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HYPERBOLIC SUBALGEBRAS OF HYPERBOLIC

KAC-MOODY ALGEBRAS

ANNA FELIKSON AND PAVEL TUMARKIN

Abstract. We investigate regular hyperbolic subalgebras of hy-
perbolic Kac-Moody algebras via their Weyl groups. We classify
all subgroups relations between Weyl groups of hyperbolic Kac-
Moody algebras, and show that for every pair of a group and
subgroup their exists at least one corresponding pair of algebra
and subalgebra. We also present a finite algorithm classifying all
regular hyperbolic subalgebras of hyperbolic Kac-Moody algebras.
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0. Introduction

In [2] Dynkin introduced a notion of a regular subalgebra g1 of
semisimple Lie algebra g. By definition, this is any subalgebra h of
g generated by root spaces gα and g−α for certain roots α of g. Dynkin
classified regular subalgebras of semisimple Lie algebras in terms of
root systems. A root subsystem of root system ∆ is a root system in ∆
closed with respect to addition. For his classification Dynkin used the
following correspondence: a subalgebra g1 ⊂ g is regular if and only
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and SNF projects 200020-113199 and 200020-121506/1.

1

http://arxiv.org/abs/1012.1046v1


2 ANNA FELIKSON AND PAVEL TUMARKIN

if ∆g1 ⊂ ∆g is a root subsystem, where ∆g1 and ∆g stay for the root
systems of g1 and g respectively.
Following the definition given in [2], it is possible to consider regular

subalgebras in infinite-dimensional generalizations of semisimple Lie
algebras, namely, in Kac-Moody algebras. In particular, [7] concerns
the subalgebras in affine Kac-Moody algebras. As a next step, it is
natural to consider the same question for the case of smallest indefinite
Kac-Moody algebras, i.e. for hyperbolic Kac-Moody algebras.
Some examples of regular hyperbolic subalgebras of hyperbolic Kac-

Moody algebras were already studied in several papers. In [3] a series
of examples of subalgebras is considered, [15] studies the simply-laced
case and shows that each simply-laced hyperbolic algebra is a subal-
gebra of E10, [11] and [12] study maximal rank hyperbolic subalgebras
and subalgebras of corank 1 in arbitrary hyperbolic Kac-Moody alge-
bras, [7] describes all semisimple and affine subalgebras of hyperbolic
Kac-Moody algebras.
In this paper we consider regular hyperbolic subalgebras of hyper-

bolic Kac-Moody algebras in full generality. Following Dynkin [2], we
reduce the question to the classification of hyperbolic root subsystems
in hyperbolic root systems, which in its turn could be easily reduced to
the classification of simplicial subgroups of simplicial groups (roughly
speaking, a reflection group G ⊂ Isom(Hn) is called simplicial if there is
a reflection preserving isomorphism φ : G → G′ where G′ ⊂ Isom(Hn′),
n′ ≥ n, is a reflection group whose fundamental chamber is a simplex;
the precise definition is given in Section 1.2).
Our main results are the classification of simplicial subgroups of sim-

plicial groups, and an algorithm classifying all regular hyperbolic subal-
gebras of hyperbolic Kac-Moody algebras. We prove also Theorem 8.1
which states that each simplicial subgroup H in arithmetic over Q sim-
plicial group G corresponds to at least one regular subalgebra h ⊂ g

(more precisely, there exists a hyperbolic Kac-Moody algebra g and a
regular hyperbolic subalgebra h ⊂ g such that the Weyl groups of the
root systems of h and g are isomorphic to H and G respectively).

The paper is organized as follows. Section 1 serves to recall and
introduce most of the notions involved. In Section 2 we describe how
the investigation of hyperbolic subalgebras may be reduced to the in-
vestigation of simplicial subgroups in simplicial groups.
In section 3 we study basic properties of maximal (by inclusion)

simplicial subgroups which will be extensively used to obtain the clas-
sification. We also prove that in each embedding of hyperbolic algebras
h ⊂ g such that the Weyl group of the root system of h is a maximal
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simplicial subgroup of the Weyl group of the root system of g, the alge-
bra h is always a regular subalgebra of g. In particular, this proves the
main theorem (Theorem 8.1) for the case of maximal subgroup H ⊂ G
with rkH < rkG.
Sections 4–7 are devoted to classification of simplicial subgroups in

hyperbolic simplicial groups. The subgroups H ⊂ G of maximal rank
(rkH = rkG) are classified in [9], so, we concentrate on the subgroups
of smaller ranks. Section 4 describes an easy way to find almost all
(non-maximal rank) simplicial subgroups in simplicial groups. To list
all the other subgroups we proceed case by case. A simplicial rank
2 group (i.e., an infinite dihedral group) is a subgroup of any other
simplicial group. Furthermore, there are finitely many hyperbolic sim-
plicial groups of rank greater than 3, which implies that we need to
check only finitely many pairs (H,G), 3 < rkH < rkG. In Sections 5
and 6 we present different ways to determine if a given simplicial group
H is a subgroup of the given simplicial group G. Most general algo-
rithm is described in Section 6, however it does not cover several cases,
which we treat with the methods explained in Section 5. The later ones
are also in most cases quicker than use of the general algorithm. The
results about subgroups are summarized in Section 7 (Theorem 7.1).
Finally, in Section 8 we apply the classification of subgroups to the

investigation of subalgebras. In particular, we prove Theorem 8.1),
which states that for each subgroup one can find a regular subalgebra
in some algebra.

Acknowledgments. A large part of the work was performed during
the authors’ stay at the University of Fribourg, Switzerland. The au-
thors are grateful to the department for the working atmosphere and
to R. Kellerhals for invitation and stimulating discussions. The first
author would also like to thank the Max-Planck Institute for Mathe-
matics in Bonn, where the final version of the paper was written.

1. Preliminaries

In this section we discuss hyperbolic Kac-Moody algebras and sim-
plicial reflection groups. We refer to [10] for background on Kac-Moody
algebras and to [13] for details concerning discrete reflection groups. In
particular, we use the standard notation for finite and affine reflection
groups and root systems.

1.1. Hyperbolic Kac-Moody algebras. Following Kac [10], one can
construct a Kac-Moody algebra g(A) for each generalized Cartan ma-
trix A.
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A generalized Cartan matrix A is of hyperbolic type if it is inde-
composable symmetrizable of indefinite type and any proper principle
submatrix of A is of finite or affine type. In this case the corresponding
to A symmetric matrix B is of signature (n, 1).
A Kac-Moody algebra g(A) is called hyperbolic if the matrix A is of

hyperbolic type. By a hyperbolic root system we mean a root system
of hyperbolic Kac-Moody algebra.
According to Vinberg [14], the Weyl group W of the root system ∆

of g is a group generated by reflections acting in a hyperbolic space Hn.
In case of hyperbolic Kac-Moody algebra g, the fundamental chamber
of W is an n-dimensional hyperbolic Coxeter simplex of finite volume,
whose dihedral angles are in the set {π

2
, π
3
, π
4
, π
6
} (zero angle also appears

for n = 2).

