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Birational geometry for the covering of a nilpotent orbit closure

Yoshinori Namikawa

Abstract

Let g be a complex classical simple Lie algebra and let O be a nilpotent orbit of
g. The fundamental group 1 (O) is finite. Take the universal covering 7° : X? —
O. Then 7° extends to a finite cover 7 : X — O. By using the Kirillov-Kostant
form wgx i on O, the normal affine variety X becomes a conical symplectic variety.
In this article we give an explicit construction of a Q-factorial terminalization of
X.
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Introduction

Let g be a complex semisimple Lie algebra and let O be a nilpotent orbit of g. Then O
admits a symplectic 2-form wg g called the Kirillov-Kostant 2-form. In general O is not
simply connected, but 7;(0) is finite. Let my : XY — O be a finite etale covering. The
function field C(X?) of X° is a finite algebraic extension of C(O). Let O be the closure
of O in g. The normalization X of O in C(X?) determines a finite covering 7 : X — O.
Then XY is contained in X as a Zariski open subset so that 7|xo = mo. If G is a simply
connected complex semisimple Lie group with Lie(G) = g, then the adjoint G-action
on O (resp. O) lifts to a G action on X9 (resp. X). The 2-form w := (7°)*wky is a
G-invariant symplectic 2-form on X°. The pair (X, w) is then a symplectic variety in the
sense of Beauville [Be]. Brylinski and Kostant [B-K]| extensively studied such varieties in
the context of shared orbits. A nilpotent orbit closure O has a natural scaling C*-action
for which wxx has weight 1. Let s : C* — Aut(O) be a homomorphism determined by
the scaling action. In general this C*-action does not lift to a C*-action on X. But, if
we instead define a new C*-action on O by the composite o of

C*— C* (t—1t?), and s:C* — Aut(0),

then the new C*-action o always lifts to a C*-action on X by [B-K], §1. By definition,
wt(w) = 2 with respect to this C*-action. Therefore (X,w) is a conical symplectic
G-variety with wt(w) = 2.

A main purpose of this article is to study the birational geometry for the resolutions
of (X,w). A crepant projective resolution f : Y — X of X is, by definition, a projective
birational morphism f from a nonsingular variety Y to X such that Ky = f*Kx. In
general X does not have a crepant projective resolution. But, instead, X always has a
nice crepant projective partial resolution f : Y — X called a Q-factorial terminalization
by [BCHM]. A Q-factorial terminalization f is, by definition, a projective birational
morphism from a normal variety Y to X such that Y has only Q-factorial terminal
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singularities and Ky = f*Kx. It is natural to expect that such a Q-factorial terminal-
ization can be constructed very explicitly in a group theoretic manner when (X,w) is
the above.

When X? is the nilpotent orbit O itself, X is nothing but the normalization O of O.
Namikawa [Na 1] and Fu [Fu 1] respectively constructed a Q-factorial terminalization of
O quite explicitly when g is a classical simple Lie algebra and when g is an exceptional
simple Lie algebra (See also [Lo] for a unified treatment). However, when deg(m) > 1,
this problem has not yet been enough pursued though there is an interesting observation
by [Fu 2], Theorem 1.4 for the case deg(m) is odd.

In this article we construct a Q-factorial terminalization of X when O is a nilpotent
orbit of a classical simple Lie algebra g and X° is the universal covering of O. We shall
explain here a basic idea for the construction. Let () C G be a parabolic subgroup of
G and let Q = U - L be a Levi decomposition of ) by the unipotent radical U and a
Levi subgroup L. Correspondingly the Lie algebra q decomposes q = n & [ as a direct
sum of n := Lie(U) and [ := Lie(L). Let O’ be a nilpotent orbit of [. Then there is
a unique nilpotent orbit O of g such that O meets n + O’ in a Zariski open subset of
n+ O'. In such a case we say that O is induced from O" and write O = Ind}(O’). There
is a generically finite map

f:Gx?(n+0) =0 (lg,2] > Ady(2)),

which we call a generalized Springer map. Let (X")° — O’ be an etale covering (which
is not necessarily the universal covering) and let X’ — O’ be the associated finite cover.
Then we can consider the space n + X’ which is, by definition, a product of an affine
space n and the affine variety X’. There is a finite cover n+ X’ — n+O’. If the Q-action
on n + O lifts to a Q-action on n + X', then we can make G x? (n + X’) and get a
commutative diagram

GxQn+X)

Z
WIJ/ J/ (1)
Gx?n+0) = 0,
where Z is the Stein factorization of p o 7’. For an arbitrary nilpotent orbit O of a
classical Lie algebra g, we will give an explicit algorithm for finding @, O" and X’ such

that

(1) 0 = nd§(0),

(2) X’ has only Q-factorial terminal singularities, and

(3) the Q-action on n + O’ lifts to a Q-action on n + X’ and the finite covering
Z — O in the diagram coincides with the finite covering m : X — O associated with the
universal covering X° of O.

Then 4/ gives a Q-factorial terminalization of X. As for the existence of such (@,
O’, X'), there is another interesting view point [Lo|. Along the argument of [Lo],
Matvieievskyi [Mal, Corollary 4.3 assures the existence in a more general situation by
using the universal Poisson deformation of X |[Na 5].

Once we get an explicit Q-factorial terminalization G x% (n + X’) of X, it is easy
to see if it is nonsingular or not (cf. Lemma [L.G)). If it is nonsingular, y' is a crepant
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projective resolution of X. If it is singular, then any other Q-factorial terminalizations of
X are also singular by [Na 3], Corollary 25; hence X has no crepant projective resolution
in such a case.

In the subsequent article [Na, Part 2], we will determine the Weyl group W (X) of X
and count how many different Q-factorial terminalizations X has.

0 Preliminaries

(P.1) Symplectic varieties

Let X be a normal variety over C. Let w be a regular 2-form on X,.,. Then (X, w)
is a symplectic variety if

(a) w is non-degenerate and d-closed, and

(b) for a resolution f : X — X of X, the 2-form f*w on 71 Xeq) extends to a
regular 2-form on X.

A symplectic variety X has only canonical singularities; hence it has only rational
singularities. The following properties of a symplectic variety will be frequently used in
this article.

Proposition 0.1. Let (X,w) be a symplectic variety of dim2n and let f : X — X be
a resolution of X. Write K¢ = f*Kx + > a;E; with f-exceptional prime divisors E;
(each coefficient a; being called the discrepancy of E;). Let E;, be an f-exceptional prime
divisor with a;, = 0. Then dim f(E;,) = 2n — 2.

Proof. Put S := f(FE;). We blow up X further to get a projective birational
morphism v : Z — X such that F := (f o »)~'(S) is a simple normal crossing divisor
of Z. F contains the proper transform Fj of £, by v as an irreducible component. By
definition w lifts to a regular 2-form @ on Z. Since the discrepancy of Fj is zero, @ is
a non-degenerate 2-form on Z at a general point p € Fy. We may assume that p is a
smooth point of Fy. Let ¢ be the defining equation of Fj at p. Then one can take a
system of local parameters ¢, ¢o, ... , ¢9, of Z at p in such a way that

C‘D(p) = d¢ A d¢2 + ...+ d¢2n—1 A d¢2n € Az(T*Z)p

This implies that A"'@|g, # 0. According to [Fi], §1, we put Qi := Q% /7; for i > 0,
where 7; is the subsheaf of Q% consisting of the sections supported on Sing(F). In
particular, Q% = Op. Then @|p determines a nonzero element of H'(F,Q%). Take a
(non-empty) smooth open set U of S so that the fiber F, of (f ov)|p : ' — S over

x € U is a simple normal crossing variety for any « € U and that F' is locally a product
of F, and U. Replace S by U and F by (f ov|p) ' (U). Define

G := Ker[Q% — Q%/S].
Then there are exact sequences

056G =0} = 0Fg—0



o—>(foy)|;;§z§—>g—>(foy)|;§zg®§z;/s—>o.

This can be checked as follows. Let Fy, ..., F} be the irreducible components of F'. For
each p with p < k, we put

Flel.— H F,N---NF

Zp’
0<ip<i1<...<p<k

Denote by p, : FP) — F the natural map. For simplicity, we write a for (f o v)|r, and
a, for (f ov)|r o p,. Note that FPl is a disjoint union of smooth varieties. If we put

Gy = Ker[Qf) — Qg ss);
then there are exact sequences
0= Gp = Qi — Qg = 0
0 = apQs = G = Qs @ Qg g — 0.
By taking (u,). of these exact sequences, we get the exact sequences
0= (t1p)+Gp = (1) Q%0 = (t1p)4 Q015 — 0

0= a* Q% ® (1)« Opi — (11)+Gp = Q5 @ (Up)*Q}l;r[p]/s =0

On the other hand, the sheaves Q% and /s respectively have resolutions (see [E1],
Proposition (1.5) for details):

0— Qi — (110) Q%0 = (p11)x Qg = ..

0— QZﬁ/s - (Mo)*QZ}r[ol/s — (Ml)*Q%m/s e

By combining these exact sequences, we finally get the following commutative dia-
grams with exact rows and exact columns

0 —— ()«G1 —— (11)Q5 —— (12).23 — 0

Fly/s

0 — (,uo)*go — (MO)*Q%‘[O] B (MO)*Q%IOJ/S > 0 (2)

0O —— ¢ — 02 — Q%/S — 0




0 —— Q*Q%®(M1)*0F[1] — (M1>*g1 — @*Qé®(ﬂl>*9 — 0

1
Fll/s

0 —— a* Q% ® (10)«Opr —— (10)xGo —— a*Qé@(uo)*Q}[m/S — 0 (3)

0 — o %R0p — ¢ — a*Qé@Q}/S — 0

0 0 0

The exact sequences at the bottom rows are nothing but the desired exact sequences.

We derive a contradiction by assuming that ¢ := CodimxS > 3. &|p € HO(F,Q3%)
cannot be written as the pull-back of a 2-form wg on S. In fact, since dim S < 2n — 3,
A lwg = 0. If @l is the pull-back of wg, then A" '@|p = 0, which means that
A" 15|k, = 0. This contradicts that A" '@|p, # 0. Since &|p € HO(F,Q2) is not the
pull-back of a 2-form on S, we see that H°(F}, Q%z) # 0 or H(F,, Q},z) # () for a general
point x € S by the exact sequences above. On the other hand, since (X, x) is a rational
singularity, we have HO(FI,Q%Z) = 0 for all p > 0 by [Na 2], Lemma (1.2). This is a
contradiction. Therefore Codimy(S) = 2. O

Corollary 0.2. Let w : Y — X be a crepant partial resolution of a symplectic variety
X of dim2n and let E be a m-exceptional prime divisor. Then dimw(E) = 2n — 2.

Proof. Let v: X — Y be a resolution and let E be the proper transform of £ by v.
Put f = mowv. Then the discrepancy of E is 0. By Proposition [I1l dim f(E) = 2n — 2.
O

Corollary 0.3. Let (X,w) be a symplectic variety of dim 2n with Codim xSing(X) > 4.
Then X has only terminal singularities.

Proof. Let f : X — X be a resolution of X such that 1) @ [T H X eg) =
Xyeg. Assume that X has worse singularities than terminal singularities. Then there
is an f-exceptional prime divisor F' such that its discrepancy is 0. By Proposition [0.1]
dim f(F') = 2n — 2. This contradicts that Codim xSing(X) > 4. O

Let (X,w) be an affine symplectic variety with R = I'(X, Ox). Assume that R is a
positively graded ring R = @;>¢R; with Ry = C. This means that X has a C*-action
such that the closed point 0 € X corresponding to the maximal ideal mpg := ®;50R; is a
unique fixed point of the C*-action. If w is homogeneous with respect to this C*-action
(i.e. t*w = thw for some integer [ and for ¢t € C*), then we call (X,w) a conical symplectic
variety. By the property (b) of a symplectic variety, the weight [ is a positive integer.

(P.2) Induced orbits and generalized Springer maps
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Let @) C G be a parabolic subgroup of G and let () = U - L be a Levi decomposition
of () by the unipotent radical U and a Levi subgroup L. Correspondingly the Lie algebra
q decomposes q = n @ [ as a direct sum of n := Lie(U) and [ := Lie(L). Let O" be a
nilpotent orbit of [. Then there is a unique nilpotent orbit O of g such that O meets
n+ O’ in a Zariski open subset of n 4+ O’. In such a case we say that O is induced from
O’ and write O = Ind}(0’). There is a generically finite map

1:Gx?(m+0) =0 (lg,2] > Ady(2)),

which we call a generalized Springer map. Let x° : 4=1(O) — O be the induced map and
let wix be the Kirillov-Kostant form on O. Put Y? := G x? (n + O'). Then (u°)*wxx
extends to a symplectic 2-form on Y by [Na 6], Proposition 4.2 (see also [Na 1], Lemma
(1.2.4)). By taking the wedge product of the symplectic forms, we get Kyo = (p]yo)* Kp.
Take the normalization O’ of O’ and put Y := G x? (n+0’). Let O be the normalization
of O. Then the induced map p” : Y — O satisfies Ky = (4")*K5. In particular, when
1 is birational, Y is a crepant partial resolution of 0.

(P.3) Nilpotent orbits and their finite coverings

Let O C g be a nilpotent orbit of a complex semisimple Lie algebra g. Take a simply
connected complex algebraic group G with Lie(G) = g. Let mp : X — O be a finite etale
covering. Then the G-action on O extends to a G-action on X° and 7y is a G-equivariant
covering. Let O be the closure of O C g. We can extend 7, to a finite covering map
7:X — O. Since X = Spec'(X?, Oxo) and G acts on X°, G acts on X in such a way
that 7 is a G-equivariant.

For a point x € O, let G* C G be the stabilizer group of . We take the universal
covering of O as X and pick a point & € X such that my(Z) = x. Let G* be the stabilizer
group of Z for the G-action on X° Then G¥ coincides with the identity component of
G®. Therefore 7 (0) = G*/(G*)°. By the Jacobson-Morozov theorem we take an sl(2)-
triple x, y and h in g. We denote by ¢ the map sl(2) — g determined by the sl(2)-triple.
Put

o’ :={z€gllza] = [zy] = [2,h] = 0}.
Obviously g? C g Let u® be the nilradical of g®. Note that u® is the Lie algebra of
the unipotent radical of G*. By Barbasch-Vogan and Kostant (cf. [C-M], Lemma 3.7.3),

there is a direct sum decomposition g* = u* @ g?. Correspondingly we have a semi-direct
product G = U* - G®. Moreover, the inclusion G¢ — G* induces an isomorphism

G?/(G)" = G"/(G")",

which, in particular, means that m(0) = G?/(G?)°.

A nilpotent orbit closure O has a natural scaling C*-action for which wg x has weight
1. Let s : C* — Aut(O) be a homomorphism determined by the scaling action. In
general this C*-action does not lift to a C*-action on X. But, if we instead define a new

C*-action on O by the composite o of

C*— C* (t = t?), and s:C* = Aut(0),



then the new C*-action o always lifts to a C*-action on X by [B-K|, §1. By defi-
nition, wt(w) = 2 with respect to this C*-action. = is etale in codimension one be-
cause CodimyO — O > 2. The map 7 factors through the normalization O of O. Put
w = mowkrk. Then this means that (X,w) is a symplectic variety. In fact, take a
resolution f: Y — O so that f~1(0) = O, and make a commutative diagram

X xgY — Y

f'l fl (4)

X =0
Then Z° := X° x¢ f7'(0) is isomorphically mapped to X° by f’. Let Z be the closure
of Z°in X x5 Y, and let Z be a resolution of Z. There is a commutative diagram

7 I

Y
fl fl (5)

X ——0
where Z and Y are both smooth varieties. Since O has symplectic singularities, wg
extends to a 2-form wy on Y. Then Twy is a 2-form on Z and we see that the 2-form w

on X extends to the 2-form 7*wy on Z. This means that (X, w) is a symplectic variety.
Since wit(w) = 2, (X,w) is a conical symplectic variety.

1 g=sl(d)

A nilpotent orbit O of si(d) is uniquely determined by its Jordan type. If the Jordan
normal form of x € O has j; Jordan blocks of size d;, j» Jordan blocks of size ds, ...,
and jp Jordan blocks of size dj, then the Jordan type of O is a partition [d{l, o dfj] of
d. In the remainder we assume that d; > dy > ... > di. We indicate by O[dgl'l _____ ¥ the
nilpotent orbit with Jordan type [d?', ..., d{j]

We first consider the case when O is the regular nilpotent orbit Ojq of si(d). In this
case Ojg is the nilpotent cone of sl(d).

Proposition 1.1. (1) m(Oq) = Z/dZ.
(2) X is Q-factorial for any etale covering mp : X° — Oyq.

