Skip to main content
Log in

Induzieren Opioide Hyperalgesie?

Do opioids induce hyperalgesia?

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Opioide stellen bis heute die potentesten Medikamente zur Therapie akuter und chronischer Schmerzen dar. Die paradoxe Beobachtung einer Hyperalgesie unter Opioidtherapie wurde in den zurückliegenden Jahren intensiv diskutiert. Diese sog. opioidinduzierte Hyperalgesie (OIH) ist als eine Sensitivierung nozizeptiver Signaltransduktionswege durch Opioide definiert. Sie resultiert in einer Abnahme der Schmerzschwelle für schmerzhafte Stimuli und zeigt sich klinisch durch einen gesteigerten Schmerzmittelbedarf oder eine gesteigerte Schmerzempfindlichkeit des Patienten. Über die genauen molekularen Mechanismen gibt es eine Vielzahl unterschiedlicher Hypothesen. Auch die klinische Relevanz der OIH wird unterschiedlich bewertet. Einzelne Berichte deuten bereits nach akuter, einmaliger intraoperativer Gabe eines Opioids auf einen vermehrten postoperativen Verbrauch von Schmerzmitteln hin. Auch bei chronischen Erkrankungen und Opioiddauertherapie wird in Einzelfällen über eine paradoxe Zunahme von Schmerzen berichtet, die nicht auf eine Progression der Grundkrankheit zurückzuführen ist. Im vorliegenden Beitrag werden die molekularen Mechanismen der Opioidtoleranz, des Opioidentzugs und andere Applikationsformen von Opioiden, die zur Hyperalgesie beim Patienten führen können, vorgestellt. Diese Arbeit soll einen Überblick geben, unter welchen Bedingungen die Applikation von Opioiden zu einer Hyperalgesie beim Patienten führen kann und welche klinische Bedeutung diese Hyperalgesie für die klinische Praxis hat.

Abstract

Opioids are the most potent drugs for treatment of acute and chronic pain. However, accumulating evidence suggests that opioids may paradoxically also enhance pain, often referred to as opioid-induced hyperalgesia. Opioid-induced hyperalgesia is defined as an increased sensitivity to pain or a decreased pain threshold in response to opioid therapy. Several mechanisms have been proposed to support opioid-induced hyperalgesia. However, it remains unclear whether opioid-induced hyperalgesia develops during continuous chronic application of opioids or on their withdrawal. This review provides a comprehensive summary of clinical research concerning opioid-induced hyperalgesia and the molecular mechanisms of opioid withdrawal and opioid tolerance and other potential mechanisms which might induce hyperalgesia during opioid therapy will be discussed. The status quo of our knowledge will be summarized and the clinical relevance of opioid-induced hyperalgesia will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Schmitz R (1985) Friedrich Wilhelm Serturner and the discovery of morphine. Pharm Hist 27:61–74

    CAS  PubMed  Google Scholar 

  2. Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278:58–63

    Article  CAS  PubMed  Google Scholar 

  3. Bie B, Peng Y, Zhang Y, Pan ZZ (2005) cAMP-mediated mechanisms for pain sensitization during opioid withdrawal. J Neurosci 25:3824–3832

    Article  CAS  PubMed  Google Scholar 

  4. Bie B, Pan ZZ (2003) Presynaptic mechanism for anti-analgesic and anti-hyperalgesic actions of kappa-opioid receptors. J Neurosci 23:7262–7268

    CAS  PubMed  Google Scholar 

  5. Mao J, Price DD, Mayer DJ (1995) Mechanisms of hyperalgesia and morphine tolerance: a current view of their possible interactions. Pain 62:259–274

    Article  CAS  PubMed  Google Scholar 

  6. Mayer DJ, Mao J, Holt J, Price DD (1999) Cellular mechanisms of neuropathic pain, morphine tolerance, and their interactions. Proc Natl Acad Sci U S A 96:7731–7736

    Article  CAS  PubMed  Google Scholar 

  7. Mao J, Sung B, Ji RR, Lim G (2002) Chronic morphine induces downregulation of spinal glutamate transporters: implications in morphine tolerance and abnormal pain sensitivity. J Neurosci 22:8312–8323

    CAS  PubMed  Google Scholar 

  8. Mao J, Sung B, Ji RR, Lim G (2002) Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci 22:7650–7661

    CAS  PubMed  Google Scholar 

  9. Celerier E, Rivat C, Jun Y et al (2000) Long-lasting hyperalgesia induced by fentanyl in rats: preventive effect of ketamine. Anesthesiology 92:465–472

