Skip to main content
Log in

A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Myrmecophily provides various examples of how social structures can be overcome to exploit vast and well-protected resources. Ant nest beetles (Paussinae) are particularly well suited for ecological and evolutionary considerations in the context of association with ants because life habits within the subfamily range from free-living and predatory in basal taxa to obligatory myrmecophily in derived Paussini. Adult Paussini are accepted in the ant society, although parasitising the colony by preying on ant brood. Host species mainly belong to the ant families Myrmicinae and Formicinae, but at least several paussine genera are not host-specific. Morphological adaptations, such as special glands and associated tufts of hair (trichomes), characterise Paussini as typical myrmecophiles and lead to two different strategical types of body shape: while certain Paussini rely on the protective type with less exposed extremities, other genera access ant colonies using glandular secretions and trichomes (symphile type). We compare these adaptations with other taxonomic groups of insects by joining contemporary research and early sources and discuss the possibility of an attracting or appeasing effect of the secretion. Species that are ignored by their host ants might use chemical mimicry instead. Furthermore, vibrational signals may contribute to ant–beetle communication, and chemical signals have proven to play a role in host finding. The powerful defense chemistry of paussines as “bombardier beetles” is not used in contact with host ants. We attempt to trace the evolution of myrmecophily in paussines by reviewing important aspects of the association between paussine beetles and ants, i.e. morphological and potential chemical adaptations, life cycle, host specificity, alimentation, parasitism and sound production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Specialised tufts of hair on some insects that serve to dispense chemical secretions from underlying glands (Resh and Cardé 2003).

  2. Setae are defined as hollow, often slender, hair-like cuticular projections (Gordh and Headrick 2001), which include the bristle-shaped mechanosensory sensilla chaetica and chemosensory sensilla basiconica.

  3. Paired dorsal processes that project from the posterior margin of the ninth larval tergite (Resh and Cardé 2003).

  4. The elytral series umbilicata of tactile setae is present in most species, and some Carabidomemnus display single tactile setae on the antennal scape (Luna de Carvalho 1966; Nagel 1983).

References

  • Akino T (2002) Chemical camouflage by myrmecophilous beetles Zyras comes (Coleoptera: Staphylinidae) and Diaritiger fossulatus (Coleoptera: Pselaphidae) to be integrated into the nest of Lasius fuliginosus (Hymenoptera: Formicidae). Chemoecology 12:83–89

    CAS  Google Scholar 

  • Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specifity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B 266:1419–1426

    CAS  Google Scholar 

  • Allan RA, Capon RJ, Brown WV, Elgar MA (2002) Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of tree ants Oecophylla smaragdina. J Chem Ecol 28:835–848

    PubMed  CAS  Google Scholar 

  • Alonso Zarazaga MA (1980) Clave preliminar de las familias de coleopteros ibéricos. Graellsia 35–36:3–62

    Google Scholar 

  • Alpert GD (1994) A comparative study of the symbiotic relationships between beetles of the genus Cremastocheilus (Coleoptera: Scarabaeidae) and their host ants (Hymenoptera: Formicidae). Sociobiology 25:1–276

    Google Scholar 

  • Aneshansley DJ, Eisner T, Widom JM, Widom B (1969) Biochemistry at 100°C: explosive secretory discharge of bombardier beetles (Brachinus). Science 165:61–63

    PubMed  CAS  Google Scholar 

  • Arndt E (1998) Phylogenetic investigation of Carabidae (Coleoptera) using larval characters. In: Ball GE, Casale A, Vigna Taglianti A (eds) Phylogeny and classification of caraboidea (Coleoptera: Adephaga). Atti, Museo regionale di Scienze naturali, Torino

    Google Scholar 

  • Arndt E, Beutel RG (1994) Descriptions of the larvae of Paussus (Klugipaussus) aff. distinguendus and P. (Lineatopaussus) afzelii Westwood, 1885 (Coleoptera: Carabidae: Paussini). Elytron 8:129–139

    Google Scholar 

  • Arrow GJ (1931) The Paussidae, a strange group of beetles. Nat Hist 3:127–133

    Google Scholar 

  • Axén AH, Leimar O, Hoffman V (1996) Signalling in a mutualistic interaction. Anim Behav 52:321–333

    Google Scholar 

  • Ball GE, McCleve S (1990) The Middle American genera of the tribe Ozaenini with notes about the species in southwestern United States and selected species from Mexico. Quaest Entomol 26:30–116

    Google Scholar 

  • Ball GE, Shpeley D (1990) Synopsis of the neotropical genus Ozaena Olivier: Classification and reconstructed evolutionary history (Coleoptera: Carabidae: Ozaenini). Can Entomol 122:779–815

    Google Scholar 

  • Batelka J (2000) A contribution to the knowledge of the bionomics and distribution of two species of the subfamily Paussinae (Coleoptera: Carabidae) in Morocco and Tunisia. Klapalekiana 36:217–223

    Google Scholar 

  • Billen J, Morgan ED (1998) Pheromone communication in social insects: sources and secretions. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects. Ants, wasps, bees, and termites. Westview Press, Boulder, Colorado, pp 3–33

    Google Scholar 

  • Blum MS, Crewe RM, Pasteels JM (1971) Defensive secretion of Lomechusa strumosa, a myrmecophilous beetle. Ann Entomol Soc Am 64:975–976

    Google Scholar 

  • Bolton B (1995) A new general catalogue of the ants of the world. Harvard University Press, Cambridge, London

    Google Scholar 

  • Bolton B (2003) Synopsis and classification of Formicidae. Mem Am Entomol Inst 71:1–370

    Google Scholar 

  • Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Böving AG (1907) Om Paussiderne og Larven til Paussus Kannegieteri Wasm. Vidensk Meddelelser fra den Naturhistor Forening i Kobenhavn 6:109–136

