Skip to main content
Log in

Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

A Comments & Replies to this article was published on 24 July 2012

Abstract

Decompression syndrome (caisson disease or the “the bends”) resulting in avascular necrosis has been documented in mosasaurs, sauropterygians, ichthyosaurs, and turtles from the Middle Jurassic to Late Cretaceous, but it was unclear that this disease occurred as far back as the Triassic. We have examined a large Triassic sample of ichthyosaurs and compared it with an equally large post-Triassic sample. Avascular necrosis was observed in over 15 % of Late Middle Jurassic to Cretaceous ichthyosaurs with the highest occurrence (18 %) in the Early Cretaceous, but was rare or absent in geologically older specimens. Triassic reptiles that dive were either physiologically protected, or rapid changes of their position in the water column rare and insignificant enough to prevent being recorded in the skeleton. Emergency surfacing due to a threat from an underwater predator may be the most important cause of avascular necrosis for air-breathing divers, with relative frequency of such events documented in the skeleton. Diving in the Triassic appears to have been a “leisurely” behavior until the evolution of large predators in the Late Jurassic that forced sudden depth alterations contributed to a higher occurrence of bends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altringham JD, Shadwick RE (2001) Swimming and muscle function. In: Block BA, Stevens ED (eds) Fish physiology, vol 19. Academic, San Diego, pp 313–341

    Google Scholar 

  • Andersen HT (1996) Physiological adaptations in diving vertebrates. Physiol Rev 46:212–258

    Google Scholar 

  • Arthur PG, West TG, Brill RW, Schulte PM, Hochachka PW (1992) Recovery metabolism of skipjack tuna (Katsuwonus pelamis) white muscle: rapid and parallel changes on lactate and phosphocreatine after exercise. Can J Zool 70:1230–1239

    Article  CAS  Google Scholar 

  • Beatty B, Rothschild BM (2008) Decompression syndrome and the evolution of deep diving physiology in the Cetacea. Naturwissenschaften 95:793–801

    Article  PubMed  CAS  Google Scholar 

  • Bennett AF, Hicks JW, Cullum AJ (2000) An experimental test of the thermoregulatory hypothesis for the evolution of endothermy. Evolution 54:1768–1773

    PubMed  CAS  Google Scholar 

  • Benton MJ (2005) Vertebrate paleontology. Wiley-Blackwell, Oxford

    Google Scholar 

  • Bernard A, Lécuyer C, Vincent P, Amiot R, Bardet N, Buffetaut E, Cuny G, Fourel F, Martineau F, Mazin J-M, Prieur A (2010) Regulation of body temperature by some Mesozoic marine reptiles. Science 328:1379–1382

    Article  PubMed  CAS  Google Scholar 

  • Block BA, Finnerty JR, Stewart AF, Kidd J (1993) Evolution of endothermy in fish: mapping physiological traits on a molecular phylogeny. Science 260:210–214

    Article  PubMed  CAS  Google Scholar 

  • Brill RW, Bushnell PG (2001) The cardiovascular system of tunas. In: Block BA, Stevens ED (eds) Tuna: physiology, ecology and evolution. Fish physiology, vol 19. Academic, San Diego, pp 709–820

    Google Scholar 

  • Cappetta H (1987) Chondrichthyes II. Mesozoic and Cenozoic Elasmobranchii. Handbook of paleoichthyology 3B. Fischer, Stuttgart

    Google Scholar 

  • Carey FG, Teal JM, Kanwisher JW, Lawson KD (1971) Warm bodied fish. Amer Zool 11:135–145

    Google Scholar 

  • Carlson JK, Goldman KJ, Lowe CG (2004) Metabolism, energetic demand, and endothermy. In: Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 203–224

    Chapter  Google Scholar 

  • De Buffrénil V, Mazin J (1990) Bone histology of the ichthyosaurs: comparative data and functional interpretation. Paleobiology 16:435–447

    Google Scholar 

  • Feldman JL, Menkes CJ, Amor B, Cherot A, Delbvarr FL (1981) Osteonecrosis vertebrale de l’adults. Rev Rhum 48:773–780

    Google Scholar 

  • Forsman ED, Otto IA (2006) Healed fractures and other abnormalities in bones of small mammals. Northwest Nat 87:143–146

