Security

Theorem 4.2. There exists a PPT oracle algorithm (a reduction) S attacking the
SISq,β problem for β = s · √m′ such that, for any adversary F mounting an eu-scma
attack on SIG and making at most Q queries,

AdvSISq,β

(
S F) ≥ Adveu-scma

SIG (F)/
(
(k − 1) · Q + 1

) − negl(n).

Proof. Let F be an adversary mounting an eu-scma attack on SIG. We construct a re-
duction S attacking SISq,β . The reduction S takes as input m′′ = m · (2k +1) uniformly
random and independent samples from Z

n
q in the form of a matrix A ∈ Z

n×m′′
q , parsing

A as

A = A0
∥
∥U(0)

1

∥
∥U(1)

1

∥
∥ · · ·∥∥U(0)

k

∥
∥U(1)

k

for matrices A0,U(b)
i ∈ Z

n×m
q .

The reduction S simulates the static chosen-message attack to F as follows. First,
S invokes F to receive Q′ ≤ Q messages μ(1),μ(2), . . . ,μ(Q′) ∈ {0,1}k . Then S com-
putes the nonempty set P of all strings p ∈ {0,1}≤k having the property that p is a
shortest string for which no μ(i) has p as a prefix. Equivalently, P is the set of maxi-
mal subtrees of {0,1}≤k (viewed as a tree) that do not contain any of the queried mes-
sages. Such a set may be computed iteratively as follows. Start with P = {ε}. Then for
i = 1, . . . ,Q′, do the following: if any element p ∈ P is a prefix of μ(i) (there will be
at most one such p), then remove p from P , and add to P all the k − |p| elements
p′ ∈ {0,1}≤k of length |p′| ≥ |p| + 1 that agree with the length-(|p′| − 1) prefix of
μ(i) on all but the last bit of p′. By induction, it is straightforward to see that after
the ith iteration (the one dealing with μ(i)), the set P is correct for the message set
{μ(1), . . . ,μ(i)}, so the algorithm is correct. Finally, the size of the output set P is at
most (k − 1) · Q + 1, because initially |P | = 1, and in each iteration the size of P can
grow by at most k − 1 elements (up to k can be added, and only if one is removed).

Next, S chooses some p from P uniformly at random, letting t = |p|. It then provides
an SIG verification key vk = (A0, {A(b)

j }) to F , generated as follows:

620 D. Cash et al.

• Uncontrolled growth: for each i ∈ [t], let A(pi)
i = U(0)

i . For i = t + 1, . . . , k, and

b ∈ {0,1}, let A(b)
i = U(b)

i .

• Controlled growth: for each i ∈ [t], invoke Proposition 3.1 to generate A(1−pi)
i and

basis Si of Λ⊥(A(1−pi)
i) such that ‖S̃i‖ ≤ L̃.

Next, S generates signatures for each queried message μ = μ(j) as follows: let i ∈ [t]
be the first position at which μi �= pi (such i exists by construction of p). Then S
generates the signature v ← DΛ⊥(Aμ),s as

v ← SampleD
(
ExtBasis(Si ,Aμ),0, s

)
,

where Aμ = AL‖A(1−pi)
i ‖AR (for some matrices AL,AR) is exactly as in the signature

scheme, and has the form required by ExtBasis. (In the event that v = 0 or ‖v‖ > β =
s · √m′, resample v.)

Finally, if F produces a valid forgery (μ∗,v∗ �= 0), then we have v∗ ∈ Λ⊥(Aμ∗),
for Aμ∗ as defined in the scheme. First, S checks whether p is a prefix of μ∗. If not, S
aborts; otherwise, note that Aμ∗ is the concatenation of A0 and k blocks U(b)

i . Therefore,
by inserting zeros into v∗, S can generate a nonzero v ∈ Z

m′′
so that Av = 0 ∈ Z

n
q .

Finally, S outputs v as a solution to SIS.
We now analyze the reduction. First observe that conditioned on any choice of p ∈ P ,

the verification key vk given to F is negligibly close to uniform, and the signatures given
to F are distributed exactly as in the real attack (up to negligible statistical distance), by
Lemma 2.4 and the fact that s ≥ ‖S̃i‖ · ω(

√
logn). Therefore, F outputs a valid forgery

(μ∗,v∗ �= 0) with probability at least Adveu-scma
SIG (F) − negl(n). Finally, conditioned on

the forgery, the choice of p ∈ P is still negligibly close to uniform, so p is a prefix of
μ∗ with probability at least 1/|P | − negl(n) ≥ 1/((k − 1) · Q + 1) − negl(n). In such
a case, Av = 0 and ‖v‖ = ‖v∗‖ ≤ β by construction, hence v is a valid solution to the
given SIS instance, as desired. �

5. Hierarchical ID-Based Encryption

5.1. Key Encapsulation Mechanism

For our HIBE schemes, it is convenient and more modular to abstract away the en-
cryption and decryption processes into a key-encapsulation mechanism (KEM). The
following LWE-based KEM from [24] (which is dual to the scheme of Regev [48]) is
well-known. To progress to our HIBE systems, it is enough to simply understand the
KEM interface (i.e., the forms of the public/secret keys and ciphertexts) and the condi-
tions on the parameters needed for correct decapsulation.

The scheme KEM is parametrized by a modulus q , dimension m, and Gaussian pa-
rameter s that determines the error distribution χ used for encapsulation. As usual, all
these parameters are functions of the LWE dimension n, and are instantiated based on
the particular context in which KEM is used.

• Gen: Choose A ← Z
n×m
q uniformly at random, x ← DZm,s and set y = Ax ∈ Z

n
q .

Output public key pk = A‖y ∈ Z
n×(m+1)
q and secret key sk = x.

Bonsai Trees, or How to Delegate a Lattice Basis 621

• Encaps(pk = A‖y): Choose s ← Z
n
q and let

b ← Noisyχ

(
At s

)
and b′ ← Noisyχ

(
yt s + κ · �q/2�),

where κ ∈ {0,1} is a uniformly random bit. Output κ and encapsulation σ = b‖b′ ∈
Z

m+1
q .

• Decaps(sk = x, σ = b‖b′): Compute b′ − xtb mod q and output 0 if the result is
closer to 0 than to �q/2� modulo q , and 1 otherwise.

Observe that, conditioned on the public key A‖y, the secret decapsulation key x has
distribution DΛ⊥

y (A),s . Later on, our HIBE schemes will generate a decapsulation key for

a given A and y using x ← SampleD(S,A,y, s), where S is a suitable basis of Λ⊥(A).
By Item 5 of Lemma 2.4, the behavior of Decaps is the same (up to negligible error
probability) using such an x.

The following lemma is standard from prior work, e.g., [24].

Lemma 5.1 (Correctness and Security). Let m ≥ Cn lgq for any fixed constant C > 1,
let q ≥ 4s(m+1), and let χ be the discretized Gaussian with parameter α, where 1/α ≥
s
√

m + 1 · ω(
√

logn). Then Decaps is correct with overwhelming probability over all
the randomness of Gen and Encaps. Moreover, there exists a PPT oracle algorithm
(a reduction) S attacking the LWEq,χ problem such that, for any adversary A mounting
an ind-cpa attack on KEM,

AdvLWEq,χ

(
S A) ≥ Advind-cpa

KEM (A) − negl(n).

As explained in [24], the basic single-bit scheme can be amortized to allow for keys of
length � = poly(n) bits, with ciphertexts in Z

m+�
q and public keys in Z

n×(m+�)
q . Here the

secret key consists of � independent samples xi ← DZm,s for i ∈ [�], and the public key
includes the corresponding syndromes yi = Axi (along with A itself). Each bit of the
KEM key is concealed using a different syndrome, but using the same s and ‘preamble’
b ← Noisyχ (At s). Furthermore, it is also possible to conceal Ω(logn) encapsulated
bits per syndrome by using a smaller error rate α, which yields an amortized expansion
factor of O(1). For simplicity, in this work we deal only with encapsulation of single
bits, but all of our schemes can be amortized in the manner described above.

We point out one nice property of KEM, which is convenient for the security proof
of our HIBE schemes: for any dimensions m ≤ m′ (and leaving all other parameters
the same), the adversary’s view for dimension m may be produced by taking a view for
dimension m′, and truncating the values A ∈ Z

n×m′
q and b ∈ Z

m′
q to any m out of m′ of

their components (i.e., columns of A and corresponding entries of b).