Proof. Take x € Oy and consider an sl(2)-triple ¢.
(1) As already remarked above, m (Oy) = G?/(G?)°. By Springer and Steinberg (cf.
[C-M], Theorem 6.1.3), one has

G? = {(¢, .., ¢) € GL(1)'| ¢* = 1}(= Z/dZ).

(2) Tt is enough to prove that Pic(X?) is a finite group for X° X0 can be written as
G/H with a subgroup H with (G*)® € H C G*. Then we have an exact sequence (cf.
[K-K-V], Proposition 3.2)

X(H) — Pic(G/H) — Pic(G),
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where x(H) = Hom(H, C*). Since Pic(G) is finite, we need to show that y(H) is finite.
By the exact sequence
1= U = (G")° = (G9)° = 1

we have an exact sequence

X((G*)) = x((G)°) = x(U").

Since (G?)? = 1, the 1-st term is zero. The 3-rd term is zero because U is unipotent.
Hence x((G*)°) = 0. Now, by the exact sequence

X(H/(G")) = x(H) = x((G")")
we see that y(H) is finite because x(H/(G*)?) is finite.

Proposition 1.2. Assume that Ty : X° — Oy is the universal covering. Then Codim xSing(X) >
4. In particular, X has only terminal singularities.

Proof. Take a point z from the subregular nilpotent orbit Oj4_1 1 and let S be a
(complex analytic) transverse slice for Oy_11 C Ojg at z (cf. [K=P 1], Theorem 3.2).
Then S is a surface with an A,_;-singularity at z. This means that the complex analytic
germ (S, z) is a 2 dimensional quotient singularity V, where

Vy:= (C?/(Z/dZ),0).

Here 1 € Z/dZ acts on C? by
(z,y) — (Cz, (My)

with ¢ a primitive d-th root of unity. Note that, for any e with e|d, the quotient map
(C?,0) — Vj factorizes as (C?,0) — V, — V.

The inclusion map S — {z} — Ojq induces a homomorphism 7 (S — {z}) — m(O[q)).
We prove that it is an isomorphism. Suppose to the contrary. Then 7~1(S) splits into
more than one connected components, each of which is a copy of V, with some divisor
e(# d) of d; namely,

S =VvPu..uve,

o (S = {2}) = (VY = {0}) L. b (V9 — {0}).

If we put f :=d/e, then Vv 5 Sisa cyclic cover of degree f.

First we shall construct a cyclic covering v : Y — Ojg of degree e in such a way that
v is etale not only over O but also over O ). Take a point p € Ojg. Then 71(p)
consists of exactly d points {pi,...,ps} and 7 (O) acts on them. We may renumber
these points so that

(a) each V. contains p; with j =7 (mod e), and

(b) m(Oq)(= Z/dZ) acts on these d points so that the generator 1 acts as the
permutation (1,2, ...,d); namely, p; — pa, P2 = P3, -y Da—1 —> Pd> Pd — P1-

The natural surjection Z/dZ — Z/eZ determines a Z/eZ-covering v : Y — O. By
definition »~*(S) splits up into e copies of V. This is the desired cyclic covering.



On the other hand, Oy can be resolved by the cotangent bundle W := T*(SL(d)/B)
of the full flag variety SL(d)/B. We call this resolution the Springer resolution and
denote it by s : W — O[d]. The Springer resolution s is a symplectic resolution; hence, s
is a semi-small map. Put Z := O[d] —Og — Ojg—1,1)- Then, by the semi-smallness of s, we
have Codimyys™!(Z) > 2. Since m (W) = {1}, we have m (W — s71(Z)) = {1}. By the
construction v : Y — O[d} is etale over O[d} — Z. Then one can construct a (connected)
non-trivial etale cover of W—s~!(Z) by pulling back v by the map W—s71(Z) — Oy —Z.
This contradicts that m (W — s71(2)) = {1}.

In the following we construct a Q-factorial terminalization of X for an arbitrary etale
cover mp : X — Oy. Let us begin with the simplest cases.

Examples 1.3.

(1) When g = sl(2), m(Op) = Z/2Z. Then X = C? for the universal covering
X% = Oy, and 7 : C* — Oy is the quotient map of Z/2Z by the action (z1,z2) —
(—x1, —x2).

(2) When g = si(4), m(Op)) = Z/4Z. When X" is the universal cover of Oy, we
already know that X has only Q-factorial terminal singularities by Proposition [T} (2)
and Proposition [[.2

Next assume that X is a double cover of Op. The nilpotent cone 0[4} has a Springer
resolution T*(SL(4)/Q11,1,1). Here Q1111 is a parabolic subgroup of SL(4) stabilizing
aflag0 C F? C F? C F' C C* with dim Gr%, = 1 for all i. Let ny 1 be the nilradical
of @1.111. By using the Killing form of si(4), we have an identification

T*(SL(4)/Q1,1,1,1) = SL(4) XQl'l’l'l Ny1,1,1-

Let Q22 be the parabolic subgroup of SL(4) stabilizing the flag 0 C F? C C*. Then
(022 has a Levi decomposition
(Q22=U"1L,

where U is the unipotent radical of ()22 and L is a Levi part of (J22. In our case

U:{({)2 ]*2)}.

L- {( N ) | det(A)det(B) = 1}.

Corresponding to the decomposition we have a direct sum decomposition of Lie
algebras
oo =1 @l

In our case
[=51(2)** @3,

where 3 is a 1-dimensional center of [. Take a nilpotent orbit closure O[g} X 0[2] in
sl(2)®? @& 3. The parabolic subgroup Qo2 acts on gg2. Since n is an ideal of ga9, n is
stable under the (3 2-action. On the other hand, I'is not stable. Let z € [ and ¢ € Q22.
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Then Ad,(z) decomposes into the sum of the nilradical part (Ad,(z)), and the Levi part
(Ady(z));. Let Q11 — Q11/U = L be the quotient map and let ¢ € L be the image of
q € (Y22 by this map. The Levi subgroup L acts on [ by the adjoint action. Then

(Ady(2))1 = Adg(2).

In particular, if z € Op x Op, then (Ad,(z)); € O x Opg. Therefore Qs acts on

1+ (O X Op). Then SL(4) x92> (n+ Opy x Opy) gives a crepant partial resolution of
Oy Moreover, the Springer resolution of Oy factors through this partial resolution:

SL(4) XQl'l’l'l Ny11,1 — SL(4) XQ2'2 (n+ 0[2} X O[g]) — 0[4]

We want to make a double cover X’ of SL(4) x?22 (n+ Opg x Opy) so that the diagram

I

X' X

SL(4) x92 (n+ O x Op) — Oy
commutes and p gives a Q-factorial terminalization of X. By (1) we have a finite covering
C? x C* = Op x Opy
of degree 4. Then Z/2Z acts on C*(= C?*xC?) by (1, T2, Y1, Y2) — (=21, —T2, —Y1, —Y2)-
We denote by C*/(+1,—1) the quotient space. The covering map above then factors

through C*/(+1, —1): ) )
ct - C4/<+1, —1) — 0[2} X 0[2].

We want to make n+ C*/(+1, —1) into a Q4 -space and to define X’ to be SL(4) x 922
(n+ C*/(+1,-1)).

Claim 1.3.1. The adjoint action of L on Ojg x O lifts to an action on C*/{(+1, —1).

Proof. As already remarked above,

A0
L= {( 0 B ) | det(A)det(B) = 1}.
Define a subgroup T of L by
B My 0 .
T_{< 0 )\_1[2)|>\eC}.
We identify SL(2) x SL(2) with a subgroup of L by
A0
{<O B) | A,B € SL(2)}.
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Then the inclusion map SL(2) x SL(2) C L induces an isomorphism
SL(2) x SL(2)/(+1,—1) = L/T.

SL(2)x SL(2) naturally acts on C*; hence SL(2)x SL(2)/{+1,—1) acts on C*/(+1, —1).
As a consequence, L/T acts on C*/(+1, —1). In particular, L acts on C*/(+1, —1), which
is a lift of the adjoint action of L on Oy x Ofy. U

Now Q22 acts on the space n + C*/(+1, —1) as follows. Take a point z + v from the
space. Here z € n and v € C*/(+1,—1). We denote by © the image of v by the map
C*/(+1,-1) — Opy X Opy. For q € Q25 we denote by g € L the image of ¢ by the map
Q272 — Q272/U = L. We define

¢ (24 v) = (Ady(z +0))n + G- v En+C/(+1,-1).

Here ¢ € L acts on v € C*/(+1, —1) as described in Claim [[L3Jl Let us consider the
composed map

SL(4) x @22 (n+ C4/<—|—1, —1)) — SL(4) x @22 (I‘l—l— O_[g] X 0[2}) — 0[4}.

The Stein factorization of this map is nothing but X. As a consequence we have a
commutative diagram

SL(4) x922 (n+ C*/(+1,-1)) —*— X

W/J/ Wl (6)
SL(4) x @2,2 (I‘l—|— 0[2} X O[Q]) —_— 0[4]

We can generalize this construction to more general situations. Let us consider
the regular nilpotent orbit O}y of si(d). Assume that e is a divisor of d. We put
f = d/e. By Proposition [T, (1) m(Oyq) = Z/dZ. The surjective homomorphism
Z/dZ — Z/eZ determines an etale cover X — Oy of degree e. We will construct
a Q-factorial terminalization of X by the same idea of Examples [[.3 Let Q. .
a parabolic subgroup of SL(d) with flag type (e,...,e). Let Q... .. = U - L be a Levi
decomposition where

-----

o
%

o O
o O
co:
S o
o~ ox

L={| . . |14 €GLe), det(A)) - det(A;) = 1}.
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We have

where 3 is the f —1 dimensional center of [. We take a nilpotent orbit closure Oé}f inside
[. Then

is a crepant partial resolution of O[d}. Let X — O[e] be the finite covering of deggee
e corresponding to the universal covering of Opj. The adjoint action of SL(e) on Oy
extends to an action on Xp. The center Z of SL(e) is written as

{Cle € SL(e) [ ¢° =1}

Then Z acts effectively on X as covering transformations of X — O[e]. In fact, let
x € Oj and put G := SL(e). Then the universal cover Xy, of Oy is written as G/(G")°.
Now G*/(G®)° = G?/(G?)°. By the description of G in the proof of Proposition [T}
(1) we see that G = Z and (G?)° = {1}. Since G*/(G*)° acts effectively on G/(G%)?,
we see that Z acts effectively on G/(G*)°; hence, acts effectively on X.. Then Z*/ acts
on X[Z}f. Define a subgroup S(Z*7/) of Z*/ by

S(Z2) = {(Gey s (L) € 270 | G- ¢y = 1.

Notice that S(Z*/) = (Z/eZ)®/~". Then the map X’ — O[i}f factors through X[:}f/S(ZXf):

X><

ol = X518z = o

By definition the 2-nd map is a Z/eZ-Galois covering.

Claim 1.3.2. The adjoint action of L on Oé}f lifts to an action on X[z]f/S(ZXf).

Proof. Define a subgroup 1" of L by

GL, 0 0 0 0
0 GL 0 0 0

0 0 0 ¢r1lo O
0 0 0 0 (L
We identify SL(e)*/ with a subgroup of L defined by

A0 0 0 0
0 A 0 0 0

(o o o | A€ SLle) Vi)
0 0 0 Apy O

o
o
o
o
s

~



Then the inclusion SL(e)*/ — L induces an isomorphism SL(e)*//S(Z*/) = L/T. As
SL(e)*/ acts on X[:]f, L/T acts on X[:]f/S(ZXf). Hence L acts on X[:}f/S(ZXf). O

.....

.....

g (z+0) = (Ady(z +0)n + G- v en+ X /S(2).

Here g € L acts on v € X[z}f/S(ZXf) as described in Claim
Recall that 7 : X — Oy is a finite Z/eZ-cover. We have a commutative diagram

SL(d) xQ@ewe (n+X[Z}f/S(ZXf)) LN s

| | »

SL(d) X Qeeinve (n+ O[é}f) — O[d]

Here p is the Stein factorization of s o 7/. X [Z]f is Q-factorial by Propositon [LT], (2).
Then X [z]f /S(Z*7) is also Q-factorial by the following lemma.

Lemma 1.4. Let f : V. — W be a finite Galois covering of normal varieties. If V is
Q-factorial, then W is also Q-factorial.

Proof. Let D be a prime Weil divisor of W. We need to show that mD is a Cartier
divisor for a suitable m. Put F := f~!(D) and regard it as a reduced Weil divisor. By
the assumption rFE is a Cartier divisor on V' for some r > 0. Take a point x € W. By
[Mum)], Lecture 10, Lemma B, one can choose an open neighborhood U of z € W such
that rE is a principal divisor of f~1(U). We take a defining equation gof rE| ;-1 . Let
G be the Galois group of f. Then

@:zHcpg

geG

is a local equation of the Cartier divisor |G|rE. Since ® is G-invariant, it can be regarded
as an element of I'(U, Oy ). Then @ is a local equation of some multiple of D on U. O

The variety SL(d) x Qe (n—i—X[:]f/S(ZXf)) is a fiber bundle over SL(d)/Qe... . with
a typical fiber n + X[:]f/S(ZXf). By [Hal, I, Proposition 6.6, we have

CUX/8(2) = Cln+ X[ /9(277)),
where Cl denotes the divisor class group. By using this we see that n + X [j}f /S(Z*7) is

also Q-factorial by the following lemma.
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Lemma 1.5. Let f:V — T be an etale fiber bundle over a nonsingular variety T with
a typical fiber Y. Assume that

(1) Y is a Q-factorial normal variety.

(2) Y has only rational singularities with Codimy Sing(Y’) > 3.

Then V is also Q-factorial.

Proof. Take a closed point v € V and put t = f(v). Replace T by a suitable open
neighborhood of t. Put n = dim 7. Then one has a sequence of nonsingular subvarieties
{ttcThy cTyC..CcT,y CT, =T with dimT; = i. Put V; :=V xp T;. Then
we get a sequence Vo(=Y) C Vi, C Vo, C ... C V,, = V. Here each V; is a Cartier
divisor of V;;1. Since rational singularities are Cohen-Macaulay, we can apply [Ko-Moa|,
Corollary (12.1.9) for Y C V] to see that Vi is Q-factorial around V,. Now V] satisfies
the conditions (1) and (2). Therefore we can apply [ibid, Corollary (12.1.9)] repeatedly
for V; C V4 and finally see that V' is Q-factorial around V,,_;. In particular, V is
Q-factorial around f~!(t) C V. Since v is an arbitrary closed point, V is Q-factorial. (]

Lemma 1.6. Fore > 2, X is singular. Fore > 1 and f > 1, X[:]f/S(ZXf) is singular.

Proof. Assume that X, is smooth for e > 2. Since X} — O[e} is a finite quotient
map, O[e} would be a symplectic quotient singularity. Then the closure of any symplectic
leaf of O[e] would be again a quotient singularity. On the other hand, the closure 0[2,1672}
of the minimal nilpotent orbit Opy je-2) is not a quotient singularity if e > 2. In fact, the
Springer resolution s of O -2 is given by the cotangent bundle T*P¢~! of P*~!. The
exceptional locus of the Springer resolution is the zero locus of the cotangent bundle,
which has codimension e — 1(> 2). This means that Op ez is not Q-factorial. In
fact, take an s-ample effective divisor H on T*P°~! and consider s, H. If @[2716721 is
Q-factorial, then ms,H is Cartier for some m > 0. Then s*(ms,H) and mH coincides
outside Exc(s), which has codimension > 1. Hence, they coincide on T*P¢~!. Take a
curve C' C Exc(s) so that s(C) is a point. Then (s*(ms,H).C') = 0. On the other hand,
(mH,C) > 0 because H is s-ample. This is a contradiction. In particular, 0[2,1672] is not
a quotient singularity. Therefore X| is singular. When e > 2, we can prove similarly
that X[z}f /S(Z*7) is singular by using the quotient map X[z}f /S(Z*) — O[i}f . When
e =2, X = C% But, if f > 1, then any non-zero element of S(Z*/) has the fixed locus
of codimension > 4. Hence X [; /S(Z*7) is singular. [J

Since X has terminal singularities, the product X, [Z]f has terminal singularities. The

fixed locus of any nonzero element of S(Z*/) has codimension > 4; hence X [Z}f /S(Z*7)
has only terminal singularities.

