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MEASURE RIGIDITY OF ANOSOV FLOWS VIA THE

FACTORIZATION METHOD

ASAF KATZ

Abstract. Using the factorization method of Eskin and Mirza-

khani, we show that generalized u-Gibbs states over quantitatively

non-integrable partially hyperbolic systems have absolutely con-

tinuous disintegrations on unstable manifolds.

As an application, we show a pointwise equidistribution theorem

analogous to the equidistribution results of Kleinbock-Shi-Weiss

and Chaika-Eskin.

1. Introduction

In this paper we apply the factorization method originating in the

work of A. Eskin and M. Mirzakhani [27] to the study of measure

rigidity for Anosov flows and diffeomorphisms. The main result of [27],

a measure classification theorem for P -invariant probability measures

over the moduli space of translation surface, is too technical to be

presented here; the interested reader may consult [50] for more de-

tails. The main ingredient in this measure classification theorem is [27,

Theorem 2.1]. This theorem, which can be applied in more abstract

settings than the geometrical settings of [27], actually provides a gen-

eral technique for proving measure rigidity results in the presence of

a hyperbolic flow, coupled with parabolic behavior induced from some

of its unstable distributions. This strategy was carried out by Eskin-

Lindenstrauss [26, 25] where they gave a different (and more general)

proof to the theorem of Benoist-Quint [7] on measure rigidity of random

walks on homogeneous spaces.

In this paper we carry the technique further, showing a measure rigid-

ity result in the general setting of non-uniformly hyperbolic systems,

which include in particular certain Anosov flows and diffeomorphisms.
1
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2 ASAF KATZ

Let (M, gt, µ) be a measure preserving system, where M is a Rie-

mannian manifold and µ is gt-invariant and ergodic measure.

Oseledets theorem, as applied to the tangent bundle TM states

1.1. Theorem. There exists a set of numbers {λi} and a measurable

splitting of TM ,

TM = ⊕iE
λi ,

such that for every 0 6= v ∈ Eλi,

λi = lim
t→∞

ln ‖gt.v‖

‖v‖
.

The numbers {λi} are called the Lyapunov exponents associated to

(M, gt, µ) and the respective subspaces
{
Eλi
}
are called the associated

Lyapunov subspaces and the splitting is called the Lyapunov splitting

of TM with respect to µ, By ergodicity, λi and dimEλi are constant µ

almost everywhere. A point x ∈ M for which the Lyapunov splitting

is defined is called a bi-regular point.

We will order the Lyapunov exponents as

λk > λk−1 > . . . > λ1 > 0 > λ−1 > . . . λ−r.

For each bi-regular point x ∈M , we define the following sets of M

W≥λi(x) =

{
y ∈M | lim sup

t→∞

1

t
log d(g−t.x, g−t.y) ≤ −λi

}
.

A fundamental result of Y. Pesin [44] states that for λi > 0 these

are C∞-immersed smooth manifolds. They are called the i’th-unstable

manifold of gt at x. Similarly, we define the stable submanifolds at x

as

W≤λi(x) =

{
y ∈M | lim sup

t→∞

1

t
log d(gt.x, gt.y) ≤ −λi

}
,

for λi < 0. We have that W≥λi+1(x) is a subset of W≥λi(x).

We define the unstable manifold of gt at x to be

W u(x) =W≥λ1(x).

Similarly, we define the stable manifold as

W s(x) =W≤λ−1(x).
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Their tangent spaces are denoted Eu, Es respectively.

1.2. Standing assumptions. Throughout this paper, we will make the

following assumptions:

• There exists at-least two positive Lyapunov exponents, namely

0 < λ1 < λ2 < . . ..

• dimEλ1 = 1, namely the subspace corresponding the least pos-

itive Lyapunov exponent is simple.

• The only Lyapunov exponent equal to zero is in the gt-flow di-

rection.

• dimEs ≥ 1, namely the set of negative Lyapunov exponents is

non-empty.

We make the following definition.

1.3. Definition. The fast-unstable manifold through x, where x is a

bi-regular point, is defined to be

W uu(x) = W≥λ2(x).

By our second assumption, for any bi-regular point x, we have that

W uu(x) is a co-dimension 1 measurable lamination of W u(x), which is

tangent to Euu. This follows by using normal forms, as in § 2.4.

In view of our third assumption, we may define the center-stable and

center-unstable manifolds as

W cs(x) =
⋃

t∈R

gt.W
s(x), W cu(x) =

⋃

t∈R

gt.W
u(x).

Recall also the following definition.

1.4. Definition. A measure µ on M is called a Sinai-Ruelle-Bowen

measure (or SRB measure) if its conditionals along the unstable mani-

folds W u are absolutely continuous with respect to the Lebesgue mea-

sure over W u.

1.5. Definition. We say that a gt-invariant probability measure µ is

a generalized u-Gibbs state if its conditionals along the fast unstable

manifolds W uu are absolutely continuous with respect to the Lebesgue

measure over W uu.
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It follows readily from the definition, and absolute continuity ofW uu

that every SRB measure is a generalized u-Gibbs measure. We refer

the reader to [21] for more material regarding u-Gibbs states. In [45],

considering partially-hyperbolic dynamics, Pesin and Sinai construct u-

Gibbs measures by averaging smooth densities along expanding leaves.

The constructions of [44] discussed above are only measurable in

nature. In particular, the radius of injectivity of the local manifolds

W ⋆
loc is only a measurable function. In view of Lusin’s theorem, for

any ǫ > 0, there exists a subset Mǫ ⊂M of measure µ(Mǫ) > 1− ǫ for

which all the measurable functions involved in defining these structures

are continuous. In particular, these functions and the injectivity radius

are of bounded size onMǫ. Such sets are termed Lusin sets. From now

on, we will work in such a Lusin set.

Let B be a measurable partition, subordinate to W u with the one-

sided Markov property. Such partitions are constructed in [43, 40]. We

denote by B(x) the atom containing x. Using this partition, one may

define conditional measures with respect to this partition, which we

denote by µuu
x . Using an analogous partition B− subordinate to W s,

we may define the conditional measure µs
x. For a detailed discussion,

see Section 3.

Given this partition, for a generic point x, we define W uu
loc(x) as

W uu(x) ∩ B(x). Similarly, we define W s
loc(x) as W s

loc(x) = W s(x) ∩

B−(x). We define W cs
loc(x) = ∪t∈[−1,1]gtW

s
loc(x).

The following definition plays a key role in our theorem.

1.6. Definition. A system (M, gt, µ) satisfying Assumptions 1.2 has

the quantitative non-integrability property (QNI) if:

• There is α > 0 and,

• For every ǫ > 0 a subset X ⊂M of measure µ(X ) > 1− ǫ and,

• For every ν > 0 a constant C := C(ν, ǫ) and a constant t0 = t0(ν, ǫ)

so that:

Suppose x ∈ X and t > t0 is such that gtx ∈ X and g−tx ∈ X then:

There is a subset Sx ⊂ gt(W
s
loc)(g−tx) with

µs
x(Sx) > (1− ν)µs

x(gtW
s
loc(g−tx))
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with the following property:

For all y ∈ Sx there exists Uy ⊂ g−t(W
uu
loc (gtx)) with

µuu
x (Uy) > (1− ν)µuu

x (g−t(W
uu
loc (gtx))

so that if z ∈ Uy then

(1.1) d(W uu
loc (y),W

cs
loc(z)) > Ce−αt.

The above Definition can be adapted to diffeomorphisms by tak-

ing a suspension construction, or alternatively use discrete times and

modifying changing (1.1) to a condition over the stable manifold.

An alternative slightly more restrictive definition of the QNI condi-

tion is presented in Appendix C.

Now we may state our main measure rigidity theorem.

1.7. Theorem. Assume (M, gt, µ) that µ satisfies Assumptions 1.2 and

µ is a generalized u-Gibbs measure with respect to W uu. If µ satisfy

the QNI condition, then µ is an SRB measure.

We refer the reader to §2 for a detailed account of the definitions

involved in the discussion that follows. An Anosov flow is a hyperbolic

flow over a compact N -dimensional Riemannian manifold M ; at every

point x ∈ M , the tangent bundle admits a splitting

TxM = Es(x)⊕ E0(x)⊕ Eu(x)

to contracting, neutral and expanding parts, respectively, such that

there exists λs < 0 < λu for which

• ‖gtv‖ ≤ eλst ‖v‖ for all v ∈ Es,

• ‖gtv‖ ≥ eλst ‖v‖ for all v ∈ Es,

• The gt action over E0 is isometric and dimE0 = 1.

SRB measures exist in the case of Anosov system [49, 19]. Fur-

thermore, in the case of transitive Anosov systems, such measures are

unique, ergodic and mixing. In the case where volume is preserved, the

Anosov system is transitive and the unique SRB measure is volume.
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1.8. Corollary. Suppose (M, f, µ) is an Anosov diffeomorphism or a

flow satisfying Assumptions 1.2 and µ is a generalized u-Gibbs measure

satisfying the QNI condition, then µ is SRB, and it is unique if the

system is transitive.

It is not known which classes of partially hyperbolic systems support

SRB measures in general. In case of partially hyperbolic systems,

our Theorem 1.7 shows that generalized u-Gibbs measures that satisfy

the QNI condition are actually SRB, hence such systems admit SRB

measures.

1.9.Definition. Consider a manifoldM equipped with an Anosov flow

gt. Assume moreover that the expanding subspace admits a dominated

splitting for every x ∈M as

Eu(x) = Euu(x)⊕ E1(x)

where E1(x) is one-dimensional, and being expanded in a slower rate

than Euu(x), namely there exists a t0 > 0 such that for any two unit

vectors u ∈ Euu, u′ ∈ E1, for any t > t0 we have that

‖gtu‖

‖gtu′‖
≥ 2.

The system (M, gt) is called highly quantitatively non-integrable (HQNI)

if every gt-invariant and ergodic generalized u-Gibbs state with respect

to Euu satisfies the QNI property.

We give an example of such a flow (including an idea how to pro-

duce those) in §7. For such class of manifolds we can deduce the fol-

lowing pointwise equidistribution theorem, in the spirit of [28, Theo-

rems 2.6, 2.10]

1.10. Theorem. Assume (M, gt) is a HQNI flow. Moreover, assume

that the normal forms coordinates on W>1
loc (x) are linear, for all x in

M . Then for every x ∈M , for µuu
x almost every y ∈ W uu(x), we have

(1.2)
1

T

∫ T

t=0

f(gt.y)dt→

∫

M

fdm,
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for any f ∈ C(M), where m is the unique SRB measure of the system

(M, gt).

We define normal forms in § 2.4. We remark here that the assump-

tion about linearity of the normal forms over W uu
loc is done to simplify

the argument. It seems possible to remove this assumption using more

calculations via general normal forms coordinates. Moreover, the as-

sumption is automatically filed in the case of dimEu = 2 with two

distinct positive Lyapunov exponents.

A main example we consider in this paper is the Borel-Smale Anosov

diffeomorphism discussed in Example 7.2 and certain fiber-perturbations

of it, as discussed in Example 7.3. This is a volume-preserving Anosov

system for which the space is the nilmanifold N × N/Γ where N is

the 3-dimensional Heisenberg group and Γ is some irreducible lattice.

Considering a suspension of this class of diffeomorphisms, for appropri-

ately chosen parameters, we show in Example 7.2 that any generalized

u-Gibbs state for E>1 satisfy the QNI condition, resulting in a HQNI

system. As an application, our measure classification theorem shows

that any u-Gibbs measure must be the Haar measure, and the equidis-

tribution result mentioned above is applicable. Moreover, this system

is also an example of a fibered system, where the basis is the four di-

mensional torus T4 and the fiber is T2, where the action on both basis

and fibers is Anosov, but the action over the fibers is slower than the

basis. We show in Example 7.3 that for certain small C∞ perturbations

of the fiber dynamics, our QNI and HQNI assumptions hold. A similar

example using the fibered system ASL2(R)/ASL2(Z) is described in

Example 7.1.

Our adaption of the factorization technique requires non-trivial in-

put in the form of certain quantitative non-integrability estimates over

measurable laminations of the system. We verified this condition for

certain perturbations of homogeneous systems. A promising direction

of research is to try to verify this condition to other types of dynamical

systems.
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We consider the set Ak ⊂ Diffk(T3). This is the set of Ck Anosov

maps with dominated splitting as in Definition 1.9.

In an upcoming paper of Avila-Croviser-Eskin-Potrie-Wilkinson-Zhang [4],

they will show that for any map in A∞(T3) either Es, Euu are jointly

integrable, or any u-Gibbs state is SRB. Their proof involves first show-

ing a dichotomy that either the system satisfies the QNI condition, or

the Franks-Manning conjugacy preserves the fast unstable foliation and

then applying the results of this paper.

As minimality ofW uu is C1-open and C∞-dense inside the set A∞ as

shown by Avila-Crovisier-Wilkinson, it seems likely that systems that

satisfy a QNI condition are open and dense in that set.

Since this paper was sent to publication, two interesting results re-

lated to the current paper have appeared.

In [1], Alvarez-Leguil-Obata-Santiago study the problem of rigidity

of 3D Anosov diffeomorphisms over T3. They show that for any pertur-

bation of a conservative map in A2, either a QNI-like condition holds

or Es, Euu are jointly integrable. The volume preserving assumption

give a bunching condition over the Lyapunov spectrum, allowing one

to deduce extra smoothness of a relevant holonomy map. In their re-

strictive setting, they achieve a factorization theorem for substantially

less regular systems.

In [20], Crovisier-Obata-Poletti construct a smooth system on T4 in

the sense of the Borel-Smale example discussed in Example 7.2. These

systems cannot be constructed in a purely algebraic form. They apply

a similar computation to the one in Example 7.3 (c.f. [20, § 5]), together

with earlier results of Obata, in order to conclude that the conclusion

that u-Gibbs measures are SRB is prevalent for these system as well.

Of a particular interest is studying the QNI concept in the settings of

analytic maps. Preliminary results for holomorphic maps over compact

Kähler surfaces (related to to [12]), appeared in [16]. In the settings of

Anosov diffeomorphisms, Gogolev et al. made some numerical studies

in [29]
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Organization of the paper. In §2 we recall certain preliminaries

from smooth dynamics and ergodic theory. In §3 we construct certain

conditional measures on the unstable manifolds, using normal forms

coordinates, which will allow us to show extra invariance. Section §4

is the most technical part of the paper, which revoles around con-

struction of special linear operators A(q, u, ℓ, t) that will allow us to

measure the relative divergence between the two strong-unstable man-

ifolds. In §5 we prove the crucial bilipschitz estimates regarding some

stopping time which are defined by the factorization theorem. In §6

we employ the Eskin-Mirzakhani technique in order to conclude extra

invariance. In §7 we provide several examples and applications of our

measure rigidity result towards equidistribution problems. Appendix A

gives the technical details regarding the “factorization theorem” used

in §4. Appendix B gives the proofs of several technical lemmata from

§3. Appendix C discuss a slightly more restrictive but natural QNI

condition.

Acknowledgments. The author would like to express his deep ap-

preciation to Alex Eskin for explaining his important work together

with Maryam Mirzakhani about measure classification and providing

many important insights about the factorization technique. The au-

thor also would like to thank Aaron Brown for useful suggestions and

comments, primarily about the usage of normal forms coordinates. It

is a pleasure to thank Amie Wilkinson, Elon Lindenstrauss, Federico

Rodriguez Hertz, Clark Butler and Rafael Potrie for helpful and mo-

tivating discussions. The author also would like to thank the referees

for providing many useful suggestions and comments that helped to

improve the paper and its presentation.

2. Background from smooth dynamics

2.1. Basics. Let M be a closed compact manifold, equipped with a

smooth 1-parameter flow {gt}t∈R.

Assume from now on that (M, gt) is equipped with a Borel probabil-

ity measure µ which is gt-invariant and ergodic.
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2.2. Oseledets’ multiplicative ergodic theorem. We recall the fol-

lowing version of Oseledets’ multiplicative ergodic theorem.

2.1.Theorem (Oseledets’ ergodic theorem). Assume that V → (Ω, β, µ, T )

is a cocycle over an ergodic probability measure-preserving system. As-

sume that V is equipped with a metric ‖−‖ on each fiber such that
∫

Ω

log+ ‖Tω‖op dµ(ω) <∞.(2.1)

Here log+(x) := max(0, log x) and ‖−‖op denotes the operator norm of

a linear map between normed vector spaces.

Then there exist real numbers λ1 < λ2 < · · · < λk (with perhaps

λ1 = −∞) and T -invariant subbundles of V defined for a.e. ω ∈ Ω:

0 ( V ≤λ1 ( · · · ( V ≤λk = V

such that for vectors v ∈ V
≤λi+1
ω \ V ≤λi

ω we have

lim
N→∞

1

N
log
∥∥TNv

∥∥→ λi.(2.2)

The flag of the subspaces is known as the forward flag.

As we assume our transformation is invertible, applying the same

theorem to its inverse, one recovers the backward flag.

Refining both, one may recover the Oseledets splitting of V .

Applying Oseledets’ theorem to the derivative cocycle defined by the

gt flow over the tangent bundle TM yields

2.2. Corollary. For µ-almost every x ∈ M , there exists a splitting of

TxM named the Lyapunov splitting, such that

TxM = ⊕iE
λi(x)

and for every v ∈ Eλi(x) we have that

lim
t→∞

1

t
log‖gt.v‖ = λi.

As we may think about the assignment taking a point x ∈M to the

Lyapunov splitting of TxM or an appropriate flag (inside an appropriate

Grassmanian) as a measurable section of a smooth bundle, in view of

Lusin’s theorem, for every ε > 0 there exists a compact subset of
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M such that this section is continuous. Hence for a compact set of

arbitrarily large measure, we may bound those growth rates uniformly.

Moreover, as the individual Lyapunov spaces become orthogonal in

the sense of [6, Remark 3.1.8], by introducing the so-called “Pesin

norms” again at the cost of discarding a subset of measure at-most

ε from this subspace there exists some θ such that the individual Lya-

punov spaces are θ-transverse at any point of our subset. Furthermore,

by restricting to a smaller set if needed, it follows from Pesin theory

that one may find a compact set of large measure for which all the

geometry of the embedded disks W uu
loc (x) varies continuously and in a

bounded way (c.f. [34, Supplement S.3]). We will denote this set as

MOs,θ.

Given ε > 0 and a time T ′ we may define the following subset of

Oseledets regular points MOs-reg,ε,T ′ ⊂M in the following manner:

MOs-reg,ε,T ′ = {x ∈M | ∀t > T ′ |{0 ≤ s ≤ t | gt.x ∈MOs,θ}| ≥ (1− 2ε) · t} .

In words, a point x is Oseledets’ regular if for any large time t > T ′,

the proportion of the time the orbit {gs.x}0≤s≤t spends inside the set

of points with good Lyapunov splitting is greater than 1− 2ε.

In view of Birkhoff’s pointwise ergodic theorem, applied to the sys-

tem (M, gt, µ) towards the return times of µ-almost every point to

MOs,θ, we see that given ε > 0, for T ′ large enough, µ(MOs-reg,ε,T ′) ≥ 1− 3ε.

2.3. Lyapunov norms. We will need the following result due to Y.

Pesin:

2.3. Theorem ([6] §3.5). Let T be a measurable cocycle over a flow

{gt}. Assume x ∈ X is an Oseledets bi-regular point, and assume

{Hi(x)} are the various Oseledets subspaces associated to T in x. There

exists an inner product 〈, 〉x on Hi(x) such that there exist constants

C1, C2 for which

C1 · t ≤ log

(
‖(gt).v‖x
‖v‖x

)
≤ C2 · t
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for any 0 6= v ∈ Hi(x) with the naturally associated norm ‖v‖2x = 〈v, v〉x.

Moreover, distinct Oseledets subspaces are orthogonal with respect to

this inner-product.

The following Lemma is standard in the literature (c.f. [26, Lemma 2.7]

[27, Lemma 4.17]).

2.4. Lemma (Norm comparison). For every δ > 0 there exists some

compact set K ⊂ Ω with µ(K) > 1− δ and C(δ) > 0 such that for any

x ∈ Ω and v ∈ V (x) we have

(2.3) C(δ)−1 · ‖v‖ ≤ ‖v‖V (x) ≤ C(δ) · ‖v‖,

where the middle norm is the Lyapunov norm and the other norms are

arbitrary fixed norm defined over V .

The proof of this lemma follows by an application of Lusin’s theorem.

Lemma 2.4 allows one to directly compare estimates in the Lyapunov

norm and the arbitrary norm (up to multiplicative constant) and will

play a role in the proof of the bilipschitz estimates in § 5.

2.4. Normal forms coordinates. From now, we restrict ourselves to

the study of the unstable lamination W u. Let 0 < λ1 < · · · < λℓ

be the distinct Lyapunov exponents of gt, restricted to the expanding

subspace Eu and let Eu(x) = E1(x) ⊕ · · · ⊕ Eℓ(x) be the splitting of

Eu(x) into the (expanding) Lyapunov subspaces given by Oseledets’

Theorem 2.1.

2.5. Definition. We say that a map between vector spaces is polyno-

mial if each component is given by a polynomial in some, and hence

every, basis. We identify Rn = E1 ⊕ · · · ⊕ En, for some splitting of

Rn. We consider an affine polynomial map P : Rn → Rn, split it into

components (P1(t), . . . , Pℓ(t)), where Pi : ⊕
n
j=1E

j → Ei. Each Pi can

be written uniquely as a linear combination of polynomials of specific

homogeneous types: we say that Q : Rn → Ei has homogeneous type

s = (s1, . . . , sℓ) if for any real numbers a1, . . . , aℓ and vectors tj ∈ Ej,

j = 1, . . . , ℓ, we have

(2.4) Q(a1t1 + · · ·+ aℓtℓ) = as11 · · · asℓℓ Q(t1 + · · ·+ tℓ).
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We say that a polynomial map P : Rn → Rn is sub-resonant if each

component Pi has only terms of homogeneous types s = (s1, . . . , sℓ)

satisfying sub-resonance relations

(2.5) λi ≥
∑

sjλj , where s1, . . . , sℓ are non-negative integers.

Clearly, for any sub-resonance relation we have sj = 0 for j < i and∑
sj ≤ λℓ/λ1. It follows that sub-resonant polynomial maps have

degree at most

(2.6) d = d(χ) = ⌊χℓ/χ1⌋.