    Google Scholar 

  • Brand JM, Blum MS, Fales HM, Pasteels JM (1973) The chemistry of the defensive secretion of the beetle, Drusilla canaliculata. J Insect Physiol 19:369–382

    CAS  Google Scholar 

  • Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287

    Google Scholar 

  • Cammaerts R (1974) Le système glandulaire tégumentaire du coléoptère myrmecophile Claviger testaceus Preyssler 1790 (Pselaphidae). Z Morphol Tiere 77:187–219

    Google Scholar 

  • Cammaerts R, Cammaerts M-C (1992) Response of the myrmecophilous beetle Edaphopaussus favieri (Carabidae, Paussinae) to 3-ethyl-2,5-dimethylpyrazine, the only known component of its host trail pheromone. In: Billen J (ed) Biology and evolution of social insects. Leuven University Press, Leuven, pp 211–216

    Google Scholar 

  • Cammaerts M-C, Cammaerts R (1994) Thin-layer chromatographic isolation of the trail pheromone of the ant Pheidole pallidula. Physiol Entomol 19:258–264

    CAS  Google Scholar 

  • Cammaerts R, Cammaerts M-C, Detrain C (1989) Response of the myrmecophilous beetles Edaphopaussus favieri (Carabidae Paussinae) and Dichillus minutus (Tenebrionidae) to the trail of their host, Pheidole pallidula. Actes Colloq Insectes Soc 5:199–206

    Google Scholar 

  • Cammaerts R, Detrain C, Cammaerts M-C (1990) Host trail following by the myrmecophilous beetle Edaphopaussus favieri (Fairmaire) (Carabidae Paussinae). Insectes Soc 37:200–211

    Google Scholar 

  • Crozier RH, Pamilo P (1996) Evolution of social insect colonies: sex allocation and kin selection. Oxford University Press, Oxford, NY

    Google Scholar 

  • Cushing PE (1996) Myrmecomorphy and myrmecophily in spiders: a review. Fla Entomol 80:165–193

    Google Scholar 

  • Daniels H, Gottsberger G, Fiedler K (2005) Nutrient composition of larval nectar secretions from three species of myrmecophilous butterflies. J Chem Ecol 31:2805–2821

    PubMed  CAS  Google Scholar 

  • Darlington PJ (1950) Paussid beetles. Trans Am Entomol Soc 76:47–142

    Google Scholar 

  • De Chaudoir M (1868) Révision du groupe des Ozénides. Ann Soc Entomol Belge 11:43–74

    Google Scholar 

  • Dean J, Aneshansley DJ, Edgerton HE, Eisner T (1990) Defensive spray of the bombardier beetle: a biological pulse jet. Science 248:1219–1221

    PubMed  CAS  Google Scholar 

  • Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154

    CAS  Google Scholar 

  • D’Ettorre P, Mondy N, Lenoir A, Errard C (2002) Blending in with the crowd: social parasites integrate into their host colonies using a flexible chemical signature. Proc R Entomol Soc Lond B 269:1911–1918

    CAS  Google Scholar 

  • Deuve T (2001a) Le genre Eustra Schmidt-Goebel, 1846, insectes (Coleoptera, Paussidae, Ozaeninae) à genitalia femelles orthotopiques. Zoosystema 23:547–578

    Google Scholar 

  • Deuve T (2001b) Contribution à la connaissance des coléoptères Paussidae Ozaeninae néotropicaux. Revue française d’Entomologie 23:237–252

    Google Scholar 

  • Deuve T (2004) Nouveaux Ozaenini Néotropicaux (Coleoptera, Paussidae). Rev Fr Entomol NS 26:117–130

    Google Scholar 

  • Deuve T (2005) Nouveaux Ozaeninae (Eustrini et Ozaenini) de la Région Néotropicale et du Népal (Coleoptera, Caraboidea, Paussidae). Rev Fr Entomol NS 27:103–116

    Google Scholar 

  • DeVries PJ (1988) The larval ant-organs of Thisbe irenea (Lepidoptera: Riodinidae) and their effects upon attending ants. Zool J Linn Soc 94:379–393

    Google Scholar 

  • DeVries PJ (1991) Call production by myrmecophilous riodinid and lycaenid butterfly caterpillars (Lepidoptera): morphological, acoustical, functional, and evolutional patterns. Am Mus Novit 3052:1–23

    Google Scholar 

  • Dierckx F (1901) Les glandes pygidiennes des coléoptères second memoire carabides (Bombardiers, etc., Paussides, Cicindélides, Staphylinides). La Cellule 18:255–310

    Google Scholar 

  • DiGiulio A, Moore W (2004) The first-instar larva of the genus Arthropterus (Coleoptera: Carabidae: Paussinae): implications for evolution of myrmecophily and phylogenetic relationships within the subfamily. Invertebr Syst 18:101–115

    Google Scholar 

  • DiGiulio A, Vigna Taglianti A (2001) Biological observations on Pachyteles larvae (Coleoptera Carabidae Paussinae). Trop Zool 14:157–173

    Google Scholar 

  • DiGiulio A, Fausto AM, Taddei AR, Vigna Taglianti A (2000) The terminal disk of Pachyteles larvae (Coleoptera, Carabidae, Paussinae): a morphological study. In: Brandmayr P (ed) Natural history and applied ecology of carabid beetles. Pensoft Publishers, Sofia-Moscow, pp 89–93

    Google Scholar 

  • DiGiulio A, Fattorini S, Kaupp A, Vigna Taglianti A, Nagel P (2003) Review of competing hypotheses of phylogenetic relationships of Paussinae (Coleoptera: Carabidae) based on larval characters. Syst Entomol 28:509–537