    Article  CAS  PubMed  Google Scholar 

  10. Laulin JP, Larcher A, Celerier E et al (1998) Long-lasting increased pain sensitivity in rat following exposure to heroin for the first time. Eur J Neurosci 10:782–785

    Article  CAS  PubMed  Google Scholar 

  11. Aley KO, Green PG, Levine JD (1995) Opioid and adenosine peripheral antinociception are subject to tolerance and withdrawal. J Neurosci 15:8031–8038

    CAS  PubMed  Google Scholar 

  12. Aley KO, Levine JD (1997) Dissociation of tolerance and dependence for opioid peripheral antinociception in rats. J Neurosci 17:3907–3912

    CAS  PubMed  Google Scholar 

  13. Celerier E, Gonzalez JR, Maldonado R et al (2006) Opioid-induced hyperalgesia in a murine model of postoperative pain: role of nitric oxide generated from the inducible nitric oxide synthase. Anesthesiology 104:546–555

    Article  CAS  PubMed  Google Scholar 

  14. Colpaert FC, Fregnac Y (2001) Paradoxical signal transduction in neurobiological systems. Mol Neurobiol 24:145–168

    Article  CAS  PubMed  Google Scholar 

  15. Laulin JP, Maurette P, Corcuff JB et al (2002) The role of ketamine in preventing fentanyl-induced hyperalgesia and subsequent acute morphine tolerance. Anesth Analg 94:1263–1269

    Article  CAS  PubMed  Google Scholar 

  16. Colpaert FC, Niemegeers CJ, Janssen PA, Maroli AN (1980) The effects of prior fentanyl administration and of pain on fentanyl analgesia: tolerance to and enhancement of narcotic analgesia. J Pharmacol Exp Ther 213:418–424

    CAS  PubMed  Google Scholar 

  17. Angst MS, Clark JD (2006) Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology 104:570–587

    Article  CAS  PubMed  Google Scholar 

  18. Koppert W, Sittl R, Scheuber K et al (2003) Differential modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by S-ketamine and clonidine in humans. Anesthesiology 99:152–159

    Article  CAS  PubMed  Google Scholar 

  19. Angst MS, Koppert W, Pahl I et al (2003) Short-term infusion of the mu-opioid agonist remifentanil in humans causes hyperalgesia during withdrawal. Pain 106:49–57

    Article  CAS  PubMed  Google Scholar 

  20. Hood DD, Curry R, Eisenach JC (2003) Intravenous remifentanil produces withdrawal hyperalgesia in volunteers with capsaicin-induced hyperalgesia. Anesth Analg 97:810–815

    Article  CAS  PubMed  Google Scholar 

  21. Compton P, Athanasos P, Elashoff D (2003) Withdrawal hyperalgesia after acute opioid physical dependence in nonaddicted humans: a preliminary study. J Pain 4:511–519

    Article  PubMed  Google Scholar 

  22. Joly V, Richebe P, Guignard B et al (2005) Remifentanil-induced postoperative hyperalgesia and its prevention with small-dose ketamine. Anesthesiology 103:147–155

    Article  CAS  PubMed  Google Scholar 

  23. Guignard B, Bossard AE, Coste C et al (2000) Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology 93:409–417

    Article  CAS  PubMed  Google Scholar 

  24. Lee LH, Irwin MG, Lui SK (2005) Intraoperative remifentanil infusion does not increase postoperative opioid consumption compared with 70% nitrous oxide. Anesthesiology 102:398–402

    Article  CAS  PubMed  Google Scholar 

  25. Cortinez LI, Brandes V, Munoz HR et al (2001) No clinical evidence of acute opioid tolerance after remifentanil-based anaesthesia. Br J Anaesth 87:866–869

    Article  CAS  PubMed  Google Scholar 

  26. Ren ZY, Shi J, Epstein DH et al (2009) Abnormal pain response in pain-sensitive opiate addicts after prolonged abstinence predicts increased drug craving. Psychopharmacology (Berl) 204:423–429

    Google Scholar 

  27. Hay JL, White JM, Bochner F et al (2009) Hyperalgesia in opioid-managed chronic pain and opioid-dependent patients. J Pain 10:316–322

    Article  CAS  PubMed  Google Scholar 

  28. Dyer KR, Foster DJ, White JM et al (1999) Steady-state pharmacokinetics and pharmacodynamics in methadone maintenance patients: comparison of those who do and do not experience withdrawal and concentration-effect relationships. Clin Pharmacol Ther 65:685–694