Sub-resonant polynomial maps P : Rn → Rn with P (0) = 0 with

invertible derivative at the origin form a group with respect to compo-

sition. We will denote this finite-dimensional Lie group by Gχ. When

we identify a particular copy of Rn with TxW
u(x) for a Pesin regular

point x, we will denote the associated copy of this Lie group by Gχ
x .

Let n = dimW u(x) so TxW
u(x) ≃ Rn. Consider some y ∈ W u(x),

we also have W u(x) = W u(y), hence TyW
u(y) ≃ Rn. Furthermore, if

x, y are both Oseledets regular, both of the tangent spaces TxW
u(x), TyW

u(y)

refine to an Oseledets splitting ⊕i>0E
λi(x),⊕i>0E

λi(y) with Ei(x) ≃ Ei(y)

for all i = 1, . . . , n. We denote the class of sub-resonant polynomial

between ⊕i>0E
λi(x) and ⊕i>0E

λi(y) by SRx,y.

Consider

(2.7) Hx = {ϕ : Rn →W u(x) | D0ϕ is an isometry} .

The group Gχ
x acts on Hx by pre-composition. A fundamental the-

orem by B. Kalinin and V. Sadovskaya [33, Theorem 2.5] enables us

to construct normal forms coordinates over a subset of M of full mea-

sure, which contains full unstable leaves. We interpret the construction

of [33] in the following manner: consider the bundle of isometric param-

eterization of the unstables manifolds, modulo the sub-resonant group

Gχ, namely
⊔

x∈M Hx/G
χ
x . Normal forms coordinates amount choosing

a measurable section

x 7→ φx ∈
⊔

x∈M

Hx/G
χ
x
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which is gt-equivariant in the sense:

φgt.x ◦ gt ◦ φ
−1
x ∈ SRx,gt.x,

namely the gt dynamics over W u(x) is given by a sub-resonant poly-

nomial. Furthermore, if a pair of points x, x′ are unstably related then

φx′ = Px,x′ ◦ φx for a sub-resonant polynomial Px,x′ ∈ SRx,x′.

2.6. Example. In terms of coordinates, the normal forms coordinates

will have the following structure

(2.8)

Gχ
x = {(y1, . . . , yn) 7→ (y1, y2 + P2(y1), . . . , yn + Pn(y1, . . . , yn−1)} ,

where Pi : E1 ⊕ · · · ⊕ Ei−1 → Ei are polynomials, each of which is

a sum of homogeneous polynomials Pi,j satisfying the sub-resonance

condition (2.5). For example if we consider only E1 ⊕ E2, the maps

will be of the form

(2.9) (y1, y2) 7→ (y1, y2 + P2,x(y1))

where P2,x : E1(x) → E2(x) is a polynomial, vanishing at 0, of degree

less or equal to λ2/λ1. In case of two points x, x′ such that x′ ∈ W u(x)

the resulting maps from SRx,x′ can be described in the following man-

ner: Determine coordinates (y1, y2) on TxW
u(x). Then the matching

sub-resonant coordinates on Tx′W u(x′) are (y′1, y
′
2) where

(2.10) y′1 = a1 · y1 + b1, y′2 = a2 · y2 + P2,x(y1) + b2

for certain numbers a1, a2, b1, b2 ∈ R and P2 : E1(x) → E2(x) a poly-

nomial, vanishing at zero, of degree less or equal to λ2/λ1. In the case

demonstrated in (2.9), we can describe the dynamics of the gt-flow for

the time-1 map and its iteration as

g1.(y1, y2) =
(
eλ1 · y1, e

λ2y2 + P2,x (y1)
)
,

g2.(y1, y2) =
(
e2·λ1 · y1, e

λ2 ·
(
eλ2y2 + P2,x (y1)

)
+ P2,g1.x

(
eλ1 · y1)

))

...

(2.11)



MEASURE RIGIDITY OF ANOSOV FLOWS 15

The previous example illustrates the fact that the strictly sub-resonant

polynomial group is nilpotent.

We note the following easy observation.

2.7. Observation. The polynomial P1,x : Rn → E1 is an affine map.

Proof. We have that λi > λ1 for each index i > 1, hence we must have

si = 0 in view of the sub-resonance condition (2.5). Furthermore, finer

analysis of (2.5) gives s1 = 0, 1 is the only possibility. �

3. Conditional measures

Standing assumption In order to simplify the notation, we will as-

sume from now on that M carries a measurable Lyapunov splitting

TM = Es ⊕E0 ⊕Eλ1 ⊕E≥λ2 ,

where we denoteW uu
loc - the fast unstable manifold with a tangent space

equal to E≥λ2 and W u - the unstable manifold with a tangent space

equal to E1 ⊕E≥λ2 . The proof of our theorem carries verbatim to the

case of higher dimensional manifolds from it.

3.1. Construction of a partition. A non-empty closed subset R ⊂

M is called a rectangle if

• diam(R) < δ for δ small enough,

• R = intR, where intR is is the interior of R,

• the segment [x, y] ⊂ R for every x, y ∈ R.

A rectangle R has a direct product structure that is given x ∈ R there

exists a homeomorphism

θ : R → R ∩W s(x)× R ∩W 0(x)× R ∩W u(x).

One may show that θ, θ−1 are Holder continuous. A finite cover

R̃ = {R1, R2, . . . , Rp} of M by rectangles Ri is said to be a Markov

partition if

• intRi ∩ intRj = ∅ for all i 6= j,

• for each x ∈ intRi ∩ g−1.(intRj) we have

g1.(W
s(x) ∩Ri) ⊂W s(g1.x) ∩Rj , g1.(W

u(x) ∩Ri) ⊃W u(g1.x) ∩Rj .
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Such partitions was constructed first by Y. Sinai for the case of

Anosov diffeomorphismes and later generalized [48, 46, 9].

As we are interested in a more general setting than just Anosov and

we do not require the full force of Markov partitions, we will only be

interested in partitions which are subordinate to W u.

3.1. Definition. A measurable partition ξ is subordinate to W u if for

µ almost every x ∈M :

• ξ(x) ⊂W u(x),

• ξ(x) contains a neighborhood of x open in the submanifold

topology of W u(x).

In this more general context, such partitions were constructed by

Ledrappier-Strelcyn [43, Proposition 3.1] and Ledrappier-Young [40,

§3]. In particular, one can find a subordinate measurable partition

which is generating and separating. Moreover, one can construct such

a partition which satisfy the forward Markov condition

W u((g1.x) ∩Rj ⊂ g1 (W
u(x) ∩Ri) ,

for every x ∈ intRi ∩ g−1(intRj). We call such a partition a partition

having the one-sided Markov property. For more background on such

partitions, see [13, Appendix B] and [27, Proposition 3.7, Lemma 3.8

and Appendix B].

We fix such a partition of M and denote it by B0. We denote by

B0(x) the atom of B0 containing x.

3.2. Observation. Suppose x ∈M and y ∈ B0(x) ∩W
u
loc(x) then

g−t.y ∈ B0(g−t.x).

This property follows from the construction at [43, Proposition 3.1.1]

For t > 0 we denote

Bt(x) = g−t.(B0(gt.x) ∩W
u(gt.x)).

3.3. Lemma. The following properties of Bt hold:

(1) For t′ > t ≥ 0 we have Bt′ ⊂ Bt.



MEASURE RIGIDITY OF ANOSOV FLOWS 17

(2) Suppose that t ≥ 0,t′ ≥ 0 and x, x′ ∈M such that Bt(x)∩ Bt′(x
′) 6= ∅.

Then either Bt′(x
′) ⊂ Bt(x) or Bt(x) ⊂ Bt′(x

′).

Proof. The first part follows immediately from the observation above.

For the second part, we assume that t′ ≥ t, as the partitions are

refined as t increases, if Bt(x) ∩ Bt′(x
′) 6= ∅ we must also have

Bt(x)∩ Bt[x
′] 6= ∅. Now assume y ∈ Bt(x)∩Bt(x

′). Then we have that

gt.y ∈ B0(gt.x) and also gt.y ∈ B0(gt.x
′). As B0 is a partition, we must

have that B0(gt.x) = B0(gt.x
′), which means in turn that Bt(x) = Bt(x

′)

per the definition of Bt. Again by the refinement property we get that

Bt′(x
′) ⊂ Bt(x

′) = Bt(x).

�

3.2. Construction of conditional measures over the stable and

unstable leaves. We refer the reader to the survey in [22, §5] and the

book [24, §5] for more background about conditional measures.

By its construction, the sets B0(x) are the atoms of a measurable

partition of M subordinate to W u. We let {µu
x}x∈M =

{
µ |Wu(x)

}
x∈M

denote the set of conditional measures of µ along this partition (c.f [18,

§1.4, §3.2]).

This gives a rise to ameasurable function f1 defined as in [18, §1.5][22,

Theorem 5.9].

Namely, for each atom C ∈ B we have

E(φ | C) =

∫
φdf1[x],

for all measurable functions φ : X → R.

3.4. Definition. We define the (normalized) Wasserstein metric dW

between two conditional measures (of bounded support) as

dW (µ1, µ2) = sup
h:M→R is Lipschitz with Lip(h)≤1

{∣∣∣∣
∫

M

h(x)

(
dµ1(x)

µ1(M)
−
dµ2(x)

µ2(M)

)∣∣∣∣
}
.

While this metric is weaker than the Radon metric, it does induce

the topology of weak-⋆ convergence over the space of measures, up to

normalization.



18 ASAF KATZ

The function f1 should be thought as a measurable function from

M to the set of probability measures defined over M , endowed with

a suitable topology coming from the Wasserstein metric as defined in

Definition 3.4 (c.f. [22, Proposition 5.17]).

3.5. Remark. While the conditional measures are normalized over each

atom by their construction, this normalization is not the correct nor-

malization for us as we will study push-forwards of these measures

which may a-priori change its normalization. This modified distance

function makes this renormalization transparent while keeping the main

feature - namely absolute continuity, intact. A standard argument

based on Poincare’s recurrence will be used in order to make sure the

renormalization is indeed by the correct factors.

We will interpret the function f1 in the following way - consider a

normal forms structure over the lamination induced by the unstable

manifolds {W u(x)}x∈M . Hence for almost every x, we have a map

φx : Rn → W u(x), arising from the choice of normal forms coordinates.

Consider its inverse map ψx : W u(x) → Rn. Restrict ψx to B0(x). We

may push-forward the measure µu
x by the map ψx to a measure over

Rn, ψx.µ
u
x. Hence we may identify f1(x) with ψx.µ

u
x.

Given a subresonant polynomial S : Rn → Rn, we may get subreso-

nant map S̃ over the leaf W u(x) by conjugation with ψx.

3.6. Definition. We will say that f1 is S-invariant if for µ almost every

x we have

dW

(
S̃.f1, f1

)
= 0.

We note here that the measure f1 is only defined in each atom, in view

of the definition of the distance dW , the measures only match over the

intersection of a set with its S̃-translation.

Using this definition, we may define the notions of a generalized u-

Gibbs state and an SRB measure.

3.7. Definition. We say that µ is an SRB measure if for µ almost

every x, for every subresonant polynomial S ∈ Gχ and its associated
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subresonant map S̃ we have

dW

(
S̃.f1(x), f1(x)

)
= 0.

3.8. Lemma. The above definition of SRB measure is equivalent to the

definition given in the introduction, namely that f | W u is absolutely-

continuous.

The proof follows from Ledrappier’s result in [42]. A more detailed

account can be found in [14, §9, Appendix D]. By the construction

of normal forms by Kalinin and Sadovskaya [32] one may endow M

with the (measurable) action of the subresonant group, which is gt-

equivarient by construction.

Proof Sketch. Fix some x ∈ M a µ-generic point. By Ledrappier [42,

Proposition 3.7], as µ is assumed to be SRB measure, we can write
dµ

dLeb
= ∆ for a Radon-Nykodim derivative ∆, where Leb stands for the

Lebesgue measure over W u(x). Moreover, the following formula for ∆

is given in [42, Proposition 3.1]

∆(y, z) =

∞∏

i=1

Jacu(g−i.y)

Jacu(g−i.z)
,

for y, z ∈ W u(x). We endowW u(x) with the normal forms coordinates.

Hence we may find two vectors vy, vz ∈ RdimEu
such that in that co-

ordinate system, y, z are identified with vy, vz respectively. Using the

equivarient property of the normal forms coordinates we get

g−t.y = (dg−t.x) · (vy + Px,y(vy)) , g−t.z = (dg−t.x) · (vz + Px,z(vz)) ,

for some subresonant polynomials Px,y,Px,z. Writing the above in a

matrix form according to {v1, . . . , vdimEu} we get

g−t.⋆ = (dg−t.x) ·
(
v⋆ + N

−t
x,yv⋆

)
,

where ⋆ is either y, z and N−t is some nilpotent upper triangular matrix

in view of the subresonant condition (c.f. (2.11)). Taking derivatives (in

the v coordinates) of the above equation we get that the derivative is

(dg−t.x)
(
I + Ñ−t

x,⋆(v⋆)
)
, for some other nilpotent map Ñ−t

x,⋆. As Ñ
−t
x,⋆(v⋆)

is nilpotent, its only eigenvalue is 0, hence the only eigenvalue of I +
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N−t
x,⋆(v⋆) is equal to 1. It readily follows that the Jacobian is constant

along W u(x). �

Fix some x ∈ M . Consider the group of subresonant polynomials

over Rn, Gχ
x . This group contains a proper subgroup consists of sub-

resonant polynomials where the action is the identity over the least

component. We denote this subgroup by Gχ,>1.

3.9. Definition. We say that µ is a generalized u-Gibbs state if for

almost every x ∈M , for every S ∈ Gχ,>1, its associated map S̃ satisfy

dW

(
S̃.f1(x), f1(x)

)
= 0.

Under this interpretation, the claim that f1 is absolutely continuous

alongW>1
loc is equivalent to saying that f1 is invariant under translations

along the subspaces ⊕i>1E
i(x) as identified in Rn by the map ψx.

This can be seen easily as the proportion constant between S̃.f1 and

f1, for a fixed S̃, gives rise to a multiplicative cocycle into R. Us-

ing Poincare recurrence, and the fact that the unstable lamination is

uniformly contracted by g−t, we get that this cocycle is trivial.

3.10. Lemma. This interpretation of f1 does not depend on the choice

of normal forms coordinates used, in the case µ is a generalized u-Gibbs

state with respect of E>1.

Proof. By definition of Hx as in (2.7) and the interpretation of normal

forms coordinates, a different coordinate structure amounts to consid-

ering a post-composition of ψx with a map ηx ∈ Gχ
x , which induces

an isometry over Rn. Hence the Jacobian of ηx at the identity equals

to 1. Furthermore, considering the finer structure of ηx arising from

the sub-resonance relations (2.5) (see also (2.8)), we see that it fixes

the subspace corresponding to E1. Over E>1, we have that ψx.µ
u
x is

Lebesgue, hence the related Radon-Nykodim derivative equal to 1 there

as well. �

3.11.Observation. AsEu(x)/Euu(x) is a one-dimensional gt-equivarient

bundle, the gt action induces a linear cocycle over it upon a choice of
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a trivialization. Concretely the cocycle which we will denote by R is

defined by considering a unit vector v ∈ Eu(x)/Euu(x) and defining

(3.1) R(gt.x) = ‖gt.v‖,

where the norm is the Pesin norm related to the Osceldets splitting. In

view of the normal forms coordinates as in §2.4, this cocycleRmeasures

exactly the expansion along the second coordinate in (2.10),(2.11).

With this interpretation, we may relate f1 to R by:

f1(gt.x) = R(gt.x) · (gt.f1(x)).

Fix a generic Pesin point x ∈ M . Consider some other generic

Pesin point x′ ∈ B0(x). In what proceeds we will be working in

ψx(B0(x)) ⊂ Rn. We are interested in measuring the Hausdorff dis-

tance between two copies of the subspace Euu, one cased at the ori-

gin (amounting to W uu
loc (x)) and one copy translated by a vector vx′,

amounting to W uu
loc(x

′). The vector vx′ can be calculated by Px,x′(0, 0)

for some sub-resonant polynomial Px,x′. As we are interested in the

Hausdorff distance between the two subspaces, it is enough to consider

the projection of vx′ to the Eλ1-subspace. Applying the gt map as

in (2.11), we see that R exactly measures this distance.

3.3. A result about avoiding subspaces. The following Lemma

follow essentially verbatim from [27, §5] (see also [25, §8]). As the proof

is technical and relays on several auxiliary lemmata, we give them in

appendix B.

Standing assumptions:In what follows, let V be a measurable vec-

tor bundle over M , F : M → V a measurable section. In particular,

for almost every q ∈ M it defines a map Fq :W
s → V (q).

The following avoidance lemma, which is valid in large generality, will

be used during the proof of the Eskin-Mirzakhani scheme in order to

show that one may find many points q′ onW s(q) for which an associated

vector Fq(q
′) in a specific line Fq(W

s(q)) in some vector bundle V (q)

avoids some “problematic subspace” denotes Mu. We assume that
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V (q) contains W s(q) via an injective and isometric embedding, given

by Fq(W
s(q)), which we will identify with the identity map.

3.12. Lemma. For any δ > 0 there exists constants c1(δ), ǫ1(δ) > 0

which tend to 0 as δ tends to 0 and ρ(δ), ρ′(δ) > 0 such that for every

subset M ′ ⊂ M of measure larger than 1 − δ there exists a subset

M ′′ ⊂ M of measure larger than 1−c1(δ) such that the following holds,

for any q ∈ M there exists a measurable map to proper subspaces of

V (q), denoted u 7→ Mu.

Then for any q ∈M ′′ there exists s.q = q′ ∈ W s
loc(q) ∩M

′ such that

ρ′(δ) ≤ dist(q, q′) ≪ 1,

and

(3.2) d(Fq(q
′),Mu) > ρ(δ).

4. Factorization

During this Section we will refer quite extensively the diagram in

Figure 4, pioneered by Eskin-Mirzakhani. We will actually only handle

the “tilted” half in this part, which we draw in the figure below:
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W uu(q1)

W uu(q ′
1 )

O(1)

O
(

e−λC ·ℓ
)

O(ε)

q q′

q1 q′1

u.q1

q2

q′2

Figure 1. Illustration of the points in §4

We will try to familiarize the reader with the basics of the factor-

ization technique in order to explain the motivation to the technical

construction below. The factorization technique of Eskin-Mirzakhani

tries to study the drift developing by moving two stabely-related points

along their fast unstables and applying the central-stable holonomy.

This drift, in general, will grow at exponential rate. Then one flows

the points forward until this drift grows to size O(δ), where δ is some

predetermined macroscopic size.

Referring to Figure 1 we have:

• q, q′ are assumed to be stably related, with distance O(1) from

each other.

• q1, q
′
1 are defined by gℓ.q, gℓ.q

′ respectively.
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• u.q1 ∈ W uu(q1) is a point of distance O(1) on the fast unstable

leaf originating at q1.

• q2 = gt.u.q1.

A crucial step is choosing the points in a way that all the points

chosen are “good points” in terms of their dynamical features. This

is done by the introduction of an operator A(q, u, ℓ, t) measuring the

divergence happening in Figure 4.

We will use the following definition of local Hausdorff distance be-

tween two immersed submanifolds in our manifold.

4.1.Definition. Let X, Y ⊂M be two compact subsets. We define the

local Hausdorff distance at a point p ∈M between X and Y , hdp(X, Y )

as the Hausdorff distance between BM
p (ω)∩X and BM

p (ω) ∩ Y , where

ω is some small fixed constant which is smaller than the radius of

injectivity of M .

The goal of this section is to prove the following two technical fac-

torization theorems:

4.2. Theorem (Factorization at t = 0). For any Λ > 0 given, there

exists a finite dimensional gt-equivariant vector bundle V over M and

a measurable equivariant section Fq : W s(q) → V (q) and a family of

linear maps

A(q1, u, ℓ) : V (q) → R(u.q1/2) ≃ R

and for every compact subset K ⊂ M , for every δ > 0 there exists a

subset Kδ ⊂ K such that µ(K \ Kδ) < δ, constant C = C(Kδ), such

that if all the points q,q′,q1,q
′
1,u.q1 belong to Kδ, we get

(4.1)
∣∣hd(u.q1)(W uu

loc (u.q1),W
uu
loc (q

′
1))− ‖A(q1, u, ℓ).Fq(q

′)‖
∣∣ ≤ C · e−Λ.

Moreover, for every q ∈ Kδ, the subspace ess-span
{
∪q′∈W s

loc
(q)∩Kδ

Fq(q
′)
}
≤

V (q) is a measurable gt-equivariant subspace.

The above theorem “morally” says that one may find a linear oper-

ator A depending only on the left hand side of the diagram, namely

q1, u, ℓ such that this operator measures approximately the deviation in

the slow unstable direction after applying the central-stable holonomy.
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4.3. Remark. The above theorem is valid without any non-integrability

assumption.

One may extend the construction above into “future times”, namely

the top left hand side of the diagram, as long as t can is bounded

linearly in terms of ℓ.

4.4. Theorem (Factorization). For any β > 0 given, there exists a

finite dimensional gt-equivariant vector bundle V over M and a mea-

surable equivariant section Fq : W s(q) → V (q) and a family of linear

maps

A(q1, u, ℓ, t) : V (q) → R(gt.u.q1) ≃ R

and for every compact subset K ⊂ M , for every δ > 0 there exists a

subset Kδ ⊂ K such that µ(K \Kδ) < δ and constants C = C(Kδ), α =

α(Kδ) such that if all the points q,q′,q1,q
′
1,u.q1, gt.u.q1 ∈ Kδ we have

that for t ≤ β · ℓ we get

(4.2)∣∣hdgt.(u.q1)(W uu
loc (gt.u.q1),W

uu
loc (gt.q

′
1))− ‖A(q1, u, ℓ, t).Fq(q

′)‖
∣∣ ≤ C·e−α·ℓ.

Moreover, for every q ∈ Kδ, the subspace ess-span
{
∪q′∈W s

loc
(q)∩Kδ

Fq(q
′)
}
≤

V (q) is a measurable gt-equivariant subspace.

The bundleR is defined in (4.11) and essentially captures the cocycle

R defined in (3.1).

4.5. Remark. It is not correct that the derived action is contracting, as

one may easily see that the slow unstable direction should grow under

gt in future times. Nevertheless, one clever idea in the construction is

that as long as one imposes a bound of the form t ≤ β · ℓ, one may

“extend” the vector bundle V (q) to approximate the distance more and

more, so even after flowing for time t ≤ β · ℓ, the approximation error

is still small. In particular, the bundles V (q) and the maps Fq(q
′) in

the the above theorems may be different, where the later bundles and

maps have larger dimensions.