5.2. A Generalized Hierarchical Scheme

In this section we describe a generalized hierarchical identity-based encryption scheme,
called GENHIBE, which we later instantiate in different ways to yield concrete construc-
tions in both the random oracle and standard models. The generalized system captures
the essential features of all of our HIBE systems, which are the ability to encrypt to any

622 D. Cash et al.

node in an (implicit) authority tree, and any node’s ability to securely delegate a secret
key to any of its descendants.

In GENHIBE there is an identity tree of depth d over some alphabet I D, which is
identified with the set I D≤d in the natural way: the empty string ε ∈ I D≤d is the root
of the tree, and an identity id′ is a descendant of id if and only if id is a proper prefix
of id′. Each identity id is implicitly assigned a public key pkid = Aid‖yid for the KEM
scheme described above in Sect. 5.1. These public keys must have the property that if
id′ is a descendant of id, then Aid′ is an extension of Aid (that is, Aid′ = Aid‖Ā for some
Ā). The secret key for an identity id consists of a decapsulation key xid for its KEM
public key Aid‖yid , as well as a relatively short basis Sid for the lattice Λ⊥(Aid). (In our
instantiations, the short basis is used only for delegation, and so it can be omitted for
users at the leaves of the hierarchy.)

In GENHIBE we deliberately leave out the Setup algorithm, which must be provided
by an instantiation. The algorithm should output a master public key mpk and the root-
level secret key (Sε,xε), as well a description of the mapping from an identity id to a
KEM public key pkid . These are the only aspects of GENHIBE that need to be defined
when instantiating it. (The Extract, Encaps, and Decaps algorithms are common to all
the instantiations, and rely on the assignment of KEM public keys to identities.) Looking
ahead, an instantiation of GENHIBE will assign public keys to identities either via a
random oracle, or (in the standard model) by piecing together different parts of the
master public key.

The GENHIBE scheme is parametrized by a few quantities that are indexed by depth
within the hierarchy. For an identity at depth t ≥ 0 (where t = 0 corresponds to the
root),

• mt is the maximum possible dimension of the identity’s associated lattice, where
we require mj ≤ mt for all j < t . (In our instantiations, all identities at a given
depth have the same lattice dimension);

• L̃t is an upper bound on the Gram–Schmidt lengths of the user’s secret short basis;
• st is the Gaussian parameter used to generate the decapsulation key and (when

t ≥ 1) the secret basis, which must exceed L̃j · ω(
√

logn) for all j < t .

These parameters, along with the maximum length of any possible delegation chain
(which is always at most d , but can be less in instantiations), determine the modulus
q and error rate α used in the underlying KEM. We instantiate all the parameters after
defining the GENHIBE scheme.

Definition of GENHIBE The algorithms of GENHIBE are as follows:

• Extract(skid = (Sid,xid), id′ = id‖īd): if t ′ = |id′| > d , output ⊥. Otherwise, let
pkid′ = Aid′ ‖yid′ , where Aid′ is an extension of the Aid component of pkid by as-
sumption. Sample a decapsulation key

xid′ ← SampleD
(
ExtBasis(Sid,Aid′),Aid′ ,yid′ , st ′

)
,

and a basis

Sid′ ← RandBasis
(
ExtBasis(Sid,Aid′), st ′

)
.

Bonsai Trees, or How to Delegate a Lattice Basis 623

Output skid′ = (Sid′ ,xid′).
(Note that as required by RandBasis, we have st ′ ≥ L̃t · ω(

√
logn) ≥ ‖S̃id‖ ·

ω(
√

logn), where t = |id| < t ′. Note also that if |id′| = t ′ = d , we need not gener-
ate Sid′ , because it is only needed for extracting keys for descendants, not decap-
sulation.)

• Encaps(id): Output (κ, σ) ← KEM.Encaps(pkid).
• Decaps(skid = (Sid,xid), σ): Output κ ← KEM.Decaps(xid, σ).

A multi-bit version of GENHIBE follows in the same way from the multi-bit KEM
scheme, by using multiple uniform syndromes yi ∈ Z

n
q and corresponding decapsulation

keys xi , one for each bit of the KEM key.

Instantiating the Parameters Suppose that GENHIBE is instantiated in a setting in
which Extract is invoked only on identities id′ whose lengths are a multiple of some
integer k ≥ 1. (Looking forward, our random-oracle instantiation will use k = 1, and in
our standard-model schemes k will be the output length of some hash function.) Then
it is enough to define st and L̃t only for values of t that are multiples of k.

Let L̃0 be determined by a concrete instantiation, and let s0 = L̃0 · ω(
√

logn). For
t > 0 that is a multiple of k, let

st = L̃t−k · ω(√
logn

)
and L̃t = st · √mt ≤ st · √md.

Note that as required, with overwhelming probability L̃t ≥ ‖S̃id‖ when |id| = t , by
Lemma 3.3. Now unwind the above recurrences to obtain the bounds

st ≤ s0 · (√md · ω(√
logn

))t/k−1 and L̃t ≤ L̃0 · (√md · ω(√
logn

))t/k
.

Finally, to satisfy the hypotheses of Lemma 5.1 that are needed for completeness, we
can let

1/α ≥ sd · √md + 1 · ω(√
logn

)

= L̃0 · Õ(√
md

)d/k
, (5.1)

q ≥ 4sd · (md + 1)

= L̃0 · Õ(√
md

)d/k+1
. (5.2)

(Note also that for each level of the hierarchy it is possible to use a different error rate αt ,
which varies inversely with st · mt .)

Extensions: Anonymity and Chosen-Ciphertext Security With a small modification,
GENHIBE (or more accurately, our concrete instantiations of it) may be made anony-
mous over all levels of the hierarchy. That is, a ciphertext computationally hides the
particular identity to which it was encrypted. The modification is simply to extend the
b component of the KEM ciphertext to have length exactly (d + 1)m, by padding it
with uniformly random and independent elements of Zq . (The decapsulation algorithm
simply ignores the padding.) Anonymity then follows immediately from the pseudoran-
domness of the LWE distribution.

624 D. Cash et al.

Security under chosen-ciphertext attack also follows directly by a transformation
of [12], from ind-cpa-secure HIBE for depth d + 1 to ind-cca-secure HIBE for depth d .

5.3. Full Security in the Random Oracle Model

Here we construct a fully (i.e., aid-ind-cpa) secure HIBE in the random oracle model.
(It is also selectively secure under a tighter security reduction.) The scheme can be
seen as a generalization of the GPV IBE [24] to hierarchical identities. Essentially, we
hash (via a random oracle H) the components of an identity tuple id = (id1, . . . , id�) to
dimension-m matrices Ai,id , which are then concatenated to obtain a KEM public key
Aid for the user. In the security proof, the main technical difficulty is that we have to
embed a given KEM challenge public key as the user public key Aid∗ of the eventual
challenge identity id∗, while at the same time being able to simulate user secret keys
for all identities on which Extract is queried. The problem is that the simulator does
not know the challenge identity id∗ in advance when answering random oracle queries.
Therefore, our simulator “guesses” id∗ (by guessing in which H -query it appears), and
“programs” H ’s outputs on the fly, so that it returns parts of the KEM challenge when
queried on the corresponding parts of id∗, and returns controlled matrices with known
trapdoors on all other queries. This allows for a straightforward simulation, provided
that we guess id∗ correctly, but needs a programmable random oracle. We remark that
due to this guessing strategy, the security reduction loses a factor of roughly Qd

H in its
advantage, where QH is the number of random oracle queries and d is the depth of
the hierarchy. (In a selective-identity attack, of course, the simulator knows exactly at
which query it should embed the KEM challenge, which leads to a tight reduction.)

We remark that to obtain a fully secure HIBE in the random oracle model, it is also
possible to use a generic transformation of Boneh and Boyen [8], which starts from a se-
lectively secure HIBE and applies hash functions to the identities. (We give a standard-
model selectively secure HIBE in Sect. 5.4.1 below.) Compared to this generic trans-
formation, our specific construction is more efficient, mainly because using the random
oracle we can directly encode each identity component as a matrix of dimension m,
instead of dimension k · m where k is the output length of the random oracle. Overall,
then, the dimension of the lattice associated to an identity id at depth � is �m, instead of
(� + 1)km when using the generic transformation. (We also remark that in the generic
transformation, the security reduction also loses a factor of roughly Qd

H in advantage,
relative to the selectively secure system.)

Definition of ROHIBE Our random-oracle scheme ROHIBE is an instantiation of
GENHIBE from Sect. 5.2, so we need only specify the Setup algorithm and define
how an identity id maps to a KEM public key Aid‖yid . Let H : {0,1}∗ → Z

n×m
q and

G : {0,1}∗ → Z
n
q be hash functions modeled as random oracles.