    Article  Google Scholar 

  • Frid A, Heithaus MR, Dill LM (2007) Dangerous dive cycles and the proversial ostrich. Oikos 116:893–902

    Article  Google Scholar 

  • Graham JB, Dickson KA (2000) The evolution of thunniform locomotion and heat conservation in scombrid fishes: new insights based on the morphology of Allothunnus fallai. Zool J Linnean Soc Lond 129:419–466

    Article  Google Scholar 

  • Graham JB, Dickson KA (2001) Anatomical and physiological specializations for endothermy. In: Block BA, Stevens ED (eds) Tuna: physiology, ecology and evolution. Fish physiology, vol 19. Academic, San Diego, pp 121–165

    Chapter  Google Scholar 

  • Graham JB, Dickson KA (2004) Tuna comparative physiology. J Exp Biol 207:4015–4024

    Article  PubMed  Google Scholar 

  • Heinrich B (1989) Beating the heat in obligate insect endotherms: the environmental problem and the organismal solutions. Intergr Comp 29:1157–1168

    Article  Google Scholar 

  • Heithaus MR, Frid A (2003) Optimal diving under the risk of predation. J Theor Biol 223:79–92

    Article  PubMed  Google Scholar 

  • Katz SL, Syme DA, Shadwick RE (2001) High-speed swimming: enhanced power in yellowfin tuna. Nature 410:770–771

    Article  PubMed  CAS  Google Scholar 

  • Keen JW, Aota S, Brill RW, Farrell AO, Randall DJ (1995) Cholinergic and adrenergic regulation of heart rate and ventral aortic pressure in two species of tropical tunas: Katsuwanus pelamis and Thunnus albacares. Can J Zool 73:1681–1688

    Article  CAS  Google Scholar 

  • Kitagawa T, Kimura S, Nakita H, Yamada H (2004) Diving behavior of immature, feeding Pacific bluefin tuna (Thunnus thynnus orientalis) in relation to season and area: the East China Sea and the Kuroshio-Oyashio transition region. Fish Oceanogr 13:161–180

    Article  Google Scholar 

  • Kooyman GL, Schroeder JP, Green DG, Smith VA (1973) Gas exchange in penguins during simulated dives to 30 and 68 meters. Am J Physiol 225:1467–1471

    PubMed  CAS  Google Scholar 

  • Lig S, Lrowet K (2010) Timing of deep-sea adaptation in dogfish sharks: insights from a supertree of extinct and extant taxa. Zool Scripta 39:331–342

    Article  Google Scholar 

  • Lowe TE, Brill RW, Cousins KL (2000) Blood oxygen-binding characteristics of big eye tuna (Thunnus obesus), a high-energy-demand teleost that is tolerant to low ambient oxygen. Mar Biol 136:1087–1098

    Article  Google Scholar 

  • Maisch MW (2010) Phylogeny, systematics, and origin of the Ichthyosauria—the state of the art. Palaeodiversity 3:151–214

    Google Scholar 

  • Massare JA (1987) Tooth morphology and prey preference of Mesozoic marine reptiles. J Vert Paleontol 7:121–137

    Article  Google Scholar 

  • Massare JA, Callaway JM (1990) The affinities and ecology of Triassic ichthyosaurs. Geol Soc Am Bull 102:409–416

    Article  Google Scholar 

  • Mathie N (2007) New dams may flush bottom-breathers out. Australas Sci. June 2007:36

  • Mathieu-Costello O, Brill RW, Hochachka PW (1996) Structural basis for oxygen delivery: muscle capillaries and manifolds in tuna red muscle. Comp Biochem Physiol A Physiol 113:25–31

    Article  PubMed  CAS  Google Scholar 

  • McGowan C (1972) The distinction between latipinnate and longipinnate ichthyosaurs. Life Sci Occas Paper 20:1–8

    Google Scholar 

  • McGowan C, Motani R (2003) Ichthyopterygia. Handbook of paleoherpetology, vol 8. Friedrich Pfeil, Munchen, pp 1–175