We will apply this theorem combined with an a-priori growth bound

given by the quantitative non-integrability assumption over our system.
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The following definition plays a crucial role in the Eskin-Mirzakhani

factorization scheme.

4.6. Definition. Fix some q′ ∈ W s(q). Pick some ℓ large. Assume

that 0 < ε < 1 is chosen such that ε > dist(gℓ.q, gℓ.q
′). We define the

stopping time T1 = T1(q, q
′, u, ℓ, t) as

T1 = sup
{
t ≥ 0 | hdgt.(u.q1)(W

uu
loc (gt.u.q1),W

uu
loc (gt.q

′
1)) ≤ ε

}
.

4.7. Lemma. Assume (M, gt) is quantitatively non-integrable with

q1, u.q1, q
′
1 chosen as in Definition 1.6 then there exists some β = β(M, gt) > 0

such that the stopping time T1,(ǫ) satisfies

T1,(ǫ) ≤ β · ℓ.

This Lemma will be proved in §4.2. Morally speaking, the above

Lemma determines an upper bound for the time t = T1 such that

the strong unstable W uu(gt.u.q1) and the central-stable projection of

W uu(gt.u.q
′
1) are ǫ separated.

Combining the above Lemma with the Theorem yields

4.8. Corollary. Taking β as in Lemma 4.7 and applying Theorem 4.4

adapted to this β, we may calculate the stopping time T1,(ǫ), up to an

error of O(e−α·ℓ) as

(4.3) T1,(ǫ) = sup

{
t ≤ β · ℓ

∣∣∣∣ ‖A(q1, u, ℓ, t).Fq(q
′)‖ ≤ ǫ

}
,

for q1, u.q1 satisfying QNI.

We note that the quantitative non-integrability play only a role in

determining the value of β in the above theorem, see subsection 4.2 for

details and the proof of Lemma 4.7.

It will be crucial for the construction of the operator A(q1, u, ℓ, t)

that we will only be interested in a range of times t which are linearly

bounded in ℓ.

The mapA plays a prominent role in the work of Eskin-Mirzakhani [27,

Section 6] and Eskin-Lindenstrauss [26, Section §3],[25, Section §4] as
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it allows one to conclude the stopping time for the growth of the diver-

gence between the two points q2 = gt.(u.q1) and q′2 = gt.(u.q
′
1) in the

eight points scheme.

In the setting of Eskin-Lindenstrauss [26], this is easily understood as

the map A which essentially “translates” between coordinates in Tq2M

and Tq′2M is easily defined by an appropriate Adjoint action (as we

may identify the corresponding tangent spaces with the Lie algebra).

In the setting of Eskin-Mirzakhani, one can define such a map (albeit

in a much more complicated manner) using the affine structure defined

over the moduli space (c.f. [27], §6, Proposition 6.11, equation (6.25)).

The main difference in these situations compared to the one we have

at hand is that the stable projection is smooth in both situations, thanks

to the additional algebraic structure in both settings.

Unfortunately, one cannot recover a complete identification of those

tangent spaces in the general class of systems we consider here (not

even for Anosov systems).. Nevertheless, our construction bellow al-

lows one to “approximately match” W u(q1) and W
u(q′1) such that we

may approximately project W uu
loc(q1) into W u(q′1) through a smooth

map (indeed, polynomial) , and this unstable part of the space is the

one getting expanded by the dynamics, which allows one to recover

the stopping time estimates needed in order to apply the eight points

scheme.

Moreover, this construction cannot lead to a choice of a point u.q′1, as

we may not choose u onW uu
loc (q

′
1) in any reasonable (say smooth) fashion

with respect to the choice of u.q. The formulation of Theorem 4.4 gives

the advantage of “ignoring” the first direction of divergence (which will

be in the direction Euu(gt.q
′
1)) and achieving control over the divergence

in the second subspace.

The construction is fairly technical but can be summarized as fol-

lows: Given a point u.q1 ∈ W uu
loc (q1) we approximate, by means of a

power series expansion, the manifolds W s(u.q1) and W
u(q′1), and upon

appropriate truncation, we may calculate a point z ∈ W u(q′1) which

is the approximate stable projection of u.q1. This is the contents of

subsection 4.3.
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From the point z one may calculate the the “horizontal” divergence

distance of gt.z from gt.u.q
′
1 (this in general can be done by normal

forms coordinates, see the beginning of subsection 4.5) and then one

may show that this distance is the distance that grows, as the “ver-

tical distance” (in the form of the approximation of the center-stable

projection) does not grow and stay bounded by O(dist(q1, q
′
1)).

The above construction will generate data related to the various

points q, q′, q1, q
′
1, u.q, z. The theorem is formulated in a way that all

the dependence is over the non-tagged points (namely the left hand side

of the diagram), except for the initial data at q′. Hence for example we

may not use any data which is dynamically calculated at q′1 or z, except

from data which has been preallocated into V (q) by Fq(q
′). In order

to make usage of this data, we use certain polynomial approximations

to holonomies which are discussed in subsection. So for the rest of the

chapter we will assume the data needed at q′1 and z is available, and

in subsection 4.7 we will explain how to remedy the situation. We will

denote this set of data by diamond (♦).

4.1. The half-way points. Consider the diagram as in Figure 4. Our

first deviation from the Eskin-Mirzakhani scheme is to base our con-

struction of A(q, u, ℓ, t) over the half way points q1/2, q
′
1/2 instead of

q1, q
′
1.

In the previous works implementing the factorization technique, one

could use the holonomy in order to relate u.q1 and u.q′1. This is no

longer true in the case we consider here. Nevertheless, the following

construction can be summarized in the following observation:

4.9.Observation. Let gt.q, gt.q
′ be two exponentially close stably-related

points, say dist(gt.q, gt.q
′) < e−λc·t. Then by flowing backwards by

means of the gt flow for some fraction of t, say t′, the flow box

W u
loc(gt.q)∪ (W cs

loc(gt.q) ∩ Be−λC ·t(q)) is contained in B
e
−λ′

C
·t(gt−t′ .q) for

some λ′C = λ′C(λC , t
′/t).

This observation allows us to effectively shrink all the distance to

be exponentially small. As we will use power series approximations,
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working in exponential scale ensures us that errors stay small even

after taking high order approximations.

Recall that q1 = gℓ.q, q
′
1 = gℓ.q

′, with dist(q1, q
′
1) being exponentially

small, as q, q′ are stably-related. Assume that u.q1 ∈ W u(q1) for some

u.q1 such that dist(u.q1, q1) = O(1). Notice that dist(u.q1, z) ≈ dist(q1, q
′
1)

for any point z which is approximately the center-stable projection of

u.q1 to W u(q1), but nevertheless dist(u.q1, q1), dist(z, q
′
1) ≈ O(1). We

would like to make all those distances small (in exponential scale) in or-

der to have exponential bounds in the distances. In order to remedy it,

we will work in the half-way points. We define q1/2 = gℓ/2.q, q
′
1/2 = gℓ/2.q

′.

This construction is illustrated in Figure 2.

W u(q1/2)

W u(q′1/2)

W u(q1)

W u(q′1)

q1/2

q′1/2

x

z

q1

q′1

u.q1

Figure 2. Change from q1, q
′
1 to the half-way points q1/2, q

′
1/2.

We note here that the midway points are still exponentially close.

More concretely, as q, q′ are stably-related, we have an exponent λC < 0

as dist(gt.q, gt.q
′) ≪q,q′,ǫ e

(λC+ǫ)·t we get that

dist(q1/2, q
′
1/2) ≪q,q′,ǫ e

0.5(λC+ǫ)·ℓ.

Furthermore, as u.q1 ∈ W uu
loc(q1) we get dist(g−t.u.q1, g−t.q1) ≪q1,u.q1,ǫ e

−(λ2−ǫ)·t,

in particular for t = ℓ/2 we get

dist(g−ℓ/2.u.q1, q1/2) ≪q1,u.q1,ǫ e
−0.5(λ2−ǫ)·ℓ.
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Now assume z is the stable projection of x to W u(q′1/2) then we have

dist(x, z) ≈ dist(q1/2, q
′
1/2) = O(0.5e(λC+ǫ)·ℓ). Moreover, dist(z, q′1/2)

can be approximated by the triangle inequality to be bounded by

O(dist(x, z) + dist(x, q1/2) + dist(q1/2, q
′
1/2)) = O

(
e−(λ2−ǫ)·ℓ/2 + e−(λC+ǫ)·ℓ/2

)

= O
(
e−0.5(λ′−ǫ)·ℓ

)
,

for λ′ = min {λ2,−λC} > 0.

4.2. A-priori bound over the stopping time. Recall we under the

assumption that (M, gt) satisfies the quantitative non-integrability con-

dition. As such, the dynamical quadrilateral Q formed from q1/2,q
′
1/2

and x satisfies that the distance between the stable projection of x,

W s(x)∩W u(q′1/2) andW
uu
loc(q

′
1/2) is bounded from below by dist(q1/2, q

′
1/2)

w.

Using the notations of Definition 1.6, we require x ∈ Uq′
1/2

and q′1/2 ∈ Sq1/2.

When applying the gt dynamics, this distance grows at-most by a fac-

tor of eλ1·t, for some expansion constant λ1 depending on the Lyapunov

spectrum. Hence as we want to bound from above the stopping time

τ1, we get the a-prior bound -

(4.4) e(λ1−ǫ)·τ1 · dist(q1/2, q
′
1/2)

w

≤ 1.

Recall that dist(q1/2, q
′
1/2) ≤ D ·e0.5(λC+ǫ)·ℓ ·dist(q, q′), for some constant

D (which can be made uniform over sets of arbitrarily large measure).

Hence we get the a-priori bound

(4.5) τ1 ≤
−0.5 · (λC + ǫ) · ℓ

λ1 − ǫ
≤ 4 ·

|λC |

λ1
· ℓ,

where the last inequality is true for a choice of small enough ǫ, for

example ǫ < λ′/2.

Picking for example β = 8 · |λmax con|
λ1

, where λmax con stands for the

most negative Lyapunov exponent of (M, gt, µ), to be the constant

given in the factorization Theorem 4.4, concludes the demonstration of

Lemma 4.7.

4.10. Remark. In the second definition of QNI, this estimate also follows

easily. Consider (1.1), applying gt, we see that the distance grows by an

exponential factor of e(λ1±ǫ)·t. Moreover, for q1/2, q
′
1/2 ∈ L we see that
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for all k > k0 we have dist(gt.q1/2, gt.q
′
1/2) ≥ C ·eα·k ·e(λ1±ǫ)·k. Using the

same analysis as above, we see that we may bound τ1 by τ1 ≤
α·λC

2·λ1
ℓ.

4.3. Approximating the intersection point z. For the reminder of

the paper, we choose a (measurable) gt-equivariant trivialization of the

tangent bundle TM , which exists µ-almost everywhere.

Consider x = u.q1/2 for some u.q1/2 ∈ W uu
loc (q1/2). We have the

smooth curve W s(x). Expand this curve in a Taylor polynomial,

(4.6) W s(x) = Px,N(t) +Rx,N(t),

with deg Px,N ≤ N being the Taylor expansion ofW s(x) of order N and

we have the reminder estimate Rx,N(t) ≤ O(‖t‖N+1). Furthermore, we

have the smooth immersed manifoldW u(q′1/2), which we expand as well

(♦) W u(q′1/2) = Pq′
1/2

,M(s) +Rq′
1/2

,M(s)

with deg Pq′
1/2

,M ≤M being the Taylor expansion of W u(q′1/2) of order

M and we have the reminder estimate Rq′
1/2

,M(s) ≤ O(‖s‖M+1).

We choose N such that

sup{|Rx,N(t)| | ‖t‖ ≤ O(dist(q1/2, q
′
1/2)} ≪ e−α·ℓ

for our given ℓ, α. Now we choose M such that

sup{|Rq′
1/2

,M(s)| | ‖s‖ ≤ O(dist(q1/2, q
′
1/2)} ≪ e−α·ℓ · e−C·ℓ

for our given ℓ, α as well, where C is chosen such that λ1 · β ≤ C.

We solve for t, s such that

‖Px,N

(
t
)
− Pq′

1/2
,M (s)‖ ≪ e−α·ℓ.

This gives a point in space which up to a modification of size O(e−α·ℓ)

belongs to W cs(x) ∩W u(q′1/2). We modify if needed and we call this

point z, see Figure 3.
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W u(q′1/2)

W u(q1/2)W uu
loc

(
q1/2

)

W uu
loc

(
q′1/2

)

q1/2

q′1/2

x

z

Figure 3. Illustration of z.

4.4. Construction and matching of flags at z. The next subsec-

tions deal with the actual measurement of the approximation. No-

tice that the point z is calculated as an approximate intersection of

W cs(u.q1/2) and W u(q′1/2). Notice that the coordinate systems where

we calculate the point z is different. In order to conclude invariance in

W u(z), we will need to measure its deviation from W uu(z) (in terms

of normal form coordinates). Moreover, we will need to do so in terms

of q-data. In order to do so, we will translate the z points coordinates

from W u(z) to W cs(u.q) and then later to W u(u.q).

In order to do so, we will need to consider the data encoding the

forward flag at z (which is smooth along W u(z) = W u(q′1/2) and the

backwards flag along W cs(u.q).

We will also need the following theorem due to D. Ruelle:

4.11.Theorem ([47] Theorem 6.3.(b)). The forward flag Q̃(⋆) is smooth

along stable leaves. The backward flag R̃(⋆) is smooth along unstable

leaves.
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Consider the point z ∈ W cs(x). By Ruelle’s theorem, the map z 7→

Q̃(z) is a smooth map along W cs(x). We denote this map by

(4.7) T cs
x (z) = Q̃(z).

Similarly the map z 7→ R̃(z) is a smooth map along W u(q′1/2). We

denote this map as

(♦♦) T u
q1/2

(z) = R̃(z).

where we identify the subspaces according to our chosen trivializa-

tion.

As x, q′1/2 are chosen in a good set with respect to Oseledets theo-

rem, and the measurable section from the manifold to the Grassman-

nian bundle matching each point with its Oseledets splitting is Holder

continuous, we have that there exist some ζ > 0

(4.8) dist(Q̃(x), Q̃(q′1/2)), dist(R̃(x), R̃(q′1/2)) ≪ dist(x, q′1/2)
ζ ,

by [3, Theorem A].

Using the smoothness of the the forward flag along stable leaves we

get:

4.12. Corollary. For any t ≥ 0 we have that

(4.9) dist(Q(gt.x),Q(gt.z)) ≪ dist(gt.x, gt.z)
ζ ≪ e−λC ·ζ·t · dist(x, z)ζ .

As x, z are central-stably related, we can apply local structure co-

ordinates around gt.x, gt.z for t ≥ 0. By the definition of Q one may

ignore the central direction. The rest follows at once by the smoothness

of the entire flag. We note that by the definition of Q̃.

We also have

4.13. Observation. dist(R̃(x), R̃(z)) ≪ dist(x, z)ζ .

This estimate follows by the triangle inequality as follows

dist(R̃(x), R̃(z)) ≤ dist(R̃(x), R̃(q′1/2)) + dist(R̃(q′1/2), R̃(z))

≪ dist(x, q′1/2)
ζ + dist(q′1/2, z)

ζ

≪ dist(x, z)ζ .
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Now we arrive to the main technical Lemma, which allows us to

control the error between the backwards flags along gt.x and gt.z and

in particular show its error grows at-most polynomially in their distance

4.14. Lemma. For any t ≥ 0 we have that

dist(R̃(gt.x), R̃(gt.z)) ≪ dist(gt.x, gt.z)
ζ .

For the proof of this Lemma, we will need the following two technical

Lemmata, essentially due to Brin [10, 35, 3].

4.15. Lemma. Let g1 : M → M be a smooth map, where M is a

compact manifold. Let d⋆g
1 denotes the associated derivative map of

g1. For any a > maxp∈M‖dpg1‖
1+ζ there exists some D > 1 such that

for every n ∈ N and every p1, p2 ∈M we have

‖dp1g
n
1 − dp2g

n
1 ‖ ≤ D · an · dist(p1, p2)

ζ.

For its proof see [35, Lemma A.2]. We remark that by appropriately

renormalizing time, the proof of the Lemma works verbatim in the

continuous time settings as well.

4.16. Lemma. Assume that Rn = E ⊕ E ′ and {An}n∈N , {Bn}n∈N are

two sequences of invertible linear operators such that for all v ∈ E

‖An.v‖ ≥ e(λ1−ε)n · ‖v‖,

and for all v ∈ E ′

‖An.v‖ ≤ e(λ1−2ε)n · ‖v‖,

for some ε > 0, and

‖An − Bn‖ ≪ e(λ1−2ε)n.

Furthermore, assume that dist(E, F ) ≪ 1 for some linear subspace

F ⊂ Rn then

(4.10) dist(An.E, Bn.F ) ≪ 1.
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Proof. Pick v ∈ F , We may write v = v1 + v2 with v1 ∈ E, v2 ∈ E ′. By

our assumption, ‖v1‖ ≥ C · ‖v‖. Now we do the following calculation

Bn.v = An.v + (Bn −An).v

= An.v1 + (An.v2 + (Bn − An).v).

Note that An.v1 ∈ An.E and

‖An.v1‖ ≥ e(λ1−ε)n‖v1‖

≥ C · e(λ1−ε)n‖v‖.

Furthermore, we have that

‖An.v2 + (Bn − An).v‖ ≪ e(λ1−2ε).n · ‖v‖.

Hence by normalizing the projection of Bn.v over An.E we get that

dist(Bn.v, An.E) ≪ e−ε·n.

�

Now we may complete the proof of Lemma 4.14. Using Lemma 4.15,

there exists some a = a(M, gt) and β = β(M, gt) > 0 such that for all

x, z ∈M

‖dxgt − dzgt‖ ≤ at · dist(x, z)ζ .

Specializing to our chosen x, z, assuming x, z are close enough (which

is O(dist(q1/2, q
′
1/2))), we have that

‖dxgt − dzgt‖ ≤ e(λ1−ε)t

for any t ≪dist(x,z) 1, by Lemma 4.15. We note we may pick the up-

per bound for t such that t is arbitrarily large (larger than any fixed

predefined value), which will allow us to assume that gt.x is a good-

Oseledets point for some t in the range where this estimate is valid as

x was defined in the good set.

Applying Lemma 4.16 we get that dist(R̃(gt.x), R̃(gt.z)) ≪ 1. Re-

peating the argument with gt.x, gt.z (where we have

dist(gt.x, gt.z) ≤ dist(x, z)), we may get this estimate for any t.



36 ASAF KATZ

Furthermore, we define the following vector bundles (at x, and in

general at any Oseledets good point)

(4.11) Q(x) = E≤λ1(x)/E<λ1 ,R(x) = E≥λ1(x)/E>λ1 .

We notice that Q and R are sub-quotients of the forwards and back-

wards flags, respectively. The construction clearly extends to the point

z via the endowment of the flags given in the beginning of this subsec-

tion.

We notice that both Q and R are 1-dimension vector bundles. At

any Osceldets bi-regular point x ∈M , we get an isomorphism

Q(x) ≃ Eλ1(x) ≃ R(x)

As a result, by composing thhe first isomorphism with the other, we

may define the set of functions

(4.12) I t∗ : Q(⋆) → R(⋆)

as members of Hom(Q(gt.⋆),R(gt.⋆)) for ⋆ being either x or z as the

function identifying the appropriate sub-spaces.

In principle, I is a scalar comparing the norms of those one dimen-

sional bundles.

For ⋆ = x and x was assumed to be a regular point, the Oseledts

subspaces are transverse for gt.x in a good set, hence there exists a

family of invertible maps I tx : Q(x) → R(x) and 0 < c < C such that

for any t in a good set, c < |I tx| < C and gt.Ix = I tx.

This provides an identification between the two subspaces by means

of the functions I0⋆ for a subset of M of arbitrarily large measure.

For ⋆ = z, for the same set of times t, using Corollary 4.12 and

the technical Lemma 4.14 we have that for some (possibly smaller or

larger) c′ < C ′ we have that c′ < |I tz| < C ′ and similarly gt.Iz = I tz.

4.17. Remark. During the course of the proof, while using Lemma 4.15,

as we may enlarge ℓ if we wish, we can effectively shrink dist(q1/2, q
′
1/2)

hence making ‖dxgt − dzgt‖ arbitrarily small.
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4.5. Construction of a transfer function. While ideally one would

like to work with normal forms coordinates [33] in order to calculate

the distance between z and W uu
loc(q

′
1/2) inside the unstable manifold

W u(q′1/2), due to the simplicity of the situation we have in hand, we

may overcome this difficulty by working with the vector bundle Q (note

that due to the sub-resonance condition, the last expression in the

normal forms coordinates is indeed a single scalar).

We will assume now that x, z are stably related, later we will indicate

how to modify the construction in the case where x, z are center stably

related.

For x, z we define the following functions:

ϕt
x = ‖gt.v‖Q(x)/‖v‖Q(x), ϕ

t
z = ‖gt.u‖Q(z)/‖u‖Q(z),

for any non-zero v, u in Q(x),Q(z) respectively. It is easy to verify

that ϕ is independent from the choice of v, u.

4.18. Lemma. The limit

L(x, z) = lim
t→∞

ϕt
z

ϕt
x

exists.

We note that L(x, z) is a number, but we think of this number as a

member of Hom(Q(x),Q(z)) ≃ GL1(R).

Proof. We have the following observation

lim
T→∞

φ1
gT .z

φ1
gT .x

= 1,

as dist(gT .x, gT .z) → 0 and the function is continuous over the stable

manifold. Furthermore, as the function is Holder continuous we have

that

∣∣∣∣
φ1
gT .z

φ1
gT .x

− 1

∣∣∣∣ ≤
C · dist(gT .x, gT .z)

α

φ1
gT .x

≪ dist(gT .x, gT .z)
α,

where C, α are uniform over W s(x) = W s(z) and minφ1
gT .x is bounded

away from zero over the orbit g⋆.x ⊂ g⋆.W
uu(q1/2).
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We will consider log(φt
z/φ

t
x). Fix some t1 large and let t2 = t1 + 1.

We have by the cocycle property that
∣∣log(φt2

z /φ
t2
x )− log(φt1

z /φ
t1
x )
∣∣ =

∣∣∣log(φt2−t1
gt1.z

)− log(φt2−t1
gt1 .x

)
∣∣∣

= log

(
φt2−t1
gt1.z

φt2−t1
gt1 .x

)

≪ dist(gt1 .x, gt1 .z)
α

≪ e−λC ·t1·α.

