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Abstract The sparse signal reconstruction of compressive sensing can be accom-
plished by /;-norm minimization, but in many existing algorithms, there are the prob-
lems of low success probability and high computational complexity. To overcome
these problems, an algorithm based on the alternating direction method of multipli-
ers is proposed. First, using variable splitting techniques, an additional variable is
introduced, which is tied to the original variable via an affine constraint. Then, the
problem is transformed into a non-constrained optimization problem by means of the
Augmented Lagrangian Multiplier method, where the multipliers can be obtained us-
ing the gradient ascent method according to dual optimization theory. The /;-norm
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minimization can finally be solved by cyclic iteration with concise form, where the
solution of the original variable could be obtained by a projection operator, and the
auxiliary variable could be solved by a soft threshold operator. Simulation results
show that a higher signal reconstruction success probability is obtained when com-
pared to existing methods, while a low computational cost is required.

Keywords compressive sensing (CS) - signal reconstruction - /;-norm minimization -
alternating direction method of multipliers - dual optimization

1 Introduction

In early 2000, several authors reported important advances on the signal compression
theory, otherwise referred to as compressive sensing (CS) [6, 7, 10], which breaks
through the Shannon sampling theorem on the sampling frequency. According to the
theory, if a signal is sparse in an orthogonal space, it can be projected onto a low-
dimensional space with an observation matrix which is not related to the orthogonal
basis. By solving an optimization problem, the original signal can be reconstructed
with high probability, from this small number of projection samples.

1.1 lp-norm Minimization

One of the core questions of CS is how to reconstruct sparse signals from finite mea-
surements [1, 8, 31]. This issue has been reformulated as the /p-norm minimization
problem and it is a classic problem in the signal and information community. Mallat
et al. proposed the Matching Pursuit (MP) approach to approximately solve the /o-
norm minimization problem [18]. This approach involves finding the best matching
projections of multidimensional data onto the span of an over-complete dictionary.
However, the main problem of MP is the computational complexity of the encoder.
In the basic version of the algorithm, the large dictionary has to be searched at each
iteration. Improvements include the use of approximate dictionary representations
and suboptimal ways of choosing the best match at each iteration [17]. A popular ex-
tension of MP is its orthogonal version, which is called orthogonal matching pursuit
(OMP) [23]. The main difference between MP and OMP is that after every step, all
of the coefficients extracted thus far are updated, by computing the orthogonal pro-
jection of the signal onto the set of atoms selected so far. These algorithms are greedy
methods with low computational complexity. However, their success probability of
reconstruction is lower and often require more measurements when compared with
standard MP.

Other extensions, such as multichannel MP [15] and multichannel OMP [24], en-
able the processing of multicomponent signals. An obvious extension of MP is over
multiple positions and scales, by augmenting the dictionary to be that of a wavelet ba-
sis. This can be performed efficiently using the convolution operator without chang-
ing the core algorithm [23].

The lp-norm minimization is a discrete optimization NP-hard problem which is
very difficult to solve. In order to overcome this issue, a common way is to convert it



into a convex optimization problem. It is known that /;-norm is the convex function
which is the closest to the /y-norm. Hence, the sparse signal could be approximated
using the /{-norm minimization method.

1.2 I;-norm Minimization

The /;-norm minimization can be cast as a linear programming problem and many
commercially off-the-shelf optimization tools are available to solve them. Such a
problem is of great interest to the numerical optimization community and there are
many practical modern convex optimization strategies [4] that are used to solve them.
Interior-point methods [5], homotopy methods [19], and other techniques have been
used to address the problem of /;-norm minimization.