Lemma 1.7. Let Oiq C sl(d) be the regular nilpotent orbit with d > 2. Assume that
XY — Oy is an etale covering of degree e > 1 and let X — Oyq) be the associated finite
cover of Ory. Then the map

SL(d) x% (n4+ X /S(279)) = X

1s a Q-factorial terminalization of X. In particular, X has no crepant resolutions.
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We next consider the nilpotent orbit Oy of sl(di). Put G = SL(di). As before ,
take an element z from O and fix an sl(2)-triple ¢ containing . Then

G ={(A,..,A) € GLH)** | det(A)* = 1}.

G has exactly d connected components. Let ¢ be a primitive d-th root of unity. Then
each connected component is given by

{(A,...,A) € GLH)** | det(A) = ('}, i=0,1,...,d — 1.
Note that G?/(G?)° = Z/dZ.

Proposition 1.8. (1) m(O) = Z/dZ.
(2) X is Q-factorial for any etale covering m : X° = Oygi.

Proof. (1) We have already seen that (1) holds.
(2) We can prove (2) in the same manner as in Proposition (1.1), (2). Note that
x((G?)%) = {0} because (G?)° = SL(i)*¢. O

The closure O[dq contains the largest orbit Ogi-1,4_1,1) in O_[dq — Oygi). Note that O[dq
has Ag_i-surface singularities along Ojgi-1,4-1,1 (cf. [K-P_1], Theorem 3.2). Moreover,

Ojqi) has a Springer resolution. Since the universal covering of Ojg is a cyclic covering
of degree d, we can prove the following in the same way as Proposition [[.2.

Proposition 1.9. Assume that my : X° — Oy is the universal covering. Then
CodimxSing(X) > 4. In particular, X has only terminal singularities.

For a partition [d{l, vy d?f] of jidi+...+jidy, consider the nilpotent orbit O[djl 5]
1 9 k

sl(jidy + ... + jrdg). Let d := ged(dy,...,dy). By [C-M], Corollary 6.1.6, we have
djk}) ~ Z/dZ. Let 7° : X0 — O[djl ) be the universal covering and let
k 100 k

be the associated finite cover. We will construct a Q-factorial

T™: X — O[dil _____ dik]
terminalization of X by using Propositon [L.9.
Example 1.10.

Let Qiya...iva € SL((i1 + ... +4,)d) be parabolic subgroup of flag type (i1d, ...,4,d).
We assume that gcd(iy, ...,7,) = 1. Let Qiya....i.a = U - L be a Levi decomposition with

.....

Iild * K *
0 Iigd * *
U={ )
0 0 L 4
0 0 0 I; 4
and
A0 .0 0
0 Ay O 0
L={| .. . . . . |14 ecLad)... A € GL(i,d),det(A;)--det(A,) = 1}.
0 0 .. A, O
o 0 .. 0 A,
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The subgroup of L consisting of the matrices with A; € SL(i1d), ..., A, € SL(i,d) is
isomorphic to SL(i;d) x ... x SL(i,d). In the remainder we identify SL(i;d) x ... x SL(i,d)
with this subgroup of L. Let us consider the product of the nilpotent orbits O[dil] X ... X
Oygiry in sl(iyd) x ... X sl(i,d). Let X{gia] — Ojgia) be the finite cover associated with the
universal covering of O[dia] for each 1 < o < r. Then we have a finite covering

f: X[dil} X ... X X[dir} — O[dil] X ... X O[dir].

We consider the finite subgroup fi,q X ... X pti,q of SL(i1d) x ... x SL(i,d) consisting of
the elements (t11;,4, ..., t,1;,q) With 'tllld = ... = tird = 1. Moreover let H' be the subgroup
of ptiyg X ... X ju;,q determined by ti...t" = 1. Define a surjection

Qg X oo X g = Jhd X oo X flg
by (ti,...,t,) — (t1*, ..., ti). Similarly, define a surjection
Bipta X oo X g =
by (t1,...,t.) = ty...t,. Then H' is nothing but the kernel of the composed map

Mipd X oo X Mg =7 -

0 0
0 —— gy X oo X g, —— H' —— Coker(¢)
0 —— Wipd X oo X [hid = fivd X oo X flig — 0 (8)
a Boa
Ker(8) —— g X ... X g BN [hd — 0
0 0

Here Ker(a) = g, X ... X p;. and ¢ is the natural inclusion. By the snake lemma,
Coker (1) = Ker(f). We put H := Ker(f). The subgroup pi;,q X ... X p;,q of SL(i1d) X
. X SL(iyd) acts on X{gi] X ... X X[gir] as covering transformations of f. But Ker(a)
acts trivially on Xz X ... X Xgirj. This means that pg X ...uq acts on Xigiy) X ... X X(gir,
which is nothing but the Galois group of the map f. Since Coker(c) = Ker(3), the finite
covering

(X[dil} X ... X X[dzr])/H — O[dil} X ... X O[dir}
is a cyclic covering of degree d.
Claim 1.10.1. The adjoint action of L on O[dil} X ... X O_[dir] lifts to an action on
(X[dil] X ... X X[dzr])/H
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Proof. Define a subgroup T of L by

t11;,4 0 .0 0

0 t2][z’2d} 0 0 ‘ '
r—¢| . . ey

0 0 o troali 4 0

0 0 0 toli q

Then the inclusion SL(i1d) x ... x SL(i,d) — L induces an isomorphism (SL(i;d) x ... X
SL(i,d))/H = L/T. Since (SL(i1d) x ... x SL(i,d))/H acts on (Xgi) X ... X X{gir))/H,
L acts on (Xgin) X ... X X(gir)/H, which gives a lift of the adjoint action. [J

By Claim [LI0TL Qsy4,....i,a acts on n+4 (X g X ... X X(gir))/H. Then we have a cyclic

SL((Z1 + ...+ ’Lr)d) XQild """ ird (ﬂ + (X[dzl] X ... X X[d’br])/H)
— SL((’Ll + ...+ Z,«)d) XQlld """ ird (ﬂ-'- O[dzl] X ... X O[d"])

of degree d. O
Now look at a nilpotent orbit O @) C sl(jrdi+...+jrdy). Put d := ged(dy, ..., dy).
Then the dual partition of [d)', ..., dJ*] can be written as the form [i¢, ..., by using

suitable set of positive integers {i1,...i,}. Here the same number may possibly appears
more than once in {4y, ...,4,}. For example, the partition [9,6] has the dual partition
23,23, 1%]. Note that 3 = ged(9,6). The dual partition of i (j = 1,...,r) equals [d%] (j =
1,.. ) Now let us consider the product of the nilpotent orblt closures O [din] X oo X O[dw

in sl(zld) - x sl(ipd). Then SL((iy + ... +14,)d) xQidird (n4 Opgiy X ... X O[dw]) gives

a crepant partial resolution of O @1
Construction of a Q-factorial terminalization: Let X — O (1] be the finite

covering associated with the universal covering of O[ L By using Example LI
1 k

we have a commutative diagram

SL((iy + ... + dp)d) xQndird (n 4 (Xpgn) X oo X Xgi))/H) —— X

/| 1w

SL((Z1 + ...+ ZT)d) XQild """ ird (n+ O[dil] X ... X O[dlr]) E— O[dil ..... dik]

Since Xgi) X ... X X[gir] has terminal singularities and the fixed locus of each nonzero
element of H has codimension > 4, (X417 X ... X X|4i]) / H has only terminal singularities.
Since Xjginy X ... X Xgir) is Q-factorial, (X} X ... X X{gir))/H is Q-factorial by Lemma
[L.4 Therefore p gives a Q-factorial terminalization of X.

Next assume that X — O[ & ] is the finite covering associated with an etale
1 k

covering of O @] of degree e. We put f := d/e. In this case we take instead the

.....

product of nilpotent orbit closures O/ x O

i) X feir] and consider the finite covering

Xxf x XX = O[X-f}x x O

1] e
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The situation being the same as the previous case, we define similarly a subgroup H of
ujlﬁ X ... X ;.. Then we have a commutative diagram

SL((ir + -+ i,)d) x OG0l il (4 (XS < ox XEL)H) = X
7T/J/ Wl (10)
SL((iy + .. + ip)d) X007 (np OFF x o x OF) —— O
[e1] feir] ()

and p gives a Q-factorial terminalization.

Corollary 1.11. Let 7 : X — O be the finite covering associated with a nontrivial etale
covering of a nilpotent orbit O of sl(d). Then X has no crepant resolutions except when
7 is the double covering C* — Oy C sl(2).

2 g=sp(2n)

We write a partition p of 2n as [d", (d — 1)™-1,...,2" 1™] with r4 # 0. Other r; may
possibly be zero; in such a case ¢ does not appear in the partition. If r; > 0, then we call
i a member of the partition. Each nilpotent orbit of sp(2n) is uniquely determined by
its Jordan type. Such a Jordan type is a partition p of 2n with all odd members having
even multiplicities (cf. [C-M], §5). Conversely, for each such partition p of 2n, there is
a nilpotent orbit with Jordan type p. Let b be the number of distinct even members of
p. Then we have

Proposition 2.1. (1) m(0,) = (Z/2Z)%".
(2) Assume that r; # 2 for all even members i of p. Then X is Q-factorial for any
etale covering X — O,.

Proof. Put G = Sp(2n). Let z € Op and take an sl(2)-triple ¢ in sp(2n) containing
x. Put
Sp(ri) A= {(A, ..., A) € Sp(r:)*' | A € Sp(r:)}

and

O@r) Xt :={(A,..,A) € O(r;))“" | A € O(r;)}.
By [C-M, Theorem (6.1.3)] we have

G‘z’%HSpr,Ax HOT,X’.

i:odd ireven

Hence

(G =TT Sp(rax x J] So@r)x'.

i:odd i:even

An important remark is that each factor of the right hand side is a simple Lie group
except that SO(2) = C* and SO(4) is a semisimple Lie group of type A; + A;. Since
m1(0p) = G?/(G?)°, (1) is clear from the above. If the condition of (2) holds, then
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(G?)° does not have SO(2) as a factor; hence x((G?)°) = 0. The etale covering X° of
O, can be written as G/H for a suitable subgroup H with (G?)° C H C G?. By the
same argument as in Proposition (1.1), (2) we see that Pic(G/H) is a finite group, which
means that X is Q-factorial. [

Example 2.2.

Let Oy be the regular nilpotent orbit. By Proposition 211 (1) we have 71 (Ojgn)) =
Z/27. Let X — Opp be the double covering associated with the universal covering
X% — Opyy. Put the n x n matrix

0 0 O 1

0 0 1 0
JIp =

0 1 0 0

1 0 0 0

Then
Sp(2n)-{A€GL(2n)\A(_Jn 0 A= 70 }.
Now let us consider the isotropic flag
0cC <€1> C <€1,62>... C <61,62, ...,62n_1> C C2n

and let Qyn-191n-1 be the parabolic subgroup of Sp(2n) stabilizing the flag. Let U be
the unipotent radical of ()yn-151n-1. One has a Levi decomposition Qin-191n-1 =U - L
with

tt 00 ... .. .. .. .. 0
0 ta 0 . o o . .0
0 . 0 they O o o .. 0

L:{ 0o ... .. 0 A 0 0 |t1,...,tn_1€C*,AESP(Q)}.
0 o o o 0 Y 0 .. 0
0 o i e P00
0 oo v e e 0t

The Lie algebra [ decomposes into the direct sum
[=gl(1)®" " @ sp(2).
Take a nilpotent orbit Oy of sp(2). Then we have a crepant partial resolution
Sp(2n) x@im=t2an-1 (n 4 0[2}) — O[gn].

Let C? — O[g] be the double covering associated with the universal covering of Oyy.
The adjoint action of Sp(2) on Oy lifts to an action on C?. Since there is a natural
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projection L — Sp(2), L acts in the adjoint way on O[g], which lifts to an L-action on
C2. This means that Qyn-191n-1 acts on n+ C?. Then we have a commutative diagram

Sp(2n) x@n-tean-t (n4 C?) L5 X

nfl wl (11)

Sp(2n) XQ1"’1»2’1"71 (n+ 0[2}) —_— O[gn}

The map p is a crepant resolution of X. [

Let us consider a partition p = [d", (d — 1)™-*,...,2" 1™] of 2n such that

(i) r; is even for each odd i, and

(ii) r; # 0 for each even i.

For example, the partitions [52,4,2] and [6,4,2, 1] satisfy these conditions, but
8,4,2,1%] does not satisfy (ii) because 6 does not appear. If d is even, then all d,
d—2,d—4, .., 2 must appear in the partition. If d is odd, then all d — 1, d — 3, ..., 2
must appear in the partition. The following is a key proposition.

Proposition 2.3. Let p be a partition satisfying (i) and (ii). Let m : X — O, be the
finite covering associated with the universal covering of Op. Then CodimySing(X) > 4.

Proof. Let i > 1 be a member of p such that r;,_; = 0. This means that p has the

form
[d", .. d" (0 —2)" 2 (0 —3)" 2, 1T

Such an i is called a gap member. By the condition (ii) any gap member must be even.
For a gap member i, one can find a nilpotent orbit Op C O, with

p=[d4 .. i" " (i—1)% (G —2) 2t (= 3)E, L, 1.

By Kraft and Procesi [K-P], 3.4 we see that Codimg Op = 2 and the transversal slice
S for Op C Op is an Aj-surface singularity. Note that S is a quotient singularity
(C%/(Z/2Z),0). Then we have a double cover (C?,0) — S.

Let {iy,1s,...,11} be the set of all gap members of p. As defined above, for these gap
members, we have nilpotent orbits

Op, s -, Op,.-

Notice that Op,, ..., Op, are nothing but the irreducible components of Sing(O,) which
have codimension 2 in Op. To prove that CodimxSing(X) > 4, we only have to show
that X is smooth along w‘l(Ol—,j) for each 1 < j < k. Let S; be the transversal slices
for Op, C Op. Then it is equivalent to showing that 71(S;) are disjoint union of finite
copies of (C?,0).

The gap member is closely related to the notion of induced orbits. There are two
types of inductions:

(Type I): Let ¢ be a gap member of p (which may possibly be odd or even). Put
r:=rg+..+r; and let Q C Sp(2n) be a parabolic subgroup of flag type (r,2n — 2r,r)
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with Levi decomposition ¢ = n @ [. Notice that [ = gl(r) @ sp(2n — 2r). There is a
nilpotent orbit Oy of sp(2n — 2r) with Jordan type

p =[(d—2)" ...,(1 —2)" "2 (1 = 3)"3 17
such that Op = Indf(Oy). Notice that p’ satisfies (i).
Claim 2.3.1. (¢f. [Hé], Theorem 7.1, (d)). The generalized Springer map

w:Sp2n) x9 (n4 Oy) — O,
18 a birational map.

Proof. This is true for any partition p with the condition (i). We write p as
[dy,ds, ...,ds] with d; > dy > ... > dy > 0. The partition p determines a Young di-
agram Y (p). By definition Y (p) is a subset of Z2, such that (I, j) € Y(p) if and only if
(1, ) satisfies 1 <1 < d;.

We can take a basis {e(l, j) }ujev(p) of C*" so that

(a) {e(l,j)} is a Jordan basis for z, i.e. z-e(l,7) = e(l—1,j) forl > 1 and x-¢e(1, j) = 0.

(b) (e(l,7),e(p,q)) # 0 if and only if p = d; — 1+ 1 and ¢ = ((j). Here § is a
permutation of {1,2, ..., s} such that 5 = id, dg; = d;, and S(j) # j if d; is odd. The
basis {e(l,j)} are the same one as in [He], 5.1 (cf. [S-S], p.259, see also [C-M], 5.1). The
notation in [S-S] is slightly different, but we here employ the notation in [He], 5.1.

Put F:= 37, Ce(1,j). Then F' C F* is an isotropic flag such that z- F' = 0 and
x-C? C Ft and x is an endomorphism of F*/F with Jordan type p’. This is actually
a unique isotropic flag of type (r,2n — 2r,r) satisfying these properties. Hence pu~!(x)
consists of one element. [

(Type II): Let i be an even member of p with r; = 2. Put r := rg+...4+7;_1+1 and let
@ C Sp(2n) be a parabolic subgroup of flag type (r,2n — 2r,r) with Levi decomposition
q = nd[. Notice that [ = gl(r)@®sp(2n—2r). There is a nilpotent orbit O of sp(2n—2r)
with Jordan type

p/ _ [(d _ 2)7’(1’ . Z'm+2’ (Z _ 1)7“i+1+2+7“i—1’ (Z _ 2)7’1-,2’ s 17’1]

such that O, = Ind}(O,). Notice that 7,41 + 2+ 7,1 is even because i is even; hence p’
satisfies the condition (i).

Claim 2.3.2. (¢f. [Hé], Theorem 7.1, (d)). The generalized Springer map
o Sp(2n) x9 (n+ Op) — O,
1s generically finite of degree 2.