    Google Scholar 

  • DiGiulio A, Kaupp A, Fattorini S, Vigna Taglianti A, Nagel P (2007) Pupal morphology in the subfamily Paussinae (Coleoptera: Carabidae). Rev Suisse Zool 114:33–48

    Google Scholar 

  • Dinter K, Paarmann W, Peschke K, Arndt E (2002) Ecological, behavioural and chemical adaptations to ant predation in species of Thermophilum and Graphipterus (Coleoptera: Carabidae) in the Sahara desert. J Arid Environ 50:267–286

    Google Scholar 

  • Dohrn CA (1851) Etwas über die Lebensweise einiger Paussiden. Ent Z Stettin 12:227–229

    Google Scholar 

  • Dumortier K (1963) Morphology of sound emission apparatus in arthropods. In: Busnel RG (ed) Acoustic behaviour of animals. Elsevier, Amsterdam, pp 277–345

    Google Scholar 

  • Eidmann H (1937) Die Gäste und Gastverhältnisse der Blattschneiderameise Atta sexdens L. Z Morphol Oekol Tiere 32:391–462

    Google Scholar 

  • Eisner T (1980) Chemistry, defense, and survival: Case studies and selected topics. In: Locke M, Smith DS (eds) Insect biology in the future. Academic, New York, pp 847–878

    Google Scholar 

  • Eisner T, Aneshansley DJ (1982) Spray aiming in bombardier beetles: Jet deflection by the Coanda effect. Science 215:83–85

    PubMed  CAS  Google Scholar 

  • Eisner T, Aneshansley DJ (1999) Spray aiming in the bombardier beetle: Photographic evidence. Proc Natl Acad Sci USA 96:9705–9709

    PubMed  CAS  Google Scholar 

  • Eisner T, Jones TH, Aneshansley DJ, Tschinkel W, Silberglied RE, Meinwald J (1977) Chemistry of defensive secretions of bombardier beetles (Brachinini, Metriini, Ozaenini, Paussini). J Insect Physiol 23:1383–1386

    CAS  Google Scholar 

  • Eisner T, Attygalle AB, Eisner M, Aneshansley DJ, Meinwald J (1992) Chemical defense of a primitive Australian bombardier beetle (Carabidae): Mystropomus regularis. Chemoecology 2:29–34

    Google Scholar 

  • Eisner T, Aneshansley DJ, Eisner M, Attygalle AB, Alsop DW, Meinwald J (2000) Spray mechanism of the most primitive bombardier beetle (Metrius contractus). J Exp Biol 203:1265–1275

    PubMed  CAS  Google Scholar 

  • Eisner T, Aneshansley DJ, Yack J, Attygalle AB, Eisner M (2001a) Spray mechanism of crepidogastrine bombardier beetles (Carabidae; Crepidogastrini). Chemoecology 11:209–219

    CAS  Google Scholar 

  • Eisner T, Yack J, Aneshansley DJ (2001b) Acoustic concomitants of the defensive discharges of a primitive bombardier beetle (Metrius contractus). Chemoecology 11:221–223

    Google Scholar 

  • Escherich K (1898) Zur Anatomie und Biologie von Paussus turcicus Friv. Zool Jb Syst 12:27–70

    Google Scholar 

  • Escherich K (1899a) Über myrmekophile Arthropoden, mit besonderer Berücksichtigung der Biologie. Zool Zbl 6:1–8

    Google Scholar 

  • Escherich K (1899b) Zur Naturgeschichte von Paussus favieri Fairm. Verh Zool Bot Ges Wien 49:278–283

    Google Scholar 

  • Escherich K (1907) Neue Beobachtungen über Paussus in Erythrea. Z wiss Insektenbiologie 3:1–8

    Google Scholar 

  • Evans MEG, Forsythe TG (1985) Feeding mechanisms, and their variation in form, of some adult ground-beetles (Coleoptera: Caraboidea). J Zool Lond A 206:113–143

    Article  Google Scholar 

  • Fairmaire L (1903) Matériaux pour la faune coléoptérique de la région Malgache. Ann Soc Entomol Fr 72:181–259

    Google Scholar 

  • Fiedler K (2001) Ants that associate with Lycaeninae butterfly larvae: diversity, ecology and biogeography. Divers Distrib 7:45–60

    Google Scholar 

  • Fiedler K, Maschwitz U (1988) Functional analysis of the myrmecophilous relationships between ants (Hymenoptera: Formicidae) and lycaenids (Lepidoptera: Lycaeindae) II. Lycaenid larvae as trophobiotic partners of ants-a quantitative approach. Oecologia 75:204–206

    Google Scholar 

  • Fiedler K, Maschwitz U (1989) Functional analysis of the myrmecophilous relationships between ants (Hymenoptera: Formicidae) and Lycaenids (Lepidoptera: Lycaenidae) I. Release of food recruitment in ants by lycaenid larvae and pupae. Ethology 80:71–80

    Article  Google Scholar 

  • Fiedler K, Saam C (1995) Ants benefit from attending facultatively myrmecophilous Lycaenidae caterpillars: evidence from a survival study. Oecologia 104:316–322

    Google Scholar 

  • François P (1899) Sur les glandes pygidiennes des Brachynides (Col). Bull Soc Entomol Fr 232–235

  • Freitag R, Lee SK (1972) Sound producing structures in adult Cicindela tranquebarica (Coleoptera: Cicindelidae) including a list of tiger beetles and ground beetles with flight wing files. Can Entomol 104:851–857

    Article  Google Scholar 

  • Geiselhardt S, Szepat T, Rasa OAE, Peschke K (2006a) Defensive secretion components of the host Parastizopus armaticeps as kairomones for the cleptoparaite Eremostibes opacus. J Chem Ecol 32:767–778