Primal-dual interior-point algorithm (PDIPA) [29] is an interior-point method for
the /;-norm minimization problem. The framework of PDIPA is to iteratively formu-
late the inequality constrained problem as an equality constrained problem, which
can be solved by using the barrier method based on Newton’s algorithm. Its compu-
tational complexity is dominated by the iteration of the Newton update, which is of
the order of about O(n?), where 1 represents the dimensions of the original signal.
Therefore, it is very sensitive to the size of the problem »n and is not suitable for high
dimension and large scale applications. The Homotopy algorithm [19] also contain-
s a Newton update step. PDIPA, it only involves some of the coefficients and the
complexity is bounded by order O(km?>+kmn), where m denotes the dimensions of
the observation signal and k is the sparsity level of the original signal. However, the
computational complexity is still bounded by O(n?), when the sparsity level k and
the observation dimension m grows proportionally with the signal dimension 7 .

Owing to its low computational complexity, the first-order method, which makes
use of the sub-differential structure of the /;-norm, is of concern to researchers. The
computational complexity for each iteration of the first-order methods is greatly re-
duced, and is achieved at the expense of an increased number of iterations when
compared with the interior-point methods. Each of its iteration involves only sim-
ple operations such as vector addition, matrix-vector multiplication or soft threshold
operator, which have low computational cost. The convergence speed of the repre-
sentative algorithm fast iterative soft-thresholding (FISTA) is O(1/k?) [29], while
the success probability of reconstruction needs to be improved.

1.3 ADMM Based Methods

Owing to the rapid increase in the size and complexity of modern datasets, it is in-
creasingly important to be able to solve the problem of CS with low computation-
al complexity and high success probability. The augmented Lagrangian multiplier
(ALM) [4] is another special class of first-order methods, with superior convergence
properties. The cyclic minimizer (CM) [22] was a numerical optimization paradigm
which partitions the variable vector of the objective function into several sub-vectors.
Then, the function is alternately minimized with respect to one sub-vector with other



sub-vectors fixed. By integrating ALM and CM, the alternating direction method of
multiplier (ADMM) was summarized by Boyd in [3]. ADMM is a simple but power-
ful framework in numerical optimization, which is suited for sparse signal recovery
in CS [14,21,25-28]. Based on ADMM, Junfeng Yang et al. [30] introduced a called
alternating direction method (ADM) approach to the problem of /;-norm minimiza-
tion. Independently, Allen Y.Yang et al. [29] proposed two algorithms called PALM
and DALM to address the /;-norm minimization problem. Essentially, PALM has a
similar form to ADM.

1.4 Motivation and Outline

To solve the problem of sparse signal recovery in CS, the main technical challenge
is that the sparse signal vector is coupled using a sensing matrix. This makes the
recovery of sparse signal somewhat difficult when extra constraint with non-smooth
l1-norm is introduced. In principle, if the variables can be decoupled, the problem
could be solved element-wise or group-wise and the sparse signal may become easier
to recover. In ADM or PALM, variable-splitting is achieved by introducing an aux-
iliary variable, which is defined as the residual error of the data fitting model. The
result of this scheme of introducing variables is that each loop of original variables
being updated has an imprecise solution. Moreover, it would require more runtime to
converge, and would have a lower success probability of sparse signal reconstruction.

In this paper, we propose an efficient algorithm to reconstruct sparse signals in
CS by using the ADMM. Compared with ADM or PALM, we introduce an addi-
tional variable, which is tied to the original variable via an affine constraint. In this
framework, the solver of three cyclic iterations has concise form. The solution of the
original variable could be obtained by using the projection operator, and the auxiliary
variable could be solved by using the soft threshold operator. The simulation result-
s show that the higher success probability of signal reconstruction is obtained than
existing methods, while low computational cost is required.

The remaining parts of this paper are organized as follows: The problem of s-
parse signal recovery in CS and the ADM algorithm are discussed in Section II. In
section III, we describe our new method to the signal reconstruction of CS based on
ADMM. Then, Section IV presents our experimental results and discussion. Finally,
conclusions are presented in Section V.

2 Background and Related Work
2.1 Sparse Signal Recovery in CS

CS is a signal processing technique which is employed to efficiently acquire and
reconstruct a signal by finding solutions to underdetermined linear systems [10]. This
is based on the principle that, through optimization, the sparsity of a signal can be
exploited to recover it from far fewer samples than what is required by the Shannon-
Nyquist sampling theorem [10]. There are two conditions under which recovery is



possible [13]. The first one is the sparsity, which requires the signal to be sparse
in some domain. Then, the second one is incoherence which is applied using the
isometric property, which is sufficient for sparse signals.