1.2. Simplicial reflection groups. An element g of a group G ⊂
Isom(Hn) is called parabolic is g preserves a unique point of ∂Hn.
We say that a reflection group G ⊂ Isom(Hn) is strictly simplicial if

its fundamental chamber is a finite volume simplex.
A reflection group G′ ⊂ Isom(Hn′) will be called r-isomorphic to

another reflection group G ⊂ Isom(Hn) if there exists an isomorphism
φ : G′ → G preserving the set of reflections and the set of parabolic

elements. We write G′ r≃ G for r-isomorphic groups.
A group G′ ⊂ Isom(Hn′) is simplicial if it is r-isomorphic to a strictly

simplicial group G ⊂ Isom(Hn).
A rank of a reflection group is the number of reflections in any stan-

dard generating set (i.e. the number of facets of the fundamental cham-
ber, where a facet is a codimension 1 face of a polytope). So, for a
strictly simplicial group G ⊂ Isom(Hn) we have rkG = n + 1, and for

a general simplicial group G′ r≃ G we obtain rkG′ = rkG = n+ 1.
Simplicial groups (up to an r-isomorphism) could be conveniently

described by Coxeter diagrams. A Coxeter diagram Σ(G) of a strictly
simplicial group G ⊂ Isom(Hn) is a Coxeter diagram of its fundamental
simplex, namely Σ(G) is a graph with n+1 vertices, one vertex for each
of facets f0, f1, . . . , fn of a fundamental simplex of G. Furthermore, ith

vertex of Σ(G) is joined with jth one by an edge labeled by mij if
the dihedral angle formed by fi and fj is of size π/mij. For abuse
of notations one uses empty (absent) edges for mij = 2, and simple,
double, triple and 4-tuple edges for mij = 3, 4, 5, 6 respectively. For
the zero angle formed by fi and fj in 2-dimensional case one draws a
bold edge.
The list of Coxeter diagrams of simplicial groups (or, simply, of hy-

perbolic simplices) is contained in [13, Table 4]. There are infinitely



SUBALGEBRAS OF HYPERBOLIC KAC-MOODY ALGEBRAS 5

many strictly simplicial groups in H2 (but finitely many with funda-
mental chambers having angles in the set {0, π/2, π/3, π/4, π/5, π/6}
only) and finitely many in other dimensions. In particular, no strictly
simplicial group acts in Hn, n > 9. The dihedral angles of fundamental
simplices of simplicial groups in Hn, n ≥ 3 are contained in the set
{π/2, π/3, π/4, π/5, π/6}.
We say that a group G is simply-laced if its Coxeter diagram Σ(G) is

a simply-laced graph, i.e. if each edge of Σ(G) is either simple or bold.

Remark 1.1. For each hyperbolic root system ∆ we construct a sim-
plicial group G(∆) as a Weyl group of ∆. Sometimes different root
systems may lead to one and the same simplicial group. Namely, G(∆)
contains all information about the angles between simple real roots of
∆ but does not know which of the roots are long and which are short.
The root systems are depicted by Dynkin diagrams which are graphs
Σ(G) with multiple edges enabled by arrows indicating (where arrow
from vertex i to j means that jth root is larger than ith one). Here one
exclusion is: Dynkin diagram of dihedral group G2 of order 12 is an
oriented triple edge, not 4-tuple as in its Coxeter diagram.
A simplicial group G corresponds to exactly one hyperbolic root

system if G is simply-laced. In all the other cases, to pass from a
simplicial group to a hyperbolic root system one should specify the
appropriate lengths of the simple roots (so, two vertices joined by a
simple edge correspond to the roots of the same length; if two vertices
of Σ(G) are joined by a double edge then one of the corresponding
roots is

√
2 times larger than another). For most of the non-simply-

laced groups we may obtain two different root systems by interchanging
short roots with long ones (however, sometimes this gives the same root
system up to renumbering of the simple roots, see Fig. 1.1).

Figure 1.1. Changing lengths of the roots may change
the root system (left) or may lead to the isomorphic one
(right)

Notice that a simplicial group G is a Weyl group of a hyperbolic root
system if and only if G is arithmetic over Q. In particular, no pair of
roots in hyperbolic root system compose an angle π/5.

1.3. Reflection subgroups of simplicial groups. By a reflection
subgroup of a reflection group we mean a subgroup generated by reflec-
tions. By a simplicial subgroup we mean a reflection subgroup which is
simplicial.
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Let S = {r0, . . . , rk} be the set of standard (Coxeter) generators of a
reflection group G, i.e. the reflections with respect to the facets of the
fundamental chamber of G ⊂ Isom(Hn). A reflection subgroup G1 ⊂ G
is called standard parabolic if G1 is generated by some collection of the
reflections ri ∈ S. A subgroup G1 ⊂ G is called parabolic if it is
conjugated in G to some standard parabolic subgroup.

Remark 1.2. If G is cocompact simplicial group then any proper para-
bolic subgroup is finite (since it fixes some subspace of Hn). Moreover,
any maximal proper parabolic subgroup is a finite group stabilizing
some point in Hn.
If a simplicial group G is not cocompact, any finite parabolic sub-

group still fixes some subspace of Hn, while an infinite proper parabolic
subgroup stabilizes some point at ∂Hn.

By a mirror of a reflection group we mean a hyperplane fixed by
some reflection contained in this group.
LetH ⊂ G be a simplicial subgroup of a strictly simplicial groupG ⊂

Isom(Hn). Denote by Π a minimal non-trivial G-invariant subspace of

Hn, and let H ′ be the restriction of H to Π. Clearly, H
r≃ H ′ and H ′

is strictly simplicial reflection subgroup of Isom(Π).
The following proposition is just to fix several almost evident prop-

erties of simplicial subgroups.

Proposition 1.3. Let H ⊂ G, H ′ and Π be as defined above.
1) If G ⊂ Isom(Hn) is cocompact then H ′ ⊂ Isom(Π) is cocompact.
2) For any parabolic subgroup H ′

1 ⊂ H ′ there is a parabolic subgroup
G1 ⊂ G containing a subgroup r-isomorphic to H ′

1.
3) Let K be a simplicial group. If K does not admit reflection pre-

serving embedding into G, then K has no reflection preserving embed-
dings into H.

Proof. 1) If G is cocompact then there are no parallel mirrors of reflec-
tions of G in Hn. Thus, there are no ones in H , and consequently, in
H ′.
2) G1 is the subgroup of G fixing a subspace X , where X ⊂ Hn is

the set fixed by H ′
1.

3) The statement is evident.
�

2. From subalgebras to subgroups

As before, let ∆g be a root system of a hyperbolic Kac-Moody algebra
g. By definition, every regular subalgebra h of g has a root system
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∆h ⊂ ∆g which is closed with respect to addition, i.e. satisfies the
following condition:

if α, β ∈ ∆h and α + β ∈ ∆g, then α + β ∈ ∆h.

A root system ∆h ⊂ ∆g satisfying the condition above is called a root
subsystem of ∆. It is easy to see that any root subsystem ∆h ⊂ ∆g is a
root system of a regular subalgebra of g. Therefore, classifying regular
subalgebras of g is equivalent to classifying root subsystems of ∆g.
Furthermore, since g is a hyperbolic Kac-Moody algebra, a Weyl

chamber Cg of ∆g is a finite volume hyperbolic simplex. The Weyl
group Wg of ∆g is generated by reflections with respect to the facets
of Cg, so, Wg is a simplicial reflection group.
Let h ⊂ g be a regular hyperbolic subalgebra and Ch be a Weyl

chamber of ∆h. Let Π be the minimal H-invariant subspace of Hn.
Denote by C ′

h the section of Ch by the plane Π. Then C ′
h is a finite

volume hyperbolic simplex in Π, and the Weyl group Wh of ∆h is also
a simplicial group. Therefore, regular subalgebra h ⊂ g corresponds to
a simplicial subgroup Wh ⊂ Wg.
So, the problem of classification of regular hyperbolic subalgebras of

g splits into two steps:

• Step 1: find the classification of simplicial reflection subgroups
of hyperbolic simplicial reflection groups;

• Step 2: investigate which subgroups correspond to root sub-
systems.

For the maximal rank subalgebras (i.e. rk h = rk g) these steps are
done in [9] and [11] respectively. So, we focus on the case of distinct
ranks. Step 1 will be discussed in Sections 3–7. Step 2 is based on the
following three lemmas.

Lemma 2.1 ([11], Lemma 3). Let ∆g1 ⊂ ∆g2 and ∆g2 ⊂ ∆g3 be root
subsystems. Then ∆g1 is a root subsystem of ∆g3 .

To simplify checking if ∆h is a root subsystem of a root system ∆g,
we use the following criterion.