    PubMed  CAS  Google Scholar 

  • Geiselhardt SF, Geiselhardt S, Peschke K (2006b) Chemical mimicry of cuticular hydrocarbons-how does Eremostibes opacus gain access to breeding burrows of its host Parastizopus armaticeps (Coleoptera, Tenebrionidae)? Chemoecology 16:59–68

    CAS  Google Scholar 

  • Gestro R (1892) Viaggio di Leonardo Fea in Birmania e Regioni Vicine. 46., Cenno sui Paussidi. Ann del Mus Civ di St Nat Serie 2a 12:705–709

    Google Scholar 

  • Giglio A, Ferrero EA, Zetto Brandmayr T (2005) Ultrastructural identification of the antennal gland complement in Siagona europaea Dejean 1826, a myrmecophagous carabid beetle. Acta Zool 86:195–203

    Google Scholar 

  • Gordh G, Headrick DH (2001) A dictionary of entomology. CABI Publishing, New York

    Google Scholar 

  • Hellmann V (1985) Ein Beitrag zur Biologie der Gattung Edaphopaussus Kolbe (Coleoptera: Paussidae). Entomol Z Insektenbörse 95:285

    Google Scholar 

  • Hieke F (1994) Coleoptera, Strepsiptera. Urania Tierreich. 1 ed. (Vol. Insekten) Urania-Verlagsgesellschaft mbH, Leipzig, pp 240–348

  • Hoeksema JD, Bruna EM (2000) Pursuing the big questions about interspecific mutualism: a review of theoretical approaches. Oecologia 125:321–330

    Google Scholar 

  • Hölldobler B (1970) Zur Physiologie der Gast-Wirt-Beziehungen (Myrmecophilie) bei Ameisen. II. Das Gastverhältnis des imaginalen Atemeles pubicollis Bris. (Col. Staphylinidae) zu Myrmica und Formica (Hym. Formicidae). J Comp Physiol A 66:215–250

    Google Scholar 

  • Hölldobler B, Wilson EO (1977) The number of queens: an important trait in ant evolution. Naturwissenschaften 64:8–15

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Howard RW, McDaniel CA, Blomquist GJ (1980) Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of a termitophile and its host. Science 210:431–433

    PubMed  CAS  Google Scholar 

  • Howard RW, Akre RD, Garnett WB (1990) Chemical mimicry in an obligate predator of carpenter ants (Hymenoptera: Formicidae). Ann Entomol Soc Am 83:607–616

    CAS  Google Scholar 

  • Isidoro N, Romani R, Velasquez D, Renthal R, Bin F, Vinson SB (2000) Antennal glands in queen and worker of the fire ant, Solenopsis invicta Buren: first report in female social Aculeata (Hymenoptera: Formicidae). Insectes Soc 47:236–240

    Google Scholar 

  • Janssen E, Übler E, Bauriegel L, Kern F, Bestmann HJ, Attygalle AB, Steghaus-Kovac S, Maschwitz U (1997) Trail pheromone of the ponerine ant Leptogenys peuqueti (Hymenoptera: Formicidae): a multicomponent mixture of related compounds pheromones. Naturwissenschaften 84:122–125

    CAS  Google Scholar 

  • Kaltenpoth M, Göttler W, Herzner G, Strohm E (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 15:475–479

    PubMed  CAS  Google Scholar 

  • Karny HH (1923) Ueber Cerapterus horsfieldi (Col. Pauss.). Treubia 3:188

    Google Scholar 

  • Kaupp A, Rödel M-O (1996) Die Fühlerkäfer der Elfenbeinküste, Faunistik und Phänologie. Koleopterol Rundsch 66:7–17

    Google Scholar 

  • Kaupp A, Guggenheim R, Nagel P (2000a) Egg-shell structure of Paussinae and other Carabidae, with notes on its phylogenetic relevance (Coleoptera). In: Brandmayr P (ed) Natural history and applied ecology of carabid beetles. Pensoft Publishers, Sofia-Moscow, pp 111–122

    Google Scholar 

  • Kaupp A, Guggenheim R, Nagel P (2000b) Die Eischale als Gegenstand der phylogenetischen Forschung bei Paussinae und anderen Carabidae (Coleoptera: Adephaga). Entomol Basil 22:149–154

    Google Scholar 

  • Keller C (1892) Neue Beobachtungen über Symbiose zwischen Ameisen und Akazien. Zool Anz 15:137–140

    Google Scholar 

  • Kistner DH (1982) The social insects’ bestiary. In: Hermann HR (ed) Social insects, vol. 3. Academic, New York, pp 1–244

    Google Scholar 

  • Kistner DH (1993) Cladistic analysis, taxonomic restructuring and revision of the old-world genera formerly classified as Dorylomimini with comments on their evolution and behavior (Coleoptera, Staphylinidae). Sociobiology 22:151–374

    Google Scholar 

  • Kohl E, Hölldobler B, Bestmann H-J (2003) Trail pheromones and Dufour gland contents in three Camponotus species (C. castaneus, C. balzani, C. sericeiventris: Formicidae: Hymenoptera). Chemoecology 13:113–122

    CAS  Google Scholar 

  • Lacordaire T (1833) Essai sur les coléoptères de la Guyane Francaise. Nouv Ann Mus Hist Nat Tome 10:35–94

    Google Scholar 

  • Larochelle A, Larivière M-C (2003) A natural history of the ground-beetles (Coleoptera: Carabidae) of America North of Mexico. Pensoft Publishers, Sofia, Moscow

    Google Scholar 

  • Le Masne G (1961a) Observations sur le comportement de Paussus favieri Fairm., hôte de la fourmi Pheidole pallidula Nyl. Ann Fac Sci Marseille 31:111–130