The signal e € R" is k-sparsity on the orthogonal basis @ € R"*", that is e = Px,
||x||o = k < n. Observations are then written as b = We = ¥ ®x, where measurement
matrix ¥ € R™", n > m. According to the theory of CS, the Restricted Isometry
Property (RIP) condition of sensing matrix A, where A = W, is sufficient to guar-
antee the reconstruction of the sparse signal of x. The problem of estimating x can be
formulated as

min |x||, s.£. b= Ax (1)

The above formula is also called the /p-norm minimization problem.

For the number of rows in the matrix A less than columns, (1) is underdeter-
mined. The global optimal solution can be found by considering the C¥ different
arrangements of non-zero elements of x using the exhaustive method. Therefore, it
is an NP-hard problem [1, 10, 11]. To render (1) as more tractable, Donoho et al.
regularized the highly discontinuous /y-norm and replaced it by /;-norm [12]

min |x||; s.£. b=Ax (2)

Because b often contains nuisance noise, the equality constraint can be relaxed with
|lb —Ax]|, < &, where 8 > 0 represents a pre-determined noise level.

min||x||; s.t. [b—Ax|, <8 3)

For an appropriate scalar weight A, we can obtain the following variant of the (3):
1
min 5 {|b — Ax[[,+A x|, ©)

In this paper, we refer to (2), (3) and (4) as the /;-norm minimization problem. If x is
sufficiently sparse and the measurement matrix ¥ is incoherent with orthogonal basis
& , then x can be reconstructed by solving the /;-norm minimization problem.

2.2 Alternating Direction Method for Sparse Signal Reconstruction

This section discusses how the algorithms of ADM [29] or PALM [30] solve the
/1-norm minimization problem.

In these algorithms, the auxiliary variable r € R™ is defined as the residuals er-
ror of the data fitting model, that is r = b — Ax. Then the problem of (2) could be
converted into the form of (5)

rrr17ixn21—r||r||2+||x||1 st.r=b—Ax (5)

Using the ALM method, (5) could be transformed into below unconstrained prob-
lem

. 1
minL(r,x,y) = 7 el + 1%l +yT' (r+Ax—b)+ % ||r+Ax—bH§ (6)

rxy



where y € R™ is a Lagrangian multiplier vector ,and ¢ > 0 is the penalty parameter.
From the paradigm of the alternative direction method, (6) could be converted into
three sub-problems as follows.

ry.1 = argminL(r, Xg, Yi) (a)
X1 = argminL(re1,X,yx)  (b) (7
Yir1 =Yk — M (Ter1 +AX1 —b) (¢)

Sub-problem(7.a) is investigated as follows.
. 1
argminL(r, %, y¢) = >[I —y,?r+% I+ Ax = b3+ x|, —y; (Axc—b) (8)

The solution of (7.a) is given by

T
=——I[yw—ub-A 9
Mk = T, (Y — 1t (b — Axy)] ©)
Then, the optimization problem (7.b) is considered
argminL(ry 1., yi) = argmin { x|, -y} (i1 +Ax—b) +
4 lres +Ax—b]3} (10)

= argmin [||x||; + j (x)]

2
where j (x) = % Hrk+ 1+Ax—b-Y k/ L H2 Use the second order Taylor expansion to
approximate j (x) and get
argminL(rg41,X,yx) &~ argmin {||x]|,

11
B S TR S N S - S

The solution of (11) can be obtained by the soft thresholding operator
X1 = So/u{%— TAT (rey + Axg b = Yk/)) )} (12)
Szju is the soft threshold operator [9], which acts on each component of the vector

{xk —7AT (l'k+1 +Ax; —b— Yk/u) }
The definition of the soft threshold operator is

S¢ (a) = sgn(a)max (|a| —c,0) (13)
where sgn is the sign function which is defined as
—lifa<0
sgn(a)=< 0 ifa=0 (14)
1 ifa>0

From the above discussion, we can see that the ADM addresses the /;-norm mini-
mization problem(5) by cyclic iteration (9), 12 and 7.c.