(4.13)

So we conclude that
∑

t1
log(φt1+1

z /φt1+1
x ) − log(φt

z/φ
t
x) is summable,

hence we have that limt1→∞ log(φt
z/φ

t
x) exists, and so is L(z, x). �

The map L(x, z) is defined as a map from Q(x) to Q(z), but we are

interested in a map from R(z) to R(x). Using the map I we can define

a map from R(z) to R(x) by I−1
x ◦ L−1(x, z) ◦ Iz. Moreover, we still

need to handle the situation where x, z are only flow-stably related. In

this case, we have that x1 = gs.x for some s≪ dist(q1/2, q
′
1/2) is stably

related to z, hence L(x1, z) is well defined. Moreover, we have that

Q(gs.x) = Q(x).

4.6. Simplified construction of A(q, u, ℓ, t) and V (q). For that sub-

section we assume we may calculate all the required data at the points

q, q′, q1/2, q
′
1/2, x, z. The calculation of the data at q′1/2 and z is depen-

dent (at-least partially, on the ♦ denoted parts) on the existence of

holonomies which will be discussed on the following subsection.

We may define A as follows - given q1, ℓ, u one calculate q1/2 by

q1/2 = g−ℓ/2.q1

then one sets x = u.q1/2. Now one defines V s−exp as the vector bundle

which captures all the Taylor coefficients in the expansion (4.6) of the

stable manifold up to the required error at x, including the location of

x (in terms of some global embedding ofM into Rn say). We note that

the dimension of this vector bundle (which is related to the number of

derivative) can be computed a-priori and beforehand. Furthermore, for

q′ one may construct a similar vector bundle V u-exp. Given u, q1/2, q
′
1/2
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and the data in V s-exp(u.q1/2), V
u-exp(q′1/2), one may recover z (up to

the prescribed error). We define a function

z = z(V s-exp(u.q1/2), V
u-exp(q′1/2))

taking values in W u(q′1/2). As q1/2, q
′
1/2 are related to q, q′ by the flow

depending on the value of ℓ, we may also write

z = z(u, ℓ, V s-exp(q), V u-exp(q′)).

We define Fq(q
′) to be the assignment from q′ ∈ W s(q) to

V s-exp(q)⊕ V u-exp(q′). So we actually have

z = z(u, ℓ, Fq(q
′)).

This provides us with a map

A(q1, u) : V (q1/2) → R(u.q1/2).

Now by precomposing with gℓ/2, we may extend this map to be

A(q1, u, ℓ) : V (q) → R(u.q1/2),

which is evaluated over a section Fq : W s(q′) → V (q) containing the

needed data from q′, q′1/2. We note that at this stage, one needs to

know only the base points q, q′, the time ℓ and the point u.q1/2 in order

to calculate all the approximations needed, where the computations

themselves are done in the half-way points.

We eventually will extend this map for any t ≥ 0 by:

(4.14) A(q1, u, ℓ, t).Fq(q
′) = gt+ℓ/2.A(q1, u, ℓ).Fq(q

′) ∈ R(q3).

This equation measures the relevant Hausdorff distance, as by consid-

ering normal forms coordinates, R measures the distance away from

W uu
loc .

4.7. Approximation of holonomies. The following theorem of A.

Brown, A. Eskin ,S. Filip and F. Rodriguez-Hertz, based on construc-

tion of cocycle normal forms, allows one embed bundle which are

smooth along stables inside bundles which admits smooth stable holonomies.
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4.19. Theorem (Constructive approximation of holonomies [11]). Let

V be a gt-equivariant vector bundle over M which is smooth along sta-

bles. There exists another gt-equivariant vector bundle Vhol over M

such that

(1) Vhol admits holonomies in the following sense - for any generic

x, y ∈ M which are of bounded distance, there exists a linear

map H(x, y) : Vhol(x) → Vhol(y) such that

Vhol(gt.y) = H(gt.x, gt.y) ◦ (g
x
t )⋆ ◦H(y, x).Vhol(y).

(2) For any generic point x ∈M there exists an injective affine map

jx : V (x) → Vhol(x) which changes smoothly along y ∈ W s(x).

This theorem allows one to translate the set of derivatives in q′ to

the set of derivatives in q′1/2 needed in order to calculate the Taylor

expansion in (♦).

Moreover, as q′ is Oseledets good point, R̃(q′) is well-defined and so

using the map, one may recover R̃(q′1/2) as needed in (♦♦).

Furthermore, in order to calculate R̃(z), one needs to calculate T u
q′
1/2

(z) =

R̃(q′1/2). As R̃(q′1/2) changes smoothly over W u(q′1/2) (using Ruelle’s

theorem 4.11), we may expand R̃(q′1/2) by a Taylor expansion to a suf-

ficient high degree in order to approximate R̃(z) up to a sufficiently

small error (the error will be a power of dist(z, q′1/2) ≈ dist(q1/2, q
′
1/2)

to some power, chosen such that the error will be small enough so when

get expanded by eλ1·α·ℓ the total error would still be bounded by e−β·ℓ).

We note that the polynomial function one deduces from Theorem 4.19

does not interfere with the described proof, as by using composition,

one still recover the appropriate Taylor approximations at the various

stages, albeit maybe of higher degrees, hence one just need to enlarge

the vector bundle V (q) in order to account for higher degree derivatives,

but the maximal degree can be in principle bounded a-priori before the

starting of the computation.

The final construction of the function Fq : W s(q) → V (q) goes as

follows: Given a point q′ ∈ W s(q), we will approximate a “general-

ized holonomy” defined as P−(q1/2, q
′
1/2) (c.f. (A.6)) and apply it to a
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suitable bases of some subspaces of vector bundles at q1/2 in order to

calculate the required data in q′1/2. Using the bases at q1/2, chosen to

be orthonormal, the resulted “approximate basis” at q′1/2 is “almost-

orthonormal” by the properties of the P− map.

In order to approximate the operator P− itself, one need to approx-

imate the “translating map” i−1
q′
1/2

(c.f. A.12). Then one considers this

map as a vector in a bundle consisting of linear maps between two

bundles, this bundle is smooth along stables, using Theorem 4.19 we

may approximate it.

Given an Oseledets regular point q′ ∈ W s(q), we calculate all the

required data in order to approximate the operator P−(q1/2, q
′
1/2). This

would result in a section Fq(q
′).

Detailed proofs of the various constructions described in this section

appear in Appendix A.

5. Bilipschitz estimates

We consider the maps A(q1, u, ℓ, t) which were constructed in the pre-

vious section. Notice that A(q1, u, ℓ, t) : V (q) → R(gt.u.q1). We restrict

A to the subspace spanned by Fq(q
′). Note that as Fq(q

′) ∈ V (q), this

subspace is one-dimensional subspace of V (q). We endow V (⋆),R(⋆)

with the Lyapunov norms defined in subsection 2.3. This give rise to

a cocycle over R(⋆) defined as

(5.1) ‖gt.v‖R(x) = eλ1(x,t) · ‖v‖R(x).

We define

(5.2) A(q1, u, ℓ, t) = ‖A(q1, u, ℓ, t)‖,

where the norm is the operator norms between the two spaces equipped

with the Lyapunov norms.

5.1. Definition. We define for almost all q1 ∈ M , u.q1 ∈ W uu
loc (q) and

any ℓ > 0 the function τ1,(ǫ)(q1, u, ℓ) as follows

(5.3) τ1,(ǫ)(q1, u, ℓ) = sup {t ≥ 0 | A(q1, u, ℓ, t) ≤ ǫ} .
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In words, τ1,(ǫ) measures the time t for which the value ofA(q1, u, ℓ, t)Fq(q
′)

reaches to size ε.

Note that by the factorization theorem, A(q1, u, ℓ, t)Fq(q
′) approxi-

mates to a high degree the value of hdgt.u.q1(W
uu(gt.u.q1),W

uu(gt.q
′
1))

hence one should think of τ1,(ε) as the time this distance grows to length

ε (c.f. Corollary 4.8). With an appropriate choice of Fq(q
′), one is able

to compare A(q1, u, ℓ, t)Fq(q
′) with the operator norm ‖A(q1, u, ℓ, t)‖.

5.2. Lemma (Bilipschitz estimate). For almost all q1 ∈M , u.q1 ∈ W uu
loc (q1)

any ℓ≫ 0, s > 0 we get

τ1,(ǫ)(q1, u, ℓ) + κ1 · s ≤ τ1,(ǫ)(q1, u, ℓ+ s) ≤ τ1,(ǫ)(q1, u, ℓ) + κ2 · s

where κ1, κ2 are related to the Lyapunov spectrum of gt on M and the

induced cocycle on the vector bundle V and the constants appearing in

Lemma 2.4.

The proof follows the spirit of the proof of Eskin-Lindenstrauss and

Eskin-Mirzakhani, with one modification over the contracted part to

handle the fact that the domain of the operator A(q, u, ℓ, t) is the vector

bundle V , we produce here for the sake of completeness.

We start with an observation.

5.3. Observation. Consider L(q) = span
{
Fq(µ

s
q)
}

≤ V (q) as a gt-

invariant subspace, we have a cocycle

(5.4) ‖(gs).Fq(q
′)‖V (gs.q) = eλV |F

(q,s) · ‖Fq(q
′)‖V (q),

for almost every q′ ∈ W s
loc(q). Then for s > 0 we have

λV |F (q, s) ≤ −κV |F · s for some κV |F > 0.

The proof of this Observation follows from the contraction properties

of the induced gt-action on the auxiliary subspace constructed during

the proof of factorization, see Lemma A.24 in the appendix.

5.4. Lemma. For any s > 0, we have

‖A(q1, u, ℓ+ s, t)−A(q1, u, ℓ, t).g−ℓ+s‖ ≪ e−α·ℓ,

where α is as in Theorem 4.4.
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The proof of the Lemma above follows as both expressions factorize

the same distance, namely both of them give O(e−α·ℓ) approximation

to hdgt.q1(W
uu
loc(gt.u.q1),W

uu
loc(gt.q

′)).

Proof of Lemma 5.2. We have the following representation forA(q1, u, ℓ, t):

A(q1, u, ℓ+ s, t+ σ) = (ggt.u.q1σ ) .A (q1, u, ℓ+ s, t) .(5.5)

As we endowed R(⋆) with the Lyapunov norm, we have that

‖(ggt.u.q1σ ) .v‖R(gt.u.q1) = eλ1(gt.u.q1,σ) · ‖v‖R(gt.u.q1),

for any v ∈ R. Furthermore, as we endowed V with the Lyapunov

norms as well, by the observation from before
∥∥(gg−(ℓ+s).q1

s

)
.v
∥∥
V (g−s.q)

= eλV |F
(g−(ℓ+s).q1,s) · ‖v‖V (g−(ℓ+s).q1

)

for the cocycle λV |F defined in (5.4) for all v ∈ V (g−(ℓ+s).q1).

So in general one may deduce that

A(q1, u, ℓ+ s, t+ σ) ≤ eλ1(gt.u.q1,σ) ·A(q1, u, ℓ, t+ s).

In view of Lemma 5.4 we get

A(q1, u, ℓ+s, t+σ) ≤ eλ1(gt.u.q1,σ) ·
(
A(q1, u, ℓ, t) · e

λV (g−(ℓ+s).q1,s) + e−α·ℓ
)
.

Choose t such that τ1,(ε)(q1, u, ℓ) = t we have that

(5.6) A(q1, u, ℓ+s, t+σ) ≤ ε·eλ1(gt.u.q1,σ)+λV (g−(ℓ+s).q1,s)+eλ1(gt.u.q1,σ)−α·ℓ.

We note that in the proof of the main theorem, we will take ℓ → ∞.

As a result, t will go to infinity. When ℓ→ ∞ the term eλ1(gt.u.q1,σ)−α·ℓ

decays to zero exponentially in ℓ. Now fix σ such that τ1,(ε)(q1, u, ℓ +

s) = t+ σ. If so, in view of (5.6), as ℓ→ ∞ we must have

λ1(gt.u.q1, σ) + λV |F (g−(ℓ+s).q1, s) ≥ 0.

As we assume that gt.u.q1 and q1 in a good Oseledets set, by the

bound over the growth of the Lyapunov norms and the observation

from above

λ1(gt.u.q1, σ) ≤ κ2 · σ, λV |F (g−(ℓ+s).q1, s) ≤ −κV |F · s.
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Hence we deduce that

κ2 · σ − κV |F · s ≥ 0

or equivalently

τ1,(ε)(q1, u, ℓ+ s)− τ1,(ε)(q1, u, ℓ) = σ

≥ κV |F · κ−1
2 · s.

For the upper bound, we have the following representation

A(q1, u, ℓ, t) = (g
gt+σ.u.q1
−σ ) .A (q1, u, ℓ, t+ σ) .(5.7)

Hence we get the inequality about the norms using the Lyapunov norms

A(q1, u, ℓ, t) ≤ ‖(ggt+σ.u.q1
−σ )‖R(gt+σ.u.q1) · A (q1, u, ℓ+ s, t+ σ) .(5.8)

Again, using Lemma 5.4 allows us to change A(q1, u, ℓ + s, t + σ) to

A(q1, u, ℓ, t+ σ) at the cost of e−α·ℓ as before. This yields the equation

ε ≤ eλ1(gt+σ.u.q1) ·
(
A(q1, u, ℓ, t+ σ) + e−α·ℓ

)
.

Choosing again t, σ as before and utilizing the Lyapunov norms we are

led to the inequality

λ1(gt+σ.u.q1,−σ) + λV |F (g−ℓ.q1,−s) ≥ 0.

Using the growth bounds estimates for the Lyapunov cocycles we get

−κ2 · σ + κV |F · s ≥ 0,

or equivalently

σ ≤ κV |F · κ−1
2 · s.

�

6. The Eskin-Mirzakhani scheme

We recall the following Definition 3.4:
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1. Definition. We define the (normalized) Wasserstein metric dW be-

tween two conditional measures (of bounded support) as

dW (µ1, µ2) = sup
h:M→R is Lipschitz with Lip(h)≤1

{∣∣∣∣
∫

M

h(x)

(
dµ1(x)

µ1(M)
−
dµ2(x)

µ2(M)

)∣∣∣∣
}
.

We will use this distance in order to measure the distance between

conditional measures f1 as defined in §3.

The main result of this section is the following proposition

6.1. Proposition. For some small δ0 < 1, there exists a compact subset

M ⊂M with µ(M) > 1− δ0 such that f1 is uniformly continuous over

M and some C = C(M, δ) > 1 such that for every ε > 0 there exists

a subset M′ ⊂ M with µ(M′) > δ0 such that for every x ∈ M′ there

exists some y ∈ M′ ∩W u(x) such that

C−1 · ε ≤ hdx(W
uu
loc (x),W

uu
loc (y)) ≤ C · ε

and such that

dW (f1(x), f1(y)) ≪ ε,

where hdx is the local Hausdorff distance at x defined in Definition 4.1

and dW is the Wasserstein distance as in Definition 3.4.

We start with the following definition.

6.2. Definition. A Y -configuration of points q, q1 = gℓ.q, u.q1,

q2 = gτ1,(ε)(q1,u,ℓ).(u.q1), q3 = gt1 .q1 depending on parameters q, u, ℓ is a

set of points such that all the points belong to some Oseledets’ good

set which admits a good splitting and moreover

λ1(q1, t1) = λ1(u.q1, τ1,(ε)(q1, u, ℓ)),

where t1, τ1,(ε) are the quantities defined in (6.2) and (5.3) respectively.

Standing assumption - our Y configurations will be always

chosen in a way where the point q1/2 is also Oseledets good point

and q1/2, g−ℓ/2.u.q1 are point in P, namely satisify the QNI condition.

In order to apply the Eskin-Mirzakhani scheme we will need to gen-

erate sets of points in two Y -configurations which will be synchronized
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in the sense that all lengths of the corresponding legs are the same, as

can be seen in Figure 4.

W uu(q1)

W uu(q ′
1 )

O(1)

O
(

e−λC ·ℓ
)

O(ε)

q q′

q1 q′1

q3 q′3

u.q1

q2

q′2

Figure 4. Illustration of the points chosen in §6

Organization of the choices. We start by setting up two different sub-

sets -Mbase andMrec. Mbase is a set composed of points with controlled

Osceledets splitting. This is the set for which we want our endpoint to

belong. Mrec is a set of points which spend most of their time inside

Mbase in a highly controlled fashion. As we want to control synchro-

nization between the Y -configurations, we will construct the points

q, q′, q1, q
′
1, q2, q

′
2, q

′
3 in the recurrent set Mrec and then remedy the sit-

uation on §6.2. The proof consists of three parts. The proof begins

by considering, for a given q1, u.q1 the sets E for which there exists a

time in the past, ℓ such that q, q1, q2, q3 all belong the the recurrent set.
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Using the bilipschitz estimates and Fubini argument, one can prove

that there exists a universal set of times Dgood of large density and a

set of points Mgood start of large measure such that for any ℓ ∈ Dgood,

q1 ∈Mgood start(ℓ) and many u.q1 ∈ W uu
loc (q1)∩B1(q1), the associated Y

configuration lands inMrec, this is done in §6.1. In the second part, one

needs to synchronize the two different Y -configurations which we get.

By considering the relative divergence of the curves, one may conclude

that the two different stopping times τ1,(ε)(q1, u, ℓ) and τ1,(ε)(q
′
1, u

′, ℓ),

one shows that they are only differ by a bounded constant as in Propo-

sition 6.9. Then one may use the recurrence property to correct the

times. This is done in §6.2. Then one can use a strategy similar to the

one used by Benoist-Quint [7] in order to show that by letting ε go to

0, one can indeed conclude extra invariance, this is done in §6.3.

Initial choices. Fix some ε > 0. Let δ be an arbitrarily small con-

stant. Let P denote the points satisfying QNI for some α, by our

assumptions µ(P) > 0. We are assuming that δ is smaller than µ(P).

By Lusin’s theorem, there exists a compact subset Muni of mea-

sure µ(Muni) > 1 − δ such that f1 is uniformly-continuous over Muni.

Fix some ε′ > 0 depending only on the Lyapunov spectrum. Using

Osceledets theorem, we may find a time T ′ = T ′(δ) > 0 and a set of

Oseledets regular points MOs-reg,ε′,T ′ of measure greater than 1− δ. We

defineMbase = Muni ∩ MOs-reg,ε′,T ′. We will define an additional subset

Mrec as a set of measure greater than 1− δ such that there exists some

T ′′(δ) > 0 such that for all T > T ′′(δ) and x ∈Mrec

(6.1) |{t ∈ [0, T ] | gt.x ∈Mbase}| ≥ 0.99T.

While we are going to show that there exist two good Y -configurations

composed of the points in Mbase, in order to couple them as in § 6.2,

one needs to modify the side lengths a bit after the points were chosen

(the issue stems from Proposition 6.9 and appears in (6.12),(6.13), re-

lating the distortions of the sides of the tagged Y -configuration). The

definition of Mrec comes to the rescue here as the uniform recurrence

rate ensures us that by a minor modification of the side lengths, one
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may correct both Y -configurations at once to be composed of points in

Mbase, as needed. This also shows that choice of any density strictly

bigger than 1/2 in (6.1) would have worked.

In view of Lemma 2.4, without loss of generality we may assume that

Mrec is the set for which Lemma 2.4 is applicable.

Given q1, u.q1 in an Osceledets’ good set, we define t1 = t1(q1, u, t)

to be the number which solves the equation

(6.2) λ1(q1, t1) = λ1(u.q1, t),

where λ1 is the cocycle defined in (5.1). By the continuity property of

the Lyapunov cocycle, t1 is bilipschitz in t for fixed q1, u.q1.

Let τ1,(ε)(q1, u, ℓ) be the stopping time defined in (5.3). Define the

sets

(6.3) Egood starting times, left branch(q1, u) =
{
ℓ | gτ1,(ε)(q1,u,ℓ).u.q1 ∈Mrec

}
,

and

Egood starting times, both branches(q1, u.q1)

= {ℓ ∈ Egood starting times, left branch(q1, u) | gt1 .q1 ∈Mrec} .
(6.4)

The set Egood starting times, both branches(q1, u.q1) allows us to choose set

of “starting times” (amounting to the initial choices of q) such that the

points q2, q3 both belong to the recurrent set Mrec.

6.1. Existence of Y -configurations.

6.3. Proposition. There exists some time ℓmin > 0 and a subset

Mgood start ⊂ Mrec of measure greater than 1 − c1(δ) for some c1(δ)

which goes to 0 with δ, such that for any q1 ∈ Mgood start we have a

subset Qgood stop(q1) ⊂W uu
loc (q1) ∩B1(q1) such that

m
uu
x (Qgood stop(q1)) > 1− c2(δ),

for some c2(δ) which goes to 0 with δ and if q1 ∈Mgood start,

u.q1 ∈ Qgood stop(q1) and any ℓ > ℓmin we have that

|Egood starting times, both branches(q1, u.q1) ∩ [0, ℓ]| ≥ (1− c3(δ)) · ℓ,

for some c3(δ) which goes to 0 as δ → 0.
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This proposition assures us that by choosing points q1 from an appro-

priate large setMgood start and many points u.q1 ∈ Qgood stop(q1) ⊂ W uu
loc(q1),

for most choices of large ℓ, we would have that all the points q1,u.q1,

q2 = gτ1,(ε)(q1,u,ℓ).u.q1, q3 = gt1(q1,u,ℓ).q1 and q = g−ℓ.q1 all belong to a

good set.

Proof. By the ergodic theorem for any δ > 0 there exists some ℓrecurrence ∈ R

and a set Minitial of measure greater than 1 − δ such that for any

x ∈Minitial and any L > ℓrecurrence we have that

|{t ∈ [0, L] | gt.x ∈Mrec}|

L
≥ 1− δ.

Define

Qgood stop(q) = W uu
loc(q) ∩Minitial

and consider the set

Mgood start =

{
q ∈M

∣∣∣∣
m

uu
q (Qgood stop(q) ∩B1(q))

muu
q (W uu

loc (q) ∩B1(q))
> 1− δ

}
.

Suppose now that q1 ∈ Mgood start and u.q1 ∈ Qgood stop(q1) ⊂ Minitial.

Define

Ebad = {t | gt.u.q1 /∈Mrec} .