    Google Scholar 

  • Le Masne G (1961b) Recherches sur la biologie des animaux myrmécophiles I: L’adoption des Paussus favieri Fairm. par une nouvelle société de Pheidole pallidula Nyl. C R Hebd Séances Acad Sci 253:1621–1623

    Google Scholar 

  • Le Masne G (1961c) Recherches sur la biologie des animaux myrmécophiles: Observations sur le régime alimentaire de Paussus favieri Fairm., hôte de la fourmi Pheidole pallidula Nyl. C R Hebd Séances Acad Sci 253:1356–1357

    Google Scholar 

  • Lea AM (1910) Australian and Tasmanian Coleoptera inhabiting or resorting to the nests of ants, bees and termites. Proc R Soc Victoria NS 23:116–230

    Google Scholar 

  • Leimar O, Axén AH (1993) Strategic behaviour in an interspecific mutualism: interactions between lycaenid larvae and ants. Anim Behav 46:1177–1182

    Google Scholar 

  • Lenoir A, D’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599

    PubMed  CAS  Google Scholar 

  • Leston D (1978) Seasonality and the flight of Paussids (Coleoptera) in West Africa. Psyche 84:210–217

    Article  Google Scholar 

  • Liang D, Silverman J (2000) “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87:412–416

    PubMed  CAS  Google Scholar 

  • Loman JCC (1887) Freies Jod als Drüsensecret. Tijdschr Ned Dierkd Ver 1:106–108

    Google Scholar 

  • Lorenz W (2005) A systematic list of extant ground beetles of the world (Coleoptera “Geadephaga”: Trachypachidae and Carabidae incl. Paussinae, Cicindelinae, Rhysodinae), Tutzing

  • Luna de Carvalho E (1949) Estudos sobre a familia Paussidae Latreille (Col. Carab. Isochaeta). Mem Estud Mus Zool Univ Coimbra 193:1–9

    Google Scholar 

  • Luna de Carvalho E (1951) Contribution pour un nouveau catalogue de la famille des Paussides (Col. Carab. Isochaeta). Mem Estud Mus Zool Univ Coimbra 207:1–51

    Google Scholar 

  • Luna de Carvalho E (1959) Notas sobre Paussídeos (Col. Carab. Isochaeta). Museu do Dundo, Subsídios para o estudo da biologia na Lunda. (Publicacoes culturais da Companhia de Diamantes de Angola) 48:47–90

  • Luna de Carvalho E (1966) Paussid beetles in the Carnegie Museum (Coleoptera, Carabidae). 12th Contribution to a Monographic Study of the Paussinae. Ann Carnegie Mus 38:129–134

    Google Scholar 

  • Luna de Carvalho E (1977a) Coléoptères Paussides du Muséum d´ Histoire naturelle de Genéve, 1re note (32e contribution à l´étude monographique des Paussides). Rev Suisse Zool 84:81–101

    PubMed  CAS  Google Scholar 

  • Luna de Carvalho E (1977b) Are there termitophilous paussid beetles? (Coleoptera Carabidae Paussinae). 37th Contribution to a monographic study of the Paussidae. Sociobiology 3:67–70

    Google Scholar 

  • Luna de Carvalho E (1989) Essai monographique des Coléoptères Protopaussines et Paussines. Mem Inst Invest Cient Trop 70:1–1028

    Google Scholar 

  • Luna de Carvalho E (1992) Revisao do estudio das larvas de Carabideos Paussinae e de subfamilias affinis. Elytron 5:285–310

    Google Scholar 

  • MacLeay WS (1838) Illustrations of the annulosa of South Africa. Smith, Elder and Co., London

    Google Scholar 

  • McIver JD, Stonedal G (1993) Myrmecomorphy: morphological and behavioral mimicry in ants. Annu Rev Entomol 38:351–379

    Google Scholar 

  • Moore W, DiGiulio A (2006) Description and behaviour of Goniotropis kuntzeni larvae (Coleoptera: Carabidae: Paussinae: Ozaeninae) and a key to the genera of Paussinae larvae. Zootaxa 1111:1–19

    Google Scholar 

  • Moore BP, Wallbank BE (1968) Chemical composition of the defensive secretion in carabid beetles and its importance as a taxonomic character. Proc R Ent Soc Lond B 37:62–72

    Google Scholar 

  • Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants: Diversification in the age of angiosperms. Science 312:101–104

    PubMed  CAS  Google Scholar 

  • Murria F (1994) Familia: Paussidae. Catalogus de la Entomofauna Aragonense 4:8

    Google Scholar 

  • Nagel P (1979) Aspects of the evolution of myrmecophilous adaptations in Paussinae (Coleoptera: Carabidae). Misc Pap Agric Univ Wageningen 18:15–34

    Google Scholar 

  • Nagel P (1983) Notes sur quelques Paussines africains (Coleoptera, Carabidae). Rev Fr Entomol NS 5:29–33

    Google Scholar 

  • Nagel P (1986a) Die Methode der Arealsystemanalyse als Beitrag zur Rekonstruktion der Landschaftsgenese im tropischen Afrika. Geomethodica 11:145–176

    Google Scholar 

  • Nagel P (1986b) Revision der Paussus laevifrons-Gruppe (Coleoptera, Carabidae, Paussinae). Zool Jb Syst 113:141–201

    Google Scholar 

  • Nagel P (1987a) Arealsystemanalyse afrikanischer Fühlerkäfer (Coleoptera, Carabidae, Paussinae), vol. 21. Franz Steiner Verlag Wiesbaden GmbH, Stuttgart

    Google Scholar 

  • Nagel P (1987b) Fossil ant nest beetles (Coleoptera, Carabidae, Paussinae). Entomol Arb Mus G Frey 35/36:137–170

    Google Scholar 

  • Nagel P (1997) New fossil paussids from Dominican amber with notes on the phylogenetic systematics of the paussine complex (Coleoptera: Carabidae). Syst Entomol 22:345–362