Lemma 2.2. Let Π1 be a set of simple roots of a root system ∆1. Then
∆1 ⊂ ∆ is a root subsystem if and only if

(2.1) α− β /∈ ∆ for all α, β ∈ Π1.

The criterion follows immediately from Proposition 2.3 below.

Proposition 2.3 ([3], Theorem 3.1). Let ∆ be a root system of a Kac-
Moody algebra. Let β1, . . . , βk ∈ ∆re be positive real roots such that
βi − βj /∈ ∆ for all 1 ≤ i < j ≤ k. Let ∆′ ⊂ ∆ be a minimal root
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system containing β1, . . . , βk. Then ∆′ is a root subsystem of ∆ (and
∆′ is a root system of a regular subalgebra of g).

The following lemma shows that in many cases we do not need to
check even the simplified criterion.

Lemma 2.4. Let ∆G and ∆H ⊂ ∆G be hyperbolic root systems with
Weyl groups G and H ⊂ G respectively. If each parabolic rank 2 sub-
group of H is parabolic in G then ∆H is a root subsystem of ∆G. In
particular, this is always the case if ∆G is simply-laced.

Proof. The condition on parabolic subgroups implies that for any two
simple roots α1, α2 of ∆H the vector α1 − α2 is never proportional
to any root of ∆G (otherwise the parabolic subgroup of H generated
by reflections with respect to α1 and α2 is a proper subgroup of the
parabolic subgroup of G containing α1 and α1 − α2). So, Lemma 2.2
proves the first statement of the lemma.
Furthermore, if G is simply-laced, then no rank 2 parabolic subgroup

of G contains a proper non-trivial subgroup and the lemma always
applies.

�

3. Maximal subgroups

A reflection subgroup H ⊂ G of a reflection group G is called max-
imal if it is maximal by inclusion, i.e., for any reflection subgroup K
such that H ⊂ K ⊂ G we have either K = H or K = G.
To prove the next lemma we will use the following fact conjectured

in [5] and proved in more general settings in [6].

Proposition 3.1 ([6], Theorem 1.2). Let G ⊂ Isom(Hn) be a discrete
reflection group with a fundamental chamber F of finite volume. Let
H ⊂ G be a finite index reflection subgroup. Then H can not be gen-
erated by less than |F | reflections, where |F | is the number of facets of
F .

In particular, if H is a strictly simplicial group in Hn and K is a
discrete reflection group containing H , thenK is also strictly simplicial.

Lemma 3.2. Let H be a maximal simplicial subgroup of a strictly sim-
plicial group G ⊂ Isom(Hn), rkH < rkG. Let H1 be a finite parabolic
subgroup of H and let G1 be a minimal parabolic subgroup of G con-
taining H1. Then G1 = H1.

Proof. According to Proposition 1.3, G1 ⊃ H does exist, uniqueness of
such a G1 follows immediately. Suppose that H1 6= G1. Let L ⊂ Hn
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be a subspace preserved pointwise by H1 (since H1 is finite, L contains
some face of a fundamental chamber of G). Then G1 is a maximal
subgroup of G fixing L. Clearly, H1 ⊂ G1 and G1 is parabolic in G
(since G1 is a stabilizer of L in G). Denote by Π the minimal non-
trivial H-invariant subspace of Hn (note that Π is orthogonal to L, so
Π is preserved by G1, too).
Now suppose thatH1 6= G1 and considerK = 〈H,G1〉. ThenK 6= G,

since K preserves Π while G does not. On the other hand, H 6= K,
since H1 6= G1. If K is simplicial, this contradicts the assumption that
H ⊂ G is a maximal simplicial subgroup. So, we are left to show that
K is simplicial.
Recall that H ⊂ Isom(Π) is a finite covolume simplicial group. Since

K is a discrete subgroup of Isom(Π) we see that [K : H ] < ∞. SoK is a
discrete reflections group containing a finite index simplicial subgroup.
By Proposition3.1, K is simplicial.

�

Remark 3.3. Geometric sense of Lemma 3.2 is the following: for any
face of fundamental chamber of H , its stabilizer in H coincides with
its stabilizer in G. We will heavily use the following reformulation in
terms of Coxeter diagrams:
For each subdiagram (corresponding to a finite group) of Σ(H) there

is a subdiagram of the same type in Σ(G).

In a simplicial group H , any two standard generators are contained
in a finite parabolic subgroup unless H is r -isomorphic to a group gen-
erated by reflections with respect to the sides of non-compact triangle.
For the latter case we will need the following

Lemma 3.4. Let H be a maximal simplicial subgroup of a strictly sim-
plicial group G ⊂ Isom(Hn), 3 = rkH < rkG. Let H1 be an infinite
parabolic subgroup of H and let K1 be a maximal infinite dihedral sub-
group of G containing H1. Then K1 = H1.

Proof. Suppose that K1 6= H1. Following the proof of Lemma 3.2,
consider K = 〈H,K1〉. Then K 6= H , since K1 6= H1. On the other
hand, K 6= G since K preserves the minimal H-invariant subspace Π
(Π 6= Hn since rkH < rkG). By the same reason, [K : H ] < ∞. By
Proposition 3.1, K is simplicial, which contradicts the assumption that
H ⊂ G is a maximal simplicial subgroup.

�

Denote by rα ∈ W (∆) the reflection with respect to the root α ∈ ∆
(where W (∆) is the Weyl group of ∆).
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Theorem 3.5. Let H be a maximal simplicial subgroup of a strictly
simplicial group G ⊂ Isom(Hn), rkH < rkG. Let ∆G be any root
system with W (∆G) = G. Then the root system ∆H = {α ∈ ∆G|rα ∈
H} is a root subsystem of ∆G, and W (∆H) = H.

Proof. First, suppose that H is not r -isomorphic to a group generated
by reflections with respect to the sides of non-compact triangle. Then
any pair of generating reflections generate a finite parabolic subgroup
of H . By Lemma 3.2, this dihedral group is parabolic in G. Thus, by
Lemma 2.4, ∆H is a root subsystem of ∆G.
Now, let H be r -isomorphic to a group generated by reflections with

respect to the sides of non-compact triangle. By Lemma 2.2, it is
sufficient to show that α−β /∈ ∆G for all simple roots α, β ∈ ∆H . This
follows from Lemma 3.2 if the reflections in α and β generate a finite
group, and from Lemma 3.4 otherwise.
The assertion W (∆H) = H is evident.

�

The case of equal ranks is treated in [11]. More precisely, Theorem 1
of [11] combined with Lemma 1 of [11] imply that if H ⊂ G is a
maximal simplicial subgroup and rkH = rkG, then there is at least
one pair of algebras (h, g) such that h is a regular subalgebra of g and
h and g are chosen among the algebras with Weyl groups of their root
systems coinciding with H and G respectively. Combining this with
Theorem 3.5 we have

Corollary 3.6. Let G ⊂ Isom(Hn) be an arithmetic over Q strictly
simplicial group, and H ⊂ G is a maximal simplicial subgroup. Then
there exist Kac-Moody algebras g and h such that G = Wg, H = Wh

and h is a regular subalgebra of g.

4. Visual subgroups

In this section we describe a class of subgroups which contains almost
all maximal infinite index simplicial subgroups of simplicial reflection
groups. On the other hand, the subgroups of this type could be easily
found just by taking a look at the Coxeter diagram of the group G.
We say that a subgroup H of a reflection group G = 〈r0, r1, . . . , rn〉 is

visual if H is generated by some standard parabolic subgroup H1 ⊂ G
and an additional reflection rirjri for some ri, rj not belonging to H1.
Let G be a finite covolume reflection group in Hn, and let F be

a fundamental chamber of G. Denote by v0, v1, . . . , vn the outward
normal vectors of F . We normalize vk so that (vk, vk) = 2. Then a
visual subgroup of G is one generated by reflections with respect to
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some of vk and a vector

v∗ = vj − (vi, vj)vi.