Because the algorithm presented above utilizes the second order Taylor expan-
sion to approximately solve the sub-problem (7.b), it is denoted as an inexact ADM.
Moreover, an ADM can also efficiently address the dual problem of (6) and obtains
the DALM algorithm.



3 Signal Reconstruction Based on Alternating Direction Method of Multipliers
3.1 Problem Reformulation

ADMM is a simple but powerful algorithm which is well suited to distributed con-
vex optimization [3]. It blends the decomposability of dual ascent and fast conver-
gence of the augmented Lagrangian multipliers methods and takes the form of a
decomposition-coordination procedure to address a given optimization problem.

It can solve the problem in the following form:

min/ (u) +g(v) s.z. Bu+Cv=d (15)
where [(-) : R — R,g(-) : R* — R are convex functions and u € R", v€ R",B €
RPX",C € RPX,

Using the variable splitting technique, we introduce a new variable z, which is
tied to the original variable x. Then (2) can be transformed into

minf (x) +||z||, s.t. x—z=0 (16)

where f(+) is the indicator function of the non-empty convex hull ® = {x € R"|Ax =
b}. The definition of f(-) is given as

0 xe0
(={ % %o (1)
Obviously, f(-) is a convex function.

In this way, Eq.(16) has the same form as (15), which is the general formula of
the ADMM.

3.2 Augmented Lagrangian Multiplier Method and Dual Ascend

Our description of the method here is based on the description provided in [4].The
augmented Lagrangian for Eq. (16) is given as

1
Lp(x2,) = F(x) +}2] +yT (x—2)+3p [x 2] (8)

where y is the Lagrangian multiplier or dual variable, and p > 0 is called the penalty
parameter. The dual function of (18) is

gp(y) =infLy(x,2,y) (19

and the dual problem for (16) is

maxgp () (20)

According to the theory of dual optimization [3], the optimal solution of the orig-

inal problem (16) is the same as that of the dual problem in (10). That is , y* =
argmax g, (y). Therefore, the optimal solution of (18) i.e. (x*,z*) can be obtained by
y

(X*,Z*) = aI'gIE(liZIle (szay*) (21)



The optimization of (20) can be addressed by the gradient ascent method, and the
gradient is given by Vg, (y) = x— z. Thus, the minimization of (18) can be solved by
the following iteration process:

(Xk41,Zk+1) = arg rg(nzn Ly (x,2,yy) (22)

Vi1 =Yk TP (X 12k 4 1) (23)

The dual variable update uses a step size which is equal to the augmented Lagrangian
parameter p [3].

3.3 Alternating Minimization

To solve problem (22), we utilise the method of alternating minimization and Gauss-
Seidel iteration [9], which alternates the update of x or z, while considering the other
variable as a constant. The following two formulas are obtained:

Xg41= arg I'I';in LP (X7ZkaYk) (24)

Ikt 1= afngiﬂLp (Xkt1,2Z,¥x) (25)

In order to find the analytical expression of (24) and (25), we reformulate formula
(18) as following.

2

1
X—Z)+—
(x—1z) Y

= <(x—z)+;y,(x—z)+;y>

Canxaia(nhy ) (L)
P p’p

1
||xz|2+Hy
e

2

2
2T

+—y (x—z

T p (x—2)

2
From the above, we can derive that y' (x—z) + 1p |x—z|3 = 5 HX—Z+ %yH2 -
2
% H %sz. Defining q :%y, formula (18) can then be reformulated as:
p Y 2
Lp(x,2,q) = f(x) + 2]l + 5 [x —z+dqll; — 5 llallz (26)
Hence, formulas (24), (25) and (23) can be respectively rewritten as
xes = argmin [£(x)+ 2 x— (2 — o) 3] @)