Proof. Fix an element x € Op, and take the same basis {e(l, j)} of C™ as the previous
claim. We may assume that the permutation § satisfies 3(r) =7+ 1 and f(r +1) =r
after a suitable change of the basis.

We put F':= >, ., Ce(l,7). Then F C F* is an isotropic flag such that - F =0
and z - C* C F*+ and z is an endomorphism of F'+/F with Jordan type p’.
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On the other hand, put F":= 37 ... ;. Ce(1,7). Then F' C (F")* is an isotropic
flag such that x - FY = 0 and x - C?** C (F')! and z is an endomorphism of (F')+/F’
with Jordan type p’.

The isotropic flags of type (r,2n — 2r,r) with these properties are exactly two flags
above. Indeed, at first, it can be checked that such a flag F' contains the subspace
> i<jer_1 Ce(1, 7). Then F is written as

F= " Ce(l,j)+Clae(l,r+1)+ Be(L,r))

1<5<r—1

Ft= Z Ce(l, j) + C(ae(l,r + 1) — Be(l,1)).

1< <r—1,1<I<d; -1

If o and 3 are both nonzero, then '~ (ae(i,r + 1) — Be(i,r)) # 0. This contradicts that
r is an endomorphism of F+/F with Jordan type p’. Therefore, « =0 or 3 = 0.

Assume that Q is the parabolic subgroup of Sp(2n) stabilizing the flag F' C F*. We
have an Sp(2n)-equivariant (locally closed) immersion

1 Sp(2n) x9 (n+ Oy) C Sp(2n)/Q x sp(2n), [g,y] = (9Q, Ady(y)).

Consider (F C F+,z) and (F' C (F')*, z) as elements of Sp(2n)/Q x sp(2n). Note that
L([lvxD = (va) = (F - Fva)'

We want to prove that (F' C (F)*,z) is also contained in Im(:). Let Q" be the
parabolic subgroup stabilizing the flag I/ C (F’)t. Then one can write Q' = gQg~* for
some g € Sp(2n). Let ¢ =n' @' be a Levi decomposition. By definition x € n' + Oy,
where O, is a nilpotent orbit in I with Jordan type p’. Then g~'zg € n+ g0}y,
where g_lO;,,g € g l'g. The Lie algebra g~!l'g is a Levi subalgebra of q. Hence [ and
g_lO;, g are conjugate by an element of (). By changing g by g¢' for a suitable ¢’ € @,
we may assume from the first that g_lO;), g C [. Since g_lO;), g and Oy have the same
Jordan type and the nilpotent orbits of sp(2n — 2r) are completely determined by their
Jordan types, we see that g_lO{D, g = Op. This means that

r, g 'rg €n+ Op.

The Q-orbit of z and the Q-orbit of g~'zg are both dense in n + Op. Hence they
intersects. In other words, there is an element ¢ € @ such that g~ 'zg = qrg~!. Then gq €
Zspany(z) and Q" = (99)Q(gq)~*. Now let us consider an element [gq,z] € Sp(2n) x<
(n + Op). Then u([gg, 2]) = (9Q, ) = (F' C (F)*,z). O

Let {i1, 12, ...,7;} be the set of all gap members of p and let i; be one of them. Put
r:=r4+..+r; and let Q; C Sp(2n) be a parabolic subgroup of flag type (r, 2n —2r,7)
with Levi decomposition q; = n; @ [;. There is a nilpotent orbit Opg_ of [; with Jordan

type
P =[(d—2)", ..., (i — 1), (35 — 2)"5 752 (35 — 3)769 .., 17]
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such that Op = Ind[g(Opg_). We have a generically finite morphism called the generalized
Springer map B B
i Sp(2n) X9 (n; + Op;) = Op.

By the previous claim, p; is a birational morphism. Let b} be the number of distinct
even members of p’. Then 0} = b — 1. This, in particular, means that

m(Opy) = (Z/22)%7".

Let ng — Op; be the finite covering associated with the universal covering of Op;_.
Then n; + ng is a @Qj-space; hence we get a (Z/2Z)%~1-covering map

m; : Sp(2n) x9 (n; + Xp;) = Sp(2n) x 9 (n; + Op,)

Let X be the Stein factorization of ji; o 7. Then we have a commutative diagram

Sp(2n) x% (n; + Xp) — X,
W;l wjl (12)
Sp(2n) x@ (n; + Op) —— Op

By definition 7; is a (Z/2Z)%"'-covering and X factorizes 7 as
X &> Xj g Op,
where p; is a Z/2Z-covering.

Claim 2.3.3. (1) u; is a crepant resolution around Op, C Op. In other words, uj_l(Sj)
is the minimal resolution of the A;-surface singularity S;. On the other hand, p; is an
isomorphism over open neighborhoods of Og,, ..., Op._,, Op..,, --., Op,. In other words,
the maps /J,J_I(Sl) — Sl, ey ,uj_l(Sj_l) — Sj_l, ,uj_l(SjH) — Sj+1, ey /J,J_I(Sk) — Sk
are all isomorphism.

(2) 7rj_1(5j) is a disjoint union of 2°=1 copies of S;. w1(S;) is a disjoint union of
201 copies of (C2%,0). In other words, 7 15 an etale cover over an open neighborhood of
Op, C Oy, and p; is a ramified double covering over an open neighborhood 0f7rj_1(01—,j) C
X;.

Notice that Claim [Z33], (2) implies Proposition 23]
Proof. (1) The gap members of p/; are

il — 2, ceuy ij—l - 2, ij+1, ,Zk
For the later convenience we put

-/ e »/ e -/ e »/ e
U =0 = 2 g = e = 2 Gy 1= g e b 2= U
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Corresponding to these gap members, we get nilpotent orbits O(H)l’ o O(;)j iy O(F)jﬂ’

— _ J VGO J

s Oy, I Opr . These are irreducible components of Sing(Opé_) which have codimension
b

21in Op;. Foreach 1 <1<k (I # 7), we have a natural embedding

Sp(2n) x9 (n; + O(p—g)l) C Sp(2n) x9 (n; + Op,).

One can check that B B
pi( Sp(2n) 9 (n; + O(;;)l) ) = Op,.

From this fact we see that there is an irreducible component of Sing( Sp(2n) x% (n; +
Opg) ) which dominates Op, for each [(# j), but there is no irreducible components of
Sing( Sp(2n) x9 (n; + O_pg) ) which dominates O,

Since p; is a crepant partial resolution of O, and O, has A;-surface singularity along
Op,, this means that z; is an isomorphism over an open neighborhood of Op, C O, for
[ # j, but p; is a crepant resolution around Op; C Op.

(2) Since p; is a crepant partial resolution and 7T;» is etale in codimension 1, the partial
resolution p; is a crepant partial resolution. By (1) there is a jj-exceptional divisor E of
Sp(2n) x9 (n; + Op,) which dominates Op,. Then (75)~H(E) is a p-exceptional divisor
of Sp(2n) x%i (n; + Xp;) which dominates 7Tj_1(01—,j). If 7; is ramified over Op,, then
Xj is smooth along 7, 1(Of,j Z This contradicts that ) is a crepant partial resolution.
Hence 7 is unramified over Op,, which is nothing but the first statement of (2). Next
suppose that the second statement of (2) does not hold. Then p; is etale over an open
neighborhood of 75 (Op,) C X;. Let (Op)” be an open set obtained from Oy, by excluding
all irreducible components of Sing(Op) different from Op,. We put X? := 7:'((Op)?).
Then p; (X)) — X? is an etale cover. On the other hand, let ng_ be the universal
covering of Op/. Then Sp(2n) xQi (n; + ng_) is simply connected. In fact, we have an

exact sequence
m(n; + Xg}) — m(Sp(2n) x Qi (n; + Xg})) — m(Sp(2n)/Q;) — 1

Since 7 (n; + X&) = {1} and m (Sp(2n)/Q;) = {1}, we have the result.

For | # j, u; is an isomorphism over an open neighborhood of Oy, C O, by (1).

By Zariski’s Main Theorem p is also an isomorphism over an open neighborhood of

7;'(Op,) C X;. Moreover, i is a crepant resolution around 7 1(Opg) C X;. Write

OPZOpl_lOI—,lLILIOI—,kI_IF,
where F is the union of all nilpotent orbits in O, with codimension > 4. Then
Sp(2n) x % (nj+Xp ) = (mjop)) " (Op)U(mjop) ™ (Op, )U...U(mjop}) ™ (Op, )U(mjop) ~ (F).

For | # j, we see that (m; o uj)~"(Op,) has codimension 2 in Sp(2n) x% (n; + Xp).
Moreover, since Codim Xj7rj_1(F ) > 4, we also see that (m; o u})~'(F) has codimension
> 2 by Corollary 0.2l This means that (u;) ™" (7; ' (OpUOp,)) is obtained from Sp(2n)x <
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(nj + Xp;) by removing a closed subset of codimension > 2. Since (,u;)_l(ﬁj_l(Op UOsp,))
is smooth, it is contained in Sp(2n) x% (n; + X;zg). This implies that (uf)~'(X7) is
obtained from a smooth variety Sp(2n) x% (n; + X:)Zg) by removing a closed subset of
codimension > 2. There is a surjection map

T (Sp(2n) x ¥ (n; + X3)) — mi(Sp(2n) x¥ (n; + XTF)).

As already shown, the left hand side is trivial; hence, the right hand side is also trivial.
Now we have

() (X)) = m(Sp(2n) <P (n; + X ) = {1}.

Since 11} is birational, 7 (X?) = {1}. This contradicts that p;'(X?) is a (connected)
etale cover of X7 of degree 2. [

We here consider an additional condition for p:
(iii) r; # 2 for each even 1.

Corollary 2.4. Let p be a partition satisfying (i), (ii) and (iii). Let w: X — O, be the
finite covering associated with the universal covering of Op. Then X has only Q-factorial
terminal singularities.

Proof. By the condition (iii), X is Q-factorial by Proposition 21l (2). Then the
result follows from Proposition 2.3 [J

Construction of a Q-factorial terminalization: Let O, be an arbitrary nilpotent
orbit closure of sp(2n), and let X — O, be the finite covering associated with the
universal covering of Op. We shall construct explicitly a Q-factorial terminalization of
X. Since p is a Jordan type of a nilpotent orbit, p satisfies the condition (i). Let b be
the number of distinct even members of p.

By using the inductions of type (I) repeatedly for p, we can finally find a parabolic
subgroup @ of Sp(2n) and a nilpotent orbit O of a Levi part [ of q such that

(a) Op = Ind;"®” (Oyy).

(b) p’ satisfies the condition (ii), and ¥ = b (where V' is the number of distinct even
members of p’).

Notice that [is a direct sum of a simple Lie algebra sp(2n’), some simple Lie algebras
of type A and the center. Op is a nilpotent orbit of sp(2n’).

For the partition p’ thus obtained, we let e be the number of even members i of p’
such that r; = 2. By using the inductions of type (II) repeatedly for p’, we can finally
find a parabolic subgroup @’ of Sp(2n’) and a nilpotent orbit Oy~ of a Levi part I’ of '
such that

() Opr = Ind? ") (Op0),

(b’) p” satisfies the conditions (ii), (iii), and " = b’ — e (where 0" is the number of
distinct even members of p”).

All together, we get a generalized Springer map

i Sp(2n) x9" (0 + Opr) — O,
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where i is generically finite of degree 2°=*". Let 7 : X" — O be the finite covering
associated with the universal covering of Op». By Corollary 2.41 X" has only Q-factorial
terminal singularities. Note that deg(n”) = 2. There is a finite cover

71 Sp(2n) x9" (0 + X") — Sp(2n) x¢" (" + Opr)

of degree 2. Then the Stein factorization of u” o 7" coincides with X. We have a
commutative diagram

Sp(2n) x (' + X") —— X

-] | (13)

Sp(2n) XQ” (n” -+ Op//) l/«—> Op

The map Sp(2n) x@" (n” + X”) — X here obtained is a Q-factorial terminalization
of X.

Examples 2.5.

(1) Let us consider the nilpotent orbit Oz 42) C sp(20) and let 7 : X — 0[627421 be
the finite covering associated with the universal covering of O 42. We have deg(7) = 4
by Proposition 2.1 (1). We shall construct a Q-factorial terminalization of X and we
shall show that it is actually a crepant resolution.

Let Q4124 be a parabolic subgroup of Sp(20) with flag type (4,12,4). Let q4104 =
n4124®ly12.4 be a Levi decomposition. Then [y 124 = sp(12) D gl(4) and Oz 42) is induced
from the nilpotent orbit Oz 92) C sp(12). This is a type I induction, and the generalized
Springer map

Sp(20) x Q124 (ng124 + 0[42,22}) - 0[62,42}
is a birational map. Let Q1101 be a parabolic subgroup of Sp(12) with the Levi decom-
pOSitiOl’l q1,10,1 = M1,10,1 @D [1,10,1. Then [171071 = Sp(lO) @D g[(l) and 0[42722] is induced from
Os2,22) C sp(10). This is a type II induction. Hence we get a generically finite map of
degree 2

Sp(?()) XQ4’1’1O’1’4 (ﬂ4717107174 + 0[32’22}) — Sp(QO) XQ4’12’4 (n471274 + 0[42722}).

Let (D343 be a parabolic subgroup of Sp(10) with flag type (3,4, 3) with a Levi decom-
position gs43 = N33 @ l343. Then [543 = sp(4) ® gl(3) and O3z 2] is induced from
Ops) C sp(4). This is a type II induction, and we get a generically finite map of degree
2

SP(QO) X @41,3:4,31,4 Ng134314 SP(20) X ©41,10,1.4 (ﬂ4,1,10,1,4 + 0[32,22])-

777777

We can illustrate the induction step above by
Typell Typell Typel
([14], 8]9(4)) }g (0[32,22], Sp(lO)) }g (0[42,22], Sp(lz)) E} (0[62,42}7 8]9(20))
Composing these 3 maps together, we have a generically finite map of degree 4

Sp(20) x@rr34384 ny 1 4514 — Ojge 2.
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777777

of X.

(2) Letm: X — (7)[875274732} be the finite covering associated with the universal covering
of Os52,432. By Proposition 21} (1) we have deg(m) = 4. We can take the following
inductions

Typel Typel
(0[4,32,2,12}73]9(14)) = (0[6,52,4,32}73]9(26)) = (0[8,52,4,32]7517(28))'

Note that in each step the number of distinct even members does not change, and the
partition [4,3%, 2, 1%] satisfies the conditions (i), (i) and (iii). Let Xy 32912 = Ouz2.212
be the finite covering associated with the universal covering of Oy 329 :2). By Corol-
lary 24, X322 has only Q-factorial terminal singularities. Then Sp(28) x@16.14.6:1
(n1,6,14,6,1 + Xja,32.2,12)) gives a Q-factorial terminalization of X. [J

3 g=so(m)

We write a partition p of m as [d", (d — 1)™-1,...,2" 1™] with r4 # 0. Other r; may
be possibly zero; in such a case i does not appear in the partition. If r; > 0, then we
call 7 a member of the partition. Let O be a nilpotent orbit of g. Then its Jordan type
p is a partition of m such that all even members have even multiplicities (cf. [C-M],
§5). When p consists of only even members, we call p very even. If p is not very
even, then the orbit O is uniquely determined by the Jordan type p, and we denote by
Op the nilpotent orbit. On the other hand, if p is very even, there are two nilpotent
orbits with Jordan type p. The two orbits are conjugate to each other by an element of
O(m)\ SO(m). When we want to distinguish them, we denote them by O, Oy, but we
usually denote by Oy, one of them. A partition p is called rather odd if all odd members
have multiplicity 1. Note that a very even partition is rather odd. Let a be the number
of distinct odd members of p. When g = so(2n + 1), we always have a > 0, but when
g = so(2n), we may possibly have a = 0.

Proposition 3.1. (1) If p is not rather odd, then
m1(0p) = (2,/22)Fmex(a=10),
If p is rather odd, then there is a short eract sequence
1 = Z/27 — 71 (0p) — (Z/2Z)%x(a=10) _; 1

so that Z/2Z is contained in the center of m (Op).
(2) Assume that r; # 2 for all odd members i of p. Then X is Q-factorial for any
etale covering X° — O,.