In particular, if the edge vivj of Σ(G) is simple then v∗ = vj + vi.
The Coxeter diagram Σ(H) of the subgroup is then easy to obtain from
Σ(G) in the following way:

• shrink the edge vivj into a new vertex v∗;
• for each vertex vk joined with both vi and vj draw a new edge
vkv∗ which is bold if both edges vkvi and vkvj are simple, and
dotted otherwise;

• for each vk joined with exactly one of vi and vj the edge vkv∗
has the same weight as vkvi (or vkvj) had;

• all the other edges remain intact;
• take a subdiagram of the obtained diagram if needed.

See Fig. 4.1 for an example of visual subgroup.

PSfrag replacements

vi vj v∗ = vi + vj

3

4

5

6

7

8

9

(3, 4, 4)

Figure 4.1. Example of a visual subgroup H ⊂ G:
Σ(G) to the left, Σ(H) to the right.

Remark 4.1. As it is easy to see from Tables 7.1– 7.10, visual subgroups
of corank 1 of simplicial groups turn out to be maximal. This motivates
the following

Question 4.2. Are there visual non-maximal reflection subgroups of
corank 1 in generic Coxeter groups?

5. Subgroup relations: to be or not to be?

Given two simplicial groups G and H , we need to understand if H
can be embedded into G as a reflection subgroup. For many of the pairs
(G,H) we have immediate affirmative answer due to compositions

H = G0 ⊂ G1 ⊂ · · · ⊂ Gk = G

of visual subgroups and subgroups of the maximal rank (i.e. with
rkGi = rkGi+1). For all the other pairs (G,H) we need to check
subgroup relations.
In this section we describe various methods to check if H can be em-

bedded into G. We will use these methods to check subgroup relations
for almost all pairs (G,H). The remaining cases are covered by the
algorithm presented in Section 6.
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5.1. Large balls in upper half-space model. In this section we
develop a method suitable for the case when H is not r-isomorphic to
a cocompact strictly simplicial group.
Our idea is to use geometry of upper half-space model of hyperbolic

n-space. We embed an infinite maximal parabolic subgroup H1 ⊂ H
into some infinite parabolic subgroup G1 ⊂ G (see Proposition 1.3),
assuming that G1 preserves the point at infinity. Then the subgroup
H1 ⊂ G1 can be understood as reflection subgroup of a Euclidean re-
flection group G1 (acting on an horosphere centered at infinity), so H1

is easy to describe. To understand if H ⊂ G we need to find (or to
prove non-existence of) a mirror m∗ (i.e. a hemisphere orthogonal to
∂Hn in the model) forming some prescribed angles with the mirrors
m1, . . . , mk corresponding to the reflections generating H1. Since m∗
should intersect (at least at ∂Hn) all the mirrors bounding the funda-
mental domain of H1, the Euclidean radius of the hemisphere is rela-
tively big. Checking hemispheres (mirrors of G) of relatively big radius
we either find m∗ or prove that it does not exist (we check mirrors of
G modulo the group H1, so there are finitely many of hemispheres in
question of radius greater than any given number).

Notation. We will use the notation introduced in Fig 5.1. In particular,
notation for the types of hyperbolic simplices is borrowed from [8]. A
rank 3 group with fundamental triangle with angles (π/q1, π/q2, π/q3)
is denoted (q1, q2, q3) (for zero angles we write 0, so that (0, 0, 0) is the
group corresponding to the ideal triangle).

Example 5.1. Neither the group H = (0, 0, 0) nor H ′ = (0, 3, 3) is a
subgroup of G = [3[3,3]]. We will prove it for H , the statement for H ′

will follow.
Consider an ideal simplex F0 generating the group G. We place F0

in such a way that one of its vertices V∞ is the point at infinity, and
the other three vertices form a regular triangle at ∂H3 (see Fig. 5.2(a)).
We embed the subgroup H1 (which is infinite dihedral group) into the
stabilizer of V∞. Then H1 is generated by reflections with respect to
two parallel planes. Denote these planes by m̃1 and m̃2 (now H1 is
not a parabolic subgroup of G but only a subgroup of one). The third
generator of H should be a reflection (inversion in Euclidean sense)
with respect to some mirror m∗ of the group G, this mirror should be
tangent to both m̃1 and m̃2. It is easy to see that the face m0 of F0

opposite to the vertex V∞ is the largest hemisphere amongst mirrors
of G. If we scale the Euclidean distances at ∂H3 so that m0 is a unit
hemisphere, then the Euclidean distance between the closest parallel
mirrors of G is 3/2 (see Fig. 5.2(b)).
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Figure 5.1. Notation for some hyperbolic reflection
groups. The last line contains the list of all ideal sim-
plices.
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Figure 5.2. (a) ideal regular simplex in the upper half-
space model, (b) projection onto the boundary.

In particular, this implies that the planes m̃1 and m̃2 are the closest
parallel planes, otherwise no hemisphere can touch both of them.
Now we will show that no of the hemispheres except the unit one

can have points in common (even at infinity) with both m̃1 and m̃2. It
is sufficient to show that the radius R of the largest hemisphere which
is smaller than m0 satisfies R < 3/4. We reflect F0 with respect to the
mirror m0 and denote by F1 the image of F0. Notice that the union
F0 ∪F1 contains all points of fundamental domain of H1 that lie above
the horosphere z = 1/2 in our model, where z is an axis orthogonal to
∂Hn. So, besides m0 (and its translates by H1) no hemisphere of the
radius greater than 1/2 can be a mirror of G.
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A unit hemisphere m0 gives rise to a subgroup of the type (0, 0, 3).
This implies that no other group of type (0, p, q) is a subgroup of G.
In particular, neither (0, 0, 0) nor (0, 3, 3) is a subgroup of G.

The method of large balls can be also applied for a non-simplicial
group G. The only restriction is that a simplicial group H should have
an infinite maximal parabolic subgroup.

5.2. Method of indefinite coefficients. This method is the main
tool of [12] where the corank 1 hyperbolic subalgebras of hyperbolic
Kac-Moody algebras are investigated. The method works nicely for
all arithmetic over Q groups G. For this class of groups the problem
reduces to some Diophantine equation with integer coefficients. For the
groups apart from this class the method still sometimes works but it
leads to a Diophantine equation with coefficients and variables in one

of the rings Z[
√
2], Z[1+

√
5

2
] and Z[

√
2, 1+

√
5

2
]. We will use the method

only for arithmetic over Q groups G.
For each of the n+1 facets fi of the fundamental domain F of G we

consider an outward normal vector vi. We normalize vectors in such a
way that the square of length of the shortest ones is equal to 2. The
vectors corresponding to the ends of a double edge of Σ(G) would have
squares 2 and 4, while vectors corresponding to the ends of 4-tuple
edge of Σ(G) would have squares 2 and 6. Then any vector of type gvj,
g ∈ G, is an integer combination of vi’s.
We embed a maximal parabolic subgroup H1 ⊂ H into some para-

bolic subgroup G1 ⊂ G writing down the explicit expressions of vectors
of generating reflections u1, . . . , uk in terms of v0, v1, . . . , vn. Denote by
u∗ the vector corresponding to the missed generating reflection of H
and write

u∗ =
n∑

i=0

kivi.

Vector u∗ satisfies several equations. Namely, the value of each of
(u∗, ui) (where i = 1, . . . , k) can be read from the Coxeter diagram
Σ(H). In this way we get k linear equations with integer coefficients
with respect to ki. Another one (quadratic) equation can be obtained
in the following way: Σ(G) encodes the length of u∗, so (u∗, u∗) is
known.
It turns out that in most cases either the system has no solutions

(usually it is enough to consider these equations modulo 2), or one can
find among the solutions one corresponding to a vector v∗ which could
be obtained from some of vi by the action of G.
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Example 5.2. A groupH = (0, 0, 3) is not a subgroup of G = [31,1,1,1,1]
(see Fig. 5.3).
Let v0 be a vector corresponding to the valence 5 vertex of Σ(G) and

let v1, . . . , v5 be the vectors corresponding to the remaining vertices, set
(vi, vi) = 2. The only finite maximal parabolic subgroup of H can be
embedded into G in a unique up to a symmetry way: u1 = v0, u2 = v1.