    Google Scholar 

  • Nagel P (2003) Carabidae: Paussinae. In: Löbl I, Smetana A (eds) Catalogue of palaearctic Coleoptera, vol. 1. Apollo Books, Stenstrup, pp 19, 208–211

    Google Scholar 

  • Nagel P (2004) Les coléoptères Carabidae: Paussinae de la forêt de la Lama. Opusc Biogeogr Basileensia 3/2003:26–27

    Google Scholar 

  • Nagel P (2006) Ant nest beetles of the Carnegie Museum (Coleoptera, Carabidae, Paussinae, Paussini). Ann Carnegie Mus 75:181–202

    Google Scholar 

  • Noirot C, Quennedey A (1974) Fine structure of insect epidermal glands. Annu Rev Entomol 19:61–80

    Google Scholar 

  • Noirot C, Quennedey A (1991) Glands, gland cells, glandular units: some comments on terminology and classification. Ann Soc Entomol Fr NS 27:123–128

    Google Scholar 

  • Orivel J, Servigne P, Cerdan P, Dejean A, Corbara B (2004) The ladybird Thalassa saginata, an obligatory myrmecophile of Dolichoderus bidens ant colonies. Naturwissenschaften 91:97–100

    PubMed  CAS  Google Scholar 

  • Päivinen J, Ahlroth P, Kaitala V (2002) Ant-associated beetles of Fennoscandia and Denmark. Entomol Fenn 13:20–40

    Google Scholar 

  • Paulian R (1988) Biologie des Coléoptères. Éditions Lechevalier, Paris

    Google Scholar 

  • Péringuey L (1883) Notes on three Paussi. Trans ent Soc Lond 2:133–138

    Google Scholar 

  • Péringuey L (1886) Notes on some coleopterous insects of the family Paussidae. Proc Entomol Soc Lond:XXXIV–XXXVII

  • Peschke K, Metzler M (1982) Defensive and pheromonal secretion of the tergal gland of Aleochara curtula I. The chemical composition. J Chem Ecol 8:773–783

    CAS  Google Scholar 

  • Peschke K, Schmitt K, Zinner K (1986) Occurrence of electronically excited products during the defensive reaction of bombardier beetles. Photobiochem Photobiophys 12:275–282

    CAS  Google Scholar 

  • Philips TK (2000) Phylogenetic analysis of the New World Ptininae (Coleoptera: Bostrichoidea). Syst Entomol 25:235–262

    Google Scholar 

  • Philips TK, Edmonds WD, Scholtz CH (2004) A phylogenetic analysis of the New World tribe Phanaeini (Coleoptera: Scarabaeidae: Scarabaeinae): hypotheses on relationships and origins. Insect Syst Evol 35:43–63

    Google Scholar 

  • Pierce NE, Young WR (1986) Lycaenid butterflies and ants: Two-species stable equilibria in mutualistic, commensal, and parasitic interactions. Am Nat 128:216–227

    Google Scholar 

  • Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771

    PubMed  CAS  Google Scholar 

  • Poinar GO (1992) Life in Amber. Stanford University Press, Stanford

    Google Scholar 

  • Quinet Y, Pasteels JM (1995) Trail following and stowaway behaviour of the myrmecophilous staphylinid beetle, Homoeusa acuminata, during foraging trips of its host Lasius fuliginosus (Hymenoptera: Formicidae). Insect Soc 42:31–44

    Google Scholar 

  • Raffray A (1886) Matériaux pour servir à l’étude des coléoptères de la famille des Paussides. Nouv Arch Mus Hist Nat 2:1–52

    Google Scholar 

  • Raffray A (1892) Recherches anatomiques sur le Pentaplatarthrus paussoides Coléoptère de la famille des Paussides. Nouv Arch Mus Paris 3:91–102

    Google Scholar 

  • Rasa OAE (1996) Interspecific association in desert tenebrionid beetles: a cleptoparasite does not affect the host’s reproductive success, but that of its offspring. Naturwissenschaften 83:575–577

    CAS  Google Scholar 

  • Reichensperger A (1924) Neue südamerikanische Histeriden als Gäste von Wanderameisen und Termiten II. Teil. Rev Suisse Zool 31:117–152

    Google Scholar 

  • Reichensperger A (1948) Die Paussiden Afrikas. Abh d senck naturf Ges 479:5–31

    Google Scholar 

  • Resh VH, Cardé RT (eds) (2003) Encyclopedia of insects. Academic, London

    Google Scholar 

  • Roach B, Dodge KR, Aneshansley DJ, Wiemer D, Meinwald J, Eisner T (1979) Chemistry of defensive secretions of Ozaenine and Paussine Bombardier beetles (Coleoptera: Carabidae). Coleopt Bull 33:17–20

    Google Scholar 

  • Roces F, Tautz J (2001) Ants are deaf. JASA 109:3080

    CAS  Google Scholar 

  • Rosenhauer WG (1856) Die Thiere Andalusiens nach dem Resultate einer Reise zusammengestellt, nebst den Beschreibungen von 249 neuen oder bis jetzt noch unbeschriebenen Gattungen und Arten. Theodor Blaesing, Erlangen

    Google Scholar 

  • Schildknecht H, Koob K (1969) Zur Explosionschemie der Bombardierkäfer. Naturwissenschaften 56:328

    PubMed  CAS  Google Scholar 

  • Schildknecht H, Maschwitz E, Maschwitz U (1968a) Die Explosionschemie der Bombardierkäfer. II. Mitt.: Isolierung und Charakterisierung der Explosionskatalysatoren. XXXIV. Mitteilung über Arthropodenwehrstoffe. Z Naturforsch 236:1213–1218