As u.q1 ∈ Minitial, we have that the density of the set Ebad is less or

equal to δ. Note that by

Egood starting times, left branch(q1, u)
c =

{
ℓ | gτ1,(ε)(q1,u,ℓ).(u.q1) /∈Mrec

}

Propagating the bad times fromEbad to Egood starting times, left branch(q1, u)
c

by means of the bilipschitz estimates of Lemma 5.2, we see that the

density of ℓ’s corresponding to the bad times t ∈ Ebad is bounded by

4Θ · δ for large enough ℓ’s (namely ℓ > Θ · ℓrecurrence so the density

statement will remain valid). Note that ℓ 7→ t1(q1, u, τ1,(ε)(q1, u, ℓ)) is

Θ2 bilipschitz, as by Lemma 5.2 τ1,(ε) is bilipschitz in ℓ and t1 is bilips-

chitz by its definition in (5.1) and the estimates regarding the cocycle

growth using the Lyapunov norm in § 2.3, hence in a similar manner

by propagating the times from Egood starting times, left branch(q1, u) we can

see that the density of Egood starting times, both branches(q1, u) is larger than

1− 4Θ2 · δ. �
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In the previous proposition, the constructed subsets Mgood start and

Qgood stop(q1) were independent of ℓ, but as a result, the set of times

Egood starting times, left branch(q1, u) were only of positive proportion. The

next corollary rectify the situation, makes the sets Mgood start, Qgood stop

dependent over ℓ.

6.4. Corollary. There exists a set of times Dgood ⊂ R and a number

ℓ′ > 0 such that for ℓ > ℓ′, the density of Dgood in [0, ℓ] is greater

than 1 − c4(δ) and for any given number ℓ ∈ Dgood such that ℓ > ℓ′,

there exists a subset Mgood start(ℓ) ⊂ Mgood start such that for any

q1 ∈ Mgood start(ℓ) there exists a subset Qgood stop(q1, ℓ) ⊂ W uu
loc (q1)

which satisfy

(6.5)
muu

q1 (Qgood stop(q1, ℓ))

muu
q1 (W

uu
loc (q1))

> 1− c′4(δ)

such that for all q1 ∈Mgood start(ℓ), u.q1 ∈ Qgood stop(q1, ℓ) we have

ℓ ∈ Egood starting times, both branches(q1, u).

Proof. Using Fubini’s theorem

∫

q∈M

∫

u.q∈Wuu
loc (q)

∫

ℓ∈R

χ(q1, u.q, ℓ)dLeb(ℓ)dµ
uu
q (u.q)dµ(q)

=

∫

ℓ∈R

∫

q∈M

∫

u.q∈Wuu
loc (q)

χ(q1, u.q, ℓ)dµ
uu
q (u.q)dµ(q)dLeb(ℓ),

where χ is a characteristic function for the set of points (q, u.q, ℓ) which

are in suitable position. �

Furthermore, as Qgood stop(q1, ℓ) is of large density in W uu
loc(q1), by

proportionality of the conditional measures, we may assume that this

set (assuming q1/2 = g−ℓ/2.q1 belongs to a set of points satisfying QNI)

contains g−ℓ/2.u.q1 which satisfies QNI.

Standing assumption We will choose q1 ∈ gℓ/2.P, namely q1/2 ∈ P

will be part from a dynamical quadrilateral satisfying QNI.

We are now ready to pick the “bottom half” of the configurations,

depending on q1, ℓ.
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Choice of q, q′, q′1. DefineMu to be the subspace defined as in Lemma B.1

applied to the mapA(q1, u, ℓ, τ1,(ε)(q1, u, ℓ)) inside V (q). Apply Lemma 3.12

withM † = g−ℓ.Mgood start(ℓ) to getM
†
avoidance(ℓ). The subsetM

†
avoidance(ℓ)

comprises of points in g−ℓ.Mgood start(ℓ) such that for all points

p ∈ M †
avoidance(ℓ) there exists a nearby point p′ ∈ W s(p) which also

belong to M †(ℓ).

By the Lemma, we have µ(M †
avoidance(ℓ)) ≥ 1− c(δ). Now define

Mgood start,avoidance(ℓ) = gℓ.M
†
avoidance(ℓ).

Suppose ℓ ∈ Dgood and q1 ∈Mgood start, avoidance(ℓ). Choose

• q = g−ℓ.q1.

By the definition of Mgood start, avoidance(ℓ) we may choose

• q′ ∈ W s(q) ∩ g−ℓ.Mgood start(ℓ).

such that ρ′(δ) < dist(q, q′) ≪ 1 and dist(Fq(q
′),Mu) > ρ(δ) for most

u ∈ Qgood start(q1, ℓ). In addition we set

• q′1 = gℓ.q
′.

Note that q′1 ∈ Mgood start(ℓ) by the choice of q′. Moreover, as we as-

sumed that there exists a subset of points S(q1) ⊂W s(q1/2) of positive

µs
q1/2

density and we have the following property of conditional mea-

sures - gℓ/2.µ
s
q1/2

∝ µs
q1
, we see that gℓ/2.S(q1/2) is of positive µ

s
q density,

hence we may assume in addition in our choices that

• q′ ∈ g−ℓ/2.S(q1/2) ∩ g−ℓ.Mgood start(ℓ),

and in addition

• q′1 = gℓ.q
′ ∈ gℓ/2.S(q1/2) ∩Mgood start(ℓ).

Here we briefly indicate how to modify the choices for the QNI con-

dition of Definition 1.6. Taking as a first choice q1/2 instead of q1, as

long as q1/2 ∈ P will not make any changes to the actual proofs given

in Proposition 6.3 and Corollary 6.4 and they will work for q1/2 instead

of q1 verbatim.

Notice the following easy Lemma.

6.5. Lemma. Fix some ǫ, ν > 0. Get C, k0 as in Definition 1.6. For

any X ⊂ M a measurable set with µ(X) > 1 − ǫ, there exists a set of
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points X ′ ⊂ X with µ(X ′) > 1− crec(ǫ) with crec(ǫ) → 0 as ǫ→ 0, such

that for each x ∈ X ′ there exists a subset of times ℓ ∈ R of (Banach)

density greater than 1− c′rec(ν) such that gℓ/2.x, g−ℓ/2.x ∈ X ′.

The proof follows immediately by considering the set of uniformly

generic points in X , which is of almost full measure. Refining it further

we may assume lower bound over the uniformity and the recurrence

times of the orbits to X . Now the set of forward return times is of

density close to µ(X). Similarly, the density of the set of backwards

returns to X is also of density close to µ(X). Comparing the set of

times, we get a set of small density (up to say factor of 2) where such

multiple recurrence does not hold.

Considering the set X to be the intersection of X with the set of

uniformly generic points (of given uniformity), we see that we have

plenty of choices where q1, q1/2, qe all in X and generic.

As a result, refining the choices of those triplets q1, q1/2, q with the

set Mgood start we see that we may find those triplets in a good config-

uration.

Moreover, given the set g−ℓ/2.Qgood stop(q1, ℓ) ⊂ W uu
loc(q1/2), which is

of large density, and the set Uq1/2 which is of large density, we may

intersect them both and ensure that u.q1/2 ∈ Uq1/2 . Furthermore, we

may assume that q′ ∈ Mgood start, avoidance(ℓ) is also chosen such that

q′1/2 ∈ Sq1/2 as Lemma 3.12 ensures us a set of large density atW s(q) of

“good vectors for factorization” and by the definition 1.6, the set Sq′
1/2

is of large density as well.

6.2. Existence of synchronized Y -configurations. Using the choices

made above with Corollary 6.4, for ℓ ∈ Dgood we have that q, q1 and

most of u.q1 and q′, q′1 and most of u′.q′1 both are forming good Y

configurations.

6.6. Observation. By simply unfolding the definition of the set Dgood

and the sets Egood starting times, both branches(q1, u), Egood starting times, both branches(q
′
1, u

′)

we get

gτ1,(ε)(q1,u,ℓ).u.q1, gτ1,(ε)(q′1,u′,ℓ).u
′.q′1 ∈Mrec
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Suppose that u.q1 is chosen such that u.q1 ∈ Qgood stop(q1, ℓ).

Set t = τ1,(ε)(q1, u, ℓ) and define t1 by the cocycle equation (6.2).

Since ℓ ∈ Dgood, by construction we get ℓ ∈ Egood starting times, both branches(q1, u)

and so gt1 .q1 ∈ Mrec.

Similarly, if u′.q′1 ∈ Qgood stop(q
′
1, ℓ), and we define t′1 in an analogous

manner, we get that gt′1.q
′
1 ∈Mrec.

Define

ν(u) = A(q1, u, ℓ, τ1,(ε)(q1, u, ℓ)).Fq(q
′).

6.7. Proposition. There exists a subset

Qgood stop, avoidance(q1, q
′
1, ℓ) ⊂ Qgood stop(q1, ℓ)

with muu(Q) > 1 − c5(δ) with c5(δ) → 0 as δ → 0 and a num-

ber ℓ′ = ℓ′(δ, ε) such that for all ℓ > ℓ′, q1 ∈ Mgood start(ℓ) and

u.q1 ∈ Qgood stop, avoidance(q1, q
′
1, ℓ) ⊂W u(q1) we have

C(δ)−1 · ε ≤ ‖ν(u)‖ ≤ C(δ) · ε.

Moreover, we may take C(δ) to be bounded bellow and above in the

interval (0,∞) in δ as δ → 0.

Proof. We already picked q1, q
′
1 and ℓ, so we have fixed q, q′ by that.

As a result, we have fixed a vector Fq(q
′) ∈ V (q) by the construction of

the vector bundle V in §4.7. Now consider some u.q1 ∈ Qgood stop(q1, ℓ).

If Fq(q
′) avoids Mu, we are done as the inequalities follow at once from

the estimates of Lemma B.1. Fixing Qgood stop(q1, ℓ) in W uu
loc(q1) as in

Corollary 6.4. Due to the avoidance Lemma 3.12, we may find a subset

Qgood stop, avoidance = Qgood stop, avoidance(q, q
′, ℓ) ⊂ Qgood start(q1, ℓ) such

that for all u ∈ Q we have

dist(Fq(q
′),Mu) ≥ ρ(δ).

By the assumptions regarding the density of Qgood stop(q1, ℓ) as in (6.5)

and the subset resulting from Lemma 3.12, we have that

Qgood stop, avoidance(q1, q
′
1, ℓ) ⊂ W uu

loc (q1) is a set of density large than

some 1− c5(δ) as needed. �
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6.8.Proposition. There exists a subsetM ′(ℓ) ⊂M such that µ(M ′(ℓ)) > 1− c′6(δ)

and for each q1, q
′
1 ∈M ′ a subset Q = Q(q1, q

′
1, ℓ) ⊂ Qgood stop, avoidance(q1, q

′
1, ℓ)

such that
m

uu
q1 (Q)

muu(W uu
loc (q1))

> 1− c6(δ)

and a number ℓ6 such that for all ℓ > ℓ6, q1 ∈M ′, u.q1 ∈ Q we have

(6.6) c′1(δ)ε ≤ ‖ν(u)‖ ≤ c′2(δ)ε,

(6.7)

c′′1(δ)·ε ≤ hdgτ1,(ε)(q1,u,ℓ).u.q1(W
uu
loc (gτ1,(ε)(q1,u,ℓ).u.q1),W

uu
loc (gt′1.q

′
1)) ≤ c′′2(δ)·ε

and

(6.8) α−1
3 · ℓ ≤ τ1,(ε)(q1, u, ℓ) ≤ α3 · ℓ,

with c6(δ), c
′
6(δ) tend to 0 as δ goes to 0.

Proof. Consider the setMgood start(ℓ) which was constructed before and

intersect it with the set K as described in the factorization theorem,

Theorem 4.4 to define M ′. Furthermore, for each q1, q
′
1 ∈M ′ we define

Q to be the subset of Qgood stop, avoidance(q1, q
′
1, ℓ) refined such that its

points satisfy the quantitative non-integrability condition.

Equation (6.6) follows immediately from the definition of ν and τ2,(ε)

and the estimates proven in Proposition 6.7. Equation (6.7) follows

from (6.6) and the factorization theorem, which gives

c′1(δ) · ε− e−α·ℓ ≤ hdgt.u.q1(W
uu
loc(gt.u.q1),W

uu
loc(gt.q

′
1)) ≤ c′1(δ) · ε+ e−α·ℓ.

While the estimates in (6.8) follows from the upper bound given in

the a-priori growth estimate in 4.2 and the lower bound given by the

definition of the Lyapunov norms. �

Let κ denote the minimum between the densities of QQNI(q1, q
′
1) in

W uu
loc(q1) and QQNI(q

′
1, q1) in W

uu(q′1). From now on we will assume in

addition that δ is small enough such that both densities of Q(q1, q
′
1, ℓ)

and Q(q′1, q1, ℓ) are strictly greater than 1 − κ, namely c6(δ) < κ and

in addition, δ is small enough such that µ(M ′(ℓ)) > 1 − µ(P) namely

c6(δ) < µ(P).
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This assumption allow us to conclude that M ′(ℓ) contains points

q1 which satisfy QNI and also for each such point, Q(q1, q
′
1, ℓ) contains

points u.q which satisfy QNI and Q(q′1, q1, ℓ) contains u
′.q′ which satisfy

QNI.

6.9. Proposition. Fix some q1 ∈ M ′(ℓ)∩P, q′1 ∈ S(q1)∩M
′(ℓ). Sup-

pose that u.q1 ∈ Q(q1, q
′
1, ℓ)∩ QQNI(q1, q

′
1), u

′.q′1 ∈ Q(q′1, q1, ℓ)∩ QQNI(q
′
1, q1)

for some ℓ > ℓ6 and (6.7) holds for both, then there exists some

C0(δ) > 0 such that

(6.9)
∣∣τ1,(ε)(q1, u, ℓ)− τ1,(ε)(q

′
1, u

′, ℓ)
∣∣ ≤ C0(δ).

Proof. Notice that we have u′.q′1 ∈ W uu
loc (q

′
1). Hence we get

hdgt′ .u′.q′1
(W uu

loc(gt′ .u
′.q′1),W

uu
loc(gt′.u.q1)) ≤ ‖A(q′1, u

′, ℓ, t′)Fq′(q)‖+ e−α·ℓ

≤ C(δ) · A(q′1, u
′, ℓ, t′)

= C(δ) · ε,

(6.10)

for some C(δ) > 1. This inequality means thatW uu
loc(gt′ .u

′.q′1)∩B1(gt′.u
′.q′1)

of distance of Oδ(ε) from W uu
loc (gt′.u.q1). Hence contracting the pieces

a bit by flowing backwards with gt (of length Oδ(1), depending on the

Lyapunov spectrum), one gets that

hdgt′−Oδ(1)
.u′.q′1

(W uu
loc(gt′−Oδ(1).u

′.q′1),W
uu
loc(gt′−Oδ(1).u.q1)) = ε.

In particular, by definition of t, one must have t′ ≤ t +Oδ(1).

Now for the inverse inequality, we follow [27, Claim 12.7]. We assume

that t′ is significantly smaller than t, in the sense of t − t′ ≥ Oδ(1).

We apply the avoidance Proposition 6.7 (c.f. also Lemma 3.12) to

A(q′1, u
′, ℓ, t′) and get a point q′′1 ∈ W s

loc(q
′
1) such that

(6.11) C(δ)−1 · A(q′1, u
′, ℓ, t′) ≤ A(q′1, u

′, ℓ, t′)Fq′1
(q′′1).

In view of Proposition 6.8 we have

hdgt′ .u′.q′1
(W uu

loc(gt′ .u
′.q1),W

uu
loc (gt′.q

′′
1 )) ≥ c′′1(δ) · ε.
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By the factorization theorem 4.4 we get

hdgt′ .u′.q′1
(W uu

loc(gt′ .u
′.q′1),W

uu
loc(gt′−t.gt.u.q1)) ≪ ε · C · e−β·(t−t′) + e−α·ℓ,

where β depends on the Lyapunov spectrum of (M, gt, µ), and the

factor of e−β·(t−t′) arises from flowing gt′−t from gt.u.q1.

By the triangle inequality we get

hdgt′ .u′.q′1
(gt′ .u

′.q′1, gt′.q
′′) ≫ ε ·

(
c′′1(δ)− C · e−β·(t−t′)

)
− e−α·ℓ.

Combining with (6.11) we get

e−β·(t−t′) ≫ C(δ)−1 − c′′1(δ).

Observing that C(δ) is bounded, and c′′1(δ) → 0 in δ, we get a contra-

diction if t− t′ > Oδ(1). �

Now we have that

(6.12) |λ1(u.q1, τ1,(ε)(q1, u, ℓ))− λ1(u
′.q′1, τ1,(ε)(q

′
1, u

′, ℓ))| ≤ C ′′
4 (δ).

This is equivalent to

(6.13) |λ1(q1, t1)− λ1(q
′
1, t

′
1)| ≤ C ′′

4 (δ).

Obtaining matched pairs of points u.q, u′.q′ Two Y configura-

tions Y = {q, q1, u.q1, q2, q3} and Y ′ = {q′, q′1, u
′.q′1, q

′
2, q

′
3} composed

of generic points, forming dynamical quadrilaterals satisfying QNI are

called ε−matched if

(6.14)

hdgt.u.q1 (W
uu
loc(gt.u.q1),W

uu
loc(gt′ .u

′.q′1)) < ε, hdgt′ .u′.q1 (W
uu
loc(gt′ .u

′.q′1),W
uu
loc (gt.u.q1)) < ε.

We are now trying to find ε−matched Y -configurations.

This is done in a manner analogous to [27, Lemmata 12.8, 12.9].

As we will work overW uu
loc(q1),W

uu
loc(q1), we identify them locally with

Rn.

Recall the sets QQNI(q1, q
′
1) ⊂W>1

loc (q1), QQNI(q
′
1, q1) ⊂W>1

loc (q
′
1).

Each of these sets composed of points u.q1, (respectively u′.q′1) for

which the projection under the central stable holonomy to W>1
loc (q

′
1)
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(respectively W>1
loc (q1)) is composed of a generic point which will form

a dynamical quadrilateral.

Previously we have shown that one may find plenty of good Y con-

figurations originating from either q1 or q′1, which satisfy one of the

distance inequalities in (6.14), but not necessarily having the matching

point u.q1 or u′.q′1 being a generic point. The following lemma allows

us to choose both good Y configurations simultaneously.

6.10. Lemma. In the same assumptions and notations as Proposi-

tions 6.8, 6.9, there exists a subset Q̃(q1, q
′
1, ℓ) ⊂ Q(q1, q

′
1, ℓ) with

µuu
q1

(Q̃(q1,q′1,ℓ))

µuu
q1

(Q(q1,q′1,ℓ))
>

c7(δ) > 0 for some c7(δ) such that for all u.q ∈ Q̃(q1, q
′
1, ℓ), its central-

stable projection lands inside QQNI(q
′
1, q1).

This Lemma depends heavily on [27, Lemma 12.9].

We start with the following proposition which is analogous to [27,

Proposition 6.14]). This lemma uses factorization of normal forms to-

gether with distortion estimate in order to compare certain sizes of sets

in W uu
loc .

6.11. Proposition. Under the previous notation, assume t is large so

that

hdgt.u.q1 (W
uu
loc (gt.u.q1),W

uu
loc (gt.q

′
1)) ≤ ǫ,

for some u ∈ W uu
loc (gt.q1). Suppose that x ∈ W uu

loc (gt.u.q1)∩B(gtuq1, O(1)).

Define

At = W uu
loc (gt.u.q1) ∩ B(x, ǫ0), A

′
t = W uu

loc (gt.q
′
1) ∩B(x, ǫ0),

for some ǫ0 < ǫ.

Then there exists κ > 0 such that

κ−1 · |g−t.At| ≤ |g−t.A
′
t| ≤ κ · |g−t.At|

where the Haar measure is defined as the normalized measure induced

from the Haar measure over W uu
loc (q1) ∩ B0(q1) and W uu

loc (q
′
1) ∩ B0(q

′
1)

respectively.
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This proposition follows from a distortion estimate, asW uu
loc(u.q1),W

uu
loc(q

′
1)

are close for all times in [0, t], together with the estimates in [2] re-

garding Hölder continuity of the Lyapunov subspaces. The proof of

Lemma 6.10 follows verbatim from [27, Lemma 12.9], using our parti-

tion B, replacing their Claim 12.6 with our Proposition 6.8.

Choice of u.q1, u
′.q′1, q2, q

′
2, q3, q

′
3. Pick some

• ℓ ∈ Dgood

such that ℓ > ℓ6 and

• q1 ∈ M ′(ℓ) ∩ gℓ/2.P, which have non-zero intersection in view

of our choice of δ.

• u.q1 ∈ Q(q1, q
′
1, ℓ) such that g−ℓ/2.u.q1 ∈ QQNI(q1/2, q

′
1/2), which

have non-empty intersection in view of our choice of δ.

• u′.q′1 ∈ Q(q′1, q1, ℓ) such that g−ℓ/2.u
′.q′1 ∈ QQNI(q

′
1, q1), which

exists by Lemma 6.10.

As a result we fix the following points:

• q2 = gτ1,(ε)(q1,u,ℓ).u.q1,

• q3 = gt1 .q1,

• q′2 = gτ ′
1,(ε)

(q′1,u
′,ℓ).u

′.q′1,

• q′3 = gt′1 .q
′
1,

where τ1,ε, τ
′
1,(ε), t1, t

′
1 as defined before in (5.3),(6.2).

All those points belong to Mrec by the choices we made, but the

Y -configuration sides are not of the same length!

Clearly we have

gτ1 .u
′.q′1 = gτ1−τ ′1

.gτ ′1 .u
′.q′1 ∈ gτ1−τ ′1

Mrec.

By Proposition 6.9 we get that gτ ′1−τ1 .Mrec ⊂ g[0,C(δ)].Mrec by (6.12)

Similarly, we get that gt1 .q1 ∈ Mrec, but

gt1 .q
′
1 = gt1−t′1

.gt′1 .q
′
1 ∈ g[0,C(δ)].Mrec by (6.13).

Notice that by the definition ofMrec via the recurrence density (6.1),

for any point x ∈Mrec, for the majority of times t > T ′′(δ), gt.x ∈ Mbase.

In particular, one case find a number s (bounded by a constant which

depends on δ) such that at the time τ̃ = τ1+s both points q2 = gτ̃ .u.q1,
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q′2 = gτ̃ .u
′.q′1 belong to Mbase. Similarly, there exists a number s′ such

that at the time t̃ = t2 + s′ both points q3 = gt̃.q1 and q′3 = gt̃.q
′
1 both

belong to Mbase.