Let u∗ =
5∑

i=0

kivi. Then we have

−2 = (u∗, v0) = 2k0 −
5∑

i=1

ki,

−2 = (u∗, v1) = 2k1 − k0,

2 = (u∗, u∗) = 2
5∑

k=0

k2
i − 2k0

5∑
i=1

ki.

From the first two of these equations we find

k0 = 2k1 + 2 and k5 = 3k1 − k2 − k3 − k4 + 6.

Eliminating k0 and k5 from the third equation, we get

1 = 4(k1+1)2 +

4∑

i=1

k2
i + (3k1 − k2 − k3 − k4 +6)2 − 2(k1+1)(4k1 +6).

This equation modulo 2 is equivalent to

1 =

4∑

i=1

k2
i +

(
4∑

i=1

ki

)2

which is impossible.
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Figure 5.3. (a): Dynkin diagram for G = [31,1,1,1,1]; (b)
a unique possible embeddings of H = (0, 0, 3).

Next example demonstrates this method in the non-simply-laced set-
ting.

Example 5.3. A group H = (0, 2, 4) is not a subgroup of G = [4, 31,1,1]
(see Fig. 5.4).
For the group G we take a root system ∆G shown in Fig. 5.4(a) and

fix a numeration of the vertices. Then we have two possibilities for
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the embedding of H (see Fig. 5.4(b) and (c)). We consider the first of
them, the second one is treated in the same way. We have

(u∗, v1) = −4 = −2k0 + 4k1 − 2k2 − 2k3 − 2k4,
(u∗, v4) = 0 = −2k1 + 2k4,

which implies that

−4 = (u∗, v1 + v4) = 2(−k0 + k1 − k2 − k3),

so, k0+ k1+ k2+ k3 (as well as k0+ k2+ k3+ k4) is even. On the other
hand,

4 = (u∗, u∗) = 2k2
4 + 4(k0 + k1 + k2 + k3)

2 − 4k1(k0 + k2 + k3 + k4).

Dividing this equation by 2 and rewriting modulo 4, we obtain

2 ≡ k2
4 mod 4,

which is impossible.

PSfrag replacements
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v2

v3v4
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Figure 5.4. (a): Dynkin diagram for G = [4, 31,1,1];
(b),(c): two possible embeddings of H = (0, 2, 4).

The method of indefinite coefficients can be applied for investigation
of simplicial subgroup of a non-simplicial group G.
The results of the following example will be used in Section 5.3. Here

we use the method for the case when the fundamental domain of G is
a pyramid over a cube.

Example 5.4. The groups G′ = F2 and G = F3 contain no subgroup
H = (0, 0, 0) (see Fig 5.5 for the notation).
We prove the statement for the group G, then by Proposition 1.3,

the statement follows for G′ ⊂ G.
Denote the vertices of Σ(G) as on Fig 5.5. Let H1 be any maximal

parabolic subgroup of H . Suppose that H ⊂ G. By Lemma 3.4, we
may assume that H1 is generated by reflections with respect to v1 and
v2 (up to an r -isomorphism of G). Therefore, H is embedded as shown

on Fig 5.5 on the right, where u∗ =
6∑

i=0

kivi. The computation similar

to one in Example 5.2 shows that such an embedding does not exist.
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Figure 5.5. (a)-(c) Groups F2, F3 and F4; (d) non-
existing embedding of H = (0, 0, 0).

Remark 5.5. The group G = F4 contains a subgroup H = (0, 0, 0).
Embeddings of the type discussed in Example 5.4 still do not exist,

however there is another embedding due to the fact that the funda-
mental chamber of G has different types of ideal vertices: one ideal
vertex of “cubical” combinatorial type (with faces corresponding to

v1, . . . , v8) and two simplicial ideal vertices of type D̃4 (corresponding
to v0, v1, v3, v5, v7 and v0, v2, v4, v6, v8 respectively). The embedding of

H1 into any of subgroups of type D̃4 can be easily lifted to embedding
of H ⊂ G.

5.3. Short and long subgroups. A simple method described in this
section allows to reduce the problem to consideration of pairs (G,H)
where both G and H are simply-laced. The idea is to split the problem
into two easier ones. This method works efficiently for many pairs
(G,H).
Suppose that G is a Weyl group of a non-simply-laced root system.

In most cases this implies that there are at least two possibilities for
such a root system (we can reverse all arrows in Dynkin diagram). For
each of the Weyl groups we fix one of the possible root systems, namely
we take one of the root systems ∆ shown in Table 5.1. Notice that each
of them has roots of exactly two lengths.
We say that a reflection r in G is short if r is a reflection with respect

to a short root of ∆. Similarly, we define long reflections. A subgroup
Gs ⊂ G generated by all short reflections is the short subgroup of G.
Similarly, a long subgroup is the subgroup Gl ⊂ G generated by all long
reflections.

Suppose that H is a simply-laced group. Then H ⊂ G if and only if
H ⊂ Gs or H ⊂ Gl. If H is not simply-laced, then H ⊂ G implies

either Hs ⊂ Gs and Hl ⊂ Gl, or Hs ⊂ Gl and Hl ⊂ Gs.

On the other hand, converse is not true: if the condition above holds,
we can say nothing about the existence of the subgroup r -isomorphic
to H in G.
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Now, we will study short and long subgroups of simplicial groups.
Denote by D the Dynkin diagram of ∆. Let Ds be the subdiagram of
D spanned by the nodes corresponding to short roots, and Dl be the
subdiagram of D spanned by the long roots.

Lemma 5.6. The group Gs is a finite index subgroup of a simplicial
group G unless Dl is an affine diagram. Similarly, Gl is a finite index
subgroup of G unless Ds is an affine diagram.

Proof. We prove the first statement of the lemma. Since the proof is
invariant under reversing of all arrows in D, the second one follows by
symmetry.
Let G1 be a parabolic subgroup of G generated by the reflections

with respect to simple long roots. Denote by L the intersection of all
the mirrors of reflections of G1. Since Dl is not an affine diagram, G1

is finite, so L is not an ideal point, denote dimL = k. Let F be a
fundamental chamber of G having a k-dimensional face in L. Consider
the union of the fundamental chambers of G which are in the G1-orbit
of F , denote it by P :

P =
⋃

g∈G1

gF.

Then P is a Coxeter polytope. Indeed, each dihedral angle of P is
either a dihedral angle of some of gF or a dihedral angle of a union of
two images g1F and g2F of F . The latter is possible only if g1F and
g2F are attached to each other by a facet corresponding to a long root,
while the facets of the angle correspond to short roots. Therefore, this
dihedral angle is equal to a doubled angle of F which is either π/4 or
π/6 (as an angle between roots of different lengths). So, each angle of
P is of form π/m where m ∈ Z, and P is a Coxeter polytope.
Clearly, the reflection group GP generated by reflections in facets of

P is a subgroup of Gs. Furthermore, every mirror of G intersecting the
interior of P is a mirror of a long reflection. Thus, GP coincides with
Gs, and [G : Gs] is the order of the stabilizer of L in G.

�

In Table 5.1 we list short and long subgroups of arithmetic over Q

simplicial groups.
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Table 5.1. Short and long subgroups. By |G| we mean
the order of a group G.