21 = argmin 2], + 2 2 (xesr + a0l (28)

Qi1 = Qg T Xk 1 — Ziet1 (29)



3.4 Projection Operator and Soft Threshold Operator

Considering that f(x) in (27) is an indicator function of set ®, the optimum selection
of X¢41 is the point which is projected onto ® of z; — q; . The optimization of (28)
can be addressed using the soft threshold operator. Therefore

Xpi1 = Ip(zx — qy)
i 1=S17p (X 1+4) (30)
x4 1 =9k +Xk+1—Zk+1

where I'g is projection operator [3], that is
Fo(z—a) = [I-AT(AAT)'A] (5—a)+AT(AAT) 'b G31)

S /pis a soft threshold operator [9, 16], which acts on each component of the vector
Xr+1 + q;-The definition of the soft threshold operator is given in formula (13) in
Section 2.2.

Thus, using the ADMM, we have transformed the problem of sparse signal recon-
struction into a loop iteration containing three sub-formulae. The iterative process of
Eq. (30) is repeated until the termination condition is satisfied. The result is the solu-
tion of the constraint optimization problem (16) as well as the /;-norm minimization
problem (2).

3.5 Algorithm Flowchart and Computational Complexity Analysis

The proposed algorithm is summarized as follows:
1) Initialize parameters p and {Xo,Zo,qq}; Set the relative error € and let k = 0
2) Update X 1:

-1 _
Xt = [I-AT(AAT) 'A] (ze—q) +AT(AAT) '
3) Update z;;:

Zpr1 = Styp (a1 + Qi) = sgn(Xpy 1 +q) max(|xg 1 +qy| — 1/p,O)

4) Update qy, ;:
Q1 = Qi T Xi1 — Zi+1
5) Exit loop if Hz%ﬁ;’“” < g; Otherwise, let k = k+ 1 and go to step 2).

Obviously, for the update X, in the step 2), the values of I— AT (AAT) “'Aand

AT(AAT) “"b are the same for each iteration. Therefore, the value of the upper two
formula obtained from the first iteration can be saved for the subsequent iteration.
This can greatly reduce the computational burden of the algorithm.

The computational complexity of the algorithm is low. Although the computation
of I— AT(AAT) “'A and AT (AAT) b is of order O(n?), they only need to be com-
puted once during the whole algorithm execution. The complexity of steps 2), 3) and
4) , that is, the iteration of the algorithm, is O(n).



4 Numerical Experiments

Both in the noise and noiseless cases, we compared the proposed algorithm, called
ADMM, with the four other algorithms, namely PALM [29], DALM [29], FISTA
[2], and OMP [23]. We implemented the above reconstruction algorithms to recover
signal e according to the observation vector b.

4.1 Experiment Settings

In our experiments, ¢ was set as a normalized cosine basis, and observation matrix
v was constructed by drawing its components from a standard normal distribution,
i.e.,, N(0,1). The k-sparse signal x of length n was constructed as follows [20, 25]:

1) A zero vector x of length n was generated;

2) A random vector of length k£ was constructed whose components were drawn
from a standardized normal distribution;

3) The components of the resulting vector were set to k randomly chosen locations
of vector x.

The sensing matrix was constructed by A = W &®. In all of the experiments, we
generated observation vector b by MATLAB scripts b = A xx + sigma x randn(m, 1),
where in the noiseless case, sigma = 0, and in the noise case , sigma = 104 [20].