Proof. (1) Put G = Spin(m). There is a double covering p,, : G — SO(m) and
g = so(m). Take an element x from O, and take an sl(2)-triple ¢ in g containing x. By
[C-M, Theorem (6.1.3)] SO(m)? is isomorphic to

SCIT e < [] 00rs) =

i:even i:odd
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{((IT A TI B € T Sprax' < [T ot | I det(B,,) = 1}.
iceven i:odd i:even i:odd 1:odd
Then G? = p,'(SO(m)?); hence G? is a double cover of S([T;.cyen Sp(rl)” X[ Lioqq O )Z’)
When p has only even members, S([[;...on SP(T) A" X [Li0aqa Oi)A") = [ Licven Sp(rl)zl,
which is connected. When p has some odd members, S([[;.oven SP(Ti) A X [ 1000 O(1i) A7)
has 2¢~! connected components. Therefore, in any case, S([ [;.cven SP(Ti) A X Ti0qq O (1) X
has 2m2x(@=1.0) connected components.

If p is not rather odd, then the identity component of S(IT..ccen SP(Ti) A X[ T1.00q O(Ti) A7)
i8 [Lieven SPr) A" X Tlioqq SO(ri) A", Note that m,(SO(r;)) = Z/2Z for r; > 2 and
m(SO(2)) = Z. For an odd i with r; > 2, there is a unique surjective homomorphism
¢; : 1 (SO(ry)X") — Z/2Z. We then have a surjection

So: [[ m(s0m)5) — z/22.

icodd, r; >2

The left hand side is identified with 7 ([];.cven SP(Ti) X" X T10ad SO(ri)Zi). Therefore
it determines a connected etale double covering of [[; . en Sp(ri) X x Tlieaq SO(ri) A%
One can check that pp!(IT;.cven SP(Ti) X" X [Tioaq SO(1:) K1) is such an etale covering.
Hence p;,t (S(Ij.even SPT) AT X [Tioqq O(ri) X7)) has 2m2x(@=L0) connected components. If
p is rather odd, then each connected component of S(IT;...en SP(Ti) X' X [Li.0qq O (i) A7) is
isomorphic to [, SP(7:) A, which is simply connected. Hence ;' (S([T;.even SP(7i) A" X
[Ti0aa O(ri) A7) has 2 - gmax(a=10) connected components.

(2) If p is rather odd, (G?)° is isomorphic to [[;..en SP(ri) A" Then x((G?)%) = 0. If
p is not rather odd, then (G?)° is a double covering of [],...c, SP(Ti) X' X [Ts.0qq SO(ri) A"
Note that SO(r) is a simple Lie group except that SO(2) = C* and SO(4) is a semisimple
Lie group of type A; + A;. This means that, if r; # 2 for all odd 4, then

l_ISprZ ><1_[SO7“ZXZ

i:even i:odd

Then the short exact sequence

1 —Z/2Z — (G*)° — l_ISprZA xHSOn )X

i:even i:odd

yields an exact sequence of character groups

(I] Sp(rax < [T SOt)x)) = x((G*)°) = x(2/22).

i:even i:odd

The 1-st term is zero by the observation above, and the 3-rd term is a finite group. Hence
x((G?)%) is also finite. As a result, x((G?)?) is finite in any case under the assumption
(2). The remainder is the same as in the proof of Proposition (1.1), (2). O

Let 7 : X — O, be the finite covering associated with the universal covering
of Op and 7 : Y — Op a finite covering determined by the surjection m(Op) —
(Z/2Z)%max(@P)=1.0) in Proposition B.I] (1).
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Proposition 3.2. The adjoint action of SO(m) on Oy lifts to an SO(m)-action on'Y.
If p is not rather odd, then X =Y. If p is rather odd, then X is a double cover of Y
and the SO(m) action on'Y does not lift to an SO(m)-action on X.

Proof. Put X° := 771(0,) and Y := 771(0,). Choose z € Op,. By the proof
of Proposition Bl the double cover p,, : Spin(m) — SO(m) induces a double cover
(Spin(m)®)° — (SO(m)®)" when p is not rather odd, and induces an isomorphism
(Spin(m)®)° = (SO(m)*)° when p is rather odd. In any case, Y? = SO(m)/(SO(m)*)°.
Hence SO(m) naturally acts on Y. Since I'(Y,0y) = T'(Y?, Oy0), SO(m) acts on
Y. The natural SO(m) action on SO(m)/SO(m)* is nothing but the adjoint action of
SO(m) on Op. This means that the SO(m)-action on Y is a lift of the adjoint SO(m)-
action on Op. Therefore the SO(m)-action on Y is a lift of the adjoint action of SO(m)
on Op,.

Assume that p is not rather odd. Then

XY = Spin(m)/(Spin(m)*)° = SO(m)/(SO(m)*)° = Y°.
Hence X =Y. (

0 7_) .
Assume that p is rather odd. Then 7° factorizes as X° % Y° =5 O,,. Let us consider

the composite SO(m) x X° — Y of the map SO(m) x X° idxg? SO(m)xY? and the map
SO(m)xY? — Y determined by the SO(m)-action on Y. The map SO(m)x X® — Y?°
lifts to a map to X° if and only if m;(SO(m) x X°) — m(Y?) is the zero map. Take a
point Z € X such that 7°(%) = x. Then the maps

SO(m) x {#} = SO(m) x X° = Y°
induces homomorphisms of fundamental groups
m1(SO(m) x {#}) = m (SO(m) x X% = 7, (Y?) = Z/2Z.

Since m(X°%) = 1, the first map is an isomorphism. Since SO(m) x {z} is a fibre
bundle over Y with a typical fiber (SO(m)®)°, the map 71 (SO(m) x {Z}) — m (Y?)
is a surjection. As a consequence, m(SO(m) x X°) — m(Y?) = Z/2Z is a surjection.
This means that the SO(m)-action on Y does not lift to an SO(m)-action on X°. [J

Lemma 3.3. Assume that p is not very even. Then the adjoint action of O(m) on O
lifts to an O(m)-action on Y .

Remark. A lifting of an O(m)-action is not unique.
Proof. We fix an element z of O, and an sl(2)-triple ¢ containing x. Then O(m)? is

isomorphic to ‘ ‘
[T sprx = [] 05 =

i:even i:odd
{((TT A2 T B2 € T Sptra) x T o(r).
i:even i:odd iceven i:odd

Note that

(O(m)?)" = H Sp(ri) A" X H SO(r;)x".

i:even i:odd
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Since p is not very even, there is an odd member 7. We put

1o = [[ sptrax < T 506a)x < 005",

i:even i:odd#ig
and H* = U* - H?. Then we have an isomorphism
YY:= SO(m)/(SO(m)*)* = O(m)/H*".

The right hand side has a natural O(m)-action. This O(m)-action determines an O(m)-
action on Y. U

Let us consider the following conditions for a partition p of m.

(i) r; is even for each even .

(i) r; # 0 for every odd i.

Proposition 3.4. Let p be a partition of m which is not rather odd. Assume that p
satisfies the conditions (i) and (ii). Let X — Oy be the finite covering associated with
the universal covering of Op. Then CodimxSing(X) > 4.

Proof. Notice that the conditions (i) and (ii) are replacements of the conditions (i)
and (ii) in the previous section where the roles of odd and even members are reversed.
In this sense, this proposition is an SO(m)-analogue of Proposition 23] By virtue of
Proposition B.2 this proposition is proved completely in the same way as Proposition
O

When p is rather odd, we encounter a different situation as the following example
illustrates.

Example 3.5.

In this example, we show that a usual induction step (cf. §2) does not work well for
a rather odd partition p. Put the m x m matrix

0 0 0 .. 1

0O 0 .. 1 O
Im =

0 1 0 0

10 0 0

Then
SO(m) ={Ae€ SL(m)| A'"JA = J}.

Fix positive integers sy, ..., Sk, ¢ so that m = 25" s; 4+ ¢. Assume that ¢ > 3. Let Q' be a
parabolic subgroup of SO(m) fixing the isotropic flag of flag type (s, ..., Sk, @, Sk, -+, S1)

0 C {e1, - €s,) C (€1, €5i155) C oo C (e, €5k ) C (€1, o €53k, 1 0)

C <€17-.-7ezifsi+q+sk> C ... C <€1, ”"ezlfsi‘i'Q‘i‘Zlfsi) — Cm
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One has a Levi decomposition Q' = U’ - L' with

A, 0 0 0
0 A 0 0
0 .. 0 A 0 ... .. .. 0
LI'={l 0 .. .. 0 B 0 .. .. 0 ||A€GL(s;),A =J, (A) ', BeSO(q)}
0 0 A, 0 0
0 o e ALD
0 i i e e 0 A

In particular, L' = [TGL(s;) x SO(q). Let Q := p,.)'(Q") and L := p, (L) for p,, :
Spin(m) — SO(m). The Lie algebra [ of L is isomorphic to @gl(s;) & so(q). Let
p’ be a rather odd partition of ¢ such that a(p) = a(p’) and let Oy be a nilpotent
orbit of so(q) with Jordan type p’. Assume that p’ is obtained from p by a succession
of type I inductions and Op = Ind{”"™(0O,). For an odd s;, we consider the map
SL(s;) x C* — GL(s;) determined by (X,\) — A2X. This is a cyclic covering of
order 2s;. The cyclic group fiss, acts on SL(s;) X C* so that (X,\) = ((.2X, (o5, A)
for a primitive 2s;-th root (s, of unity. Let us consider a unique subgroup g, of pas,
of order s;. Then SL(s;) x C*/us, — GL(s;) is a double cover of GL(s;). For an
even s;, we consider the map SL(s;) x C* — GL(s;) determined by (X,\) — AX.
This is a cyclic covering of order s;. The cyclic group p,, acts on SL(s;) x C* so that
(X,A) = (¢;'X, ¢, A) for a primitive s;-th root (,, of unity. Let us consider a unique
subgroup i, /2 of s, of order s;/2. Then SL(s;) x C* /s, /2 — GL(s;) is a double cover
of GL(s;). Here we put t; = s; when s; is odd, and put ¢; := s;/2 when s; is even. We
then have a covering map

(SL(s1) X C*)/puty X ... X (SL(s) X C*)/ e, x Spin(q) — GL(s1) X ... x GL(sg) x SO(q).

The Galois group of this covering is (Z/2Z)%*+1. Put H := Ker[(Z/2Z)%*+1 X Z/27],
where Y is defined by (z1, ..., Tx11) = D ;.

Claim 3.5.1.
L = {(SL(s1) x C*) /g, % ... x (SL(sy) x C*)/ s, x Spin(q)} | H.

Proof. We first prove that p '(GL(s;)) = (SL(s;) x C*)/u, and p 1(SO(q)) =
Spin(q). For each 1 < j < s1 + ... + sx, we consider the non-degenerate quadratic sub-
space V; := (€j, emi1-;) of C™. Then SO(V}) is a subgroup of SO(m) and p;,}(SO(V;)) =
Spin(V;) (cf. [E=H], (20.31)). Note that GL(s;) contains some SO(V;). Since p,,' (SO(V}))
is connected, we see that p '(GL(s;)) is a connected double cover of GL(s;). Since
m(GL(s;)) = Z, we have a unique surjective homomorphism m (GL(s;)) — Z/2Z.
This means that p,'(GL(s;)) = (SL(s;) x C*)/us,. Since the ¢ dimensional sub-
space <elec si1s - O3k si+q) 15 a non-degenerate quadratic space, we have p,,'(SO(q)) =
Spin(q) by the same reason as above.
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We then have Cartesian diagrams

(SL(si) x C*) [, —— L

l l (14)

GL(s;) A

and i
Spin(q) RN §

| g
SO(q) — L

Here ¢; and ¢, are natural injections and all vertical maps are induced by py,.
By using the group structure of L, we have a commutative diagram

[1(SL(s)) x C*)/puy, x Spin(q) 25 L

1 1 oo

o

[TGL(s:) x SO(q) =,

The covering group of the left vertical map is (Z/2Z)®**!. The etale covering L — L'
is determined by a certain surjection ¢ : (Z/2Z)%**1 — Z/2Z. Let 7, : Z/2Z —
(Z/2Z)®**! be the inclusion map into the i-th factor. By the previous Cartesian dia-
grams, the composite ¢ o7; must be isomorphisms for all 1 < ¢ < k+ 1. This means that
¢ is defined by (x1, ..., Zp41) — > ;. O

Let 7 : X’ — Op be the finite covering associated with the universal cover-
ing of Op. Let 7 : Y’ — O be a finite covering determined by the surjection
71 (Op) — (Z)27Z)%™>x@P)=10) in Proposition B (1). Put (Y')? := 771(O) and
(X" := 7""YOp). The adjoint action of SO(q) on O lifts to an SO(g)-action on
(Y")°. Since L' = [[GL(s;) x SO(q), L' acts on (Y")° (and on Y’) by the projection
map L' — SO(q). By the surjection L — L', L also acts on (Y”)? (and on Y”).

We prove that this L-action never lifts to an L-action on (X’)°. Let p: L — SO(q)
be the composite of the map L — L’ and the projection map L' — SO(q). Take a point
Yo € (Y')? and define a map L — (Y")? by ¢ — ¢ - yo. By definition this map factorizes
as L % SO(q) — (Y")°. It induces homomorphisms

m (L) % m(SO0(q)) = m((Y")").

If the L-action on (Y”)? lifts to (X’)°, then the composite of these homomorphisms is the
zero map (cf. the proof of Proposition B.2]). By Claim B.5.1] the map p has connected
fibers. This means that p, is a surjection. Hence the map m;(SO(q)) — 71 ((Y”)?) must
be zero. But this map is not the zero map because the SO(q)-action on (Y”)" does not
lift to (X’)° by Proposition
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Since L acts on Y’, @ acts on n+ Y’. We have a commutative diagram

Spin(m) x¢ (n+Y') —— Z

'Fl l (17)

Spin(m) x9 (n+ Op) —— O,

Here Z is the Stein factorization of s o 7. The horizontal maps are both crepant
partial resolutions. Let m : X — Op be the finite covering of Oy associated with the

universal covering of Op. Then 7 factorizes as X 57 - Op. By the construction
deg(p) = 2. Since SO(m) acts on Spin(m) x? (n + Y”), the finite map Z — O, is an
SO(m)-cover. Therefore this cover is nothing but the cover Y — O, determined by the
surjection 7,(0p) — (Z/2Z)®™>(@=10) Then we have the following claim.

Claim 3.5.2. The Q-action on n + (Y')° does not lift to a Q-action on n + (X')°.
Moreover, we have
m(Spin(m) x? (n+ (Y")")) = {1}.

Proof.  Applying the homotopy exact sequence to the @-bundle: Spin(m) x (n +
(Y9 — Spin(m) x9 (n+ (Y")?), we get an exact sequence

m1(Q) 2 71 (Spin(m) x (n4 (Y")°)) = 7 (Spin(m) x@ (n + (Y")?)) — 1.
The map ob is induced from a map
By + @ = Spin(m) x (n+ (Y")") ¢ — (¢7",4(0 + 0))
with some yo € (Y”)°. We shall prove that ob is the obstruction map to lifting the Q
action on n+ (Y")? to a Q-action on n + (X’)°. Let us consider the diagram
Q x (n+ (X)) n+ (X')°
| | (18)
Qx(n+(Y)) — n+ (")
Here the horizontal map on the bottom row is given by
Qx n+ ")) = n+ () (¢n+y) = aqn+y).
The map
a:Qxm+ (X)) =n+ (Y)°
lifts to a map
a:Qxm+ (X)) = n+(X)°
if and only if
T (Q x (n+ (X)) = mn+ (Y

is the zero map. If such a lift & exists, then we can find an element 7 € Autyyo(X')
such that

0
Q x (m+ (X)) S n 4+ (X)° B0 (x)°
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is a group action. We take a lift gy € (X')? of yo € (Y')?). Define a map iz, : Q —
Q x (n+ (X")°) by iz(q) = (¢,0 4 ). Then we have a commutative diagram

0 Py Spin(m) x (n+ (Y')°)
igol p7‘2l (19)
Qx (n+ (X)) —— n+ (Y")°

Correspondingly we have a commutative diagram of fundamental groups

ob= (Byo)*

m(Q) ——= m(Spin(m) x (n+ (X")°)
El gl (20)
m@x (n+ (X)) —— mi(n+ (Y")°)

The vertical maps are isomorphisms because 7;((X’)?) = {1} and 7 (Spin(m)) =
{1}. Therefore ob is the obstruction map to a lift.
We shall prove that ob is not the zero map. Let us consider the composite

By Q8 Spin(m) x (n+ (Y)°) % n+ (Y')° 22 (Y')°.

If we restrict 3,, to U C @, then it is a constant map sending all elements g € U to
yo € (Y")°. By the homotopy exact sequence

7T1(U) — 71'1(@) — 7T1(L) — 1,
we see that Byo induces homomorphisms
71 (L) = m(Spin(m) x (n+ (Y)°)) = m(n + (Y)?) = 7. ((Y")?).