∆ Gs [G : Gs] Gl [G : Gl]

1
right-angled

∞-cell
∞ 2

2
right-angled
240-cell

|E8| 2

3
right-angled

56-cell
|E7| 2

4
right-angled

27-cell
|E6| 2

5 24 24

6 6 120

7 24 12

8 192 6

9
right-angled

16-cell
1920 2

10
right-angled

16-cell
192 4

11
right-angled

∞-cell
∞ 2

12 24 24

13 6 12

14 24 6

15
right-angled

10-cell
120 2

16
right-angled

10-cell
24 4

17
right-angled

24-cell
192 2

18 24 6

19
right-angled

∞-cell
∞ 2
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Table 5.1. Cont.

∆ Gs [G : Gs] Gl [G : Gl]

20 2 12

21 4 4

22 6 4

23
right-angled
octahedron

8 2

24
right-angled

12-cell
24 2

25
right-angled
octahedron

4
right-angled
octahedron

4

26
right-angled

∞-cell
∞ 2

27 6 6

28
regular cube,
angles = π/3

48
right-angled

∞-cell
∞

29 2
regular cube,
angles = π/3

24

30
regular cube,
angles = π/3

6
regular cube,
angles = π/3

6

31 24 2

32 6 6

33 2
right-angled

∞-cell
∞

34 4 6

35 2
right-angled
hexagon

6

36 2
right-angled

∞-cell
∞

37 4
hexagon,

angles = π/3
6

38 2
right-angled

∞-cell
∞
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Example 5.7. The group G = (3, 4, 4) contains no subgroup H =
(0, 0, 0).
It is sufficient to prove that H is not a subgroup of the larger group

G′ = [(32, 42)] (see Fig. 5.1 for the notation), where G ⊂ G′ is a visual
embedding described in Section 4. Two roots corresponding to parallel
mirrors either are of the same length, or one of them is twice larger than
another. Since G′ contains reflections of two lengths only, we conclude
that all reflections of H are of the same length. Therefore, if H can be
embedded to G′, it can be embedded either into G′

s or into G′
l.

The group G′ corresponds to two root systems, we choose one whose
Dynkin diagram is shown in row 24 of Table 5.1. Then G′

s is a group
generated by reflections of a compact 3-polytope (see Table 5.1), so it
can not contain H (see part 1 of Proposition 1.3). As it is shown in
Example 5.4, G′

l does not contain H either. Hence, H is not a subgroup
of G′.

6. Algorithm

Given two simplicial groups G and H (rkH < rkG) we need to
determine if H can be embedded into G as a maximal simplicial sub-
group. In this section we develop an algorithm which either finds an
embedding or proves that one does not exist. The algorithm works un-
less H is r-isomorphic to a strictly simplicial group whose fundamental
chamber is an ideal simplex. In other words, the algorithm works if at
least one maximal parabolic subgroup of H is finite.
Throughout this section we suppose that at least one of the maxi-

mal parabolic subgroups of H is finite. Denote by H1 this finite maxi-
mal parabolic subgroup. Since we are looking for maximal subgroups,
Lemma 3.2 implies that H1 is also a parabolic subgroup of G.
The same algorithm works well for the case rkH = rkG (but it

requires some minor changes for the case when H1 is not a parabolic
subgroup of G).

Remark 6.1. The algorithm produces the list of embedding containing
all maximal ones. However, some of the embeddings produced by the
algorithm might not be maximal.
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6.1. Notation.

ρ(A,B) distance between the points A and B;
ρ(A,Π) distance between a point A and a hyperplane Π;
G finite covolume simplicial group in Hn;
H ⊂ G simplicial subgroup;
r0, r1, . . . , rn standard generating reflections of G;
m0, m1, . . . , mn mirrors (fixed planes) of r0, r1, . . . , rn respectively;
H1 ⊂ H finite maximal parabolic subgroup of H ;
H1 = 〈r1, . . . , rk〉 reflections generating H1, k ≤ n;
H = 〈r∗, H1〉 reflections generating H ;
m∗ mirror of reflection r∗;
L =

⋂
1≤i≤k

mi a subspace of Hn stabilized pointwise by H1

(a point if rkH = rkG);
Π smallest H-invariant plane (dimΠ = k);
h the common perpendicular of L and m∗

(or a perpendicular from L to m∗ if L is a point);
d = ρ(L,m∗) distance between L and m∗.

6.2. Example: case of equal ranks. Let G ⊂ Isom(H2) be a group
generated by the reflections in sides of a triangle with angles (π

2
, π
3
, π
7
).

It might contain as a subgroup a group H generated by the reflections
in sides of a triangle with angles (π

3
, π
3
, π
7
). Indeed, the covolume of G

is

π − π

2
− π

3
− π

7
=

π

42
,

while the covolume of H is exactly 8 times larger:

π − π

3
− π

3
− π

7
=

8π

42
.

So, H might be an index 8 subgroup of G. We prove that it is not the
case.
Suppose that H is embedded into G so that P is a fundamental

chamber of H . Take angle ∠O (see Fig. 6.1(a)) of size π
3
of P and

identify it with the angle of the same size of some fundamental domain
F0 of G (this corresponds to taking a parabolic subgroup H1 = G1

such that the sides of this angle are m1 and m2 in our notation). We
start to reflect F0, so that the copies Fi of F0 fill the angle ∠O (see
Fig. 6.1(a)). Suppose that we know that Fi ⊂ P for some i (this is the
case for F0). For each mirror mj (obtained as a line containing a side
of Fi) we check that it does not compose the angles π

3
and π

7
with m1

and m2 respectively (of course, we also need to check the inverse pair
(π
7
, π
3
)). Then mj contains no side of P (unless mj ∈ {m1, m2}), which
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implies that the reflection image Fi′ = rmj
Fi of Fi with respect to mj

is also contained in P .
When we run through 8 copies of F0 and obtain more the 8 copies

of F0 contained in P , we stop and conclude that the subgroup does
not exists (otherwise P should be tiled by exactly 8 copies of F0 since
[G : H ] = 8).
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Figure 6.1. Checking that (π
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Unfortunately, this reasoning is difficult to generalize to the case of
distinct ranks, since in this case the only possible index is infinite, and
consequently it is not quite clear where to stop. On the other hand,
we can find another reason to stop. Indeed, if there exists a mirror
m∗ which forms angles π

3
and π

7
with m1 and m2 (or reverse), then

the distance d from the vertex O of the angle to the line m∗ can be
easily found as the distance from the vertex to the opposite side in the
triangle (π

3
, π
3
, π
7
). Thus, instead of running through the first 8 copies of

F0 we need to run through all the copies of F0 being inside the closed
ball of radius d centered in O.

In case of distinct ranks we still can embedH1 into a parabolic subgroup
of G and start the reflection process described above. In practice, if
H ⊂ G then the process will quickly find the missed mirror m∗ (and
thus, the existence of the subgroup will be established). However, if H
is not a subgroup of G we do not know exact place where to stop the
search. In what follows we define the compact balls to which we may
restrict our search.

6.3. Cocompact groups. Suppose that G is a cocompact group. We
will show that in this case the situation does not differ too much from
one described in 2-dimensional example above.
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Suppose that H ⊂ G is embedded as a reflection subgroup, denote
by P the fundamental chamber of H bounded by m1, . . . , mk and m∗.
Consider the k-plane Π invariant with respect to H . The section of P
by Π is a k-simplex (denote it by P ′). Since any line perpendicular to

both L =
k⋂

i=1

mi and m∗ belongs to Π (and coincides with the altitude

of the simplex P ′ going from the vertex X = L ∩ Π to the opposite
side m∗ ∩Π), the distance d = ρ(m∗, L) between m∗ and L is equal to
the distance from the vertex X = L ∩ Π of P ′ to the opposite facet
of P ′ (see Fig. 6.2(a)). This restricts us to a “cylinder” of radius d
centered in L (i.e. to the set of points of Hn lying at distance at most
d from L). Unfortunately, this cylinder is still of infinite volume, so it
is intersected by infinitely many fundamental domains of G.
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Figure 6.2. Geometry of cocompact case

To overcome this infinite freedom of moving along L we choose the
fundamental simplex F0 of G in such a way that X ∈ F0 (where X =
L∩Π) and F0 has m1, . . . , mk as facets, see Fig. 6.2(b). Notice that X
may not be a vertex of F0. Let O be any vertex of F0 contained in the
subspace L (such a vertex does exist since L contains an (n − k)-face
of F0). Denote by DF = DF0

the diameter of F0 (we define diameter
as a maximal distance in Hn between two points of F0). Here DF < ∞
since G is cocompact. Then ρ(O,X) ≤ DF , so we have

ρ(O,m∗) ≤ ρ(O,X) + ρ(X,m∗) ≤ DF + d.