The relative error of the reconstruction is defined as

r@)=1e=¢l (32)

lell
where the recovered signal € is obtained by € = ®@X , and X is the estimation of x
solved by the considered algorithms. The success probability of reconstruction is

defined as o
Number of successful reconstructing signal

PER =
Total number of simulations

(33)

In the noiseless case, the signal was deemed to be successfully reconstructed
when (&) < 107; in the noise case, we have found that smaller values of r (&) do not
necessarily or consistently improve the relative error results, while also increasing
the required number of iterations [30]. Thus, we set (&) < 1073,

4.2 Relation between Success Probability of Reconstruction and Sparsity of x in
ADMM Algorithm

Some numerical results have been added into Experiment 1 to investigate the relation
between the success probability of reconstruction and the sparsity of x in the ADMM
algorithm, where both the noiseless and noise case are considered. The length of
the sparse vector X was set to n = 256 and the number of observations was set to
m = 26,52,78,94, and 128. Under different number of observations m, the sparsity
of x was set to an interval between 1 and ceil(0.75 - m), with an interval of 5 samples,
where ceil(0.75 - m) implies rounding each element of (0.75 - m) to the nearest integer
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Fig. 1: Average PER versus sparsity level for ADMM algorithm (Experiment 1)

greater than or equal to that element. The quantities x € R", @, and ¥ were generated
respectively according to the previously described methods. b was generated in the
noise and noiseless case. For each combination of (m,n,k), the proposed ADMM
algorithm was implemented for 1000 runs to reconstruct signals x and e. The success
probability of reconstruction of ADMM is plotted versus sparsity in Fig.1 over 1000
trails, while m was set to different numbers.

As can be seen from Fig.1, for any number m, the success probability of recon-
struction PER increases with a decrease of the sparsity level k. When the sparsity
level k drops to a certain value, the success probability of the algorithm increases at
a faster rate. When £ falls below a certain number, the success probability of recon-
struction PER reaches 100%. Consider m = 128 in the noiseless case as an example.
The success probability is O while k > 61. However, when k is set to k = 56,51,46,41,
the corresponding success probability values were 9%,32%,72% and 97%, respec-
tively. When k < 36, the success probability reaches 100%. Experiment results show
that, at any number of m, the proposed ADMM algorithm possesses good capability
of sparse signal reconstruction in compressive sensing.

4.3 Relation between Success Probability of Reconstruction and Length of
Observation Vector b in ADMM Algorithm

In Experiment 2, the simulation was designed for both the noiseless and noise case
to demonstrate the relation between the success probability of reconstruction and
the length of the observation vector b in the ADMM algorithm. The length of x
was set as in Experiment 1, and the sparsity k was set to values k = 4,12,20, 28, 36.
Under various levels of sparsity k, the number of observations m was set from k to n,
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Fig. 2: Average PER versus number of measurements for ADMM algorithm (Exper-
iment 2)

with intervals of 5. Under each combination of (m,n,k), ADMM was implemented
for 1000 trails to reconstruct signals x and e. The average success probability of
reconstruction of ADMM is plotted versus the number of observations m in Fig.2.
over 1000 trails, while k£ was set to different numbers.

As can be seen from Fig.2, for any k, the success probability of reconstruction
PER rises with the increase in the number of measurements m. When m reaches
a certain value, the success probability of the algorithm increases sharply. When the
number of measurements m increases above a certain number, the success probability
of reconstruction PER reaches 100%. As an example, consider the noiseless case,
k = 20. The success probability is lower than 20% while m < 60. However, when m
is set to m = 65,75,85,95 , the corresponding success probability values were 35%
, 63% , 78% and 90%, respectively. When m > 95, the success probability reaches
100%. The experiment results show that for any &, the proposed ADMM algorithm
possesses good capability of sparse signal reconstruction in compressed sensing.

4.4 Success Probability of Reconstruction Comparisons of ADMM and Other
Algorithms

In Experiment 3, both in the noise and noiseless case, we compare the proposed
ADMM algorithm with the other four algorithms in the success probability of recon-
struction.

In this simulation, the length of the sparse vector n, number of observation m
and the sparsity of x were, respectively, set to n = 256,m = 100, and k = Sa —4,a =
1,2...,15, x € R®%, y € R®%%100 and @ ¢ R?36*25 ere respectively generated
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Table 1: Reconstruction success probability of three algorithms under different spar-
sity levels

label k=56 k=41 k=36 k=31 k=26
ADMM 5% 10% 33% 82% 99%
PALM 0 3% 24% 69% 98%
DALM 0 3% 27% 76% 99%

according to the methods already described, respectively. For each set of (m,n,k),
we performed 1000 trials to reconstruct x and e for each of the five algorithms, i.e.,
ADMM, PALM, DALM, FISTA and OMP. The success probability of reconstruction
of the five algorithms is plotted versus sparsity in Fig.3 over 1000 trails.