• Setup(1d): Generate (A0,S0) ← GenBasis(1n,1m,q), where A0 ∈ Z
n×m
q is neg-

ligibly far from uniform, and S0 is a basis of Λ⊥(A0) with ‖̃S‖ ≤ L̃0. Output
mpk = (A0, d) and msk = S0.

For an identity vector id = (id1, . . . , idt) ∈ ({0,1}∗)t of length t ≤ d , the KEM public
key pkid = Aid‖yid for id is defined using mpk and the hash functions H , G as

Aid = A0‖A1‖ · · · ‖At ∈ Z
n×(t+1)m
q , yid = G(id) ∈ Z

n
q,

Bonsai Trees, or How to Delegate a Lattice Basis 625

where Ai = H(id1, . . . , idi) ∈ Z
n×m
q .

For technical reasons related to the proof, we also need to modify the Extract algo-
rithm (from GENHIBE) so that the same xid′ is returned every time identity id′ is queries.
This means that the actual algorithm should either be made stateful, or should use a PRF
in the standard way to get repeatable randomness. Alternatively, xid′ can itself be com-
puted using Sid′ , at the expense of using a slightly larger parameter in the SampleD
algorithm, i.e., by running xid′ ← SampleD(Sid′ ,Aid′ ,yid′ ,‖S̃id′ ‖ · ω(

√
logn)).

Instantiating the Parameters In this instantiation of GENHIBE, the lattice dimension
for an identity at depth t is mt = (t + 1) · m, and the initial Gram–Schmidt bound L̃0 =
O(

√
n logq). Using the bound m = O(n logq), we can therefore set the parameters q ,

α using (5.1) and (5.2) so that

logq = Õ(d) and 1/α = √
dn · Õ(

d
√

n
)d

.

Theorem 5.2 (Security of ROHIBE). There exists a PPT oracle algorithm (a reduc-
tion) S attacking KEM (instantiated with dimension dm and q , α as above) such that,
for any adversary A mounting an aid-ind-cpa attack on ROHIBE making QH queries
to the random oracle H and QG queries to the random oracle G,

AdvKEM
(

S A) ≥ Advaid-ind-cpa
ROHIBE (A)/

(
dQd−1

H QG

) − negl(n).

Proof. Let A be an adversary mounting an aid-ind-cpa-attack on ROHIBE. We con-
struct a reduction S attacking KEM. It is given a uniformly random public key pk =
A‖y ∈ Z

n×dm
q × Z

n
q , an encapsulation b‖b′ ∈ Z

dm
q × Zq , and a bit κ which either is en-

capsulated by b‖b′ or is uniform and independent of everything else; the goal of S is to
determine which is the case.

Let QG and QH be the numbers of queries that A issues to H and G, respectively.
In our analysis, we will actually be more generous and let the adversary issue at most
d · QH total queries, where it is allowed QH queries to H for each length of the in-
put tuple. To simplify the analysis, we also assume without loss of generality that (1)
whenever A queries H(id1, . . . , idi), it has already issued the queries H(id1, . . . , idj)

for j < i, and (2) that when A asks for skid , it has already queried H(id) and G(id).
S simulates the attack game on ROHIBE to A as follows. First, S produces a master

public key mpk, encapsulated key, and some secret internal state as follows:

• Guess length of challenge identity and random oracle queries. Choose t∗ ←
[d], a guess for the length of the challenge identity. Choose a vector j∗ =
(j∗

1 , . . . , j∗
t∗−1) ← {1, . . . ,QH }t∗−1 and an index j∗ ← {1, . . . ,QG}. (These

guesses means that S hopes that the j∗
i th distinct query of length 1 ≤ i ≤ t∗ − 1 to

H(·) is a prefix of the challenge identity and that the j∗th distinct query to G(·) is
the challenge identity.)

• Parse the KEM inputs. Parse A as A = A0‖A1‖ · · · ‖Ad−1 ∈ Z
n×dm
q for A0 ∈ Z

n×m
q

and Ai ∈ Z
n×m
q for all i ∈ [d − 1]. Similarly, truncate b to b∗ ∈ Z

t∗m
q .

S gives to A the master public key mpk = (A0, d). To simulate the attack game for A,
S must simulate answers to oracle queries to H and G, queries for user secret keys,

626 D. Cash et al.

and it must also generate the challenge encapsulation. To do this, it maintains two lists,
denoted H and G , which are initialized to be empty and will store tuples of values.
S processes queries as follows.

Queries to H . On A’s ji th distinct query (idji ,1, . . . , idji ,i) of length i to H(·), do
the following: if i ≤ t∗ − 1 and ji = j∗

i , then return Ai (i.e., this branch undergoes
undirected growth). Otherwise, if i ≥ t∗ or ji �= j∗

i , run GenBasis(1n,1m,q) to
generate Ai,ji

∈ Z
n×m
q with corresponding short basis Si,ji

(i.e., this branch under-
goes controlled growth). Store the tuple ((idji ,1, . . . , idji ,i),Ai,ji

,Si,ji
) in list H,

and return Ai,ji
.

Queries to G. On A’s j th distinct query idj to G(·), do the following: if j = j∗ then
return y. (Recall that y was obtained from the KEM input.) Otherwise for j �= j∗,
sample xj ← DZm,st (where t is the depth of idj) and set yj := A(idj,1,...,idj,t−1) ·
xj ∈ Z

n
q . (Recall that we assumed A has already made all relevant queries to H

that in particular define A(idj,1,...,idj,t−1) = H(idj,1, . . . , idj,t−1).) Return yj and
store (idj ,yj ,xj) in list G .

Queries to Extract. When A asks for a user secret key for id = (id1, . . . , idt), we
again assume that A has already made all relevant queries to G and H that de-
fine yid and Aid . If, for some i ∈ [t − 1], Aidi

= H(id1, . . . , idi) is contained in
list H, then S can compute a properly distributed short basis Sid for Aid by run-
ning RandBasis(ExtBasis(Si,idi

,Aid), st), where Si,idi
is obtained from H. If yid is

contained in list G , then S can retrieve a properly distributed vector xid from G sat-
isfying A(id1,...,idt−1)xid = yid . If the generation of skid = (Sid,xid) was successful,
then S returns skid . In all other cases, S aborts (and returns a random bit).

Challenge query for id∗. Let t be the depth of id∗. If t �= t∗, or G(id∗) �= y, or
H(id∗

1, . . . , id∗
i) �= Ai (for one 1 ≤ i ≤ t∗ − 1), then abort. Otherwise, return the

encapsulation b∗‖b′ and the key bit κ .

S runs until A halts, and it outputs whatever bit A outputs.
It remains to analyze the reduction. The master public key given to A is negligibly far

from uniform by the construction of KEM and Proposition 3.1. By the same proposition,
we see that oracle queries to H are properly simulated, up to negligible statistical dis-
tance. Oracle responses for G are negligibly far from uniform by Item 4 of Lemma 2.4.
Due to the truncation property of KEM, the challenge encapsulation is properly dis-
tributed, conditioned on the event that S does not abort. Thus all that remains to check
is the probability that S does not abort; this is at least 1/(dQGQd−1

H)−negl(n), because
its choice of t∗, j∗, and j∗ are perfectly hidden conditioned on the view of A (up to the
negl(n) statistical error of S ’s simulation). �

5.4. Standard-Model Constructions

Here we give HIBE constructions in the standard model that are secure under both
selective and fully adaptive attacks. In Sect. 5.4.1 we describe a binary tree encryption
(BTE) system which is at the heart of all our various HIBE constructions, and prove its
selective security in Sect. 5.4.2. In Sect. 5.4.3 and beyond we extend our HIBE to full
adaptive security.

Bonsai Trees, or How to Delegate a Lattice Basis 627

5.4.1. Binary Tree Encryption

Here we instantiate GENHIBE to obtain a standard-model HIBE for a restricted identity
hierarchy in the form of a binary tree, i.e., with identity alphabet I D = {0,1}. This is
essentially the notion of “binary tree encryption” (BTE) from [16]. Later on we realize
selectively and adaptively secure HIBE schemes for large identity alphabets I D, by
mapping them onto a binary tree.

Definition of BTE We need only define the Setup algorithm and specify how it defines
a public mapping from identities in I D≤d = {0,1}≤d to KEM public keys.

• Setup(d): Generate (A0,S0) ← GenBasis(1n,1m,q) (see Proposition 3.1), where
A0 ∈ Z

n×m
q is negligibly close to uniform and S0 is a basis of Λ⊥(A0) with

‖S̃0‖ ≤ L̃0.
For each (b, j) ∈ {0,1} × [d], generate uniform and independent A(b)

j ∈ Z
n×m
q .