Here the last two maps are both isomorphisms because 7 (Spin(m)) = 1 and m (n) = 1.
Since the L-action on (Y”)? does not lift to (X”)°, the map 71 (L) — 71 ((Y”)°) is not the
zero map. This means that ob = (8,,). is not the zero map.

Return to the original homotopy exact sequence. Then we have 7 (Spin(m) x (n +
(Y)%) = Z/2Z. In our case the Q-action on n + (Y')° does not lift to a Q-action on
n + (X’)°. This means that m(Spin(m) x¢ (n+ (Y")?) = {1}. O

We are now in a position to consider a rather odd partition p. Let p = [d", (d —
1)d—=1 ...,2m 1] be a partition of m such that

(i) r; is even for each even .

Let ¢ and j be different members of p. Then ¢ and j are called adjacent if there are no
members of p between ¢ and j except themselves. We consider the following conditions
for p:

(iii) For any couple (i,7) of adjacent members, |i — j| < 4. Moreover, |i — j| = 4
occurs only when ¢ and j are both odd. The smallest member of p is smaller than 4.

For example, both [11,82%, 7, 3] and [7, 62, 3%] satisfy the conditions (i) and (iii). Then
we have
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Proposition 3.6. Assume that a partition p satisfies the conditions (i) and (iii). More-
over, assume that p is rather odd. Let m: X — Oy, be the finite covering associated with
the universal covering of Op C so(m). Then CodimxSing(X) > 4. In particular, X has
Q-factorial terminal singularities.

X is Q-factorial by Proposition 3.1, (2). If CodimyxSing(X) > 4, then X has terminal
singularities by Corollary [I.L3. We will prove Proposition after some preliminaries.
Assume that p is a rather odd partition with (i) and (iii). Recall that a gap member i
of p is a member of p such that ¢ > 1 and r;,_; = 0. For each gap member 7, we will
take an orbit Oy C O, and look at the singularity of O, along O by using [K-P], 3.4.
Let us say that a gap member i is exceptional if ¢ is an odd number with ¢ > 5 and
ri—1 = 1rj_o = rj_3 = 0. In this case r; = 1 and r;_4 = 1 by the rather oddness and the
condition (iii). Otherwise we say that i is ordinary. For an exceptional gap member i,
one can find a nilpotent orbit Op C O, with

p=I[d" .. (>i+1)* (i—2)% @G —5)"s, ..., 17

Then Codimp,Op = 2 and the transverse slice for Oy C Oy, is an Ajs-surface singularity.

If 7 is an even gap member, then there are two cases. The first case is when r;,_; =
ri_o = 0 and r;_3 # 0. The second case is when r;_; = 0, but r;,_5 # 0 (the case i = 2
being in this case). In the first case, r; is a non-zero even number by the condition (i);
hence, r; > 2. Then one can find a nilpotent orbit O C O, with

p=I[d, ... i (1= 1), (i = 3)"e T L1

In the second case, r; and r;_5 are both nonzero even numbers; hence r;, r;,_s > 2. Then
one can find a nilpotent orbit Op C Op with

p=1[d",...i"% (i— 1) (i —2)"272 1.

In both cases, Codimp, Op = 2. In the first case, the transverse slice S for Op C Oy, is
an Aj-surface singularity. Next let us consider the second case. If p is not very even,
then S is isomorphic to a union of two A;-surface singularities intersecting each other
in the singular point. In particular, Op is not normal along Op. If p is very even, S is
an Aj-surface singularity. This can be understood more conceptually. In fact, there are
two orbits Olf with Jordan type p. The transverse slice for

Op C OF UO,

is then isomorphic to the union of two A;-surface singularities intersecting each other in
the singular point. Since we denote by Oy one of the two orbits, the transverse slice for
Op C O, is an A;-surface singularity.

If ¢ is an ordinary, odd gap member, then there are two cases. The first case is when
ri—1 = 1i—2 = 0 and r;_3 # 0. The second case is when r;_; = 0, but r;_o # 0. In the
first case, ;_3 is a nonzero even number by the condition (i); hence r;_3 > 2. Then one
can find a nilpotent orbit Op C O, with

p=[d .. i" (i —2) (i —3)-2 L 1.
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In the second case, one can find a nilpotent orbit Oy C O, with
p=[d¢ ..i" (i —1)2 (i —3)=, .., 17

In this last case, p may possibly be very even. In such a case, we will have two orbits
O5. In both cases, Codimo,Op = 2 and the transverse slices for Op C O, are A;-surface
singularities.

As a consequence, for an ordinary gap member i of p, the transverse slice for Oy C O,
is an A;-surface singularity or the union of two A;-surface singularities. In the first case
we call ¢ an ordinary gap member of type A;. In the latter case we call i an ordinary gap
member of type Ay U A;.

Let {i,12, ..., 7} be the set of all gap members of p. As defined above, for these gap
members, we have nilpotent orbits

O, ... Og,.

More exactly, when p; is very even, we have two different orbits with Jordan type p;.
In such a case we understand that Op, is both of them.

To prove that CodimySing(X) > 4, we only have to show that X is smooth along
W_l(Ol—,j) for each 1 < j < k. Let S; be the transversal slices for Op, C Op. More
exactly, when p; is very even, we must consider two slices S;E for Ogj. The claim is then
equivalent to showing that 7—1(S;) are disjoint union of finite copies of (C?,0). Note
that S is an Az-surface singularity if 7; is exceptional, and S} is an A;-surface singularity
or of type A; U Ay if 4, is ordinary.

The gap member is closely related to the notion of induced orbits.

(Type I) Let ¢ be a gap member of p. Let Op C so(m) be a nilpotent orbit with
Jordan type. Put r := ry + ... + 7; and let Q C SO(m) be a parabolic subgroup of
flag type (r,m — 2r,7), and put Q := p1(Q) C Spin(m). Take a Levi decomposition
q = nd . Notice that [ = gl(r) ® so(m —2r). There is a nilpotent orbit Oy of so(m —2r)
with Jordan type

p =[(d—2) ..,(i — 1) (i —2)" "2 (i —3)3, L 1
such that Op = Ind{(Op).
Claim 3.6.1. (¢f. [Hé], Theorem 7.1, (d)). The generalized Springer map
p: Spin(m) x9 (n+ Oy) — O,
18 a birational map.

Proof. First notice that Spin(m) x? (n+ Op) = SO(m) x? (n+ Oy). It is enough
to prove the claim by replacing Spin(m) by SO(m). Then it is completely analogous to
the corresponding statement for Sp(2n) in the previous section.

For x € O, we take a basis {e(l, j) } @ )ev(p) of C™ so that

(a) {e(l,j)} is a Jordan basis for z, i.e. z-e(l,7) = e(l—1,j) forl > 1 and x-e(1, j) = 0.
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(b) (e(l,7),e(p,q)) # 0 if and only if p = d; — [l + 1 and ¢ = B(j). Here [ is a
permutation of {1,2, ..., s} such that 5* = id, dg;) = d;, and B(j) # j if d; is even (cf.
[S-S], p.259, see also [C-M], 5.1).

Put F':= 37, ;.. Ce(1,7). Then F C F* is an isotropic flag such that 2 - F = 0 and
x-C™ C Ft and x is an endomorphism of F*/F with Jordan type p’. This is actually
a unique isotropic flag of type (r,m — 2r,r) satisfying these properties. Hence pu~1(x)
consists of one element. [

For later convenience, we also introduce an induction of type II.

(Type IT) Let ¢ be an odd member of p with r; = 2. Put r :=rg+...+r;_1+1 and let
Q C SO(m) be a parabolic subgroup of flag type (r,m — 2r,7) and put Q := p,.}(Q) C
Spin(m). Take a Levi decomposition ¢ = n @& [. Notice that [ = gl(r) & so(m — 2r).
There is a nilpotent orbit Oy of so(m — 2r) with Jordan type

p = [(d—2), ... i"*2 (i — 1)rit 2o (G 9y 1]
such that Op = Ind}(Op ).
Claim 3.6.2. (c¢f. [Hé], Theorem 7.1, (d)) The generalized Springer map
p = Spin(m) x9 (n + Op) —= Oy

s a birational map if one of the following holds:
(a) P’ is very even, or
(b) m =2r.
Otherwise p is a generically finite map of degree 2.

Proof. Since Spin(m) x@ (n+ Oy ) = SO(m) x? (n4 Op), it is enough to prove the
claim by replacing Spin(m) by SO(m). For z € Op, we take the same basis {e(l,7)}
of C™ as the previous claim. After a suitable change of the basis, we may assume that
B(r) =r+1and B(r+1) =7r. Weput F':= > . Ce(l,j). Then F' C Ft s
an isotropic flag such that - F = 0 and 2 - C™ C F* and z is an endomorphism of
F+/F with Jordan type p’. On the other hand, put F’ := Zl§j§r+1,j7$r Ce(1,7). Then
F' C (F')* is an isotropic flag such that z - F/ = 0 and = - C™ C (F')* and z is an
endomorphism of (F”)%/F’ with Jordan type p’. By a similar argument as in the proof
of Claim 2.3.2], the isotropic flags of type (r, m — 2r,r) with these properties are exactly
two flags above.

Assume that Q is the parabolic subgroup of SO(m) stabilizing the flag ' C F+. We
have an SO(m)-equivariant (locally closed) immersion

L2 SO(m) x9 (n+ Oy) C SO(m)/Q x so(m), [g,y] = (9Q, Ady(y)).

Consider (F C F*,z) and (F' C (F')*, r) as elements of SO(m)/Q x so(2n). Note that
W([1,2]) = (Q,7) = (F C F*,x). Let Q' be the parabolic subgroup of SO(m) stabilizing
the flag I/ C (F')*. If m # 2r, then Q and Q' are conjugate parabolic subgroups.
Moreover, if p’ is not very even, a nilpotent orbit of so(m — 2r) with Jordan type p’
is unique. Hence, if neither (a) nor (b) holds, we have (Q',z) € Im(:) by the same
argument as in Sp(2n). This means that p~1(z) consists of two elements.
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If (b) holds and 7 # 1, then @’ is not conjugate to Q. In particular, (Q’,r) ¢ Im(s).
This means that p;~!(x) consists of one element. When m = 2 and r = 1, two flags
F C F* and F' C (F')* are different, but Q = Q'. Therefore u~!(x) consists of one
element.

Finally, if (a) holds, we have one more nilpotent orbit O, of so(m — 2r) different
from Op with Jordan type p’. We have one more SO(m)-equivariant immersion

L~ 1 SO(m) x@ (n+ 0,) C SO(m)/Q x so(m).

We have Im(:) NIm(:7) = (). Then (F’ C (F')*,z) € Im(¢™). This implies that g~*(z)
consists of one element. [J

For each gap member i;, consider an induction of type I:
p;- =[(d—2)",. .. (i —1)"*, (4; — )" T2, (i; —3)"%, .., 1],

We then have a generalized Springer map

5+ Spin(m) x9 (n; + Opr) — Op,
which is a birational map.

Lemma 3.7. (1) Assume that i; is an ordinary gap member of p. If S; is an A;-surface
singularity, then ,uj_l(Sj) is the minimal resolution of S;. If S; is of type Ay U Ay,
then ,uj_l(Sj) is the minimal resolution of the normalization of S;. On the other hand,
,uj_l(Sl) — Sy is an isomorphism for each | # j.

(2) Assume that i; is an exceptional gap member of p. Then ,uj_l(Sj) is a crepant
partial resolution of S; with one exceptional curve C; = P1. ,uj_l(Sj) has Ai-surface

singularities at two points p;-t € C;. On the other hand, ,uj_l(Sl) — S; is an isomorphism
for each | # j.

Proof. (1) Assume that i; is ordinary. Then the gap members of p’; are
11 — 2, vy ij—l — 2, ij+1, ,Zk

For the later convenience we put

o -/ L ./ L A
Zl «— Zl - 2’ ...’Zj_l «— 7’]—1 - 27 Z]-‘rl — Zj-‘rl? ...’/Lk «— Zk.

Corresponding to these gap members, we get nilpotent orbits O(p—3)1, o O(p_;.)j,p O(p_;)jH’

vy O(?)k in Op;_. Here we follow the notation explained below Proposition 3.6l These
J _ —
are irreducible components of Sing(Opé_) which have codimension 2 in Op. Take I so

that 1 <l < kandl #j. @1 is very even if and only if p; is very even. If i; is ordinary
gap member of p of type A; (resp. of type A; U Ay), then 7] is also an ordinary gap
member of p’; of type A; (resp. of type A; U A;). If 4; is an exceptional gap member of
p, then i; is an exceptional gap member of p;». For each [, we have a natural embedding

Spin(m) x% (n; + Ogr) ) € Spin(m) x% (n; + Op).
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One can check that B -
wi( Spin(m) x9 (n; + O(;})l) ) = Op,.

This implies the last statement of (1). There are no singularities of Spin(m)x @ (n; +Op3_)
lying over Op,. This implies the first and the second statements of (1).

(2) Assume that ¢; is exceptional. Then i; — 2 is still a gap member of p;». Hence the
gap members of p’; are

11— 2, ey ij—l — 2, ij — 2, ij+1, ,Zk
We put
A ./ L -/ L o
B =01 — 2, 0y = — 2,0 = 2,Z]+1 =l e, Uy =
Corresponding to these gap members, we get nilpotent orbits O — O(F)j’ e O(F)k‘
J J
Note that we have an additional orbit O _in the exceptlonal case. Take [ so that

1 <1 < k. For each [, we have a natural embeddlng

Spin(m) x9 (n; + O(;;)l) C Spin(m) x9 (n; + Op)-

One can check that B -
pi( Spin(m) x9 (n; + O(;})l) ) = Op,.

For [ # j, we apply the same argument as in (1), and we see that the last statement of
(2) holds true. Let us consider the case [ = j. We have

p; = [d", ..., (i; + 1)+, (i, — 2), (i, — 5)%7°, ..., 1],
=[(d—2)", ..., (i; — 1) iy — 2,45 — 4, (i; — 5)57°, ..., 17,
(©); = [(d—2)", .. (i; = V)75, (35— 3)?, (i = 5)"7%, .., 1],

/

We then see that (pj) — P, is an induction of type II. When (pj) is not very even, the
generalized Springer map

Spin(m) x% (n; + O

P});
is a generically finite map of degree 2. Moreover, it is an etale double cover over Op,.
Since Oy p; has an Aj-surface singularity along O g7, -, , Spin(m) x9 (n; + Oy ) has an Al-
J
singularity along Spin(m) x97 (n; + O(F)j)‘ This implies the first and second statements
s J
of (2). Assume that (p’); is very even. Then there are two orbits O%, . Then each

(P});
generalized Springer map

Spin(m) x9 (n; + O(i;) ) = Op,

)3

is a birational map. Moreover, it is an isomorphism over Og,. Spin(m) x9 (n; + Op;)
has an A;-surface singularity along two disjoint subvarieties Spin(m) x9 (n; + O(JFF)‘)
)3

39



and Spin(m) x% (n; + O&) ). Therefore the first and the second statements of (2) still
j/J
holds in this case. [J ’

In the above, we associate a nilpotent orbit Op C O, with a gap member i of p.
Assume that p is not very even and i is an even gap member with r;_5 # 0. We already
remarked that the transverse slice S for O; C Oy, is of type A; U A;. In this case, O, is
not normal. So let us consider the normalization map v : Op — O,. Before going to the
proof of Proposition [3.6] we will give a description of v.

Lemma 3.8. v~ 1(0p) is a connected, etale double cover of Op.

Proof. By the description of S, the statement is clear except that v~!(Op) is con-
nected.

We apply inductions to p repeatedly by using the gap members different from 7 and
finally get a partition p’ such that p’ has a unique gap member ¢/, which comes from
the originally fixed gap member i. For example, start with p = [10%,7, 5,42, 2?] and
1t = 4. Then 10, 7, 2 are gap members different from 4. Take an induction for 2 to get
new partition p; = [8%,5,3,2%. The partition p; has gap members 8, 5 except 2, which
comes from the originally fixed gap member 4. We next take an induction for 5 to get
po = [62,3%,2%]. Finally we get p’ = [4%, 3%, 2%] by taking an induction for 6.

Write the partition p’ as

p = [d7, (64 1) i (i = 2) e, (i — 3)s, L 17

By the construction, 70, ..., 7.4, Th, Ti_o, Ti_g, ... 71 are all nonzero. There is a
generalized Springer map

i Spin(m) x@ (W' 4 Op) — Op.