6.12. Remark. With those choices of the endpoints, one may not guar-

antee exactly that the expansion rate and contraction rate will cancel

each other, but one deduces that by changing the conditional measures

between q2, q3 and q′2, q
′
3 the measure change is reflected by the move-

ment along the Eλ1 direction composed with a small dilation (bounded

as a function of the exact choices of s, s′).

6.3. Endgame.

Transfer of the conditional measures along the configurations.

6.13. Proposition. There exists some ∆ = ∆(δ, ℓ) such that ∆ → 0

as ℓ→ ∞ and

dW (f1(q2), f1(q
′
2)) ≤ ∆.

We recall the following standard fact

6.14. Lemma. Suppose T : M → M preserves µ and also for almost

every x ∈ M we have

B0(T.x) ∩ T.B0(x) = T.B0(x) ∩ B0(T.x).

Then

f1(T.x) ∝ T.f1(x)

in the sense that the restriction of both measures to the set B0(T.x)∩ T.B0(x)

where they both defined is the same up to normalization.

For proof, see [22, Lemma 4.2(iv)].

In view of the normalized Wasserstein distance we actually have

dW (f1(T.x), T⋆f1(x)) = 0.

Recall that we fixed a normal forms coordinates over our manifolds

in a way such that the points were chosen in a set with bounded

structure. Under this identification, for every u ∈ E>1(x), t, s ∈ R
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we can define a map St,u,x,s in normal forms such that St,u,x,s.x =

gtu.(g−s.x) ∈ W u(gt−s.x).

In view of the construction of the the conditional measures given

in §3 and Ledrappier’s result [42, Lemmma 3.8] we get the following

Corollary.

6.15. Corollary. We have that for almost every x, any s, t ∈ R and

u ∈ W uu
loc (x)

dW (f1(St,u,x,s.x), (St,u,x,s)⋆f1(x)) = 0.

By definition have that f1(g−s.x) ∝ (g−s)⋆f1(x), based on the con-

struction of f1. Now by absolute continuity of the Lebesgue measure

under translations, we get

dW (f1(u.g−s.x), f1(g−s.x)) = 0,

and the Corollary follows.

Assume now that the eight points q1, q
′
1, u.q1, u

′.q′1, , q2, q
′
2, q3, q

′
3 are

all chosen to be good point as in the previous section.

In particular we have q3 = gt̃.q1,q2 = gτ̃ .u.q1. Using normal forms

coordinates overW u(q1) we can define a sub-resonant map Sτ̃ ,u,q1,t̃ such

that Sτ̃ ,u,q1,t̃(q2) = q3 ∈ W u(gτ̃ .q1). Similarly we have a sub-resonant

map Sτ̃ ,u′,q′1,t̃
such that Sτ̃ ,u′,q′1,t̃

(q′2) = q′3 ∈ W u(gτ̃ .q1)

In view of the discussion above

f1(q2) ∝ (Sτ̃ ,u,q1,t̃)⋆f1(q3),

f1(q
′
2) ∝ (Sτ̃ ,u′,q′1,t̃

)⋆f1(q
′
3).

(6.15)

6.16. Lemma. We have that

dW (f1(q3), f1(q
′
3)) ≪ ε.

Proof. As q3 and q
′
3 are stably-related and in an Oseledets’ good set, we

may recover R from the R̃ which in turn is related to Q̃ as been done

during the proof of the factorization theorem. As Q̃ is the forward flag,

it is smooth along stable leaves (c.f. Ruelle’s theorem 4.11) and so we

get that dist(Q̃(q3).Q̃(q′3)) = O(dist(q, q′3)), hence in particular we get

|Q(q3)−Q(q′3)| = O(dist(q3, q
′
3)).
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As both q3, q
′
3 are in the Oseledets’ good setMbase, the translation maps

I0q3, I
0
q′3

as defined in (4.12) give that

|R(q3)−R(q′3)| = O(dist(q3, q
′
3)).

As f1 was normalized according to the cocycle R, the result follows as

long as t̃→ ∞ where q3 = gt̃.q1. �

6.17. Corollary.

dW (f1(q2), f1(q
′
2)) ≪ ε.

We have by the triangle inequality

dW (f1(q2), f1(q
′
2)) ≤ dW (f1(q2), f1(q3))+dW (f1(q3), f1(q

′
3))+dW (f1(q

′
3), f1(q

′
2)),

which can be written as

dW (f1(q2), (Sτ̃ ,u,q1,t̃)⋆.f1(q2))+dW (f1(q3), f1(q
′
3))+dW ((Sτ̃ ,u′,q′1,t̃

)⋆.f1(q
′
2), f1(q

′
2)).

and in view of (6.15) and the normalized Wasserstein distance, we

actually get

dW (f1(q2), f1(q
′
2)) ≤ dW (f1(q3), f1(q

′
3)) ≪ ε.

Generating limit points. Taking the limit at ℓ→ ∞.

Assume that ℓk → ∞. Without loss of generality, we may assume

that qi(ℓk) → q̃i, q
′
i(ℓk) → q̃′i, x(ℓk) → x̃, z(ℓk) → z̃ as M is compact,

for i = 1, 2, 3. Moreover, due to the choices defined above, we may as-

sume that the limit points all belong to the compact setMbase consisting

of Oseledets’ good points. Moreover, we may assume those points are

generic with respect to µ. In view of the factorization theorem, we see

that the associated points dist(u.q̃2(∞),W u(q̃′2)) = 0 or equivalently

we have q̃2 ∈ W u(q̃′2). But we still have ε≪δ d(q̃2, q̃
′
2) ≪δ ε. Moreover,

in view of Theorem 4.4 and the explicit construction given there, we

have that dist(x(ℓk), z(ℓk)) ≪ e−α·ℓk , and also for the appropriately

chosen stopping time τ̃ we get

dist(q2(ℓk), gτ̃ .z(ℓk)) ≪ e−α·ℓk ,
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and in particular, as W u(gτ̃ .z(ℓk)) = W u(q′2(ℓk), we have that

dist(q2(ℓk),W
u(q′2(ℓk)) ≪ e−α·ℓk .

As we take ℓk → ∞, we get that dist(q̃2,W
u(q̃′2)) = 0 so

q̃2 ∈ W u(q̃′2).

In view of Corollary 6.17, we have that

dW (f1(q̃2), f1(q̃
′
2)) = 0

This concludes the proof of Proposition 6.1.

Obtaining extra invariance via computation in normal forms

coordinates. Taking the limit as ε→ 0.

Assume {εm}m∈N is some sequence of positive numbers converging

to 0. We apply Proposition 6.1 for each εm to get sets M′
m. Define

F =
∞⋂

k=1

∞⋃

m=k

M′
m,

namely F = lim supm→∞(M′
m). Note that as each M′

m is of strictly

positive measure µ(M′
m) ≥ δ0, we must have that µ(F) > 0. Assume

now x ∈ F . So x ∈ Emi
for infinitely m′

is, hence there exist points

ymi
∈ W u(x) such that εmi

≪ dist(x, ymi
) ≪ εmi

and f2(x) ∝ f2(ymi
).

We write Smi
to be the matching sub-resonant map moving x to ymi

in the normal forms coordinates. We note that in the normal forms

coordinates, we may identify ymi
with a vector given by y

mi
given by

y
mi

= Smi
(wmi

) for some vector wmi
. Denote by Inv(µ) the invariance

group of the measure µ. This is a closed subgroup of the sub-resonant

group Gχ
x . We aim to prove the following:

6.18. Lemma. The group Inv(µ) contains the group Uλ1 - the group of

translations over Eλ1, as a subgroup.

As µ was assumed to be generalized u-Gibbs state, Inv(µ) contains

all the sub-resonant maps that keep the last coordinate fixed. We

denote this (normal) subgroup of Gχ
x by InvGibbs. We will consider the

quotient group Gχ
x/InvGibbs. In view of the normal forms coordinates,
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Gχ
x/InvGibbs is identified as a subgroup of the 1-dimensional affine group

and in our assumptions, as dimEλ1 > 0, this is the full affine group.

Let 〈S〉 denote the closed subgroup of Inv(µ) generated by the maps

{Smi
}. We have that f1 is invariant under elements from 〈S〉. If 〈S〉

contains Uλ1 , we are done.

6.19. Observation. The set of maps {Smi
} is uniformly bounded.

This follows as dist(x, ymi
) ≪ εmi

≪ 1.

In particular, taking a limit of Smi
, we see that that 〈S〉 contains

some elementD(x) for which its projection to the affine groupGχ
x/InvGibbs

is a dilation of the form xλ1 7→ c · xλ1 , for some non-trivial dilation.

In particular, after applying D(x)−1, the image of the group 〈S〉 inside

the quotient group Gχ
x/InvGibbs contains the identity as a limit point.

Therefore, the projection of Inv(µ) into Gχ
x/InvGibbs contains a one-

parameter subgroup of the affine group. We denote this subgroup by

J (x).

6.20. Observation. The one parameter subgroups of the affine sub-

groups are either the subgroup of translations, or a subgroup conju-

gated to the subgroup of dilations.

The later case gives rise to multiplicative character from the J (x)

to R, which we denote by eβ(J (x)). Moreover we have that the charac-

ter associated with J (gt.x) equals to eβ(J (x))·t. This is a measurable

function over M . Let C ⊂ M be a subset of positive measure consist-

ing of good points, such that β is a bounded function. For µ-almost

every x ∈ C, the ergodic theorem implies that g−t.x ∈ C for infin-

itely many times t. In particular we have that x = gt.g−t.x Hence the

character associated to gt.g−t.x equals to eβ(J (g−tx))·t. In particular we

have β(J (g−tx)) · t = β(J (x)). As g−t.x ∈ B for arbitrarily large t, we

must conclude that β(J (x)) ≡ 0. Therefore the transformation J (x) is

the identity, contradicting the assumption that J (x) is a (non-trivial)

one-parameter subgroup.

Therefore, the projection of 〈S〉 contains the group of translations. In

particular, Inv(µ) contains the product group InvGibbs ×Uλ1 . A Fubini
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argument shows then that µ is absolutely continuous (by disintegrating

over W>1 and concluding that the conditional measure along W λ1 is

the Lebesgue measure) and hence a-posteriori invariant under the whole

group Gχ
x . This concludes the proof of Lemma 6.18.

7. Examples and an application to equidistribution

7.1. Examples originating from homogeneous dynamics. We

begin with some basic examples from homogeneous dynamics which

illustrates the QNI condition and and application of our main theo-

rem.

7.1. Example. Consider ASL2(R) = SL2(R) ⋊ R2 where we identify

ASL2(R) as a subgroup of SL3(R) by the subgroup of matrices

ASL2 =



a b x

c d y

0 0 1


 .

Let Γ ≤ ASL2(R) by a torsion free lattice and considerM = ASL2(R)/Γ

(this is a torus bundle over the embedded hyperbolic surface). Define

at =



et 0 0

0 e−t 0

0 0 1


. One easily calculate

at.g.a−t =




a e2tb etx

e−2tc d e−ty

0 0 1


 .

Therefore one can deduce the following Lyapunov splitting:

TpM = E4⊕E3⊕E0⊕E2⊕E1, Es = E4⊕E3, Eu = E2⊕E1, Euu = E1,

where E4 = log



1 0 0

c 1 0

0 0 1


, E3 = log



1 0 0

0 1 y

0 0 1


, E2 = log



1 0 x

0 1 0

0 0 1




and E1 = log



1 b 0

0 1 0

0 0 1


. Moreover, one may see that the system
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(M, gt) equipped with any absolutely continuous measure over E1 sat-

isfy QNI as


1 0 0

c 1 y

0 0 1


 ·



1 b 0

0 1 0

0 0 1


 ·




1 0 0

−c 1 −y

0 0 1


 =



1− bc b −by

−bc2 1 + bc −bcy

0 0 1


 ,

so one may get an E2 component as long as the conditional measure

along E3 is non-trivial (this can be verified say by an entropy assump-

tion, assuming hµ(a−t) > 2). By the measure rigidity theorem, this

shows that any at-invariant measure with absolutely continuous condi-

tional measure over E1 must be horospherical. We remark here that

such an entropy assumption would force the measure to be the Haar

measure in view of Ratner’s theorem, as because of the conditional

measure along the E2-direction, the measure cannot interact with any

proper tube, but nevertheless the usage of the measure rigidity theorem

suppresses the usage of the linearization technique in that case.

The following example provides an example of HQNI system.

7.2. Example. We will consider G = R⋊ (N ×N) as a Lie group, where

N is the 3-dimensional Heisenberg group.

We identify the Heisenberg group with the triplets (x, y, z) such that

[x, y] = z, and so we may identify N × N with the six-dimensional

space which we write as

v =



x1 x2

y1 y2

z1 z2


 .

We we will consider the Borel-Smale Anosov example (c.f. [15, Sec-

tion 3][38]). This is a linear automorphism A of N × N/Γ which is

Anosov, such that

A.x1 = λa.x1,A.x2 = λ−a.x2,

A.y1 = λb.y1,A.y2 = λ−b.y2,

A.z1 = λa+b.z1,A.z2 = λ−a−b.z2,
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where

A.v =

(
A 0

0 1

)
.v =



A(x1 x2)

A(y1 y2)

A(z1 z2)


 .

Picking a = 3, b = −2, one may see that we have the following

Lyapunov spectrum

(7.1) 3 log λ > 2 log λ > log λ > − log λ > −2 log λ > −3 log λ.

The associated unstable and stable manifolds are defined by

logW u = span {x1, y2, z1} and logW s = span {x2, y1, z2} .

Moreover, every generalized u-Gibbs measure will have entropy greater

or equal to 5 log λ.

Consider the group G = R⋊ (N ×N). Let M be the solvemanifold

G/Γ for some Γ ≤ G a lattice. As the Laypunov exponent associated

to x2, z1 only add up to −4 log λ, by an entropy calculation, at-least

the two most negative Lyapunov spaces admit a non-zero conditionals.

If so, we see that one may found non-trivial y1 coordinate. In partic-

ular, by taking commutators, one can see that we have QNI as one

may recover the z1-coordinate, with a quadratic estimate. Using the

theorem we conclude that such a measure must be SRB measure which

here amounts to the Haar measure.

We continue developing the previous example, giving rise to a non-

algebraic HQNI flow by sufficiently small perturbations of the example

above along the z1, z2 directions.

7.3. Example. Consider the space (N×N)/Γ - the product space of the

Heisenberg groups from the previous example. Notice that the map A

keep the subspace spanned by z1, z2 fixed. As a result, we may realize

this system as a vector bundle over T2 × T2. We will deform the map

over the fiber in the C∞-topology.
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We define a small perturbation map B̃ over the fiber as follows

(7.2) B̃(v) =



(x1, x2).Id

(y1, y2).Id

(z1, z2).B̃


 ,

where B̃ is a small perturbation of the identity map acting on the fiber

which is the so-called vertical torus defined by (z1, z2) in the nilmani-

fold. This leads to the action of

AB̃(v) =



A.

(
x1 x2

y1 y2

)
.Id

A(z1, z2).B̃


 = B̃A.(v).

Using the stability of Anosov maps, the perturbed map over the fiber,

A.B̃ is also Anosov.

As this is an Anosov map over the 2-torus, using the entropy formula

and Yomdin’s theorem regarding continuity of the entropy, we see that

the eigenvalues associated to A.B̃ are varying continuously with respect

to eigenvalues of A |z1,z2. As a result, we have the following Lyapunov

spectrum of AB̃ in analogy with (7.1)

(7.3) 3 log λ > 2 logλ > logµB̃ > − logµB̃ > −2 log λ > −3 log λ.

assuming the perturbation is small enough. Considering the commuta-

tor argument from the previous example, as it pertained only to hori-

zontal torus, we still have a quadratic z1 deviation, say of size greater

or equal to ε2 where z1 is the direction of the non-perturbed system.

In the perturbed system, the vertical torus is foliated by new curves,

amounting to B̃, which are C1-close (say of distance at most Θ) to

z1, z2. We may estimate the divergence of the foliations from the pre-

vious coordinates by Θ · ε2. Hence as long as Θ < 1/2 we still salvage

a quadratic deviation in the new least-positive Lyapunov direction of

the unstable leaf.

7.4. Remark. The previous procedure may be applied in the context of

Example 7.1 as well. One may realized this space as a torus bundle over

SL2/Γ, where the induced action over the fiber is given by the diagonal
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flow. Perturbing the fiber dynamics, still yields an Anosov flow. As we

had an entropy gap, small perturbation would retain this property and

keep the basis’ foliation fixed. As such, similar considerations applied

and one may see that as the new foliations over the fiber are C1-close

to the axis, one may recover the HQNI property as well.

7.5. Example. Let G = SL3(R) and Γ ≤ G a uniform lattice. Consider

the action over the homogeneous space X = G/Γ of the split Cartan

element

at = exp


t ·



2 0 0

0 1 0

0 0 −3





 .

We clearly have

at.



1 x z

0 1 y

0 0 1


 .a−t =



1 et · x e5t · z

0 1 e4t · y

0 0 1


.

Hence one can see that the unstable manifold of the flow can be iden-

tified with N = exp(N) where N = span
{
x, y, z

}
with x =

(
0 ⋆ 0
0 0 0
0 0 0

)
,

y =
(

0 0 0
0 0 ⋆
0 0 0

)
and z =

(
0 0 ⋆
0 0 0
0 0 0

)
. Moreover, we have that E1 = span {z},

E2 = span
{
y
}

and E3 = span {z}. Moreover, we see the following

quantitative non-integrability property: for g and g′ = s.g we have

Projg 7→g′

s (E≤2) = Ad(s).(E1 + E2) which must have an x component

as we can do the following computation in the Lie algebra level






0 0 0

s1 0 0

s2 s3 0


 ,



0 0 z

0 0 y

0 0 0





 =



−s2 · z −s3 · z 0

−s2 · z −s3 · y s1 · z

0 0 s2 · z + s3 · y




So one may see that the projection of this element, over N is the

nilpotent matrix


0 −s3 · z 0

0 0 s1 · z

0 0 0


 = −s3 · z · x+ s1 · zy.
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As y ∈ E1 + E2, we get that the deviation from E1 + E2 in N is

reflected by −s3 · z · x. We note that s3 is comparable the distance

between g, g′ (chosen in a generic way). The conclusion of our theorem

will say that any probability measure µ which is ergodic and invariant

under L where L = 〈at, bt, exp(t · y), exp(t · z)〉 must be invariant under

all of N . Where bt is any other Cartan element which is not a power

of at.

In that case it is well known (i.e. [36, Theorem 1.11]) that mea-

sures which are invariant under the horospherical flow associated to

at (namely SRB), must be the Haar measure, with a quantitative and

effective equidistribution statement. Nevertheless, our result gives a re-

lated result (the assumption about the bt-invariance is used only as the

construction of z in the factorization theorem, might have a bt compo-

nent involved in the definition of x1, which we can remove if we assume

bt-invariance and in particular, we do not need to assume bt-ergodicity

say).

A related situation can be demonstrated in the case of taking

G = SL2(R)× SL2(R) when one take quotient by a irreducible lattice

Γ ≤ G, when one can choose a Cartan element say of the form

at =

(
exp

(
t ·

(
2 0

0 −2

))
, exp

(
t ·

(
1 0

0 −1

)))
.

In that case, the expanding space is 2-dimensional, with the fast sub-

space corresponding to the first upper unipotent subgroup, and the

second expanding subspace corresponding to the second upper unipo-

tent subgroup.

We may deduce a result in the spirit of a theorem of Kleinbock-Shi-

Weiss [37] as a corollary -

7.6. Example. Let G = PSL3(R) and Γ ≤ G a uniform lattice. De-

fine at = exp


t ·



2 0 0

0 1 0

0 0 −3





, bt = exp


t ·



−3 0 0

0 2 0

0 0 1





 and
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let u(x, y, z) =



1 x y

0 1 z

0 0 1


. Then U = 〈u(x, y, z)〉 is the unstable

horospherical subgroup G−
a , namely

〈u(x, y, z)〉 = {g ∈ G | atga−t → e as t→ −∞} .

Let ρ(y, z)dydz be an absolutely continuous finite density with re-

spect to the Riemannian measure of the the embedded submanifold

W≥2 = exp



0 0 y

0 0 z

0 0 0


. Define the measure ν as any weak-⋆ limit

of 1
T

∫ T

t=0
bt.ρ(y, z)dydz. Then for every x ∈ G/Γ, for ν almost-every h,

we have that

1

T

∫ T

t=0

f(at.h.x)dt →

∫

G/Γ

fdmHaar.

The proof follows at once from Example 7.5. One should note that

it is not always the case that the weak-⋆ limits ν are actually non-zero

measures. A similar situation occurs in the case of SL2(R)×SL2(R)/Γ.

Again those kind of results can be easily deduced by known tech-

niques in homogeneous dynamics such as Ratner theorems or the work

by Einsiedler-Katok-Lindenstrauss and its generalizations [23, Theo-

rem 1.3], but the proof presented here is simpler in nature and doesn’t

use those explicit techniques.

7.2. Examples related to 3D Anosov diffeomorphisms. Recall

that a diffeomorphism of a manifold M is called partially hyperbolic if

for every x ∈M there exists a splitting of the tangent bundle to M at

x, TxM to three sub-bundles

TxM = Es(x)⊕Ec(x)⊕Eu(x)

such that the splitting is dominated, Es is uniformly contracted, Eu is

uniformly expanded and at-least one of them is non-trivial.
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Consider a smooth partially hyperbolic diffeomorphism f of the 3-

tours T3. In that case, every sub-bundle Es, Ec, Eu is one-dimensional.

We further assume that λ1 < 1 < λ2 < λ3.

The following is an upcoming result of Avila-Crovisier-Eskin-Potrie-

Wilkinson-Zhang [4]:

7.7. Theorem. : If f : T3 → T3 is Anosov and partially hyper-

bolic, with a two dimensional unstable foliation, then either the system

(T3, f, µ) satisfies the QNI condition for any measure µ which is a gen-

eralized u-Gibbs state with respect to the dominated splitting Ec ⊕ Eu,

or the system (T3, f) is conjugate to a linear system (T3, f̃) , where the

conjugacy maps the strong unstable leaf to the strong linear foliation.

7.3. Equidistribution in HQNI systems. We now turn to prove

a version of “spherical equidistribution” as stated in Theorem 1.10,

motivated by an analogous result by Chaika-Eskin [17] in the moduli

space settings.

We note this kind of statement is stronger than a construction of

u-Gibbs measures given by Pesin and Sinai [45] to construct SRB mea-

sures as they are averaging absolutely-continuous densities along W u

and not just W uu.

The main example to keep in mind is the Borel-Smale one, Exam-

ple 7.2.