Choose y ∈ Z
n
q uniformly at random, and choose xε ← SampleD(S0,A0,y, s0).

Output mpk = (A0, {A(b)
j },y, d) and skε = (S0,xε).

For an identity id = (id1, . . . , idt) ∈ {0,1}t of length t = |id| ≤ d , the KEM public key
pkid = Aid‖yid for id is defined relative to mpk as

Aid = A0
∥
∥A(id1)

1

∥
∥ · · ·∥∥A(idt)

t ∈ Z
n×(t+1)m
q , yid = y.

Instantiating the Parameters For this instantiation of GENHIBE, the lattice dimension
for an identity at depth t is mt = (t + 1)m, and the initial Gram–Schmidt bound L̃0 =
O(

√
n logq). As in Sect. 5.2, suppose that BTE is used in a setting where Extract is

called only on identities of length divisible by some integer k. Then letting d ′ = �d/k�
and using the bound m = O(n logq), using (5.1) and (5.2) we can set the parameters q ,
α so that

logq = Õ(d ′) and 1/α = √
d ′n · Õ(

d ′√kn
)d ′

.

HIBE from BTE We recall from [16] how to obtain HIBE for any identity space I D
from any BTE. The HIBE master public key is simply a BTE public key, plus a hash
function h : I D → {0,1}k drawn at random from a family of universal one-way (or
collision resistant) hash functions. Each HIBE identity id = (id1, . . . , id�) = I D≤d is
mapped to the BTE identity (h(id1), . . . , h(id�)) ∈ ({0,1}k)�. Therefore, to emulate a
HIBE hierarchy of depth d ′ requires a BTE hierarchy of depth d = d ′k, and Extract in
the BTE is only ever called on identities of length divisible by k. It is easy to verify that
if the BTE is selectively (sid-ind-cpa) secure, then so is the resulting HIBE.

5.4.2. Selective Security of BTE

Recall that in a selective-identity (sid-ind-cpa) attack, the adversary first has to declare
its challenge identity before receiving the master public key mpk. In the security proof,
the simulator can therefore set up mpk to depend on the challenge identity. In our sim-
ulation, all matrices in mpk will either be undirected, or controlled by the simulator. As
we have seen, a matrix A = A1‖ · · · ‖A� is undirected if all Ai are undirected, while A
is controlled if and only if at least one Ai is controlled. In the simulation, A0 will be

628 D. Cash et al.

undirected, so a user secret key for identity id can be constructed if and only if at least
one of the A(idi)

i is controlled. We will set up these matrices so that: (1) for all id that
can appear in Extract queries (i.e., those which differ from id∗ in at least one position),
Aid is controlled, and (2) for the challenge identity id∗, Aid∗ is undirected.

Theorem 5.3 (Security of BTE). There exists a PPT oracle algorithm (a reduction)
S attacking KEM (instantiated with dimension (d + 1)m and q,α as above) such that,
for any adversary A mounting a sid-ind-cpa attack on BTE,

AdvKEM
(

S A) ≥ Advsid-ind-cpa
BTE (A) − negl(n).

Proof. We construct a reduction S attacking KEM, which has oracle access to an
adversary A mounting a sid-ind-cpa attack on BTE. The reduction is given a uni-
formly random KEM public key pk = A‖y ∈ Z

n×(d+1)m
q × Z

n
q , an encapsulation b‖b′ ∈

Z
(d+1)m
q × Zq , and a bit κ which either is encapsulated by b‖b′ or is uniform and inde-

pendent of everything else; the goal of S is to determine which is the case.
S simulates the (selective-identity) attack on BTE to A as follows. First, S invokes A

on 1d and receives its challenge identity id∗ of length t∗ = |id∗| ∈ [d]. Then S produces
a master public key mpk, encapsulation, and some secret internal state as follows:

• Parsing the KEM inputs. Parse A as A = A0‖A1‖ · · · ‖Ad ∈ Z
n×(d+1)m
q for Ai ∈

Z
n×m
q for all i ∈ {0, . . . , d}. Similarly, truncate b to b∗ ∈ Z

(t∗+1)m
q .

• Undirected growth. For each i ∈ [t∗], let A
(id∗

i)

i = Ai .

• Controlled growth. For each i ∈ [t∗], generate A
(1−id∗

i)

i ∈ Z
n×m
q and basis Si by

invoking GenBasis(1n,1m,q). If t∗ < d , then for each b ∈ {0,1} generate A(b)
t∗+1

and basis S(b)
t∗+1 by two independent invocations of GenBasis(1n,1m,q). For each

i > t∗ + 1 (if any) and b ∈ {0,1}, generate A(b)
i ∈ Z

n×m
q uniformly at random.

S gives to A the master public key mpk = (A0, {A(b)
j },y, d), the encapsulation b∗‖b′,

and the key bit κ .
Then S answers each Extract query on an identity id that is not a prefix of (or equal

to) id∗ as follows:

• If t = |id| ≤ t∗, then let i ≥ 1 be the first position at which idi �= id∗
i . Answer the

query with (Sid,xid), which are computed by

Sid ← RandBasis
(
ExtBasis(Si ,Aid), st

)
,

xid ← SampleD
(
ExtBasis(Si ,Aid),Aid,yid, st

)
.

• If t = |id| > t∗, answer the query with (Sid,xid), which are computed by

Sid ← RandBasis
(
ExtBasis

(
S

(idt∗+1)

t∗+1 ,Aid
)
, st

)
,

xid ← SampleD
(
ExtBasis

(
S

(idt∗+1)

t∗+1 ,Aid
)
,Aid,yid, st

)
.

Finally, S outputs whatever bit A outputs.

Bonsai Trees, or How to Delegate a Lattice Basis 629

We now analyze the reduction. First, observe that the master public key given to A
is negligibly close to uniform (hence properly distributed), by hypothesis on KEM and
by Proposition 3.1. Next, the answers to Extract queries are negligibly close to those
in the real attack, by Lemma 3.3; note that the Gram–Schmidt vectors of each basis
Si ,S(b)

t∗+1 are sufficiently short to invoke RandBasis and SampleD as above. Finally, the
encapsulation b∗‖b′ (for identity id∗) and key bit κ are distributed as in the real attack,
by the truncation property of KEM. Therefore, S ’s overall advantage is within negl(n)

of A’s advantage, as desired. �

5.4.3. Fully Secure HIBE

Our fully secure HIBE is essentially our BTE scheme, with identity components mapped
to binary strings via a suitable kind of hash function (not just a UOWHF, which was
sufficient for selectively secure HIBE). An identity id = (id1, . . . , id�) ∈ I D≤d maps
to a BTE identity (H1(id1), . . . ,H�(id�)) ∈ ({0,1}λ)� for suitable hash functions Hi

specified in the public key.
As before, we need the simulator to embed an undirected KEM challenge into the

master public key so that it corresponds to the public key Aid∗ of the target identity,
while also having enough controlled matrices to allow for answering Extract queries. In
a fully adaptive attack, the adversary may choose the challenge identity id∗ dynamically
and adaptively, making this a difficult balance to strike. To overcome this obstacle, we
employ a probabilistic argument along the lines of the one in [8]. Concretely, we set up
the master public key such that each Aid is totally undirected with a certain probability.
A sophisticated construction of the hash functions Hi will ensure that the corresponding
events are sufficiently independent. That is, even an adversary that adaptively asks for
user secret keys cannot manage to produce an identity id for which Aid is guaranteed
to be either undirected or controlled. By setting the probabilities in the right way (de-
pending on the adversary’s complexity), we can ensure that with significant probability,
all Aid associated with Extract queries are controlled, while Aid∗ is undirected. In this
event, a successful simulation will be possible. Of course, we will have to take care that
the event of a successful simulation is (at least approximately) independent of the adver-
sary’s view. To achieve this independence, we will employ an “artificial abort” strategy
similar to the one from [53].

Definition of SMHIBE Let H = (Hn)n be a family of hash functions H : {0,1}n →
{0,1}λ, whose properties are described below in Sect. 5.4.4.

Our standard-model HIBE scheme SMHIBE is just the BTE scheme from Sect. 5.4.1,
implemented with a suitable mapping from HIBE to BTE identities. Concretely, to ob-
tain a HIBE scheme that supports identities id = (id1, . . . , id�) ∈ ({0,1}n)� of up to d

levels, we will add to BTE’s master public key d hash functions H1, . . . ,Hd . A HIBE
identity (id1, . . . , id�) then maps to the binary string (i.e., BTE identity)

(
H1(id1), . . . ,H�(id�)

) ∈ {0,1}λ·�.