    Article  CAS  PubMed  Google Scholar 

  29. King CD, Rios GR, Assouline JA, Tephly TR (1999) Expression of UDP-glucuronosyltransferases (UGTs) 2B7 and 1A6 in the human brain and identification of 5-hydroxytryptamine as a substrate. Arch Biochem Biophys 365:156–162

    Article  CAS  PubMed  Google Scholar 

  30. Andersen G, Christrup L, Sjogren P (2003) Relationships among morphine metabolism, pain and side effects during long-term treatment: an update. J Pain Symptom Manage 25:74–91

    Article  CAS  PubMed  Google Scholar 

  31. Abbott FV, Palmour RM (1988) Morphine-6-glucuronide: analgesic effects and receptor binding profile in rats. Life Sci 43:1685–1695

    Article  CAS  PubMed  Google Scholar 

  32. Lewis SS, Hutchinson MR, Rezvani N et al (2010) Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience 165:569–583

    Article  CAS  PubMed  Google Scholar 

  33. Bartlett SE, Cramond T, Smith MT (1994) The excitatory effects of morphine-3-glucuronide are attenuated by LY274614, a competitive NMDA receptor antagonist, and by midazolam, an agonist at the benzodiazepine site on the GABAA receptor complex. Life Sci 54:687–694

    Article  CAS  PubMed  Google Scholar 

  34. Bartlett SE, Dodd PR, Smith MT (1994) Pharmacology of morphine and morphine-3-glucuronide at opioid, excitatory amino acid, GABA and glycine binding sites. Pharmacol Toxicol 75:73–81

    Article  CAS  PubMed  Google Scholar 

  35. Hemstapat K, Monteith GR, Smith D, Smith MT (2003) Morphine-3-glucuronide’s neuro-excitatory effects are mediated via indirect activation of N-methyl-D-aspartic acid receptors: mechanistic studies in embryonic cultured hippocampal neurones. Anesth Analg 97:494–505

    Article  CAS  PubMed  Google Scholar 

  36. Komatsu T, Sakurada S, Katsuyama S et al (2009) Mechanism of allodynia evoked by intrathecal morphine-3-glucuronide in mice. Int Rev Neurobiol 85:207–219

    Article  CAS  PubMed  Google Scholar 

  37. Komatsu T, Sasaki M, Sanai K et al (2009) Intrathecal substance P augments morphine-induced antinociception: possible relevance in the production of substance P N-terminal fragments. Peptides 30:1689-1696

    Article  CAS  PubMed  Google Scholar 

  38. Andersen G, Christrup LL, Sjogren P et al (2002) Changing M3G/M6G ratios and pharmacodynamics in a cancer patient during long-term morphine treatment. J Pain Symptom Manage 23:161–164

    Article  PubMed  Google Scholar 

  39. Klepstad P, Borchgrevink PC, Dale O et al (2003) Routine drug monitoring of serum concentrations of morphine, morphine-3-glucuronide and morphine-6-glucuronide do not predict clinical observations in cancer patients. Palliat Med 17:679–687

    PubMed  Google Scholar 

  40. Klepstad P, Dale O, Kaasa S et al (2003) Influences on serum concentrations of morphine, M6G and M3G during routine clinical drug monitoring: a prospective survey in 300 adult cancer patients. Acta Anaesthesiol Scand 47:725–731

    Article  CAS  PubMed  Google Scholar 

  41. Chen XY, Zhao LM, Zhong DF (2003) A novel metabolic pathway of morphine: formation of morphine glucosides in cancer patients. Br J Clin Pharmacol 55:570–578

    Article  CAS  PubMed  Google Scholar 

  42. Quigley C, Joel S, Patel N et al (2003) Plasma concentrations of morphine, morphine-6-glucuronide and morphine-3-glucuronide and their relationship with analgesia and side effects in patients with cancer-related pain. Palliat Med 17:185–190

    Article  PubMed  Google Scholar 

  43. Sjogren P, Jonsson T, Jensen NH et al (1993) Hyperalgesia and myoclonus in terminal cancer patients treated with continuous intravenous morphine. Pain 55:93–97

    Article  CAS  PubMed  Google Scholar 

  44. Rozan JP, Kahn CH, Warfield CA (1995) Epidural and intravenous opioid-induced neuroexcitation. Anesthesiology 83:860–863