    Google Scholar 

  • Schildknecht H, Maschwitz U, Winkler H (1968b) Zur Evolution der Carabiden-Wehrdrüsensekrete. Naturwissenschaften 55:112–117

    PubMed  CAS  Google Scholar 

  • Schlick-Steiner BC, Steiner FM, Höttinger H, Nikiforov A, Mistrik R, Schafellner C, Baier P, Christian E (2004) A butterfly’s chemical key to various ant forts: intersection-odour or aggregate-odour multi-host mimicry? Naturwissenschaften 91:209–214

    PubMed  CAS  Google Scholar 

  • Schönrogge K, Wardlaw JC, Peters AJ, Everett S, Thomas JA, Elmes GW (2004) Changes in chemical signature and host specificity from larval retrieval to full social integration in the myrmecophilous butterfly Maculinea rebeli. J Chem Ecol 30:91–107

    PubMed  Google Scholar 

  • Singer TL (1998) Roles of hydrocarbons in the recognition systems of insects. Am Zool 38:394–405

    CAS  Google Scholar 

  • Sloane TG (1933) Notes on the Australian species of the family Paussidae (Coleoptera). Proc Linn Soc N S W 58:396–404

    Google Scholar 

  • Solorzano Kraemer M (2006) The first fossil paussine (Coleoptera: Carabidae) from Mexican amber. Palaontol Z 80:107–111

    Google Scholar 

  • Soroker V, Lucas C, Simon T, Fresneau D, Durand JL, Hefetz A (2003) Hydrocarbon distribution and colony odour homogenisation in Pachycondyla apicalis. Insectes Soc 50:212–217

    Google Scholar 

  • Stadler B, Dixon AFG (1999) Ant anttendance in aphids: why different degrees of myrmecophily? Ecol Entomol 24:363–369

    Google Scholar 

  • Steidle JLM, Dettner K (1993) Chemistry and morphology of the tergal gland of freeliving adult Aleocharinae (Coleoptera: Staphylinidae) and its phylogenetic significance. Syst Entomol 18:149–168

    Google Scholar 

  • Stork NE (1985) Dhanya, a south-east Asian genus of ozaenine ground beetles. J Nat Hist 19:1113–1138

    Google Scholar 

  • Stowe MK (1988) Chemical mimicry. In: Spencer KC (ed) Chemical mediation of coevolution. Academic Press, San Diego, pp 513–580

    Google Scholar 

  • Taniguchi K, Maruyama M, Ichikawa T, Ito F (2005) A case of Batesian mimicry between a myrmecophilous staphylinid beetle, Pella comes, and its host ant, Lasius (Dendrolasius) spathepus: an experiment using the Japanese treefrog, Hyla japonica as a real predator. Insectes Soc 52:320–322

    Google Scholar 

  • Thiele H-U (1977) Carabid beetles in their environments. A study on habitat selection by adaptations in physiology and behaviour. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Travassos MA, Pierce NE (2000) Acoustics, context and function of vibrational signalling in a lycaenid butterfly-ant mutualism. Anim Behav 60:13–26

    PubMed  Google Scholar 

  • Van Emden F (1922) Über die Larven der Paussiden und Beschreibung der Larve des Paussus granulatus Westw. (Col.). Ent Blätter 18:37–47

    Google Scholar 

  • Van Emden F (1936) Eine interessante, zwischen Carabidae und Paussidae vermittelnde Käferlarve. Arb Phys Angew Ent 3:250–256

    Google Scholar 

  • Van Emden F, Wasmann E (1925) Paussidae. In: Blunck H (ed) Verlag von Gebrüder Bornträger, Berlin. Syllabus der Insektenbiologie Coleopteren:40–43

  • Vander Meer RK, Wojcik DP (1982) Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis. Science 218:806–808

    PubMed  CAS  Google Scholar 

  • Vander Meer RK, Jouvenaz DP, Wojcik DP (1989) Chemical mimicry in a parasitoid (Hymenoptera: Eucharitidae) of fire ants (Hymenoptera: Formicidae). J Chem Ecol 15:2247–2261

    Google Scholar 

  • Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) (1998) Pheromone communication in social insects. Ants, wasps, bees, and termites. Westview Press, Boulder, Colorado

    Google Scholar 

  • Vigna Taglianti A, Santarelli F, DiGiulio A, Oliverio M (1998) Phylogenetic implications of larval morphology in the tribe Ozaenini (Coleoptera: Carabidae). In: Ball GE, Casale A, Vigna Taglianti A (eds) Phylogeny and Classification of Caraboidea (Coleoptera: Adephaga). Atti, Museo regionale di Scienze naturali, Torino

  • Wagner T (2000) Diversity and distribution patterns of beetles in different forest types in the Budongo Forest reserve, Uganda. Biotropica 32:502–514

    Google Scholar 

  • Wappler T (2003) Systematik, Phylogenie, Taphonomie und Paläoökologie der Insekten aus dem Mittel-Eozän des Eckfelder Maares, Vulkaneifel. Clausthal-Zellerfeld

  • Wardlaw JC, Thomas JA, Elmes GW (2000) Do Maculinea rebeli caterpillars provide vestigial mutualistic benefits to ants when living as social parasites inside Myrmica ant nests? Entomol Exp Appl 95:97–103

    Google Scholar 

  • Wasmann E (1890) Ameisengäste und Termitengäste. Tijdschr Entomol 33:27–97

    Google Scholar 

  • Wasmann E (1892) Ein neuer Paussus vom Somaliland. Mitt Schweiz Entomol Ges 8:355–357

    Google Scholar 

  • Wasmann E (1894) Kritisches Verzeichnis der myrmekophilen und termitophilen Arthropoden mit Angabe der Lebensweise und mit Beschreibung neuer Arten. Verlag von Felix L. Dames, Berlin