For convenience, we restate the entire modified Setup algorithm; we also slightly mod-
ify the notation so it is easier to see how the pieces of mpk are assembled to generate
user public keys.

630 D. Cash et al.

• Setup(1d): Using Proposition 3.1, generate A0 ∈ Z
n×m
q and a corresponding short

basis S0 ∈ Z
m×m with ‖S̃0‖ ≤ L̃0. Also sample uniformly random and independent

matrices Bi,u,b ∈ Z
n×m
q for i ∈ [d], u ∈ [λ], b ∈ {0,1}, and a vector y ∈ Z

n
q . Finally,

choose H1, . . . ,Hd ← Hn. Output

mpk = (
A0,y, {Bi,u,b}(i,u,b)∈[d]×[λ]×{0,1}, {Hi}i∈[d]

)
and msk = (mpk,S0).

For a HIBE identity id = (id1, . . . , id�) ∈ ({0,1}n)�, we define

Aid := A0‖A1,id1‖ · · · ‖A�,id�
∈ Z

n×(λ�+1)m
q

where Ai,idi
:= Bi,1,t1‖ · · · ‖Bi,λ,tλ ∈ Z

n×λm
q , (5.3)

where (t1, . . . , tλ) := Hi(idi) ∈ {0,1}λ. Note that the user secret key for an identity id
therefore consists of a basis part Sid for Λ⊥(Aid) and a decapsulation key xid satisfying
Aidxid = y. For brevity, we will write id|� := (id1, . . . , id�) for � ≤ |id|.

Instantiating the Parameters In our scheme SMHIBE, each resulting BTE identity
component idi is a λ-bit string, and thus leads to k = λ matrices of dimension m, which
are appended to form Aid . Furthermore, the root matrix Aε is of dimension m. With
a maximal depth of d , each individual KEM public key matrix Aid is therefore of di-
mension at most (dλ + 1)m. In particular, we can use parameters as in Sect. 5.4.1, with
k = λ.

5.4.4. Admissible Hash Functions

Definition To achieve full security, we will require a hash function (mapping identities
to bit strings) with certain special properties. Concretely, we use a variant of the admis-
sible hash functions from [9]. Let H = {Hn} be a collection of distributions of functions
H : Cn → Dn = {0,1}λ. For H ∈ Hn, K ∈ {0,1,⊥}λ, and x ∈ Cn, define

FK,H (x) =
{
CO, if ∃u ∈ {1, . . . , λ} : tu = Ku,

UN, if ∀u ∈ {1, . . . , λ} : tu �= Ku,
for (t1, . . . , tλ) = H(x).

For μ ∈ {0, . . . , λ}, denote by Kμ the uniform distribution on all keys K ∈ {0,1,⊥}λ
having exactly μ non-⊥ components. For a function Δ : N

2 → R, we say that H is
Δ-admissible if for every polynomially bounded Q = Q(n), there exists an efficiently
computable function μ = μ(n), and efficiently recognizable sets badH ⊆ (Cn)

∗ (H ∈
Hn), so that the following holds:

• For every PPT algorithm C that, on input a function H ∈ Hn, outputs a vector
x ∈ CQ+1

n , the function

Advadm
H (C) := Pr

[
x ∈ badH | H ← Hn; x ← C(H)

]

is negligible in n.

Bonsai Trees, or How to Delegate a Lattice Basis 631

• For every H ∈ Hn and every x = (x0, . . . , xQ) ∈ CQ+1
n \ badH , we have

Pr
[
FK,H (x0) = UN∧ FK,H (x1) = · · · = FK,H (xQ) = CO

] ≥ Δ(n,Q),

where the probability is over uniform K ∈ Kμ(n,Q).

We say that H is admissible if H is admissible for some Δ = Δ(n,Q) which is signifi-
cant for every polynomial Q = Q(n).

Intuition We will eventually use H on input an identity component id ∈ Cn. The output
t = H(id) ∈ {0,1}λ will determine a selection B1,t1 , . . . ,Bλ,tλ out of 2λ matrices Bu,b

(for (u, b) ∈ [λ] × {0,1}). The vector K ∈ {0,1,⊥}λ indicates for which Bu,b we know
a trapdoor during our security proof. (Concretely, we will know a trapdoor for Bu,Ku ;
if Ku = ⊥, then we will not know a trapdoor for either Bu,0 or Bu,1.) Using this setup,
FK,H (id) = CO means that we know a trapdoor for at least one of the matrices Bu,tu

appearing in

B := B1,t1‖ · · · ‖Bλ,tλ ,

where t = H(id). Hence, we can derive a trapdoor for B using Lemma 3.2, and we can
say that B is controlled. If FK,H (id) = UN, then we can hope to embed an undirected
KEM challenge into this matrix. (This also explains the notation of F -images.)

In the definition of admissibility, we consider adversarially chosen identities x0, . . . ,

xQ, where x0 is the challenge identity, and the xi (for i ≥ 1) are identities from user
secret key queries. We will be interested in the case that x0 is mapped to an undirected
matrix (i.e., FK,H (x0) = UN), while the other xi are mapped to controlled matrices (i.e.,
FK,H (xi) = CO). The second condition of admissibility requires that the probability that
this happens is at least Δ for a suitable choice of keys K and “good” query vectors x.
The first condition states that it is computationally infeasible to find “bad” query vec-
tors. (In the concrete construction mentioned below, “bad” query vectors correspond to
collisions of an underlying cryptographic hash function.) Note that the first condition
(“bad” vectors are infeasible to find) is computational, while the second condition is
purely statistical.

Taken together, admissibility of H hence simply means that with significant probabil-
ity, (1) all user secret key queries of an adversary attacking SMHIBE refer to controlled
matrices B, while (2) the (adversarially selected) challenge identity is mapped to an
undirected matrix B.

We stress that while the security reduction depends on the parameter Δ (and thus on
the number Q of user secret key queries), the hash function itself does not. In particular,
the resulting HIBE scheme does not make any assumptions about Q (except, of course,
that Q is bounded by some a-priori unknown polynomial).

Difference from the Definition of [9] Note that our definition of admissibility is con-
ceptually different from that of [9]. The reason for the change is that our definition
is better suited for our purposes. Concretely, their definition is based upon indistin-
guishability from a (biased) random function. However, their construction only achieves
asymptotic indistinguishability (i.e., negligible distinguishing advantage) when the “tar-
get” random function is constant. (In their notation, this corresponds to the case when γ

632 D. Cash et al.

is negligible, so that Pr[FK,H (x) = 1] = 1 − negl(n).) Such a function is not very use-
ful for asymptotic purposes. In an asymptotic sense, their construction becomes useful
only with parameters that cause the distinguishing advantage to become non-negligible
(but still smaller than the inverse of a given polynomial). With that parameter choice,
our definition allows for a conceptually simpler analysis. Namely, it separates certain
negligible error probabilities (of x ∈ badH) from significant, by purely combinatorial
bounds on the probability of the ‘simulation-enabling’ event

good := [
FK,H (x0) = UN∧ FK,H (x1) = · · · = FK,H (xQ) = CO

]
.

Specifically, we can bound Pr[good] for every x �∈ badH , which simplifies the artificial
abort step below. Note that while the original analysis from [9] does not incorporate an
artificial abort step, this actually would have been necessary to guarantee sufficient in-
dependence in (their version of) the event good. This becomes an issue in [9, Claim 2],
when the success probability of an adversary conditioned on good is related to its orig-
inal (unconditioned) success probability.

Constructions In [9] it is shown how to construct admissible hash functions from a
given collision-resistant hash function family. And since collision-resistant hash func-
tions can be built from the SIS problem (which is no easier than the LWE problem),
this does not entail extra assumptions in the encryption context. While the construc-
tion from [9] is proved to satisfy the definition of admissibility from that work, the
proof actually transfers directly to our definition as well. For parameter choices as in
[9, Sect. 5.3], we get a single hash function with output length λ = O(n2+ε) (for arbi-
trary ε > 0) that is Δ-admissible with Δ = Θ(1/Q2).5

5.4.5. Full Security of SMHIBE

If the hash function family H is admissible, then we can prove full security. Un-
fortunately, we only know constructions of admissible hash functions that require
λ = O(n2+ε), so the resulting scheme is not very practical. We base the security of
SMHIBE on that of the KEM scheme of Sect. 5.1 (with q ′ = q , n′ = n, and m′ = 2dλm).