Let φ : M → R be a Lipschitz test function. As the Oseledets

splitting was assumed to be dominated, we may extend the Lyapunov

exponents continuously to the whole manifold. We note that for any

h ∈ Ej ⊂ ⊕i>1E
λi(x) ≃ Rn we have the following cocycle (coming

from dominated splitting)

(7.4) gt.h = eλj(x,t).h.

Moreover, the various cocycles λj(x, t) grow linearly in t.

7.8. Proposition. Fix some h ∈ Ej, define

ft(u) = φ(gt.(u.x))− φ(h.gt.u.x),
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where both points gt.(u.x), h.gt.u.x belong toW>1
loc (gt.x) and we interpret

the h-translation by means of the normal forms coordinates. Then for

almost every u we have

lim
T→∞

1

T

∫ T

t=0

ft(u)dt = 0.

This proposition implies that for a generic u, the measures con-

structed in the Theorem are h-invariant. Using the proposition re-

peatedly for various h ∈ Ej, we get that the measure are generalized

u-Gibbs measures.

We will need the following auxiliary Lemma.

7.9. Lemma. There exists some κ > 0 and C ≥ 1 such that for any

t > s > 0 we have

(7.5)

∣∣∣∣
∫

u∈[0,1]

ft(u)fs(u)du

∣∣∣∣ ≤ C · e−κ|t−s|.

Proof. Let r > 0 which will be specified later. Consider intervals of the

form I(i) = [i− e−r, i+ e−r]. We divide [0, 1] (which we think about

as part of Ej) into disjoint consecutive intervals of the form I(i). Note

that as φ is bounded, length(I(i)) ≤ 2e−r, the last part of [0, 1] not of

the form I(i) does not interfere with the estimate, as long as r is small

enough. Now as φ is a Lipschitz function, we have that

|fs(y + i)− fs(i)| ≪φ e
λj(x,s) · |y|.

Hence for for any |y| ≤ e−r we have that

|fs(y + u)− fs(u)| ≪φ e
−r+·λj(x,s),

as

|fs(y + u)− fs(u)| = |φ(gs.(y + u))− φ(gs.u)|

= |φ(
(
eλj(x,s) · y

)
+ gs.u)− φ(gs.u)|

≪φ

∥∥eλj(x,s) · y
∥∥

≪φ e
−r+λj(x,s),
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and φ is a Lipschitz function. Therefore we may estimate the correla-

tion over any interval I(i) as

(7.6)∣∣∣∣
1

|I(i)|

∫

u∈I(i)

ft(u)fs(u)du

∣∣∣∣ =
|fs(i)|

|I(i)|

∣∣∣∣
∫

u∈I(i)

ft(u)du

∣∣∣∣+Of

(
e−|t−s|

)
.

Using the definition of ft we have that

1

|I(i)|

∫

u∈I(i)

ft(u)du =
1

|I(i)|

∫

u∈I(i)

φ(gt.u.x)− φ(gthe−λj(x,t).u.x)du.

Hence one see that there is cancellation in the interval except a neigh-

borhood of the boundary of I(i) which is of measure 2e−λj(x,t)

So we may bounded the integral over I(i) as
∣∣∣∣

1

|I(i)|

∫

u∈I(i)

ft(u)du

∣∣∣∣≪f e
−λj(x,t) · |I(i)|−1

= e−λj(x,t)+r.

Using that in (7.6) give
∣∣∣∣
∫

u∈I(i)

ft(u)fs(u)du

∣∣∣∣≪f e
−λj(x,t)+r + e−r+λj(x,s).

Now approximating the integral over the whole interval by the localized

integrals give

∫

u∈[0,1]

ft(u)fs(u)du =
∑

I(i)

∫

I(i)

fs(u)ft(u)du+Of

(
length(I(i))−1

)

≪f e
−λj(x,t)+r + e−r+λj(x,s) + e−r.

(7.7)

Notice we have the following cocycle property of λj:

(7.8) λj(x, t) = λj(x, s) + λj(y, t− s),

where y = gs.x. We may rewrite the first summand of (7.7) as

e−λj(x,t)+r = e−λj(x,s)+r−λj(y,t−s).

Taking r so that r = λj(x, s) +
1
2
λj(y, t − s) yields decay rate of

e−
1
2
λj(y,t−s) in the above estimate. Define m = minz∈M λj(z, 1) > 0.
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Repeatedly applying the cocycle property (7.8) gives

λj(y, t− s) ≥ m · |t− s|.

Therefor taking any κ ≤ m
2
would do.

The proof now follows by using Fubini’s theorem over [0, 1]m and

specializing to the Ej-axis. �

7.10. Remark. The only usage in the identification ofW>m with Rn here

comes from the splitting process and calculating the change between

the various sub-intervals I(i). Using normal forms coordinates, and

the maps H−1
x : TW>m → TW>m one may do a similar calculation

(with a more complicated boundary estimate, but this estimate would

not have a significant impact over the proof).

We quote here the following law of large numbers:

7.11. Lemma ([17] Lemma 3.4). Suppose ft : [0, 1] → R are bounded

functions satisfying (7.5) and also ft are 2M-Lipschitz for any t, then

Proposition 7.8 holds.

We remark here that Eskin-Chaika assumed in addition that the

integrals over [0, 1] of ft vanish. This is not used in any part of their

argument.

We conclude that for almost every u, using the result of Chaika-

Eskin, the measures induced from taking weak-⋆ limits in (1.2) are

absolutely continuous over the foliation given by W≥m. Furthermore,

by their definition as averaging along gt, any weak-⋆ limit will be gt-

invariant.

7.12. Observation. The set of u-Gibbs states is a weak-⋆ closed convex

subset of gt-invariant probability measures over M .

For proof see [8, §11].

In view of the HQNI property of the manifold, we have the following

7.13. Observation. Any ergodic component of the limiting measure η

measure achieved as above must satisfy QNI.
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Given such a limiting measure η, we may consider its ergodic de-

composition dη =
∫
dηε. Using the measure classification result of

Theorem 1.7, we have that that each ergodic component ηε must be

SRB. As we assume that there is only one SRB measure, ν, we have

that ηǫ = ν for all the ergodic components ηǫ. Hence the theorem

follow.

7.14. Remark. The above proof (and construction showing HQNI and

the example about ASL2) suggests that even in the case where the flow

does not satisfy QNI, if for limiting measure η has large enough entropy,

using the affinity of entropy over the ergodic decomposition, one may

show that at-least one of its ergodic components satisfy QNI (we note

here that the set of ergodic u-Gibbs states is countable), hence such

a measure η must have a basin of an SRB measure inside its support,

recovering a topological analogue. It will be interesting to continue

developing Margulis’ inequality techniques as in [28, Proposition 2.13]

to replace the linearization technique in the analysis of the various

ergodic components of the limiting measure.
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Appendix A. Technical construction of factorization

Basic facts and definitions. We assume throughout that V is a

finite-dimensional vector bundle over M , may be measurable, which

is smooth along stable leaves. Moreover, we fix some x ∈ M and

y ∈ W s(x). We will assume that x is generic, in light of [33, Theo-

rem 2.5], we may endow T (W s(x)) = Es(x) with normal forms coordi-

nates. If y ∈ W s(x) is sufficiently close to x we can write y = expx(y)

for some vector y ∈ Es(x) = T (W s(x)). Using the normal forms coordi-

nates, we may calculate gℓ.y by calculating the action of gℓ.y ∈ Es(gℓ.x)

by of sub-resonant polynomials. Throughout the section we will write

gℓ.y as the result of this computation. We note that this coordinates

immediately generalize to higher tangent spaces, T k(Es(x)), for all

k ≥ 1.

A.1. Definition. Assume V is a finite dimensional vector bundle over

M . Let x ∈M be given and y ∈ W s(x). Assume that T (y) : V (x) → V (y)

is a family of linear operators. Moreover we assume that x, y both be-

long to the same local trivialization of V .

We say that T is factorizable if for any β > 0 there exists a vector

bundle Vext, a map Fx :W s(x) → Vext(x)

and a linear map

A(x, ℓ) : Vext(x) → Hom(V (gℓ.x), V (gℓ.x)), A = A(T ), such that

(A.1) ‖ξ ◦ T (y)−A(x, ℓ)Fx(y)‖V (gℓ.x),op
≪ e−β·ℓ,

provided that gℓ.x, gℓ.y lie in the same local trivialization, so we can

do the following identification of vector spaces V (gℓ.x) ≃ V (gℓ.y) by

means of the isomorphism ξ.

A.2. Theorem (Smooth holonomy map is factorizable). Assume that

V is a vector bundle over M which has smooth stable holonomy map

HV (x, y) : V (x) → V (y), then HV is factorizable.

Proof. As the holonomy is smooth, let A(x, ℓ) be the prolongation of

HV (gℓ.x, ⋆), of some order k which will be determined later, as a func-

tion with domain beingW s(gℓ.x). Using Taylor expansion over Es(gℓ.x)
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we may write

(A.2) Hv(gℓ.x, z) =
∑

0≤|α|≤k

∂αHV (gℓ.x, gℓ.x) · log(z)
α + Egℓ.x,k(z)

where log(z) ∈ Es(gℓ.x) ≤ TM(gℓ.x) is the inverse image of z under

the exponential map at gℓ.x (given in terms of the normal forms coor-

dinates) and Egℓ.x,k(z) stands for the reminder term. Using Lagrange’s

reminder formula, noticing that M is compact, we may bound

‖Egℓ.x,k(z)‖ ≪M dist(gℓ.x, z)
k+1.

Specializing to the case of z = gℓ.y one gets

‖Egℓ.x,k(z)‖ ≪M dist(gℓ.x, gℓ.y)
k+1

≪M e−(k+1)λC ·ℓ,

for some λC which depends on the Lyapunov spectrum of M . Taking

k large enough so that

k + 1 >
β

λC
yields the result, where the map Fx(y) amounts to calculating the values

of the various log(y)α, Vext = T≤kEs - the k’th higher-order tangent

space to Es, and A(x, ℓ) matches the k’th prolongation of HV (gℓ.x, ⋆)

with gℓ.Fx(y). �

A.3. Definition. Let V be a finite dimensional vector bundle over M ,

and endows V with the Pesin inner-product. Assume S ≤ V is a

subspace. Given some ℓ > 0 we say that a basis B(gℓ.x) of S(gℓ.x) is

called almost orthonormal if for any v ∈ B(gℓ.x) we have

|‖v‖ − 1| ≤ o(ℓ)

and for any two distinct vectors v, v′ ∈ B(gℓ.x),

|〈v, v′〉| ≤ o(ℓ).

A.4. Definition. A subspace S ≤ V is factorizable if for any β > 0

there is a bundle Vext and a measurable map Fx : W s(x) → Vext(x),

and a linear map

A(x, ℓ) : Vext(x) → ⊕dimS
i=1 V (gℓ.x),
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A = A(S) such that

(A.3) ‖s− A(x, ℓ)Fx(y)‖⊕dimS
i=1 V (gℓ.x)

≪ e−β·ℓ,

for some almost orthonormal basis s of S(gℓ.y), where we assume

gℓ.x, gℓ.y lie in the same local trivialization.

We will extend the definition of factorization given above to say that

a subspace is factorizable if it is factorizable over a subset of arbitrarily

large measure of M .

A.5.Corollary (Preliminary factorization). Assume that V is a bundle

admitting smooth stable holonomies which we denote HV (x, y). Assume

that S ≤ V is a subspace which is preserved under stable holonomies.

Then S is factorizable over a subset of arbitrarily large measure of M .

Proof. Fix GS :M → ⊕dimS
i=1 V some measurable choice of orthonormal

bases for S according to the Pesin inner-product. The map G has the

following equivarience property gℓ.GS(x) := GS(gℓ.x). On the level of

subspaces we have

HV (gℓ.x, gℓ.y)S(gℓ.x) = S(gℓ.y)

hence on the level of bases we get that HV (gℓ.x, gℓ.y).GS(gℓ.x) is a basis

for S(gℓ.y). Moreover, by a theorem of of Araujo-Bufetov-Filip [3],

(A.4) ‖HV (x, y)− Id‖ ≪ dist(x, y)γ,

for some γ depending on the Lyapunov spectrum of M on a set of

arbitrarily large measure. Consider this set. Hence the basis given

by Hv(gℓ.x, gℓ.y).GS(gℓ.x) of S(gℓ.y) is an almost orthonormal basis.

As HV is smooth map, it is factorizable by Theorem A.2. Combining

the above yields the result. We remark here that the dependence in β

(namely the error of the factorization) relates to the order of the Taylor

expansion of Hv been used, while the error of the almost orthonormal

basis s produced is related both to β and to the estimate regarding γ

in (A.4). �

A.6. Corollary (Future factorization). Given some fixed α > 0, de-

fine Tmax = α · ℓ. Using the previous notations, we may factorize
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gt.S(gℓ.y) in the following manner - for all β, ℓ, t ≤ Tmax(ℓ), there ex-

ists a bundle Vext, a map Fx : W s(x) → Vext(x) and a linear map

A(x, ℓ) : Vext(x) → ⊕dimS
i=1 V (gℓ.x) such that

(A.5) ‖gt.s− gtA(x, ℓ)Fx(y)‖⊕dimS
i=1 V (gt+ℓ.y)

≪ e−β·ℓ,

for some “almost orthonormal” basis s of S(gℓ.y).

Proof. Apply Corollary A.5 with some β ′ > 0 to be specified later.

Consider the vector u = s−A(x, ℓ)Fx(y) ∈ ⊕dimS
i=1 V (gℓ.y).

By Oseledets theorem

‖gt.u‖ ≤ eλM ·t · ‖u‖ ≪v e
λM ·Tmax · e−β′·ℓ

for all 0 ≤ t ≤ Tmax, for some λM > 0.

Given β > 0, one may take β ′ > 0 large enough so that

λM · Tmax − β ′ · ℓ ≤ −β · ℓ.

With that choice of β ′, we recover the required factorization. �

The P− operator. Assume V is a vector bundle over M , smooth

along stables. For a set of full measure M̂ ⊂ M we have a splitting of

V by Oseledets theorem as V = ⊕iV
λi .

A.7. Definition. The attached bundle to V , V̂ , is the (measurable)

bundle V̂ = ⊕iV
≤λi/V <λi . In view of Oseledets theorem, for any

biregular point x ∈ M̂ we have the (measurable) translating map

ix : V (x) → V̂ (x). Writing the Osceledets splitting as V (x) = ⊕iV
λi,

we can write each v ∈ V (x) as v =
∑

i v
λi with vλi ∈ V λi for all

i. Hence we can we may send each subspace to V λi to its associated

quotient, namely V λi 7→ V ≤λi/V <λi. In particular for each vλi we have

ix(v
λi) = vλi + V <λi = vλi +⊕j<iV

λj .

As each component of V̂ has a single Lyapunov exponent, the at-

tached bundle V̂ admits smooth stable holonomies (c.f. [5, Proposi-

tion 3.4], [32, Proposition 4.2]) which we denote asHV̂ (x, y) : V̂ (x) → V̂ (y).
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A.8. Definition. Let V be a finite dimensional vector bundle over M

which is smooth along stables. For any two points x, y ∈ M such that

y ∈ W s(x) we define the measurable operator P−
V (x, y) : V (x) → V (y)

between two biregular points x, y to be the composition

(A.6) P−(x, y) = i−1
y ◦HV̂ (x, y) ◦ ix,

where ix : V (x) → V̂ (x) and i−1
y : V̂ (y) → V (y) are the translating

maps given by Oseledets theorem as in Definition A.7.

This operator is analogous to the operator defined in [27, §4.2].

A fundamental result due to F. Ledrappier [39, Theorem 1] shows

that P−
V preserves any measurable equivariant subspace S ≤ V .

A.9. Theorem (General subspace factorization theorem). Assume V

is a vector bundle smooth along stables. Let S ≤ V be any measurable

equivariant subspace. Then S is factorizable.

The factorization can be achieved by considering the equation

(A.7) S(gℓ.y) = P−
V (gℓ.x, gℓ.y)S(gℓ.x),

Which follows from Ledrappier’s theorem. We now need to show that

we may factorize the operator P−
V (gℓ.x, gℓ.y). Examining the definition

of P− in (A.6), we see that

P−
V (gℓ.x, gℓ.y) = i−1

gℓ.y
◦HV̂ (x, y) ◦ igℓ.x.

The term HV̂ (x, y) ◦ igℓ.x is factorizable (as an operator with its image

in the attached bundle V̂ , which has smooth holonomies) by Corol-

lary A.5, as HV̂ is smooth along stables, and i preserves spaces of

dynamical definition.

We consider i−1
⋆ as a vector inside a bundle in the following manner

i−1
⋆ ∈ Hom(V̂ (⋆), V (⋆)),

or alternatively, one may consider i−1 as sectionM → Hom(V̂ (⋆), V (⋆)),

hence belong to the vector space of such sections.

Unfortunately, the bundle of sections, does not necessarily admit

smooth holonomies. Nevertheless, it is smooth along stables (as V
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is). The next subsection introduces a technique based on a theorem of

Brown-Eskin-Filip-Rodriguez-Hertz to overcome this issue and factor-

ize the section i−1
⋆ .

Overcoming non-existence of holonomies. We will need to dis-

cuss cases when the vector bundle V is only smooth along stables and

does not necessarily admit smooth holonomies. We note the following

theorem.

A.10.Theorem (Brown-Eskin-Filip-Rodriguez-Hertz [11], §A.4, Corol-

laryA.4.6). Let V be a bundle which is smooth along stables, there exists

an embedding j⋆ : V (⋆) → V ′(⋆) such that V ′ admits smooth stable

holonomies. Moreover the embedding j⋆ is gt-equivarient.

As part of the proof of the above theorem, using cocycle normal

forms, we have the following crucial observation:

A.11. Observation (Explicit construction of cocycle normal forms). The

map j⋆ is an explicit analytic map.

Due to this nature of the map j⋆, one may recover factorizability of

S, by applying the simple factorization theorem A.5 for the image of

the vector s, jgℓ.y(s) ∈ ⊕dimS
i=1 V ′(gℓ.y), and inverting jgℓ.y by calculating

a polynomial approximation by applying the Lagrange-Good inversion

formula for power series (c.f. [31]).

The following proposition finishes the proof of Theorem A.9.

A.12. Proposition. i−1
gℓ.y

: V̂ (gℓ.y) → V (gℓ.y) is factorizable as a vec-

tor, namely consider the subspace L(gℓ.y) spanned by i−1
gℓ.y

, then this

space is factorizable.

The bundle Hom(V̂ (⋆), V (⋆)) is smooth along stables, as the at-

tached bundle V̂ is. Using Theorem A.10 of Brown-Eskin-Filip-Rodriguez-

Hertz, we may consider the image of i−1
gℓ.y

inside a bundle which admits

smooth stable holonomies jgℓ.y(i
−1
gℓ.y

) ∈ Hom(V̂ (gℓ.y), V (gℓ.y))
′. We

note the following equation

(A.8) jgℓ.y(i
−1
gℓ.y

) = H(gℓ.x, gℓ.y).gℓ.H(y, x)jy(i
−1
y ),
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where H is the stable holonomy of the bundle Hom(V̂ , V )′. We may

define a map Gx(y) to be

(A.9) Gx(y) = H(y, x)jy(i
−1
y ).

The map Gx(y) can be seen a section from W s(x) to some bundle

Hom(V̂ (x), V (x))′. Using Theorem A.5, expanding the smooth holo-

nomy H(gℓ.x, ⋆), we may factorize the subspace spanned by jgℓ.y(i
−1
gℓ.y

)

in the form of the factorization of the holonomy H , acting on the sec-

tion Gx(y).

Using Observation A.11, we may factorize (the one-dimensional sub-

space defined by) i−1
gℓ.y

, by using the Lagrange-Good formula in order

to extract i−1
gℓ.y

out of the j⋆ embedding. This concludes the proof of

Proposition A.12. Combining the factorizations of i−1
gℓ.y

from Propo-

sition A.12 and HV̂ (gℓ.x, gℓ.y) ◦ igℓ.x which follow from Corollary A.5

yields Theorem A.9.

A.13. Observation. For any vector bundle V , the translating map de-

fined by Oseledets’ theorem, i−1
x : V̂ (x) → V (x) between the attached

bundle and V is “almost-isometry” in the following meaning: for every

v ∈ V̂ (x) and |t| ≫ 0 we get

(A.10)
‖gt.i

−1
x (v)‖V (gt.x)

‖gt.v‖V̂ (gt.x)

≪ eε·|t|.

This follows immediately from the definition of the quotients and

Pesin norms used.

A.14. Corollary (Approximation of Eu(gℓ.y)). The subspace Eu(gℓ.y)

is factorizable, for any generic point gℓ.y.

Proof. Consider the tangent bundle V = TpM . The subspace Eu ≤ TM

is measurable equivariant, hence by Theorem A.9 it is factorizable, by

approximating P−
V (gℓ.x, gℓ.y)B(gℓ.x), where B(gℓ.x) is any orthonormal

basis of Eu(gℓ.x). �

Approximation of a Taylor polynomial. Consider the unstable

bundle (M,Eu). Assume that f : W u(p) → Rn is some smooth func-

tion. We will be interested in studying its Taylor expansion (over
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W u(p)), for example in order to do the computation discussed in § 4.3.

One may think of the Taylor coefficients of such a function as a element

in some jet bundle.

Ideally, we would to read of the coefficients from the jet bundle

J(Eu(p)). As the unstable bundle (M,Eu) is not smooth along stables

but only Holder-continuous, we may not be able to use the previous

construction. Using the partially hyperbolic splitting we have an em-

bedding of bundle Eu →֒ TM and as a result we get an embedding of

the corresponding jet bundles J(Eu(p)) →֒ J(M).

A.15. Proposition. For any finite k, the sub-bundle of jets of order

less or equal to k J≤k(M) of J(M) is factorizable.

Proof. The full jet bundle J(M) is smooth along stables, as TM is, so

is J≤k(M). Hence the result follows from Theorem A.9, considering

S = V = J≤k(M). �

Once we have a vector in V in hand, one may evaluate the jet in any

given direction of TM in order to recover the needed derivatives.

A.16. Corollary. Combining the factorizability of Eu and J(M), we

may factorize the various Taylor coefficients of any smooth function

defined over W u(gℓ.y).

In view of the formula for directional derivative, we have the follow-

ing:

A.17. Lemma. Fix some smooth f : W u(p) → Rn. Assume that

v, v′ ∈ TM then ‖Dvf(p) − Dv′f(p)‖ ≪f ‖v − v′‖, where the de-

pendence of f is by some C⋆-norm, locally around p, where the order

of the norm relates to the order of the differential.