    Article  CAS  PubMed  Google Scholar 

  45. Smith MT (2000) Neuroexcitatory effects of morphine and hydromorphone: evidence implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol 27:524–528

    Article  CAS  PubMed  Google Scholar 

  46. Chen JJ, Dymshitz J, Vasko MR (1997) Regulation of opioid receptors in rat sensory neurons in culture. Mol Pharmacol 51:666–673

    CAS  PubMed  Google Scholar 

  47. Sim LJ, Selley DE, Dworkin SI, Childers SR (1996) Effects of chronic morphine administration on mu opioid receptor-stimulated [35S] GTPgammaS autoradiography in rat brain. J Neurosci 16:2684–2692

    CAS  PubMed  Google Scholar 

  48. Zhang J, Ferguson SS, Barak LS et al (1998) Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc Natl Acad Sci U S A 95:7157–7162

    Article  CAS  PubMed  Google Scholar 

  49. Bruggemann I, Schulz S, Wiborny D, Hollt V (2000) Colocalization of the mu-opioid receptor and calcium/calmodulin-dependent kinase II in distinct pain-processing brain regions. Brain Res Mol Brain Res 85:239–250

    Article  CAS  PubMed  Google Scholar 

  50. Bohn LM, Gainetdinov RR, Lin FT et al (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723

    Article  CAS  PubMed  Google Scholar 

  51. Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430

    Article  CAS  PubMed  Google Scholar 

  52. Eisinger DA, Ammer H, Schulz R (2002) Chronic morphine treatment inhibits opioid receptor desensitization and internalization. J Neurosci 22:10192–10200

    CAS  PubMed  Google Scholar 

  53. Sternini C, Spann M, Anton B et al (1996) Agonist-selective endocytosis of mu opioid receptor by neurons in vivo. Proc Natl Acad Sci U S A 93:9241–9246

    Article  CAS  PubMed  Google Scholar 

  54. Koch T, Widera A, Bartzsch K et al (2005) Receptor endocytosis counteracts the development of opioid tolerance. Mol Pharmacol 67:280–287

    Article  CAS  PubMed  Google Scholar 

  55. Stein C, Pfluger M, Yassouridis A et al (1996) No tolerance to peripheral morphine analgesia in presence of opioid expression in inflamed synovia. J Clin Invest 98:793–799

    Article  CAS  PubMed  Google Scholar 

  56. Zollner C, Mousa SA, Fischer O et al (2008) Chronic morphine use does not induce peripheral tolerance in a rat model of inflammatory pain. J Clin Invest 118:1065–1073

    PubMed  Google Scholar 

  57. Mao J, Price DD, Mayer DJ (1994) Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C. J Neurosci 14:2301–2312

    CAS  PubMed  Google Scholar 

  58. Vanderah TW, Gardell LR, Burgess SE et al (2000) Dynorphin promotes abnormal pain and spinal opioid antinociceptive tolerance. J Neurosci 20:7074–7079

    CAS  PubMed  Google Scholar 

  59. Aley KO, Levine JD (1997) Multiple receptors involved in peripheral alpha 2, mu, and A1 antinociception, tolerance, and withdrawal. J Neurosci 17:735–744

    CAS  PubMed  Google Scholar 

  60. Mercadante S, Bruera E (2006) Opioid switching: a systematic and critical review. Cancer Treat Rev 32:304–315

    Article  CAS  PubMed  Google Scholar 

  61. Mitra S, Sinatra RS (2004) Perioperative management of acute pain in the opioid-dependent patient. Anesthesiology 101:212–227

    Article  PubMed  Google Scholar 

  62. Leon-Casasola OA de, Myers DP, Donaparthi S et al (1993) A comparison of postoperative epidural analgesia between patients with chronic cancer taking high doses of oral opioids versus opioid-naive patients. Anesth Analg 76:302–307

    PubMed  Google Scholar 

  63. Stein C, Zollner C (2009) Opioids and sensory nerves. Handb Exp Pharmacol 495–518

  64. Savage SR (1996) Long-term opioid therapy: assessment of consequences and risks. J Pain Symptom Manage 11:274–286

    Article  CAS  PubMed  Google Scholar 

  65. Brodner RA, Taub A (1978) Chronic pain exacerbated by long-term narcotic use in patients with nonmalignant disease: clinical syndrome and treatment. Mt Sinai J Med 45:233–237