Therefore, we may restrict the search to the ball of radius DF + d
centered in O.

6.4. Finite covolume groups. Now we generalize the method above
to the non-cocompact case. Now the fundamental domain F is not
compact, so the reasoning above meets two obstacles:
1) The face L ∩ F may contain ideal vertices only;
2) Diameter of F is infinite.
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Thus, we need to redefine the point O and the value DF . For that
we use the following proposition:

Proposition 6.2 ([1], Theorem 4.28). Let G ⊂ Isom(Hn) be a discrete
group. If the stabilizer Gx of a point x ∈ ∂Hn contains a parabolic
translation t then the horoball Bx = {y | ρ(ty, y) ≤ 1} centered at x
satisfies Bx ∩ g(Bx) = ∅ for any g ∈ G \Gx.

In other words, Proposition 6.2 defines a horoball on which only Gx

acts non-trivially.
Let V be a point of ∂Hn such that the stabilizer GV of V in G

contains a parabolic translation. Let O be a horoball centered in V .
The group GV acts on the horosphere ∂O. Take a point Z ∈ ∂O
on the horosphere. We call a parabolic element t ∈ GV a minimal
parabolic translation in GV if for any parabolic element t′ ∈ GV we
have ρ(Z, tZ) ≤ ρ(Z, t′Z). We say that O is a standard horoball if
ρ(Z, tZ) = 1 for a minimal parabolic translation t.
Now we will use standard horoballs to define O and DF . For each

ideal vertex Vi of F0 we consider a standard horoball Oi centered at
this vertex. Denote by Fc the “compact part” of F0:

Fc := F0 \
⋃

i

Oi.

We define O as any point of Fc ∩ L and DF as a diameter of Fc.
The domain Fc is not convex (due to its horospherical “facets”).

Nevertheless, we will show that its diameter DF can be computed as a
maximum distance between its vertices. Let {W1, . . . ,Ws} be the set of
all vertices of Fc: if F has q ideal vertices, then there are n−q+1 “usual”
vertices and qn vertices obtained as an intersection of a horosphere with
an edge of F (notice that by Proposition 6.2 horoballs Oi and Oj have
no points in common for i 6= j).

Lemma 6.3. DF = max
0<i,j≤s

ρ(Wi,Wj).

Proof. The inequality DF ≥ max
0<i,j≤s

ρ(Wi,Wj) is evident. To prove that

DF ≤ max
0<i,j≤s

ρ(Wi,Wj), take convex hull F ′
c of {W1, . . . ,Ws}. The

polytope F ′
c contains Fc, thus the diameter of Fc does not exceed the

diameter of F ′
c, while the latter coincides with the right hand side of

the inequality.
�

Lemma 6.4. ρ(O,m∗) ≤ 2d+DF , where DF is the diameter of Fc.

Proof. Consider a common perpendicular h of L and m∗, denote its
ends by X ∈ L and Y ∈ m∗. By assumption, the length of h is
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d = ρ(X, Y ), and we need to find an upper bound for ρ(O, Y ) (and
then use ρ(O,m∗) ≤ ρ(O, Y ) + ρ(X, Y )).
If X ∈ Fc, then

ρ(O, Y ) ≤ ρ(O,X) + ρ(X, Y ) ≤ DF + d

and the lemma follows.
Suppose that X /∈ Fc. Then X ∈ Oi for some standard horoball Oi.

Denote by XOi
the point of ∂Oi closest to X . It is clear that XOi

∈ Fc

(see Fig. 6.3). By Proposition 6.2, the mirror m∗ does not intersect
the standard horoball Oi. So, Y lies outside of Oi, while X lies inside.
Therefore,

d = ρ(X, Y ) ≥ ρ(X,XOi
).

In addition, XOi
∈ Fc, which implies ρ(O,XOi

) ≤ DF . So,

ρ(O, Y ) ≤ ρ(O,XOi
) + ρ(XOi

, X) + ρ(X, Y ) ≤ DF + d+ d = DF + 2d,

and the lemma is proved.
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Figure 6.3. ρ(O,m∗) ≤ 2d+DF , proof.

�

6.5. Description of the algorithm. The reasoning above can be
summarized in the following algorithm.
Let H and G be two simplicial groups such that each maximal finite

parabolic subgroup ofH is a parabolic subgroup of G. Suppose that the
fundamental domain of H is not an ideal simplex. Then to determine
if H embeds as a maximal simplicial subgroup into G it is sufficient to
do the following:

A. Fix any finite maximal parabolic subgroup H1 of H and embed
it into G as a parabolic subgroup.
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B. Find d and DF , then find the radius R of the ball. If G is
cocompact then R is given by the following formula:

R = d+DF .

If G is not cocompact, then

R = 2d+DF .

C. Choose a fundamental simplex F0 of the group G with a face
contained in L (the face is of the dimension rkH−1). Take any
point O ∈ L∩Fc. Reflecting simplex F with respect to its facets,
find all fundamental simplices intersecting the ball BR(O) of
radius R centered in O. For each mirror of G intersecting the
ball BR(O) check if the reflection in this mirror together with
H1 generate a group r-isomorphic to H . In other words, check
if this mirror composes the same angles with m1, ..., mk as it
should.

Since the ball BR(O) is compact and G is a discrete group, there
are finitely many copies of F intersecting BR(O), so all of them can be
listed in finitely many steps.

Remark 6.5. While proving non-existence of an embedding (or looking
for all possible embeddings), in Step A we need to embed H1 into G as
a parabolic subgroup in all possible ways (up to inner automorphism
of G).

Now we describe in more details steps B and C.

B1. Finding d: Let P be a fundamental domain of H ′. The parabolic
subgroup H1 is a stabilizer of some vertex V of P . Let f be a facet of
P opposite to the vertex V . Then d = ρ(V, f).

B2. Finding DF : If G is cocompact, then DF is just a diameter of F
(where F is a fundamental domain of G). If G is not cocompact, then
for each ideal vertex of F we find explicitly the standard horosphere
Oi and compute DF as a diameter of Fc = F \⋃

i

Oi.

C. Running through all mirrors of G intersecting BR(O): We
introduce distance on the set of fundamental simplices of G as the
distance on the graph dual to the tessellation of Hn by fundamental
chambers. Namely, two fundamental simplices of G are at distance
1 if they have a common facet. Two fundamental simplices F and
F ′ are at distance k if there is a sequence of fundamental simplices
F = F0, F1, . . . , Fk−1, Fk = F ′ such that Fi is at distance 1 from Fi+1

(for all 0 ≤ i < k) and there is no shorter sequence satisfying this
conditions.
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Each mirror intersecting the closed ball BR(O) is a facet of some fun-
damental simplex (which also intersects the ball). So, we look through
all the fundamental simplices starting from the simplices on distance
one from F , then check simplices on distance 2, and so one. We stop
either when the subgroup is found or if the ball is exhausted.

Remark 6.6. The algorithm works unless H is isomorphic to a group
generated by any of the five ideal simplices, see the lower row of
Fig. 5.1 for their Coxeter diagrams and notation. However, in view
of Lemma 3.2 no of the simplices [(3, 6)[2]] and [(32, 4)[2]] can generate
a subgroup of a simplicial group of higher rank (they have parabolic
subgroups of the types G2 and F4 respectively). So, the algorithm can
be applied unless H is (0, 0, 0), [4[4]] or [3[3,3]].