This has an immediate corollary showing we may actually recover

the Taylor approximation, as we have a good approximation to both

the coefficients and the actual subspace.

A.18. Corollary (Factorization of Taylor polynomial). Let TPf,R de-

note the Taylor polynomial of f : W u(gℓ.y) → Rn of degree R and
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T̃ P f,R denote the factorized Taylor polynomial, then

‖TPf,R(z)− T̃ P f,R(z)‖ ≪ e−α·ℓ ·max{1, ‖z‖R}.

As all the coefficients’ differences are bounded by e−α·ℓ, the corollary

follows at once.

Approximation of W u and the transfer function. Consider W u

as a function to some ambient Euclidean space f : W u → Rn. Then

the Taylor polynomial forW u(q′1) is factorizable due to Corollary A.18,

where the degree of the polynomial is determined by the Lyapunov

exponent with respect to the error estimate needed, as explain in § 4.3.

Moreover, the Taylor polynomial for W cs(u.q1/2) is trivially factoriz-

able (but in terms of an operator A(q, u, ℓ) depending on u as well), as

it depends only on u.q (W u(q)) and is independent from q′, given u.

We may now solve, approximately, the equationW cs(u.q1/2)∩W
u(q′1/2)

by applying the Lagrange-Good inversion formula [31] to the factor-

ized expression, in order to calculate approximation of z in terms of

u.q1/2, q
′
1/2, ℓ/2 by polynomials up to the required precision.

A.19. Corollary. The point z is factorizable in the following sense -

we identify z ∈ W u(q′1), by means of the exponential map, with a vector

z ∈ Eu(q′1) ≤ Tq′1M dependent on q, q′, u, ℓ. For all β > 0 there exists

a vector bundle V , a map Fq : W u(q) → Vext(q), a linear operator

A(q, u, ℓ) : Vext(q) → Tq′1M such that

‖z − A(q, u, ℓ)Fq(q
′)‖Tq′1

M ≪ e−β·ℓ.

For the transfer function T u
q′
1/2

→z, we may consider the backward flag

as an element of the bundle ⊕i

(∧dimV λi
TM

)
. Using Lemma A.17

again for Eu and the jet bundle J(⊕i

∧dimV λi
TM), yields factorization

of the Taylor polynomial for the transfer function.

Knowing the backward flag allows us to measure the distance be-

tween E2 ⊕ E1 from E1 (in some generalized Grassmannian). As this

distance function is smooth, we recover a factorized expression for the

distance. Using the procedure described in §4.5, as both of our bundles

of interest are of dimension 1.
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A.20. Remark. On a more general framework, one may calculate the

“distance” E1 ⊕ E2/E1 in terms of the normal forms coordinates of

W u(q′1/2). This requires showing that the normal forms coordinates

themselves are factorizable, and will be done in the upcoming work of

Brown-Eskin-Filip-Rodriguez-Hertz [11].

A.21. Corollary. The distance hdz(W
uu(q′1),W

uu(q1)) is factorizable,

namely there exists a bundle Vext, a map Fq : W
s(q) → Vext(q) and an

operator

A(q, u, ℓ) : Vext(q1) → R such that that

|hdu.q1(W
uu(q′1),W

uu(q1))−A(q, u, ℓ)Fq(q
′)| ≪ e−β·ℓ.

Using the corollary A.6 we may calculate the needed distance for any

t ≤ α · ℓ. We may identify the range of the operator A(q, u, ℓ, t) with

Q as defined in (4.11). This concludes the proof of the factorization

theorem 4.4 in § 4.

Contraction property. Fix a biregular point q ∈ M . Recall we

fixed some subspaces (Eu and span
(
T u
q′
1/2

(z)
)
) which we factorized,

along with their Taylor expansions associated to them. Let Vtotal be a

finite dimensional vector bundle, which consists of the data needed for

the calculation (which includes the Oseledets decomposition and the

related copies of the jet bundles). Define a vector bundle Vext to be a

bundle consisting the required to factorize P−
Vtotal

. This bundle consists

of the higher tangent bundles of M together with the data required

in order to calculate the translation map over the embedding of the

extended vector bundle of Vtotal, given by the theorem of Brown-Eskin-

Filip-Rodriguez-Hertz as in (A.8),(A.9).

Let Fq : W s(q) → Vext(q) be the measurable map amount-

ing to expanding the data needed to expand operator P−
Vtotal

(gℓ.q, ⋆)

into a Taylor polynomial of the required degree and evaluating it at

⋆ = gℓ/2.q
′ = q′1/2. The operator A then will amount to appending

the operator P−
Vtotal

with a measurable choice of a subspace for the re-

quired subspace we are interested in factorizing in the following sense

A(q, u, ℓ)Fq(q
′) = P−

Vtotal
(gℓ/2.q, gℓ/2.q

′).B(gℓ/2.q) + ERROR, where the
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error is bounded exponentially in ℓ and B is some measurable choice

of basis.

A.22. Lemma. The following estimate holds:

|A(q, u, ℓ, t)Fq(q)| ≪ e−β·ℓ.

This follows naturally by plugging q′1 = q1 into the expression for the

Hausdorff distance hdu.q1(W
uu
loc (q

′
1),W

uu
loc(q1)) give 0. Essentially, this

estimate basically says that in the case that q = q′, the computation

described above (without the errors arising from the truncations of the

Taylor expansions) gives that

g−ℓ/2.z = W cs(u.q1/2) ∩W
u(q1/2) = u.q1/2.

Then we have the immediate corollary from the triangle inequality:

A.23. Corollary.

|hdgt.u.q1(W
uu
loc (gt.q

′
1),W

uu
loc (gt.q1))−A(q, u, ℓ, t) (Fq(q

′)− Fq(q))| ≪ e−α·ℓ.

This is analogous to the construction appearing in Eskin-Mirzakhani [27,

Proposition 6.11, Proof of Lemma 5.1].

A.24. Lemma. The gt action over the subspace of Vext defined by

ess-span
(⋃

q′∈W s
loc

(q) (Fq(q
′)− Fq(q))

)
is contracting (when we think about

those two vectors in a given local trivialization), hence the g−t action

is expanding.

Proof. By definition of σ, it consists of data in the higher tangent

bundle and some Oseledets splittings of various bundles. The image

of σ(q) in the higher tangent bundle amounts to 0, while the image of

σ(q′) amounts to a vector in the stable part of space hence contracted

(in an exponential manner) under the gt-action, namely

‖Fgt.q(gt.q
′) |T≤kM −Fgt.q(gt.q) |T≤kM‖Vext ≪ dist(gt.q

′, gt.q)

≪ e−λC ·t.
(A.11)
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For the Oseledets data, using the theorem by [3], we see that the Os-

eledets decomposition is dominated, in a Holder fashion, by the dis-

tance, namely

‖Fgt.q(gt.q
′) |Oseledets −Fgt.q(gt.q) |Oseledets‖Vext ≪ dist(gt.q

′, gt.q)
η

≪ e−λC ·t·η,

(A.12)

for some η > 0 depending on the Oseledets decomposition. �

Appendix B. Proofs of Lemma 3.12 and auxiliary lemmata

We start with an easy Lemma.

B.1. Lemma. For any ρ > 0 there is a constant c(ρ) > 0 with the

following property: Let A : V → W be a linear map between Euclidean

spaces. Then there exists a proper subspace M ⊂ V such that for any

v with ‖v‖ = 1 and d(v,M) > ρ, we have

‖A‖ ≥ ‖Av‖ ≥ c(ρ)‖A‖.

Proof of Lemma B.1. The matrix AtA is symmetric, so it has a com-

plete orthogonal set of eigenspacesW1, . . . ,Wm corresponding to eigen-

values µ1 > µ2 > . . . > µm. Let M = W⊥
1 . �

Proof of Lemma 3.12. Let µs
⋆ denote the conditional measure along

the partition Bs. We push this measure forward by the measurable

map Fx to a measure (Fx)⋆(µ
s
x) supported in Fx(W

s(x)) ⊂ V (x). We

define L(x) as the linear span of supp (Fx(µ
s
x)) ⊂ V (x).

We note that asW s(x) is a sub-bundle of V (x) and the projection of

Fx(W
s(x)) is the identity map, the map Fx is actually injective, hence

choosing an appropriate point in Fx(W
s(x)) in particular yields a point

in W s(x).

B.2. Remark. As we assume that µ>1
x is absolutely continuous with re-

spect to the Riemannian volume on W>1
loc (x), using Ledrappier-Young

entropy formula [41] we see that hµ(gt) > 0. We also have that

hµ(gt) = hµ(g−t) as gt is invertible flow. Hence hµ(g−t) > 0 as well.

Using the Ledrappier-Young entropy formula again, we see that we
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must have that dimH(µ
s
x) > 0 for µ almost every x. In particular, we

see that for µ almost every x, L(x) is not the trivial subspace, namely

dimL(x) > 0, as W s(x) is embedded isometrically into V (x).

B.3. Lemma. For µ almost every x ∈M , for any ǫ > 0, the restriction

of (Fx)⋆(µ
s
x) to the ball Bǫ(0) ⊂ V (x) is not supported on a finite union

of proper affine subspaces.

Proof of Lemma B.3. Suppose not. Denote by N(x) the minimal num-

ber of subspaces such that for some ǫ = ǫ(x) > 0, the restriction of

(Fx)⋆µ
s
x to the ball Bǫ(0) is supported on N affine subspaces with non-

zero W s components.

As the projection to Fx(W
s(x)) to W s(x) is the identity, and the

action of g−t is expanding over W s(x), we have that the g−t action over

L(x) is expanding in the following sense: For every affine subspace U

of V (x) with non-zero W s(x) component, we have that g−t.U → ∞.

Then N(x) is invariant under g−t, as for g−t.x we may pick ǫ(g−t.x) :=

C(t) · ǫ(x) for some C ≥ 1 which amounts to the expansion factor.

Hence N(x) is constant almost-surely as in invariant function over an

ergodic system. Now we claim that N(x) = 0 almost surely. Assume

not, so N(x) = k > 0 almost surely. Take y ∈ W s(x) such that Fx(y)

is inside some affine subspace which is contained inside the support of

Fx.µ
s
x. Hence as N(y) = N(x) we must have that there are k subspaces

which are supported by (Fy)⋆µ
s
y. As µ

s
x = µs

y, and as x and y are stably-

related we have V (x) = V (y). Now we see that the conditional measure

is supported over at-least k+1 subspaces, which yields a contradiction.

Therefore we see that (Fx)⋆.µ
s
x can only be supported over subspaces

with 0 as their W s component, which are also proper. This contradicts

the definition of L(x). �

B.4. Lemma. For every ω > 0 and N > 0 there exists β1 = β1(N) > 0,

ρ1 = ρ1(N) > 0 and a compact subset Kω,N ⊂ M of measure at-least

1−ω such that for all x ∈ Kω,N and any proper subspaces M1, . . . ,MN
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we have

(Fx)⋆µ
s
x

(
Fx.B

s[x] \
N⋃

k=1

Nbhd(Mk, ρ1)

)
≥ β1 · (Fx)⋆µ

s
x (Fx.B

s[x])

Proof of Lemma B.4. By Lemma B.3, for µ almost every x there exists

βx(N) > 0 and ρx(N) > 0 such that for any subspacesM1(x), . . . ,MN(x)

we have

(B.1)

(Fx)⋆µ
s
x

(
Fx.B

s[x] \
N⋃

k=1

Nbhd(Mk, ρx)

)
≥ βx · (Fx)⋆µ

s
x(Fx.B

s[x]).

Taking the union over decreasing values of ρ, β give that

µ

(
⋃

ρ>0,β>0

{x ∈M | (B.1) holds for x}

)
= 1.

Now for any ω, choosing sufficiently small ρ1, β1 yields the subset Kω,N

of
⋃

ρ>0,β>0 {x ∈M | (B.1) holds for x} of measure larger than 1 − ω.

�

B.5. Lemma. For every ω > 0 and ǫ1 > 0 there exists β = β(ω, ǫ1) > 0

and Kω ⊂ M a compact subset of measure larger than 1 − ω and

ρ = ρ(ω, ǫ1) > 0 such that the following holds - suppose that for each

u ∈ B we have an proper subspace Mu(x) of V (q). Let

Jgood(x) =

{
y ∈ Fx.B

s(x)

∣∣∣∣at least (1− ǫ1) fraction of u in B, d0(y,Mu(x)) > ρ/2

}
.

Then for any x ∈ Kω

(Fx)⋆µ
s
x(Jgood(x)) ≥ β · (Fx)⋆µ

s
x(Fx.B

s[x]).

Proof of Lemma B.5. Let n = dimV (q). By considering determinants,

it is easy to show that for any C > 0 there exists a constant cn =

cn(C) > 0 depending on n and C such that for any ω > 0 and any

points v1, . . . , vn in a ball of radius C with the property that ‖v1‖ ≥ ω

and for all 1 < i ≤ n, vi is not within ω of the subspace spanned

by v1, . . . , vi−1, then v1, . . . , vn are not within cn · ωn of any n − 1

dimensional subspace. Let kmax ∈ N be the smallest integer greater

than 1 + n/ǫ1 and let N = N(ǫ1) =
(
kmax

n−1

)
. Let β1, ρ1 and Kω,N as in
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Lemma B.4. Let β = β(ω, ǫ1) = β1(ω,N(ǫ1)), ρ = ρ(n, ǫ1) = cn · ρn1 ,

Kω(ǫ1) = Kω,N(ǫ1). Define

Jbad(x) = Bs[x] \ Jgood(x).

We claim that Jbad(x) is contained in the union of ρ1-neighborhoods of

at-most N subspaces. Suppose this is not true. Then, for 1 ≤ k ≤ kmax

we can inductively pick points v1, . . . , vk ∈ Jbad(x), such that vj is not

inside a ρ1-neighborhood of any of the subspaces spanned by vi1 , . . . , vir
for 1 ≤ i1 < · · · ≤ ir ≤ j − 1. Then, any r-tuple of the points

vi1 , . . . , vir is not contained within ρ = cnρ1 of a single subspace. As

vi ∈ Jbad(x) there exists Ui ⊂ B with |Ui| ≥ ǫi|B| such that for all u ∈

Ui, d0(vi,Mu) < ρ/2. We claim that for any 1 ≤ i1 < · · · ≤ ir ≤ j − 1

we have

Ui1 ∩ · · · ∩ Uir = ∅.

Assume that u ∈ Ui1 ∩ · · · ∩ Uir , then each of vi1 , . . . , vir is within ρ/2

of the single subspace Mu, in contradiction to the choice of the vi’s.

Now we calculate

ǫ1 · kmax · |B| ≤
kmax∑

i=1

|Ui| ≤ n · |
kmax⋃

i=1

Ui| ≤ n · |B|,

Which is a contradiction to the choice of kmax.

Now by applying Lemma B.4 we get

(Fx)⋆µ
s
x(Jgood(x)) ≥ (Fx)⋆µ

s
x

(
Fx.B

s[x] \
N⋃

k=1

Nbhd(Mk, ρ1)

)

≥ β · (Fx)⋆µ
s
x (Fx.B

s[x])

�

We are now ready for the proof of Lemma 3.12.

Proof of Lemma 3.12. Define

M ′
dense =

{
x ∈M ′ | µs

x(M
′ ∩ Bs[x]) ≥ (1− δ1/2)µs

x(B
s[x])

}
.
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Since Bs is a partition, we must have that µ(M ′
dense) ≥ (1 − δ1/2), by

Markov’s inequality. For x ∈M ′′ we have that

(Fx)⋆µ
s
x(Fx.(M

′ ∩ Bs[x])) ≥ (1− δ1/2)(Fx)⋆µ
s
x(Fx.B

s[x]).

Let β(ω, ǫ1) as in Lemma B.5. Set

c(δ) = δ + inf
{
(ω2 + ǫ21)

1/2 | β(ω, ǫ1) ≥ 8 · δ1/2
}
.

Clearly we have that c(δ) → 0 as δ → 0. By definition of c(δ),

we may choose ω = ω(δ) < c(δ) and ǫ1 = ǫ1(δ) < c(δ) such that

β(ω, ǫ1) ≥ 8 · δ1/2. By Lemma B.5, for x ∈ Kω we have

(Fx)⋆µ
s
x(Jgood(x)) ≥ β · (Fx)⋆µ

s
x(Fx.B

s[x]) ≥ 8 · δ1/2 · (Fx)⋆µ
s
x(Fx.B

s[x]).

Let M ′′ = M ′
dense ∩ Kω. We have µ(M ′′) ≥ 1 − δ − δ1/2 − c(δ), so

µ(M ′′) → 1 as δ → 0. Also if q ∈ M ′′ then we have that

M ′′∩ Jgood(q) 6= ∅, by measure considerations. Hence we may choose

q′ = s.q ∈ Bs[q] such that Fq(s.q) ∈ Jgood(q). The upper bound for

dist(q, q′) follows trivially by the bound over the diameter of each atom

in the partition. The lower bound follows from the fact that up to using

the exponential map and its inverse (fromW s(q) to the tangent space),

we see that ‖s‖2 ≫ dist(Fq(s.q), p)
2+dist(p, 0) ≥ ρ2(δ), where p stands

for the orthogonal projection from Fq(s.q) to Mu(q). �

Appendix C. QNI condition

For this appendix we will assume (M, gt, µ) is an Anosov system. The

definition can be easily modified to accommodate other situations.

Assume x, x′ ∈ M are two points which are stably related mean-

ing x′ ∈ W s(x). We will use the notation u.x to denote points over

the unstable leaf of x,W u(x). This notation is convenient and derived

from homogeneous dynamics. Given u.x ∈ W u(x), we define the center

stable projection of u.x to W u(x′) as the unique point u′.x′ such that

u′.x′ ∈ W u(x′)∩W cs(x). This projection defines a continuous mapping

Prcsx,x′ between W u(x) and W u(x′). We remark here that Hasselblat-

Wilkinson [30] showed that the map is only Hölder continuous in gen-

eral.
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C.1. Definition. A dynamical quadrilateral Q is an ensemble of four

points, x, x′, u.x, z ∈ M such that x is a Pesin regular point and the

following holds:

• x′ ∈ W s(x),

• u.x ∈ W uu
loc(x),

• y ∈ W u(x′) ∩W cs(u.x).

So the quadrilateral Q is defined by a base point x, translation along

W uu
loc(x) and translation along W s(x). As the point y is defined by

x, x′, u.x via means of y = Prcsx,x′(u.x), we will denote Q = Q(x, x′, u.x).

Consider a dynamical quadrilateral Q(x, x′, u.x) for which x′ is a

Pesin regular point as well. Inside W u(x′), we may consider the em-

bedded disk W>1
loc (x

′). The following notion of non-integrability means

that this projection does not close on itself, in a quantitative manner.

We refer the reader to §3.2 to the definition of the conditional measures

used in the next definition.

C.2. Definition. We say that a dynamical quadrilateral Q(x, x′, u.x)

formed of Pesin regular points x ∈ M,x′ ∈ W s(x) and u.x ∈ W>1
loc (x)

satisfies quantitative non-integrability (abbreviated QNI from now on)

of order α and constant C, for some fixed α > 0 and fixed C > 0, if

the following estimate holds:

(C.1) distWu(y,W uu
loc(x

′)) ≥ C ·min {1, dist(x, x′)α, dist(x, u.x)α} .

Estimate (C.1) allows one to get an a-priori bound over the growth

of distWu(gt.y,W
uu
loc(gt.x

′)) using the minimal growth ensure by the

Lyapunov exponent λ1. In particular, one sees that the stopping time

when this distance grows to size O(1), is polynomial in dist(x, x′). This

polynomial depends will play a crucial role in the construction of the

factorization operator in §6.

We say that an Anosov system (M, gt, µ) satisfies quantitative non-

integrability if there exists some α > 0 and C > 0 such that for a

set of positive µ-measure of points P ⊂ M , for every x ∈ P, there

exists a subset S(x) ⊂ W s
loc(x) of positive µs

x-density, not including

x, and for x′ ∈ S(x), there exist subsets QQNI(x, x
′) ⊂ W uu

loc (x),
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QQNI(x
′, x) ⊂W uu

loc(x
′) satisfying

lim inf
r→0

m
uu
x (QQNI(x, x

′) ∩Buu
r (x))

muu
x (Buu

r (x))
> 0,

and

lim inf
r→0

muu
x′ (QQNI(x

′, x) ∩ Buu
r (x′))

muu
x′ (Buu

r (x′))
> 0,

where Buu
r (⋆) denotes a ball of radius r in the embedded disk W uu

loc (⋆),

such that for all u.x ∈ QQNI(x, x
′) and all u′.x′ ∈ QQNI(x

′, x) the dy-

namical quadrilaterals Q(x, x′, u.x), Q(x′, x, u′.x′) satisfy QNI of order

greater or equal to α and constants greater or equal to C.

W u(x′)

W u(x)

x

x′

u.x

Pr cs
x,x′(u.x)

L

Lα

Figure 5. Illustration of Q and QNI

As x, x′ are stably-related, flowing forward shrinks the distance be-

tween them in an exponential manner, hence we may assume that S(x)

accumulates at x.

As the set satisfying QNI is of positive µ measure, and as the set

of µ-generic points is of full measure, we may assume that the set of

points which satisfy QNI is formed of generic points.

The main difference between this definition and Definition 1.6 is the

requirement regarding the the trajectories of x′ under f to return to the

set X , but the previous definition had to ensure the non-integrability

“in all scales”. In the proof itself, we actually going to use the second

definition. We will indicate where we are using that definition in due

course.
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[2] José F. Alves, Christian Bonatti, and Marcelo Viana. SRB measures for par-

tially hyperbolic systems whose central direction is mostly expanding. Invent.

Math., 140(2):351–398, 2000.

[3] Vitor Araujo, Alexander I. Bufetov, and Simion Filip. On holder-continuity of

oseledets subspaces. Journal of the London Mathematical Society, 93(1):194–

218, 2016.

[4] Artur Avila, Sylvain Crovisier, Alex Eskin, Rafael Potrie, Amie Wilkinson,

and Zhiyuan Zhang. Private Communication.

[5] Artur Avila, Jimmy Santamaria, and Marcelo Viana. Holonomy invariance:

rough regularity and applications to Lyapunov exponents. In Cocycles over

partially hyperbolic maps, pages 13–74. Paris: Société Mathématique de France
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Mathématiques de l’Institut des Hautes Études Scientifiques, 50(1):27–58, 1979.
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