    Google Scholar 

  • Michel JL, Bouzat J, Rivoal A, Pradel D, de Lamaze PH, Viallet JF, Belin J, Merle P (1982) La dissection gazeuse du corps vertebral ou phenomene du vide intrasomatique vertebral. J Radiol 63:479–484

    PubMed  CAS  Google Scholar 

  • Motani R (2002) Swimming speed estimation of extinct marine reptiles: energetic approach revisited. Paleobiology 28:251–262

    Article  Google Scholar 

  • Motani R (2010) Warm-blooded “sea dragons”? Science 328:1361–1362

    Article  PubMed  CAS  Google Scholar 

  • Motani R, Rothschild BM, Wahl W Jr (1999) Large eyeballs in diving ichthyosaurs. Nature 402:747

    Article  CAS  Google Scholar 

  • Pauley P (1965) Decompression sickness following repeated breath-hold dives. J Appl Physiol 20:1028–1031

    Google Scholar 

  • Ratcliffe JF (1985) Anatomic basis for the pathogenesis and radiologic features of vertebral osteomyelitis and its differentiation from childhood discitis: a microarteriographic investigation. Acta Radiol 26:137–143

    CAS  Google Scholar 

  • Resnick D (2002) Diagnosis of bone and joint disorders. Saunders, Philadelphia

    Google Scholar 

  • Rossi-Fanelli A, Antonini E (1960) Oxygen equilibrium of hemoglobin from Thunnus thynnus. Nature 186:895–896

    Article  PubMed  CAS  Google Scholar 

  • Rothschild BM (1982) Rheumatology: a primary care approach. Yorke Medical Press, New York

    Google Scholar 

  • Rothschild BM (1987) Decompression syndrome in fossil marine turtles. Ann Carnegie Mus 56:253–358

    Google Scholar 

  • Rothschild BM (1990) Absence of decompression syndrome in recent and fossil Mammalia and Reptilia. Ann Carnegie Mus 59:287–293

    Google Scholar 

  • Rothschild BM (2011) Pathology in saber tooth ecomorphs. In: Naples V, Martin LD, Babiarz J (eds) Saber-toothed cats. John Hopkins Press, Baltimore, pp 35–41

    Google Scholar 

  • Rothschild BM, Martin LD (1987) Avascular necrosis: occurrence in diving Cretaceous mosasaurs. Science 236:75–77

    Article  PubMed  CAS  Google Scholar 

  • Rothschild BM, Martin LD (2006) Skeletal impact of disease. New Mexico Museum of Natural History, Albuquerque

    Google Scholar 

  • Rothschild BM, Storrs GW (2003) Decompression syndrome in plesiosaurs (Sauropterygia: Reptilia). J Vertebr Paleontol 23:324–328

    Article  Google Scholar 

  • Sander PM, Chen X, Cheng L, Wang X (2011) Short-snouted toothless ichthyosaur from China suggests Late Triassic diversification of suction feeding ichthyosaurs. PLoS One 6(5):e19480. doi:10.1371/journal.pone.0019480

    Article  PubMed  CAS  Google Scholar 

  • Schultz AH (1969) The life of primates. Unwin Brothers, Ltd, Woking

    Google Scholar 

  • Strauss MB (1970) Physiological aspects of mammalian breath-hold diving: a review. Aerospace Med 41:1362–1381

    PubMed  CAS  Google Scholar 

  • Strauss MB, Sampson RL (1986) Decompression syndrome: an update. Phys Sports Med 14(3):1–9

    Google Scholar 

  • Syme DA, Sjadwick RE (2002) Effects of longitudinal body position and swimming speed on mechanical power of deep red muscle from skipjack tuna (Katsuwonus pelamis). J Exp Biol 205:189–200

    PubMed  Google Scholar 

  • Vann RD, Butler FK, Mitchell SJ, Moon RE (2011) Decompression illness. Lancet 377:153–164

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We express appreciation to Dave Burnham, Eugene Gaffney, Chun Li, Judy Massare; Desui Miao; Frank Rühli and William Sampson for access to collections that they curate and to cogent manuscript review and commentary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Rothschild.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothschild, B.M., Xiaoting, Z. & Martin, L.D. Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs. Naturwissenschaften 99, 443–448 (2012). https://doi.org/10.1007/s00114-012-0918-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-012-0918-0

Keywords

Navigation