Put B / , ,

p = [d", T (=D (= 2) e 1,
Then Oy has AUA,;-singularity along Op,. Let v/ : Op — Oy be the normalization map.
The subvariety Spin(m) x? (n'+ Og) C Spin(m) x?' (0’ + Op) is birationally mapped
to Op by p/. Put p/ := u’|spin(m)XQ/(n,+@§,). Then (7')~'(Op) C Spin(m) x9" (0’ + Oy)
and (i')"'(Op) — Op is an isomorphism. Moreover, u’ induces a birational map of the
normalizations of both sides:

w™: Spin(m) x? (W 4 Op) — Op,
which induces a dominating map

Spin(m) x? (' + (') (Og) = v~ (Op).

I;/

Therefore it suffices to show that (+/)~!(Og ) is connected in order to show that v~ (Op)

is connected. In fact, if (+/)7*(Op) is connected, then (v/)~*(Og ) is irreducible. Then
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v~1(Op) is also irreducible by the dominating map. This means that v=1(Op) is con-
nected. By the argument above, we may assume that p contains all numbers from 1 to d
except ¢ — 1. Apply the induction for the unique gap member i of p. We get a partition

Dra = [(d = 2)7, ..., (i — 1)1, (i — 2)T4m=2 (4 — 3)Ti=s L 1™

Notice that py,; has full members, i.e. all numbers from 1 tod—2. Put r :=rg+...+1;

and let @, ,—2-, be a parabolic subgroup of SO(m) with flag type (r,m — 2r,r). Put

Q = p, (Qrm—2rr) for pm, : Spin(m) — SO(m).Then the Levi part [ of q contains

so(m — 2r) as a direct factor. In particular, the nilpotent orbit O is contained in [.

By [Na_1], Corollary (1.4.3), the normalization O of O

singularities except when p,; = [2(m=2"=2/2 12].
Therefore the generalized Springer map

Pfull

has Q-factorial terminal

Pfull Pfull

pu: Spin(m) x9 (n + Opfull) Op

gives a Q-factorial terminalization of O, except when

(a) Pful = [2(m—2r—2)/27 12]

In case (a), Op san 18 mot yet Q-factorial. To construct a Q-factorial terminal-
ization of Op, we take a parabolic subgroup Q. (m—2r)/2,(m—2r/2, of SO(m) and put

Q= P (Qr (m—2r) /2, (m—2r)/2,+)- Then
fi - T*(Spin(m)/Q) = Spin(m) <9 i = O,

gives a crepant resolution of Op.

Assume that (a) does not occur. Suppose that v~!(Op) is not connected, Then we
have two different p-exceptional divisors E* which respectively dominate the closures of
two connected components of v7(Op). We consider the following two cases separately

(Case I) prun = [17]

(Case II) otherwise.

When Case (II) occurs, @ is a maximal parabolic subgroup. Hence, the relative
Picard number p(p) of g must be one. This contradicts that Exc(u) contains 2 irreducible
divisors. We next consider Case (I). In this case @) is not maximal and p(u) = 2. It is
easily checked that Case (I) happens only when p = [3%2?]. In this case m(0,) = {1}.
Moreover, since the odd member 3 has multiplicity 2, Op is not Q-factorial. In fact,
take © € Op and put G := Spin(m). By the proof of Proposition B.1], (1), we see that
x((G?)?) is infinite. Now let us look at the proof of Proposition (1.1), (2). Then we
see that x((G*)?) is infinite and Pic(G/(G®)°) is infinite. Since m(0p) = {1}, we have
G* = (G*)°. This means that Pic(Op) is infinite; hence, O, is not Q-factorial.

On the other hand, since p(u) = 2, [E'] and [E~] span NS(u) ® Q, which means
that Oy is Q-factorial by [Na 1], Lemma (1.1.1). This is a contradiction.

Finally assume that (a) occurs. In this case p(ji) = 2. It is easily checked that
(a) happens only when p = [4%,3% 2%]. Then m(Op) = {1}. Moreover, since the odd
member 3 has multiplicity 2, Op is not Q-factorial by the same argument as above. On
the other hand, since p(j1) = 2, [E*] and [E~] span NS(fi) ® Q, which means that Oy, is
Q-factorial by [ibid, Lemma (1.1.1)]. This is a contradiction. [
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Let 7 : Y — O, be the finite covering determined by the surjection 7,(0p) —
(Z/2Z)%max(@P)=1.0) in Proposition B.1], (1). Then 7 is the finite covering associated with
the SO(m)-universal covering of O. The map 7 factors through Y

X5Y 50,

Assume that p is a rather odd partition of m Let {iy, ..., i} be the set of gap members
of p. For 1 < j <k, we take a transverse slice S; for Oy, C Oy,

Proposition 3.9. (1) Assume that i; is an odd, ordinary gap member of p such that
ri,—2 # 0. Then a(p) > 2 and S; is an A;-surface singularity. Moreover, T7'(S;) is a
disjoint union of 2°®)=2 copies of (C?,0).

(2-i) Assume that ij is an ordinary gap member of p such that r;,_y = 0. Then S; is
an A;-surface singularity. Moreover, 7-X(S;) is a disjoint union of 20(@(P)=10) copjes
of Ai-surface singularity.

(2-ii) Assume that i; is an even, ordinary gap member of p with r;;_y # 0. If p is
very even, then S; is an Ay-surface singularity. If p is not very even, then S; is a union
of two Ay -singularities S;-r and S; intersecting in one point. In the former case, 1(S;)
is an Ay-surface singularity. In the latter case, 7—'(S}) and 77'(S;) are respectively
disjoint unions of 2m2x@®)=1.0) copies of A;-surface singularity.

(3) Assume that i; is an exceptional gap member of p. Then a(p) > 2 and S; is
an As-surface singularity. Moreover, 7=1(S;) is a disjoint union of 2°®)=% copies of an
Aq-surface singularity.

Proof. For simplicity we respectively write p for p;, p’ for p} and i for i;. The
generalized Springer map p; is simply denoted by g, and put @ := Q; (u; and Q; are
defined just before Lemma B.7). Moreover, we put S := 5.

(1) It remains to prove the last statement. We can write

p=[d, ., (i 4+ 1) 0,0 — 2, (i — 3)"s, ..., 1],

I—) — [drd’ . (Z + 1)m+1’ (Z _ 1)2’ (Z o 3)7’1'73’ . 17’1]
and
p/ = [(d - 2)Td7 L3 (Z - 1)ri+17 (7' - 2)27 (7' - 3)”737 tt 1”]'

Then p’ is a partition of m’ := m — 2(rq + ... + 441 + 1), which is not rather odd
because the odd member ¢ — 2 has multiplicity 2. Let us consider the nilpotent orbit
Op C so(m'). Since a(p’) = a(p) — 1 and p’ is not rather odd, m(Op) has order
20(P)=2 T et Qg+t trisadim! gt 4ria+1 C SO(m) be a parabolic subgroup of flag type
(ra+ ... +ria+1,m rg+ ..+ 1+ 1) and put Q := p N (Qryv. 4410 41 41)
for the double covering p,, : Spin(m) — SO(m). We have a generalized Springer map

p: Spin(m) x9 (n+ Op) — Op.

Assume that p is not very even. We calculate 71 (Op U Op). We can write Sing(Op)
as a union of Op and finite number of other nilpotent orbits:

Sing(Op) = Op U O U ... U Op U Opyq U ... U Opyyg
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Here Codimp, O, = 2 for 1 < a < k and Codimp, Oy > 4 for k+1 < a < k+ 1. By
Lemma 3.7, (1), the map p is an isomorphism over O, U Oy U ... U O, and 1 induces a
crepant resolution of an open neighborhood of O C Op. Write

Spin(m)x(n+0p) = 11 (Op) U~ (Op) ™ (O1)Le ™ (O) Lt~ (Ot LIt (O

Then p=(0y), ..., p=1(Ox) have codimension 2 in Spin(m) x% (n + O ). On the other
hand, since Codimp, O, > 4 for k +1 < o < k + [, the inverse images = (Og41), ..,
11 (Ogy) have codimension > 2 by Corollary [I22 This means that p~'(O, U Op) is
obtained from Spin(m) x% (n + Op) by removing a closed subset of codimension > 2.
There is an isomorphism

p s (0" (Op U Op)) — m1(Op U Op)

by [Ko], Theorem 7.8 because O, UO; has only quotient singularities. Since u~(OpUO3)
is smooth, it is contained in Spin(m) x? (n+ O ). Therefore, u=1(0O, UOp) is obtained
from the smooth variety Spin(m)x%(n+0,) by removing a closed subset of codimension
at least 2. Hence we have

T (1™ (0p U Op)) = mi(Spin(m) x? (n+ Op)).
By the exact sequence
mi(n + Op) — m (Spin(m) x9 (n+ Oy )) — m (Spin(m)/Q) — 1

we see that m; (Spin(m) x? (n+0,)) has order at most 24P =2 hecause m; (O ) has order
22(P)=2_ Tet us consider the finite covering 7. By definition, deg(7) = 2%®)~1. Since S
is an Aj-surface singularity, there are two possibilities. The first case is when 77(.9) is
a disjoint union of 2%(®)~1 copies of an A;-surface singularity. The second case is when
771(S) is a disjoint union of 2%P)=2 copies of (C?,0). We only have to show that the
first case does not occur. Actually, if the first case occurs, 7 induces an etale covering
of Op U Op. Since deg(7) = 2%P)~1 this implies that |m; (Op U Op)| = 2¢®)~1. This is a
contradiction.

Next assume that p is very even. In this case, there are two nilpotent orbits O% with
Jordan type p. We can write

Sing(Op) = OF UO0; U0 U ... UO, U Oy U ... U Oy

Here Codim@pOa =2forl <a<kand Codim@pOa >4fork+1<a<k+I Bythe
same reasoning as the case when p is not very even, we see that m (Op U Og U Op) has
order at most 2%P)=2_ Let ST be respectively transverse slices for O%E C Op. The adjoint
action of O(m) interchanges Of and Op. Since 7 is O(m)-equivariant by Lemma B3]
771(S*) and 771(S7) have the same splitting type. Therefore, there are two possibilities.
The first case is when 771(S¥) are both disjoint unions of 24®)~1 copies of an A;-surface
singularity. The second case is when 77!(S*) are both disjoint unions of 2*(®)=2 copies
of (C?,0). Then we see that the first case does not occur by the same reasoning as in
the case p is not very even. This completes the proof of (1).
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(2) Assume that i is a gap member of p except the case (1). Then p’ is also rather
odd. Moreover, a(p’) = a(p). When p is very even, p’ is also very even. In this case
there are two orbits with Jordan type p’. But there is a unique nilpotent orbit Oy with
Jordan type p’ such that O, is induced from O,. Let X,y — Op be the finite covering
associated with the universal covering of Op. Then the Q-action on n + Op does not
lift to a Q-action on n + X by Claim B.5.2l Instead, we take a cover 7/ : Yy — Oy
corresponding to the surjection 71 (Op) — (Z/2Z)%@x(@(P)=10) in Proposition B.1], (1).
Then the Q-action on n + O, lifts to a Q-action on n + Y. Therefore we have a
commutative diagram

’

Spin(m) x9 (n +Yy) —2—

v
- “| (21)
Spin(m) x@ (n 4+ Op) —2—= O

Here Y is the Stein factorization of p o 7/. 7 factorizes as
X5y 5 0,,

where deg(p') = 2 and deg(7’) = 2ma(@P)=1.0)  Notice that Q = p;.!(Q) for a parabolic
subgroup Q C SO(m). Hence Spin(m) x? (n+Y ) = SO(m) x? (n+Yy). In particular,
SO(m) acts on Y’ and 7’ is a SO(m)-finite cover. Since deg(7’) = deg(7), we see that
T=7andY' =Y.

(2-1): We only have to prove the last statement. The transverse slice S is an A;-
surface singularity. By Lemma B.7, (1), p induces a crepant resolution of an open
neighborhood of O C O,,. Put E := 171(Op). Then E is a divisor and Spin(m) x (n+
O,) is smooth around E. Since p/ is a crepant partial resolution, 7’ must be unramified
at E. In fact, suppose that n’ is ramified around E. Let us consider the commutative
diagram above over an open neighborhood of Oy C O,. Put E' := (7/)"'(E). Then
Kspinim)x@m+y,) = (W’)*Kspm(m)xcg(nJro-p,) + 7B’ for some r > 0. Since Spin(m) x9 (n+
Op) = W Kep,, we have

KSpin(m)XQ(n—l—Yp/) = (W/)*M*Kop +rE.
On the other hand, since ' is crepant,
KSpin(m)XQ(n-l-Yp/) = (M/)*KY = (M/)*T*K()p = (W/)*M*K()p-

This is a contradiction; hence, 7" is unramified along F.

This means that 771(S) is a disjoint union of 2m#(@P)=10) copies of an A;-surface
singularity.

(2-ii) : If p is very even, then deg(7) = 1. Hence 77!(5) is an A;-surface singularity.
Assume that p is not very even. Then S is a union of two A;-surface singularities. Let
v : Op — Oy be the normalization. SO(m) naturally acts on Op. Then v 1(0p) = Op
is an etale double cover. Moreover, v~!(Op) is connected by Lemma . Hence SO(m )
acts on v~ (Op) transitively. 7 induces a finite covering 7 : Y — O Then S :=v71(S)
is a disjoint union of two A;-surface singularities: S = St U S, We may assume that
ST and S~ are interchanged each other by a suitable element of SO(m).
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Let us consider 77(S). Notice that 771(S) = 7 1(S*)U7'(S~). By Lemmal3, (i),
p induces a crepant resolution of an open neighborhood of Oy C O,. Put E := pu71(Op).
Then E is a divisor and Spin(m) x? (n+ O,) is smooth around E. Since y' is a crepant
partial resolution, 7' must be unramified at E by the same argument as in (2-i). This
means that 71(S*) and 771(S~) are respectively disjoint unions of 2m#x(@(P)=1.0) copies
of an A;-surface singularity.

(3) The transverse slice S for Op C O, is an Az-surface singularity. By Lemma B.7]
p~t(S) is a crepant partial resolution of S with one exceptional curve C' = P!, 1;71(S) has
A;-surface singularities at two points p* € C'. We prove that 7'~ (u~(9)) is a disjoint
union of 2%(P)=2 copies of the minimal resolution of an A;-surface singularity. This would
mean that 771(S) is a disjoint union of 2*(P)=2 copies of A;-surface singularity. For this
purpose we must look at the finite cover 7/ : Yy — O induced from the SO-universal
covering of Op. Recall that

p=[d—2)" . ., —1)"*i—2i—4,(—5)"2 ..., 1]

The nilpotent orbit closure Op/ contains nilpotent orbits of Jordan type (p’);. By defi-
nition

(P); =[(d—2), ..., (i — 1), (i — 3)% (i — 5)"?, .., 1]
Notice that we write ¢ for 4; and the subscript of (p’); indicates this j.

The partition (p’); may possibly be very even. In such a case, there are two orbits
with Jordan type (p’);. If (p’); is not very even, such an orbit is unique. In any case,
let Oy, be one of such orbits, and let T" be a transverse slice for O C Op. T
is an Aj-surface singularity. By applying Lemma (3.9) to 7/, we see that (7/)~1(T) is
a disjoint union of some copies of (C2,0). Look at the map 7' ' (1~ 1(S)) — p~(S)
induced by 7’. Recall that there are two points p* € C such that p=1(S) has A;-surface
singularities at these points. By the observation above, this map is ramified at p*. This
means that 7'~ (u~(9)) is a disjoint union of 2%®)=2 copies of the minimal resolution
of an A;-surface singularity. [

Proof of Proposition The map 7 factors through Y:
X2vY 50,

By Proposition 3.9, 7(.5;) is a disjoint union of the copies of (C?,0) or a disjoint union
of the copies of Aj-surface singularity. We prove that the latter case does not happen.

(a) Assume that Case (1) in Proposition occurs. By the proposition, 771(S;) is
already a disjoint union of (C?,0). Then p is etale over an open neighborhood of 771(.5;);
hence 771(S;) is a disjoint union of the copies of (C?,0).

(b) Next consider one of the following cases of Proposition 3.9:

Case (2-1),

Case (2-ii) and p is very even,

Case (3).