As seen in Fig.3, for different levels of sparsity, the success probability of algo-
rithms based on the Lagrangian multiplier method, i.e., PALM, DALM and ADMM
, is clearly higher than that of FISTA and OMP. Moreover, the success probability of
ADMM is the highest in PALM, DALM and ADMM. Specifically, the correspond-
ing success probability of the noiseless case in the rising stage of the three algorithms
with better performance is listed in Table 1. From the above, it can be seen that the
success probability of the proposed ADMM algorithm has more obvious advantages
than the other four algorithms.
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4.5 Computational Time Comparison of ADMM against Other Algorithms

In Experiment 4, a comparison of the computational time of ADMM and those of
four other algorithms were obtained both in the noiseless and noise case. The length
of the sparse vector n, the number of observations M, and the sparsity of x were
set to n = 500, 1000,2000,4000, 8000, m = n/2 , and k = round(m/3), respectively,
where round(m/3) means rounding each element of m/3 to the nearest integer. For
each set of (m,n,k), we perform 1000 trials to reconstruct x and e for each of the
five algorithms. Hence, we calculated the average time required for each algorithm
to successfully reconstruct the signal e at different values of n. In the noiseless case,
the corresponding time of OMP is 0.0234s, 0.14s and 2.03s, when the length of the
sparse vector n was set to n = 500, 1000,2000. However, OMP fails to reconstruct
the signal when n = 4000,8000. The results were also observed in the noise case.
This is because the OMP method often requires additional measurements to recon-
struct the sparse signal. The other four algorithms ,i.e., PALM, DALM, ADMM and
FISTA, successfully reconstruct the signal x and e. The time curves of the four other
algorithms are shown in Fig.4.

As can be seen from Fig.4, for a different set of n, the average time for the suc-
cessfully reconstruction of ADMM is less than that of PALM and more than that of
DALM. The average time of algorithms based on the Lagrangian multiplier method,
i.e., PALM, DALM and ADMM, is significantly less than that of FISTA. Although
FISTA and the Lagrangian multiplier methods are considered first order methods,
FISTA requires a larger number of iterations to converge. Specifically, in the noiseless
case, while the length of sparse vector n was set to n = 500, 1000,2000,4000, 8000,



the average time of FISTA is 0.21s, 3.62s, 10.9s, 37.1s and 168s, and that of ADMM
is 0.0585s, 0.276s, 0.891s, 6.44s and 47.9s.

Experiment results show that the average computational time for the successfully
reconstructing of ADMM is considerably lower than that of FISTA and PALM, while
OMP fails to reconstruct the signal. Although the computational time of ADMM is
higher than that of DALM, the success probability of reconstruction of DALM is
lower than that of ADMM, as is shown in Experiment 3.

5 Conclusion

Sparse signal reconstruction is a key problem in CS. In this paper, in order to achieve
signal reconstruction, we solve a /;-norm minimization problem using the alternating
direction multiplier method. In the proposed algorithm, we introduce new variable
by employing the variable splitting technique and transform the constrained opti-
mization problem into an unconstrained one using the Lagrangian multiplier method.
Multiplier variables can be obtained by maximizing the dual function of multiplier
formulas, which can be solved using the gradient ascent method. Finally, the prob-
lem of sparse signal reconstruction can be transformed into a loop iteration containing
three sub-formula by employing the methods of alternating minimization and Gauss-
Seidel iteration. We carried out extensive experiments, performing comparisons with
four other existing algorithms, which showed that our proposed approach outper-
formed the other methods. The simulation results show that the proposed algorithm
can improve the reconstruction success probability while reducing the computational
complexity.
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