    Google Scholar 

  • Wasmann E (1896) Die Myrmekophilen und Termitophilen. In: Hoek PPC (ed) Société Néeriandaise de Zoologie, Leyden. Compte-rendu des séances du troisième congrès international de Zoologie:410–440

  • Wasmann E (1898) Die Gäste der Ameisen und Termiten. Illustrierte Zeitschrift für Entomologie 3:145–247

    Google Scholar 

  • Wasmann E (1903) Zur näheren Kenntnis des echten Gastverhältnisses (Symphilie) bei den Ameisen- und Termitengästen. Biol Zbl 23:63–72, 232–248, 298–310

    Google Scholar 

  • Wasmann E (1904) Neue Beiträge zur Kenntnis der Paussiden, mit biologischen und phylogenetischen Bemerkungen. Notes Leyden Mus 25:1–82

    Google Scholar 

  • Wasmann E (1906) Die moderne Biologie und die Entwicklungstheorie, 3rd edn. Herdersche Verlagshandlung, Freiburg

    Google Scholar 

  • Wasmann E (1910) Zur Kenntnis der Gattung Pleuropterus und anderer Paussiden. Ann Soc Entomol Belge 54:392–402

    Google Scholar 

  • Wasmann E (1911) Ein neuer Paussus aus Ceylon, mit einer Übersicht über die Paussidenwirte. Tijdschr Entomol 54:195–207

    Google Scholar 

  • Wasmann E (1913) The ants and their guests. Smithson Rep 1912:455–474

    Google Scholar 

  • Wasmann E (1915) Eine neue Pseudomyrma aus der Ochsenhorndornakazie in Mexiko, mit Bemerkungen über Ameisen in Akaziendornen und ihre Gäste. Tijdschr Entomol 58:296–325

    Google Scholar 

  • Wasmann E (1918a) Über Pleuropterus dohrni Rits. und lujae Wasm. und die Larve von Pleuropterus dohrni. Tijdschr Entomol 61:76–87

    Google Scholar 

  • Wasmann E (1918b) Myrmekophile und termitophile Koleopteren aus Ostindien, gesammelt hauptsächlich von P.J. Assmuth, S.J. und J.B. Corporaal. I. Paussidae und Clavigeridae. Tijdschr Entomol 60:382–408

    Google Scholar 

  • Wasmann E (1920) Die Gastpflege der Ameisen: ihre biologischen und philosophischen Probleme. Abh Theor Biol 4:1–105

    Google Scholar 

  • Wasmann E (1925) Die Ameisenmimikry: Ein exakter Beitrag zum Mimikryproblem und zur Theorie der Anpassung. Abh Theor Biol 19:1–154

    Google Scholar 

  • Wasmann E (1929) Die Paussiden des baltischen Bernsteins und die Stammesgeschichte der Paussiden. 270. Beitrag zur Kenntnis der Myrmecophilen. Bernsteinforschungen 1:1–110

    Google Scholar 

  • Wasmann E (1934) Die Ameisen, die Termiten und ihre Gäste: Vergleichende Bilder aus dem Seelenleben von Mensch und Tier. Verlagsanstalt vorm. G. J. Manz A.G., Regensburg

    Google Scholar 

  • Wasmann E, Brauns H (1925) New genera and species of South African myrmecophilous and termitophilous beetles. S Afr J Nat Hist 5:101–118

    Google Scholar 

  • Weis A, Schönitzer K, Melzer RR (1999) Exocrine glands in the antennae of the carabid beetle, Platynus assimilis (Paykull) 1790 (Coleoptera, Carabidae, Pterostichinae). Int J Insect Morphol Embryol 28:331–335

    Google Scholar 

  • Weitschat W, Wichard W (2002) Atlas of plants and animals in Baltic Amber. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Westwood JO (1833) X X X I V. On the Paussidae, a family of coleopterous insects. Trans Linn Soc Lond 16:607–684

    Google Scholar 

  • Westwood JO (1874) Order-Coleoptera. Section-Pentamera. Family-Paussidae. In: Westwood JO (ed) Thesaurus entomologicus oxoniensis. Oxford University Press, Oxford, pp 72–96

    Google Scholar 

  • Wheeler WM (1960) Ants—their structure, development and behavior. Columbia University Press, New York

    Google Scholar 

  • Wilson EO (1971) The insect societies. The Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  • Yung CM (1938) Morphologische und histologische Studien über Paussidendrüsen. Zool Jb Anat 64:287–346

    Google Scholar 

  • Zetto Brandmayr T, Bonacci T, Dalpozzo R, De Nino A, Tagarelli A, Talarico FF, Brandmayr P (2005) Cuticular hydrocarbon profiles of some ground beetle species (Coleoptera, Carabidae) and their possible role in predatory and antipredatory adaptation. DIAS Report 114:41–48

    Google Scholar 

Download references

Acknowledgements

We would like to thank M. E. Glyn Evans and Joachim Krüger, who kindly provided data from their laboratories. Moreover, we are grateful to Andrea di Giulio, Wendy Moore and Andreas Kaupp for fruitful discussion during the past years. Andrea di Giulio also provided the drawings of larval paussines, and Eva Weber drew the accurate pictures of adult paussines. Cesare Baroni Urbani has always been helpful with regard to any ant-related question. Furthermore, we would like to thank Sven Geiselhardt, Linda and Danel Draguljic and four anonymous reviewers for useful comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie F. Geiselhardt.

Appendix

Appendix

Table 3 Genera of Carabidae: Paussinae, their classification as used in the present paper, distribution, number of species, and association with ants

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiselhardt, S.F., Peschke, K. & Nagel, P. A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings. Naturwissenschaften 94, 871–894 (2007). https://doi.org/10.1007/s00114-007-0271-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-007-0271-x

Keywords

Navigation