When p is not very even in Case (2-ii), we will need an additional care. Such a case
will be treated in (c).
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Since 7 is a Galois cover, there are two possibilities for 771(S;). The first case is
when 771(S;) is a disjoint union of the copies of (C?0). The second case is when
71(S;) is a disjoint union of the copies of an Aj-surface singularity. If the second
case occurs, then p induces an etale cover of 771(O, U Op,) of degree 2. In particular,
m (171 O0p U Op,)) # {1}. Let 7 : Y — Oy be the SO-universal covering and let
Tj ng_ — Opg be its associated covering. Look at the commutative diagram

Spin(m) x9 (n; + Vo) By

nfl l (22)

Spin(m) x% (n; + Op) —— O
The birational map
(1)~ (77 (0p U Op,)) = 771(Op U Op,))

induces an isomorphism of the fundamental groups of both sides by [Ko|, Theorem 7.8 be-
cause 7~ (OpUOp, ) has only quotient singularities. We next calculate m (1)~ (77 (OpU
Op,)))- The closure O, contains Oy as an open dense orbit and contains Og,, ..., Op,
as codimension 2 orbits. Other nilpotent orbits in O have codimension > 4. Therefore,
one can write

Op:Opl—lOf)l l_ll_lOf']I_ll_lOf)k |_|F,
where F' is the union of all nilpotent orbits with codimension > 4. Hence
Y =70p) Ut M (Op,) U ... U7 (Op,) U ... U T H(Op, ) UTH(F).

For | # j, the birational map p; is an isomorphism over an open neighborhood of
Op C Op by Lemma 3.7, (1). By Zariski’s Main Theorem, 4/ is also an isomorphism
over an open neighborhood of 77!(0p,) C Y. Moreover, (s gives a crepant resolution of
an open neighborhood of 77'(Op,) C Y. Here write

Spin(m)x % (n;4Yp,) = (rop}) " (Op)L(rop) ™ (Op, )L.U(rop)) ™ (Op, )i(rops}) " (F).

Then (7 o 1tf)~"(Op,) has codimension 2 in Spin(m) x9 (n; + Yy,) for [ # j. Since
Codimy 7! (F) > 4, we see that (7o)~ (F) has codimension > 2 in Spin(m) x% (n;+
Y;,) by Corollary Therefore, (1)~ (77! (Op U Op,)) is obtained from Spin(m) x 9
(nj + Yp,) by removing the subset of codimension > 2. Let Y, ® be the smooth part of

Yy Since (1)~ (771 (Op U Op,)) is smooth, there is an inclusion
(1) (Op UOp,)) € Spin(m) x® (n + Y%

Hence, (1)~ (77'(Op U Op,) is obtained from a smooth variety Spin(m) x9 (n; +Y,*)
J
by removing a closed subset of codimension > 2. Therefore we have an isomorphism

(1) 7 (771 (0p U Op,))) = ma(Spin(m) x % (n; + Yor¥).
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Put Yr?} = Tj_l(Opg). Then, by Claim B.52] m (Spin(m) x% (n; + Yl%_)) = {1}. Since
there is a surjection

w1 (Spin(m) x% (v, + V) = m(Spin(m) x (n, + Y5%),

we see that m (Spin(m)x 9 (n; —i—Y;;g)) = {1}. Thisis a contradiction. As a consequence,
7 1(S;) is a disjoint union of the copies of (C?%,0).

(c) We finally assume that Case (2-ii) occurs and p is not very even. Then S; is of
type A; U A;. Let v : Op — O, be the normalization map. Then S; 1(Sj) is a
disjoint union of two A1 surface smgularltles S =5 ]+ ST, ; S +and S are mterchanged
each other by a suitable element of SO(m). Let us look at the double cover p. Since p
is Spin(m)-equivariant, there are two possibilities. The first case is when (7 o p)~1(5%)
are both disjoint unions of the copies of (C2,0). The second case is when (7 o p)~1(5%)
are both disjoint unions of the copies of A;-surface singularity. Here 7 is the map from
Y to the normalization O of Op induced from 7 :Y — O,. By the same argument as
in (b), the second case does not occur. As a consequence, 7 *(5;) is a disjoint union of
the copies of (C?,0). O

Construction of a Q-factorial terminalization
Let p be a partition of m with Condition (i). Let O, C so(m) be a nilpotent orbit
with Jordan type p, and let X — O, be the finite covering associated with the universal

covering of Op. We are now in a position to construct a Q-factorial terminalization of
X.

(A) The case when p is rather odd.

We will use the following induction step.

(Double Induction of type I) Let ¢ be a gap member of p. When i is odd, we assume
that ¢ > 5 and r,_1 = ... = r;_4 = 0. When ¢ is even, we assume that ¢ > 4 and
ric1 = ... = r;_3 = 0. We remark that such a gap member exists if p does not satisfy
the condition (iii) (which is defined just before Proposition B.6). Put

= [(d—4)"7, ..., (i — 3)", (i — 4)THmi=s (i — B)"=s, 1M,

Then p’ satisfies (i) and is still rather odd. If we put s := ry+...+r;, then p’ is a partition
of m—4s. Let Qasm—1s2s) C SO(m) be a parabolic subgroup of flag type (2s, m—4s, 2s)
and put @ := ;' (Q2s,m—1s25)) for the double cover py, : Spin(m) — SO(m). We write
the Levi decomposition of q as q = [@&n. We have [ = gl(2s) @ so(m —4s). One can take
a nilpotent orbit Ops x Op in gl(sr) @ so(m — 4s) so that Op = Indfo(m)(O[QS] X Opy).
The generalized Springer map

f: Spin(m) x? (n+ Ops) x Opr) — Oy
is a birational map. We indicate this process simply by
e 2
p TY£I p/

Recall that a(p) is the number of distinct odd members of p. Now assume that p
does not satisfy the condition (iii). Then we can repeat double induction step of type
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I to p so that a does not change, and finally get a partition p’ with conditions (i) and
(ii).
€ 2 [§] 2 [§] 2
p BN p PEN Ml —p
In each step, we record the number s; and put ¢ :=m —4>_ s;.

Case 1: ¢ > 3
Put the m x m matrix

0 0 O 1

0 0 1 0
I =

0 1 0 0

—_
e}
e}

Then
SO(m)={A € SL(m) | A"JA = J}.

Now let us consider the isotropic flag of type (2s1, 259, ..., 28k, ¢, 28k, ..., 282, 251):
0C <61,...,6251> C <61,...6251+252> C ... C <61, ""6Z]f28i> C <61, ""6Zf28i+q>

— m

Let @' be the parabolic subgroup of SO(m) stabilizing this flag. One has a Levi decom-
position @ = U’ - L’ with

A 0 0 0
0 Ay 0 0
0 . 0 A 0 o . .. 0
I'={|l 0 .. .. 0 B 0 .. .. 0 ||AeGL2s), A =Jo (A) I, B e SO(q)}.
0 o ve o 0 AL 0 .. 0
0 i e ALO
0 o e 0 A

In particular, L' = [[ GL(2s;) x SO(q). We define a parabolic subgroup @ of Spin(m) by
Q = p, Q) for p,, : Spin(m) — SO(m). Then the Levi part L of @ is a double cover
of L, which is described as follows. There is a natural map SL(2s;) x C* — GL(2s;)
defined by (X, A\) — AX. The kernel of this map is the cyclic group

Has; = {()\_11257;7 A) | AP = 1}.

Let s, be the subgroup of ps,, of order s;. Then the covering map SL(2s;) x C*/u,, —
G L(2s;) has degree 2. We then have a covering map

(SL(251)xC*)/ sy, X ... X (SL(2sk) X C*) [ s, X Spin(q) — GL(2s1)X...xGL(2s;)xSO(q).
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The Galois group of this covering is (Z/2Z)%**1. Put H := Ker[(Z/2Z)®*+! X Z/27],
where > is defined by (21, ..., 2xy1) — D ;. By Claim B.5.1] we have

L ={(SL(2s1) x C*)/ps; X ... x (SL(2s;) x C*)/ps, x Spin(q)} / H.

The Levi part L has the same Lie algebra of that of L’. Hence we have [ = ©gl(2s;)®
s0(q). We consider the nilpotent orbit [[ Ojgsi) X Op in [ By the construction

Op = Ind;"™ (J] Oy x Op).

Let Xpgsi) — 0[25” be the double covering associated with the universal covering of
Ojgsi1. By Proposition [L8, (2) and Proposition [L9, X5 has only Q-factorial terminal
singularities. Let X,y — Oy be the finite covering associated with the universal covering
of Opr. By Proposition X, has only Q-factorial terminal singularities. (SL(2s1) X
C*)/ s, X ... x (SL(25;,) x C*) / s, x Spin(q) acts on [ [ Xjzs:1 X Xy because each SL(2s;) x
C* /s, acts on Xpps;), and Spin(q) acts on Xp,. By Proposition B.I] (1) we have an exact
sequence
1 = Z/27 — 71 (Oy) — (Z/2Z)mex@P)=10) _, 1.

Then the generator of Z/2Z induces a covering involution —1 for X, — O, . Hence
(Z/2Z)** acts on [ Xppsi) X Xp. Let H be the subgroup of (Z/2Z)%* defined as
above. The quotient space [[ Xpsi] x Xp//H has only terminal singularities because
the fixed locus of every nonzero element of H has codimension > 4. Moreover, since
[T Xposi) x Xpr is Q-factorial, [] Xpasi) x Xy /H is also Q-factorial by Lemma [L4l The
Levi part L acts on (][ Xpsi) X Xpr)/H. This action is a lifting of the adjoint L-action on
[1Ops:) x Opr. Let us consider the Levi decomposition q = [ @ n. Then the observation
above means that n 4+ ([ ] Xp2si) X Xpr)/H is a Q-space. There is a finite cover

7'+ Spin(m) x2 (n+ (]| Xpeg x Xp)/H) = Spin(m) x? (n+ ][ Oey x Op)
and deg(m) = deg(n’). We now have a commutative diagram

Spin(m) x@ (n+ ([[ Xpeg x Xp)/H) —2 X
7T,J( 7TJ( (23)
Spin(m) x? (n+[[Opsy) x Op)  —— Oy
Here X coincides with the Stein factorization of o 7’. The map y' gives a Q-factorial

terminalization of X.

Case 2: ¢ <2

When ¢ = 0, p’ = [0]. In this case, p is very even. Hence 7 : X — O, is a
double covering. The cases ¢ = 1,2 do not occur. We define Y : Z/2Z%* — Z/2Z by
Y (21, .oy xp) ==Y x; and put H := Ker()_). We have a commutative diagram

Spin(m) x@ (n + ([[ Xpeo /H) —2— X

ﬂ/l wl (24)

Spin(m) x? (n+[[Ops)  —— Op
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Here X coincides with the Stein factorization of p o 7’. The map u' gives a Q-factorial
terminalization of X.

(B) The case when p is not rather odd

We will use two induction steps of type (I) and of type (II).

By using the inductions of type (I) repeatedly for p, we can finally find a parabolic
subgroup @ of Spin(m) and a nilpotent orbit Op of a Levi part [ of q such that

(a) Op = Ind""™ (Oy).

(b) a(p’) = a(p), and

(c) p’ satisfies the condition (ii).

For the partition p’ thus obtained, we let e be the number of odd members i of p’
such that r; = 2. By using the inductions of type (II) repeatedly for p’, we can finally
find a parabolic subgroup @) of Spin(m) and a nilpotent orbit Op~ of the Levi part I' of
q’ such that

(a") Op = IndF*" ) (Op),

(b’) ( ") =a(p’) —e,

(¢') p” satisfies the condition (ii) and
(d’) the multiplicity of any odd member of p” is not 2.
All together, we get a generalized Springer map

p" 2 Spin(m) x9" (0" 4 Opr) — Op.

Hereafter we consider two cases separately.

Case 1: r; > 3 for some odd member i of p

In this case, p” is not rather odd. By the assumption a(p) > e+ 1. Let X" — Opr
be the finite covering associated with the universal covering of Opr. Then X” has only
terminal singularities by Proposition 3.4l On the other hand, X is Q-factorial by (d’).
Since p” is not rather odd, the Q"-action on n” + Op» lifts to a Q"-action on n” + X”.
There is a finite cover

7" Spin(m) x9" (0" + X") — Spin(m) x@" (" + Opn).
We have
deg(lu//) _ 267 deg(w”) _ 2max(a(p”)—1,0) _ 2max(a(p)—e—1,0) _ 2a(p)—e—1

and deg(m) = 22P)~1 It can be checked that deg(r) = deg(") - deg(u”). Therefore we
have a commutative diagram

Spin(m) x?" (0" +X") —— X
FIIJ/ FJ/ (25)
Spin(m) x?" (0" + Opr) BN Op

where X is obtained as the Stein factorization of the map u”o7”. The map Spin(m) x?”
(n” 4+ X”) — X here obtained is a Q-factorial terminalization of X

Case 2: r; < 2 for any odd member i of p
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In this case p” is rather odd. If there is an odd ¢ such that r; = 1, then a(p) > e+ 1.
If r;, = 2 for all odd i, then a(p) = e > 1. The last inequality holds because if e = 0,
then p is rather odd and this is not our case. Then we have a short exact sequence

1 — Z/2Z — 71(Opr) — (Z/Qz)€9max(a(p”)—1,0) Ny

Let Y” — Oy be the finite covering determined by the surjection from m(Opr) to
(Z/2Z)%max(@®™)=1.0) " Gince p” has only odd, ordinary gap members, we can apply
Proposition 3.9, (1) for each gap member of p” to conclude that Codimy~Sing(Y") > 4.
Since p” is rather odd, Y” is Q-factorial by Proposition Bl (2). Therefore Y has only
Q-factorial terminal singularities. Then the Q”-action on n” + O lifts to a Q"-action
on n” +Y”. There is a finite cover

7 Spin(m) x" (" +Y") = Spin(m) x?" (0" + Opn).

We have
2  (r; =1 for some odd 1)

m o
deg(n") = { %=1 (r, =2 forall odd )
deg(T") _ 2max(a(p”)—1,0) _ 2max(a(p)—e—1,0)

and deg(m) = 2mx(@®)=10) Tt can be checked that deg(m) = deg(7”) - deg(”) in any
case. Therefore we have a commutative diagram

Spin(m) x@" (" +Y") —— X
T”l Wl (26)
Spin(m) x@" (0" + Opn) L, Op

where X is obtained as the Stein factorization of the map p” o7”. The map Spin(m) x?"
(n” +Y") = X here obtained is a Q-factorial terminalization of X.

Examples 3.10.

(1) Let us construct a Q-factorial terminalization of the finite covering X — 0[15,82,3] C
s0(34) associated with the universal covering of Op552 3. By double inductions of type I

15,823 "2 11,82, 3] T2 7,42, 3]

we get a partition [7,42 3] of 18 with conditions (i) and (iii). Let @ C SO(34) be
a parabolic subgroup stabilizing an isotropic flag of type (2,6,18,6,2) and put @ =
p31(Q) for pss : Spin(34) — SO(34). Let Xpy (resp. Xps)) be a finite covering of
Opg C sl(2) (resp. Ops) C sl(6)) associated with the universal covering of Opy (resp.
Ojg3)). Moreover, let X742 ) be the finite covering of O 425 C s0(18) associated with
the universal covering of Oj7 42 3). Then

Spin(34) x? (n 4 (Xjy X Xps) X Xjr429)/H)

is a Q-factorial terminalization of X. Here H := Ker[>_ : (Z/2Z)%% — Z/27Z).
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(2) Let X be the finite covering of 0[11373271} C s0(40) associated with the universal
covering of O3 32 1). By inductions of type I and of type II

(113,32 1) "7 93,32, 1) T 73,32, 1) T (58,32, 1) T (33, 22, 1]

we finally get a partition [3% 22 1] of 14. Let Q@ C SO(40) be a parabolic subgroup
stabilizing an isotropic flag of type (3,3,3,4,14,4,3,3,3) and put Q = pu(Q) for
pao : Spin(40) — SO(40). Let us consider the nilpotent orbit Opgs o2 1) C so(14). Let

X33921) — Oz 921 be the finite covering associated with the universal covering of
0[33722,1]. Then
Spln(40) XQ (n —+ X[33’22’1])

is a Q-factorial terminalization of X.
(3) Let X be the finite covering of Opjz251 C s0(30) associated with the universal
covering of O3z 3. By inductions of type I and of type II

[132,3,1) T2 (112, 3, 1] TET (92,3, 1] T 72,3, 1) T (52,3, 1) T 42,3, 1]

we finally get a partition [4%,3,1] of 12. Let Q@ C SO(30) be a parabolic subgroup
stabilizing an isotropic flag of type (2,2,2,2,1,12,1,2,2,2,2) and put Q := p3y (Q) for
p3o = Spin(30) — SO(30). Let us consider the nilpotent orbit Oz 515 C so(12). Since
the partition [4%,3, 1] is rather odd, there is an exact sequence

1— Z/2Z — 7T1(O[427371]) — Z/QZ — 1.

Let Y2 31 — 0[42,371} be a double covering determined by the surjection 7 (Opz231)) —
Z/27. Then
Spin(30) x? (n + Yz 31))

is a Q-factorial terminalization of X.
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