    CAS  PubMed  Google Scholar 

  66. Davis MP, Shaiova LA, Angst MS (2007) When opioids cause pain. J Clin Oncol 25:4497–4498

    Article  PubMed  Google Scholar 

  67. Singla A, Stojanovic MP, Chen L, Mao J (2007) A differential diagnosis of hyperalgesia, toxicity, and withdrawal from intrathecal morphine infusion. Anesth Analg 105:1816–1819

    Article  PubMed  Google Scholar 

  68. Baron MJ, McDonald PW (2006) Significant pain reduction in chronic pain patients after detoxification from high-dose opioids. J Opioid Manag 2:277–282

    PubMed  Google Scholar 

  69. Zech DF, Grond S, Lynch J et al (1995) Validation of World Health Organization Guidelines for cancer pain relief: a 10-year prospective study. Pain 63:65–76

    Article  CAS  PubMed  Google Scholar 

  70. Ballantyne JC, Shin NS (2008) Efficacy of opioids for chronic pain: a review of the evidence. Clin J Pain 24:469–478

    Article  PubMed  Google Scholar 

  71. Williams JT, Christie MJ, Manzoni O (2001) Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev 81:299–343

    CAS  PubMed  Google Scholar 

  72. Gutstein HB (1996) The effects of pain on opioid tolerance: how do we resolve the controversy? Pharmacol Rev 48:403–407

    CAS  PubMed  Google Scholar 

  73. Jensen KB, Lonsdorf TB, Schalling M et al (2009) Increased sensitivity to thermal pain following a single opiate dose is influenced by the COMT val(158)met polymorphism. PLoS One 4:e6016

    Article  PubMed  Google Scholar 

  74. Tan HY, Chen Q, Goldberg TE et al (2007) Catechol-O-methyltransferase Val158Met modulation of prefrontal-parietal-striatal brain systems during arithmetic and temporal transformations in working memory. J Neurosci 27:13393–13401

    Article  CAS  PubMed  Google Scholar 

  75. Drabant EM, Hariri AR, Meyer-Lindenberg A et al (2006) Catechol O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Arch Gen Psychiatry 63:1396–1406

    Article  CAS  PubMed  Google Scholar 

  76. Diatchenko L, Nackley AG, Slade GD et al (2006) Catechol-O-methyltransferase gene polymorphisms are associated with multiple pain-evoking stimuli. Pain 125:216–224

    Article  CAS  PubMed  Google Scholar 

  77. Zubieta JK, Heitzeg MM, Smith YR et al (2003) COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science 299:1240–1243

    Article  CAS  PubMed  Google Scholar 

  78. Kim H, Neubert JK, San Miguel A et al (2004) Genetic influence on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament. Pain 109:488–496

    Article  PubMed  Google Scholar 

  79. Mao J (2002) Opioid-induced abnormal pain sensitivity: implications in clinical opioid therapy. Pain 100:213–217

    Article  CAS  PubMed  Google Scholar 

  80. Simonnet G, Rivat C (2003) Opioid-induced hyperalgesia: abnormal or normal pain? Neuroreport 14:1–7

    Article  PubMed  Google Scholar 

  81. Koppert W (2004) Opioid-induced hyperalgesia. Pathophysiology and clinical relevance. Anaesthesist 53:455–466

    Article  CAS  PubMed  Google Scholar 

  82. Ossipov MH, Lai J, King T et al (2004) Antinociceptive and nociceptive actions of opioids. J Neurobiol 61:126–148

    Article  CAS  PubMed  Google Scholar 

  83. King T, Ossipov MH, Vanderah TW et al (2005) Is paradoxical pain induced by sustained opioid exposure an underlying mechanism of opioid antinociceptive tolerance? Neurosignals 14:194–205

    Article  CAS  PubMed  Google Scholar 

  84. Chu LF, Angst MS, Clark D (2008) Opioid-induced hyperalgesia in humans: molecular mechanisms and clinical considerations. Clin J Pain 24:479–496

    Article  PubMed  Google Scholar 

  85. Fishbain DA, Cole B, Lewis JE et al (2009) Do opioids induce hyperalgesia in humans? An evidence-based structured review. Pain Med 10:829–839

    Article  PubMed  Google Scholar 

  86. Wilder-Smith OH, Arendt-Nielsen L (2006) Postoperative hyperalgesia: its clinical importance and relevance. Anesthesiology 104:601–607

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Zöllner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zöllner, C. Induzieren Opioide Hyperalgesie?. Anaesthesist 59, 983–993 (2010). https://doi.org/10.1007/s00101-010-1803-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-010-1803-x

Schlüsselwörter

Keywords

Navigation