Theorem 5.4. Let A be an adversary mounting an aid-ind-cpa attack on SMHIBE that
makes at most Q(n) Extract queries. Then for every polynomial S = S(n), there exists
an adversary S A on KEM’s ind-cpa security, and an adversary C on H’s admissibility
such that

Advaid-ind-cpa
SMHIBE (A) ≤ d · Advadm

H (C) + Advind-cpa
KEM (S A)

Δ(n,Q)d
+ 1

S(n)
+ negl(n). (5.4)

The running time of C is roughly that of the aid-ind-cpa experiment with A, and
the running time of S A is roughly that of the aid-ind-cpa experiment with A, plus
O(n2QS/Δd) steps.

5 In the notation of [9], we replace the output length βH of the original hash function with k, and bound

the number Q of hash function queries by 2kε/2
. Note that Q will later correspond to the number of (online)

user secret key queries, so we bound Q by a comparatively small exponential function.

Bonsai Trees, or How to Delegate a Lattice Basis 633

Note that for the admissible hash function from [9], Δ(n,Q)d = Θ(1/Q2d) is inverse
polynomial for any fixed d . Since S in Theorem 5.4 is arbitrary, we obtain the following.

Corollary 5.5. If H is admissible, and if KEM is ind-cpa secure, then SMHIBE is
aid-ind-cpa-secure.

5.4.6. Proof of Theorem 5.4

We proceed in games, with Game 0 being the original aid-ind-cpa experiment with
adversary A. We assume without loss of generality that A always makes exactly
Q = Q(n) user secret key queries. We denote these queries by idj = (idj

1, . . . , idj
�j

)

(for 1 ≤ j ≤ Q), and the challenge identity chosen by A as id∗ = (id∗
1, . . . , id∗

�∗). By
outi , we denote the experiment’s output in Game i. By definition,

∣
∣Pr[out0 = 1] − 1/2

∣
∣ = Advaid-ind-cpa

SMHIBE (A). (5.5)

In the following, for every i ∈ [d], let I DQ
i := ⋃

j {idj
i } be the set of all level-i iden-

tities contained in user secret key queries. Let I D∗
i := {id∗

i } be the level-i challenge

identity (or the empty set if �∗ < i). Note that 1 ≤ |I DQ
i | ≤ Q and 0 ≤ |I D∗

i | ≤ 1. For
our upcoming probabilistic argument we need actually identity sets of a fixed size, so
we pad all I DQ

i and I D∗
i in some canonical (but arbitrary) way with unused identities.

Concretely, for all i, let I DUN
i ⊇ I D∗

i and I DCO
i ⊇ I DQ

i \ I D∗
i be disjoint, and such

that |I DUN
i | = 1 and |I DCO

i | = Q. Intuitively, the (singleton) sets I DUN
i contain those

identities which we need to map to undirected matrices, while the I DCO
i should map to

controlled matrices.
Furthermore, let

−−→I Di ∈ ({0,1}n)Q+1 be the vector whose first component is the
(unique) element of I DUN

i , and whose remaining Q components are the elements of

I DCO
i (in some canonical order). Intuitively,

−−→I Di ∈ ({0,1}n)Q+1 plays the role of the
input vector x in the definition of admissibility. (That is, we will be interested in the case
that its first component is mapped to an undirected matrix, while the other components
are mapped to controlled matrices.)

In Game 1, we eliminate the “bad H-queries.” Namely, Game 1 aborts (and outputs

a uniform bit) whenever
−−→I Di ∈ badHi

for some i. Here, badHi
denotes the set of “bad

H-queries” that comes with the admissibility of H. In the concrete admissible hash
function mentioned above, e.g., the set badHi

corresponds to collisions of an underlying
cryptographic hash function. A straightforward reduction shows

∣
∣Pr[out1 = 1] − Pr[out0 = 1]∣∣ ≤ d · Advadm

H (C)

for a suitable adversary C on H’s admissibility. The factor of d comes from the fact that
we are actually using d different admissible hash functions, one for each level.

In Game 2, after the adversary has terminated, we let an event good2 occur indepen-
dently with probability Δd . (That is, we independently toss a coin with bias Δd , and let
good2 be the event that the coin comes out 1.) We abort the experiment (and output a
uniformly random bit) if ¬good2 occurs. We get

Pr[out2 = 1] − 1/2 = Pr[good2]
(
Pr[out1 = 1] − 1/2

) = Δd
(
Pr[out1 = 1] − 1/2

)
.

634 D. Cash et al.

Intuitively, this seemingly meaningless and unforced artificial abort step paves the way
for our later refinements. In particular, we will later on have to deal with a (forced)
abort event which can happen with a probability up to (but not necessarily exactly) Δd .
However, the adversary’s output distribution should be (at least approximately) inde-
pendent of the abort event. Hence, we will fix the probability for an abort to Δd already
at this point, and later on take care that the abort always happens with (roughly) the
same probability.

In Game 3, we change the abort policy. Namely, after the adversary has terminated,

we first attach labels to the identities in all
−−→I Di . To this end, let

Fi(id) = FKi,Hi
(id) =

{
CO, if ∃u ∈ {1, . . . , λ} : tu = Ki

u,

UN, if ∀u ∈ {1, . . . , λ} : tu �= Ki
u,

for (t1, . . . , tλ) = Hi(id). Here, for every i, Ki = (Ki
1, . . . ,K

i
λ) ∈ {0,1,⊥}λ is initially

chosen by the experiment uniformly among all K ∈ {0,1,⊥}λ with exactly μ non-
⊥ components. If Fi(id) = CO, then id is controlled, and if Fi(id) = UN, then id is
undirected. Later on, controlled identities will correspond to controlled matrices, while
undirected identities will correspond to undirected matrices.

Let Ei denote the event that in Game 3, Fi(id) = CO for all id ∈ I DCO
i and Fi(id) =

UN for all id ∈ I DUN
i . Let E := ∧d

i=1 Ei . By assumption about H, we know that
Pr[E] ≥ Δd .

Ideally, we would like to replace event good2 from Game 2 with event E. Unfor-
tunately, however, E might not be independent of A’s view, so we cannot (directly)
proceed that way. Instead, we use artificial abort techniques. That is, given the identities

in all
−−→I Di , we approximate pE := Pr[E | (−−→I Di)i] by sufficiently often sampling values

of K and attaching colors. Hoeffding’s inequality yields that with �nS/Δd� samples,
we can obtain an approximation p̃E ≥ Δd of pE that satisfies

Pr

[
∣
∣pE − p̃E

∣
∣ ≥ Δd

S

]

≤ 1

2n
.

Now we finally abort if E does not occur. But even if E occurs (which might be with
probability pE > Δd), we artificially enforce an abort with probability 1−Δd/p̃E . Call
good3 the event that we do not abort. We always have

Pr[good3] = pE · Δd

p̃E

= Δd pE

p̃E

.

Hence, except with probability 1/2n,

∣
∣Pr[good3] − Pr[good2]

∣
∣ =

∣
∣
∣
∣Δ

d − Δd pE

p̃E

∣
∣
∣
∣ = Δd

∣
∣
∣
∣
p̃E − pE

p̃E

∣
∣
∣
∣ ≤ Δd Δd

Sp̃E

≤ Δd

S
. (5.6)

Since (5.6) holds for arbitrary
−−→I Di except with probability 1/2n, we obtain the result

that the statistical distance between the output of Game 2 and Game 3 is bounded by

Bonsai Trees, or How to Delegate a Lattice Basis 635

Δd/S + 2−n. Hence,

∣
∣Pr[out3 = 1] − Pr[out2 = 1]∣∣ ≤ Δd

S
+ 1

2n
. (5.7)

In Game 4, we set up the public key differently. We call matrices that are chosen uni-
formly undirected, and matrices that are chosen along with a short basis (using Propo-
sition 3.1) controlled. Now in Game 4, we will set up the public key as follows:

• A0 as controlled (as in the earlier games),
• Bi,u,b as controlled if Ki

u = b (and as undirected if Ki
u �= b).