7. Classification of subgroups

In this section we list simplicial subgroups H ⊂ G of simplicial reflec-
tion groups of rank greater than 3. Section 7.1 is devoted to subgroups
of arithmetic over Q groups, in Section 7.2 we list subgroups of the re-
maining ones. We start with the subgroups of the simply-laced groups,
then proceed by decreasing of the smallest dihedral angle of the fun-
damental chamber of G while it is greater or equal to π/6. A dihedral
angle smaller than π/6 may appear only in the rank 3 groups. Finite
index simplicial reflection subgroups of rank 3 simplicial groups are
listed in [4], and we do not reproduce here the list for the groups with
fundamental chambers having angles smaller than π/6.
For each of the non-visual maximal subgroups we also present an

explicit embedding (Section 7.3).
Subgroup relations between the groups of the same rank are cited

from [9].

Theorem 7.1. Let H and G be two simplicial groups, 3 < rkH ≤ rkG.
H is a subgroup of G if and only if there exists a sequence of embeddings
H = K0 ⊂ K1 ⊂ · · · ⊂ Kl = G, where all embeddings Ki ⊂ Ki+1 are
maximal ones shown in Tables 7.1– 7.10.

Notation. We present simplicial groups by the corresponding Coxeter
diagrams. If H ⊂ G we draw Σ(H) → Σ(G), where Σ(G) is a Coxeter
diagram of G and Σ(H) is a Coxeter diagram of H . To make the tables
readable, we draw only maximal embeddings.
We use the following four types of arrows:

for embeddings H ⊂ G, where rkH = rkG;
for visual embeddings;
for non-visual embeddings, where rkH = rkG− 1;
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for non-visual embeddings, where rkH < rkG− 1.

Remark 7.2. For each pair of simplicial groups (H,G) we check if H
can be embedded into G. In fact, if H ⊂ G then H may admit sev-
eral different embeddings. Our algorithm (Section 6) allows to list all
of them, however, the computation will be rather long. We restrict
ourselves to the question of existence of the embedding.

7.1. Subgroups of arithmetic over Q groups.

Table 7.1. Subgroups of simply-laced groups
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Table 7.2. Maximal subgroups of rank 4 groups with
π/4 (but without π/6)

Table 7.3. Maximal subgroups of rank 5 groups with π/4
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Table 7.4. Maximal subgroups of rank 6 groups with π/4

Table 7.5. Maximal subgroups of rank 7 groups with π/4
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Table 7.6. Maximal subgroups of groups of rank 8–10
with π/4
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Table 7.7. Maximal subgroups of groups with π/6.
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7.2. Subgroups of non-arithmetic over Q groups.

Table 7.8. Subgroups of non-arithmetic over Q groups
with π/4 (and without π/5 and π/6)

Table 7.9. Subgroups of non-arithmetic over Q groups
with π/5 (and without π/6)

Table 7.10. Subgroups of non-arithmetic over Q

groups with π/6.
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7.3. Non-visual subgroups. In this section we present an explicit
embedding for each non-visual subgroup.

Table 7.11. Non-visual subgroups

H G u∗
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Table 7.11. Cont.
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Table 7.11. Cont.
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8. Back to subalgebras

In this section we show that each simplicial subgroup of an arith-
metic over Q simplicial group corresponds to some regular hyperbolic
subalgebra of a hyperbolic Kac-Moody algebra.
Recall that a reflection group K1 is r-isomorphic to a reflection group

K2 (we denote this byK1
r≃ K2) if there is an isomorphism of the groups

K1 and K2 preserving the set of reflections and parabolic elements.
As before, we denote by ∆g the root system of Kac-Moody algebra

g, and by W (∆g) the Weyl group of ∆g.

Theorem 8.1. Let H ⊂ G be a simplicial subgroup of an arithmetic
over Q simplicial group. There exist a Kac-Moody algebra g and a

regular subalgebra h ⊂ g such that W (∆g)
r≃ G and W (∆h)

r≃ H.

Proof. If rkH = rkG the theorem is shown in [11]. If rkH < rkG and
H ⊂ G is maximal, then the theorem coincides with Theorem 3.5.
To prove the theorem for non-maximal subgroups, we are going to

use Lemma 2.1, i.e. to show that for each subgroup H ⊂ G one can

choose a subgroup H ′ r≃ H and a tower of embeddings

H ′ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kl = G

such that each single embedding Ki ⊂ Ki+1 corresponds to a subal-
gebra, where the algebra gi with W (∆gi) = Ki is the same for both
embeddings Ki−1 ⊂ Ki and Ki ⊂ Ki+1.
Recall that in a non-simply-laced case a group G can serve as a Weyl

group for several root systems (and an algebra is specified by the choice
of the short and long vectors among the simple roots). Notice that in
case of a maximal subgroup satisfying rkH < rkG, Theorem 3.5 shows
that h ⊂ g is a subalgebra for any algebra g having G as a Weyl group
of ∆g (independently of the choice of the short and long roots).
On the other hand, for the subgroups satisfying rkH = rkG it is

shown in [11] that it is possible to choose the algebra with Weyl group
G (i.e. to choose the set of long and the set of short simple roots in ∆)
such that the algebra h determined by the root system ∆H turns into a
subalgebra of g (and the other choices can easily lead to root systems
which are not root subsystems). We emphasize that maximality is not
needed here.
So, we need to check that all the choices of lengths (for allKi ⊂ Ki+1,

i = 0, . . . , l − 1) agree. Using Tables 7.1–7.10 it is easy to check that

for each subgroup H ⊂ G one can find H ′ r≃ H and a tower

H ′ = H0 ⊂ K1 ⊂ K2 ⊂ ... ⊂ Kl = G,
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where each of Ki ⊂ Ki+1 but at most one are maximal subgroups sat-
isfying rkKi < rkKi+1 (and the remaining embedding, if any, satisfies
rkKi = rkKi+1 but may not be maximal). Hence, for all steps but one
we do not need to make any choices, and the choice made for the one
step left leads to a subalgebra hi ⊂ hi+1 for each i = 0, . . . , l− 1. Now,
applying Lemma 2.1, we get the statement of the theorem.

�

Example 8.2. Consider a subgroup H ⊂ G shown on Fig 8.1. A group
H can be included in the tower

H = K0 ⊂ K1 ⊂ K2 ⊂ K3 = G,

where each of the embeddings K0 ⊂ K1 and K2 ⊂ K3 are of maximal
rank. To obtain the corresponding subalgebra h ⊂ g, for each of these
two embeddings we need to make an appropriate choice of the lengths
of the roots, and the choices may contradict each other. On the other
hand, we may consider another tower

H ′ = K ′
0 ⊂ K ′

1 ⊂ K ′
2 = G,

(where H ′ r≃ H , but the embedding H ′ ⊂ G may differ from H ⊂ G).
The latter tower can be turned into the tower of subalgebras since for
this tower we need to make the choice for the embedding K ′

0 ⊂ K ′
1

only.
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Remark 8.3. In fact, the algorithm provided in Section 6 gives way
to classify all regular hyperbolic subalgebras of hyperbolic Kac-Moody
algebras. In view of Remark 7.2, for each pair (H,G) we can list all
the embeddings H ⊂ G (if any) up to inner isomorphisms of G. Given
all embeddings H ⊂ G, construction of all subalgebras h ⊂ g with
W (∆h) = H and W (∆g) = G is immediate.

In view of Theorem 8.1 it is natural to ask the following question.

Question 8.4. Let g be an indefinite (but not hyperbolic) Kac-Moody
algebra with root system ∆g and Weyl group G = W (∆g). Given a
reflection subgroupH ⊂ G, does there always exist a regular subalgebra
h such that H = W (∆h)?
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