By Proposition 3.1, this change affects the distribution of the public key only negligibly.
(Note that bases for the controlled Bi,u,b are generated, but never used in Game 4.) We
obtain

∣
∣Pr[out4 = 1] − Pr[out3 = 1]∣∣ = negl(n). (5.8)

In Game 5, we make the following conceptual change regarding user secret key
queries. Namely, upon receiving a user secret key request for id = (id1, . . . , id�), the
experiment immediately aborts (with uniform output) if Fi(idi) = UN for all i. This
change is purely conceptual: since id is not a prefix of the challenge identity id∗, there
is an i with idi ∈ I DCO

i ⊇ I DQ
i \ I D∗

i . But since Fi(idi) = UN for this i, there is a
partial identity idi ∈ I DCO which should map to a controlled matrix but does not (since
actually Fi(idi) = UN). This implies ¬Ei according to the definition of Ei in Game 3,
and thus ¬E. But ¬E implies that we would have aborted anyway, so our additional
abort criterion from Game 5 is purely conceptual. We get

Pr[out5 = 1] = Pr[out4 = 1]. (5.9)

In Game 6, we change the way user secret keys queries id = (id1, . . . , id�) are an-
swered. By the change from Game 5, we may assume that Fi(idi) = CO for some i.
Hence, tu = Ki

u for (t1, . . . , tλ) = Hi(idi) and some u. Thus, the matrix Bi,u,tu that
appears in the decomposition of Aid (see (5.3)) is controlled by our public key setup.
To generate a user secret key, we have to find a short basis for Aid . In Game 4, this is
achieved by algorithms ExtBasis and RandBasis, using the short basis of the first matrix
A0 in the decomposition of Aid . In Game 6, we instead use the short basis of Bi,u,tu that
we have initially generated. By Lemma 3.3, this results in the same distribution of bases
uskid = (Sid,xid), up to negligible statistical distance. Hence

∣
∣Pr[out6 = 1] − Pr[out5 = 1]∣∣ = negl(n). (5.10)

In Game 7, we set up A0 as undirected instead of controlled. (Note that since Game 6,
we do not need a short basis of A0 anymore to generate user secret keys.) Again, by
Proposition 3.1, this change affects the distribution of the public key only negligibly.
We get

∣
∣Pr[out7 = 1] − Pr[out6 = 1]∣∣ = negl(n). (5.11)

636 D. Cash et al.

We finally claim that

Pr[out7 = 1] − 1/2 = Advind-cpa
KEM

(
S A)

(5.12)

for our LWE-based KEM KEM with parameters of q ′ = q , n′ = n, and m′ = (2dλ+1)m,
and the following adversary S A. Recall that S A is given a KEM public key pk, which it
parses as

pk = A‖y = A0‖B1,1,0‖ · · · ‖Bd,λ,1‖y ∈ Z
n×(2dλ+1)m+1
q

with A0,Bi,u,b ∈ Z
n×m
q and y ∈ Z

m
q . Furthermore, S A receives an encapsulation σ ∗ =

b∗‖b′ with

⎛

⎜
⎜
⎜
⎜
⎝

b∗
0

b∗
1,1,0
...

b∗
d,λ,1

⎞

⎟
⎟
⎟
⎟
⎠

:= b∗ ← Noisyχ

⎛

⎜
⎜
⎜
⎜
⎝

A0
t
s

B1,1,0
t
s

...

Bd,λ,1
t
s

⎞

⎟
⎟
⎟
⎟
⎠

, b′ ← Noisyχ

(
ys + κ∗ · �q/2�) (5.13)

for a uniformly chosen KEM key κ∗ ∈ {0,1}. Finally, S A receives a challenge κ , which
is either equal to κ∗, or an independently and uniformly random bit.

Now S A sets up an environment for A as in Game 7. First, S A prepares an SMHIBE
master public key mpk. In this, S A embeds its own challenge matrices A0 and Bi,u,b

as the undirected matrices of mpk. Concretely, S A sets A0 := A0, and Bi,u,b := Bi,u,b

whenever b �= Ki
u. For b = Ki

u, S A chooses Bi,u,b controlled as in Game 7. With this
setup, S A can perfectly play Game 7 with A; in particular, S A can answer all of A’s
user secret key queries (or abort if necessary as in Game 7).

It remains to embed S A’s own challenge σ ∗ into the SMHIBE challenge encapsu-
lation σ ∗ = b∗‖b′ for identity id∗ = (id∗

1, . . . , id∗
�∗). Since otherwise Game 7 aborts

with uniform output, we may assume that E occurs. Hence, for all i, for (t i1, . . . , t
i
λ) =

Hi(id∗
i), and all u, we have Ki

u �= t iu. Thus, we can write

Aid∗ = A0‖B1,1,t1
1
‖ · · · ‖B

�∗,λ,t�
∗

λ
= A0‖B1,1,t1

1
‖ · · · ‖B

�∗,λ,t�
∗

λ

as a concatenation undirected matrices that are part of A. This allows to construct σ ∗
from σ ∗ (as given by (5.13)) through b′ := b′ and

b∗ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b∗
0

b∗
1,1,t1

1
...

b∗
�∗,λ,t�

∗
λ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Observe that this makes σ ∗ an SMHIBE encapsulation of κ∗ (from (5.13)). Hence, we
have a direct correspondence between SMHIBE and KEM challenges. Thus, we can set

Bonsai Trees, or How to Delegate a Lattice Basis 637

the SMHIBE challenge key as κ := κ , and let S A output whatever A eventually outputs.
This finally yields (5.12).

Taking (5.5)–(5.12) together shows (5.4).

Doing Without Artificial Abort The reason why we needed an artificial abort step in
Game 3 is that a certain event E (that determines whether we can carry through the sim-
ulation) is not independent of A’s view. In Game 3, we changed the abort policy to make
good3 (the event that we do not abort) sufficiently independent. (This strategy resembles
Waters’ strategy from [53].) Unfortunately, this results in a rather large computational

overhead, since we need to approximate the probability pE = Pr[E | (−−→I Di)i] on the fly.
Observe that if we had better (i.e., tight lower and upper) bounds on pE in the first place
(e.g., |pE − Δd | < Δd/S always), we would not need this approximation/abort step at
all, since (5.6) and hence (5.7) followed directly by these better bounds. The good news
is that the analysis of H from [9] provides such better bounds for Pr[E], resp. pE . The
bad news is that this comes at a price: using the analysis of [9], |pE − Δd |/Δd depends
in an inversely polynomial way on Q, the number of user secret key queries. Hence, to
achieve |pE − Δd | < Δd/S, we would need to choose fixed H parameters that work
for arbitrary polynomial values of Q. Of course, in an asymptotic sense, we already do
consider arbitrary polynomial values of Q, because A may make up to Q user secret
key queries. However, in a concrete sense, the number of (online) user secret key queries
will typically be much lower than the inverse of A’s distinguishing advantage. Hence,
when considering concrete parameters, we can work with much smaller H parameters
when implementing our artificial abort step, at the price of a slower reduction. This is
why we decided for an artificial abort step.

Acknowledgements

We thank the anonymous reviewers for their helpful comments, and for pointing out a
small error in an earlier formulation of RandBasis.

Peikert was supported by the National Science Foundation under Grants CNS-
0716786, CNS-0749931, and CAREER award CCF-1054495, by the US Department
of Homeland Security under Contract Number HSHQDC-07-C-00006, and the Alfred
P. Sloan Foundation. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation, the US Department of Homeland Security, or the
Sloan Foundation. Hofheinz was supported by an NWO Veni grant. Kiltz was supported
by the research program Sentinels, and by a Sofja Kovalevskaja award of the Alexander
von Humboldt Foundation, funded by the German Federal Ministry for Education and
Research.

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Pail-
lier, H. Shi, Searchable encryption revisited: consistency properties, relation to anonymous IBE, and
extensions. J. Cryptol. 21(3), 350–391 (2008). Preliminary version in CRYPTO 2005

638 D. Cash et al.

[2] S. Agrawal, X. Boyen, Identity-based encryption from lattices in the standard model. Manuscript. July
2009

[3] S. Agrawal, D. Boneh, X. Boyen, Efficient lattice (H)IBE in the standard model, in EUROCRYPT
(2010), pp. 553–572

[4] M. Ajtai, Generating hard instances of the short basis problem, in ICALP (1999), pp. 1–9
[5] M. Ajtai, Generating hard instances of lattice problems. Quad. Mat. 13, 1–32 (2004). Preliminary ver-

sion in STOC 1996
[6] J. Alwen, C. Peikert, Generating shorter bases for hard random lattices, in STACS (2009), pp. 75–86
[7] M. Bellare, A. Boldyreva, A. Desai, D. Pointcheval, Key-privacy in public-key encryption, in ASI-

ACRYPT (2001), pp. 566–582
[8] D. Boneh, X. Boyen, Efficient selective-ID secure identity-based encryption without random oracles, in

EUROCRYPT (2004), pp. 223–238
[9] D. Boneh, X. Boyen, Secure identity based encryption without random oracles, in CRYPTO (2004),

pp. 443–459
[10] D. Boneh, M.K. Franklin, Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3),

586–615 (2003). Preliminary version in CRYPTO 2001
[11] D. Boneh, G.D. Crescenzo, R. Ostrovsky, G. Persiano, Public key encryption with keyword search, in

EUROCRYPT (2004), pp. 506–522
[12] D. Boneh, R. Canetti, S. Halevi, J. Katz, Chosen-ciphertext security from identity-based encryption.

SIAM J. Comput. 36(5), 1301–1328 (2007)
[13] D. Boneh, C. Gentry, M. Hamburg, Space-efficient identity based encryption without pairings, in FOCS

(2007), pp. 647–657
[14] X. Boyen, Lattice mixing and vanishing trapdoors: a framework for fully secure short signatures and

more, in Public Key Cryptography (2010), pp. 499–517
[15] X. Boyen, B. Waters, Anonymous hierarchical identity-based encryption (without random oracles), in

CRYPTO (2006), pp. 290–307
[16] R. Canetti, S. Halevi, J. Katz, A forward-secure public-key encryption scheme. J. Cryptol. 20(3), 265–

294 (2007) Preliminary version in EUROCRYPT 2003
[17] D. Cash, D. Hofheinz, E. Kiltz, How to delegate a lattice basis. Cryptology ePrint Archive, Report

2009/351, July 2009. http://eprint.iacr.org/
[18] C. Cocks, An identity based encryption scheme based on quadratic residues, in IMA Int. Conf (2001),

pp. 360–363
[19] G.D. Crescenzo, V. Saraswat, Public key encryption with searchable keywords based on Jacobi symbols,

in INDOCRYPT (2007), pp. 282–296
[20] Y. Dodis, N. Fazio, Public key broadcast encryption for stateless receivers, in ACM Workshop on Digital

Rights Management (2002), pp. 61–80
[21] C. Gentry, Practical identity-based encryption without random oracles, in EUROCRYPT (2006), pp.

445–464
[22] C. Gentry, S. Halevi, Hierarchical identity based encryption with polynomially many levels, in TCC

(2009), pp. 437–456
[23] C. Gentry, A. Silverberg, Hierarchical ID-based cryptography, in ASIACRYPT (2002), pp. 548–566
[24] C. Gentry, C. Peikert, V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic construc-

tions, in STOC (2008), pp. 197–206
[25] O. Goldreich, S. Goldwasser, S. Halevi, Public-key cryptosystems from lattice reduction problems, in

CRYPTO (1997), pp. 112–131
[26] S. Goldwasser, S. Micali, R.L. Rivest, A digital signature scheme secure against adaptive chosen-

message attacks. SIAM J. Comput. 17(2), 281–308 (1988). Preliminary version in FOCS 1984
[27] J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: a ring-based public key cryptosystem, in ANTS (1998),

pp. 267–288
[28] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J.H. Silverman, W. Whyte, NTRUSIGN: digital signatures

using the NTRU lattice, in CT-RSA (2003), pp. 122–140
[29] S. Hohenberger, B. Waters, Short and stateless signatures from the RSA assumption, in CRYPTO (2009),

pp. 654–670
[30] J. Horwitz, B. Lynn, Toward hierarchical identity-based encryption, in EUROCRYPT (2002), pp. 466–

481

http://eprint.iacr.org/

Bonsai Trees, or How to Delegate a Lattice Basis 639

[31] H. Krawczyk, T. Rabin, Chameleon signatures, in NDSS (2000)
[32] G. Leurent, P.Q. Nguyen, How risky is the random-oracle model, in CRYPTO (2009), pp. 445–464
[33] V. Lyubashevsky, D. Micciancio, Generalized compact knapsacks are collision resistant, in ICALP (2)

(2006), pp. 144–155
[34] V. Lyubashevsky, D. Micciancio, Asymptotically efficient lattice-based digital signatures, in TCC

(2008), pp. 37–54
[35] V. Lyubashevsky, C. Peikert, O. Regev, On ideal lattices and learning with errors over rings, in EURO-

CRYPT (2010), pp. 1–23
[36] D. Micciancio, Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Com-

put. Complex. 16(4), 365–411 (2007). Preliminary version in FOCS 2002
[37] D. Micciancio, S. Goldwasser, Complexity of Lattice Problems: A Cryptographic Perspective. The

Kluwer International Series in Engineering and Computer Science, vol. 671 (Kluwer Academic, Dor-
drecht, 2002)

[38] D. Micciancio, O. Regev, Worst-case to average-case reductions based on Gaussian measures. SIAM J.
Comput. 37(1), 267–302 (2007). Preliminary version in FOCS 2004

[39] D. Micciancio, B. Warinschi, A linear space algorithm for computing the Hermite normal form, in
ISSAC (2001), pp. 231–236

[40] M. Naor, M. Yung, Universal one-way hash functions and their cryptographic applications, in STOC
(1989), pp. 33–43

[41] C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem, in STOC (2009), pp.
333–342

[42] C. Peikert, Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptology ePrint Archive,
Report 2009/359, July 2009. http://eprint.iacr.org/

[43] C. Peikert, An efficient and parallel Gaussian sampler for lattices, in CRYPTO (2010), pp. 80–97
[44] C. Peikert, A. Rosen, Efficient collision-resistant hashing from worst-case assumptions on cyclic lat-

tices, in TCC (2006), pp. 145–166
[45] C. Peikert, A. Rosen, Lattices that admit logarithmic worst-case to average-case connection factors, in

STOC (2007), pp. 478–487
[46] C. Peikert, V. Vaikuntanathan, B. Waters, A framework for efficient and composable oblivious transfer,

in CRYPTO (2008), pp. 554–571
[47] M.O. Rabin, Digitalized signatures and public-key functions as intractable as factorization. Technical

Report MIT/LCS/TR-212, MIT Laboratory for Computer Science (1979)
[48] O. Regev, On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 1–40

(2009). Preliminary version in STOC 2005
[49] M. Rückert, Strongly unforgeable signatures and hierarchical identity-based signatures from lattices

without random oracles, in PQCrypto (2010), pp. 182–200
[50] A. Shamir, Identity-based cryptosystems and signature schemes, in CRYPTO (1984), pp. 47–53
[51] A. Shamir, Y. Tauman, Improved online/offline signature schemes, in CRYPTO (2001), pp. 355–367
[52] D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa, Efficient public key encryption based on ideal lattices,

in ASIACRYPT (2009), pp. 617–635
[53] B. Waters, Efficient identity-based encryption without random oracles, in EUROCRYPT (2005), pp.

114–127
[54] B. Waters, Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions, in

CRYPTO (2009), pp. 619–636
[55] D. Yao, N. Fazio, Y. Dodis, A. Lysyanskaya, ID-based encryption for complex hierarchies with appli-

cations to forward security and broadcast encryption, in ACM Conference on Computer and Communi-
cations Security (2004), pp. 354–363

http://eprint.iacr.org/

	Bonsai Trees, or How to Delegate a Lattice Basist1
	Abstract
	Introduction
	Our Results
	Overview of Bonsai Trees and Applications
	Application 1: Hash-and-Sign Without Random Oracles
	Application 2: Hierarchical Identity-Based Encryption
	Variations

	Complexity and Open Problems
	Related Techniques and Works

	Preliminaries
	Notation
	Cryptographic Definitions
	Chameleon Hash Functions
	Signatures
	Key-Encapsulation Mechanism (KEM)
	Hierarchical Identity-Based Encryption (HIBE)

	Lattices
	Hard Lattices and Problems
	Gaussians over Lattices

	Principles of Bonsai Trees
	Undirected Growth
	Controlled Growth
	Extending Control
	An Optimization: Gaussian Sampling via Implicit Extension

	Randomizing Control

	Signatures
	Chameleon Hash
	Signature Scheme
	Security

	Hierarchical ID-Based Encryption
	Key Encapsulation Mechanism
	A Generalized Hierarchical Scheme
	Definition of GENHIBE
	Instantiating the Parameters
	Extensions: Anonymity and Chosen-Ciphertext Security

	Full Security in the Random Oracle Model
	Definition of ROHIBE
	Instantiating the Parameters

	Standard-Model Constructions
	Binary Tree Encryption
	Definition of BTE
	Instantiating the Parameters
	HIBE from BTE

	Selective Security of BTE
	Fully Secure HIBE
	Definition of SMHIBE
	Instantiating the Parameters

	Admissible Hash Functions
	Definition
	Intuition
	Difference from the Definition of [9]
	Constructions

	Full Security of SMHIBE
	Proof of Theorem 5.4
	Doing Without Artificial Abort

	Acknowledgements
	References

