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Birational geometry for the covering of a nilpotent orbit closure

Yoshinori Namikawa

Abstract

Let g be a complex classical simple Lie algebra and let O be a nilpotent orbit of
g. The fundamental group π1(O) is finite. Take the universal covering π0 : X0 →
O. Then π0 extends to a finite cover π : X → Ō. By using the Kirillov-Kostant
form ωKK on O, the normal affine variety X becomes a conical symplectic variety.
In this article we give an explicit construction of a Q-factorial terminalization of
X.

MSC2020: 14E15, 17B08

Introduction

Let g be a complex semisimple Lie algebra and let O be a nilpotent orbit of g. Then O
admits a symplectic 2-form ωKK called the Kirillov-Kostant 2-form. In general O is not
simply connected, but π1(O) is finite. Let π0 : X0 → O be a finite etale covering. The
function field C(X0) of X0 is a finite algebraic extension of C(O). Let Ō be the closure
of O in g. The normalization X of Ō in C(X0) determines a finite covering π : X → Ō.
Then X0 is contained in X as a Zariski open subset so that π|X0 = π0. If G is a simply
connected complex semisimple Lie group with Lie(G) = g, then the adjoint G-action
on O (resp. Ō) lifts to a G action on X0 (resp. X). The 2-form ω := (π0)∗ωKK is a
G-invariant symplectic 2-form on X0. The pair (X,ω) is then a symplectic variety in the
sense of Beauville [Be]. Brylinski and Kostant [B-K] extensively studied such varieties in
the context of shared orbits. A nilpotent orbit closure Ō has a natural scaling C∗-action
for which ωKK has weight 1. Let s : C∗ → Aut(Ō) be a homomorphism determined by
the scaling action. In general this C∗-action does not lift to a C∗-action on X . But, if
we instead define a new C∗-action on Ō by the composite σ of

C∗ → C∗ (t→ t2), and s : C∗ → Aut(Ō),

then the new C∗-action σ always lifts to a C∗-action on X by [B-K], §1. By definition,
wt(ω) = 2 with respect to this C∗-action. Therefore (X,ω) is a conical symplectic
G-variety with wt(ω) = 2.

A main purpose of this article is to study the birational geometry for the resolutions
of (X,ω). A crepant projective resolution f : Y → X of X is, by definition, a projective
birational morphism f from a nonsingular variety Y to X such that KY = f ∗KX . In
general X does not have a crepant projective resolution. But, instead, X always has a
nice crepant projective partial resolution f : Y → X called a Q-factorial terminalization
by [BCHM]. A Q-factorial terminalization f is, by definition, a projective birational
morphism from a normal variety Y to X such that Y has only Q-factorial terminal
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singularities and KY = f ∗KX . It is natural to expect that such a Q-factorial terminal-
ization can be constructed very explicitly in a group theoretic manner when (X,ω) is
the above.

When X0 is the nilpotent orbit O itself, X is nothing but the normalization Õ of Ō.
Namikawa [Na 1] and Fu [Fu 1] respectively constructed a Q-factorial terminalization of
Õ quite explicitly when g is a classical simple Lie algebra and when g is an exceptional
simple Lie algebra (See also [Lo] for a unified treatment). However, when deg(π) > 1,
this problem has not yet been enough pursued though there is an interesting observation
by [Fu 2], Theorem 1.4 for the case deg(π) is odd.

In this article we construct a Q-factorial terminalization of X when O is a nilpotent
orbit of a classical simple Lie algebra g and X0 is the universal covering of O. We shall
explain here a basic idea for the construction. Let Q ⊂ G be a parabolic subgroup of
G and let Q = U · L be a Levi decomposition of Q by the unipotent radical U and a
Levi subgroup L. Correspondingly the Lie algebra q decomposes q = n ⊕ l as a direct
sum of n := Lie(U) and l := Lie(L). Let O′ be a nilpotent orbit of l. Then there is
a unique nilpotent orbit O of g such that O meets n + O′ in a Zariski open subset of
n+O′. In such a case we say that O is induced from O′ and write O = Indg

l (O
′). There

is a generically finite map

µ : G×Q (n+ Ō′)→ Ō ([g, z]→ Adg(z)),

which we call a generalized Springer map. Let (X ′)0 → O′ be an etale covering (which
is not necessarily the universal covering) and let X ′ → Ō′ be the associated finite cover.
Then we can consider the space n + X ′ which is, by definition, a product of an affine
space n and the affine variety X ′. There is a finite cover n+X ′ → n+ Ō′. If the Q-action
on n + Ō′ lifts to a Q-action on n + X ′, then we can make G ×Q (n + X ′) and get a
commutative diagram

G×Q (n+X ′)
µ′

−−−→ Z

π′





y





y

G×Q (n+ Ō′)
µ

−−−→ Ō,

(1)

where Z is the Stein factorization of µ ◦ π′. For an arbitrary nilpotent orbit O of a
classical Lie algebra g, we will give an explicit algorithm for finding Q, O′ and X ′ such
that

(1) O = Indg
l (O

′),
(2) X ′ has only Q-factorial terminal singularities, and
(3) the Q-action on n + Ō′ lifts to a Q-action on n + X ′ and the finite covering

Z → Ō in the diagram coincides with the finite covering π : X → Ō associated with the
universal covering X0 of O.

Then µ′ gives a Q-factorial terminalization of X . As for the existence of such (Q,
O′, X ′), there is another interesting view point [Lo]. Along the argument of [Lo],
Matvieievskyi [Ma], Corollary 4.3 assures the existence in a more general situation by
using the universal Poisson deformation of X [Na 5].

Once we get an explicit Q-factorial terminalization G ×Q (n + X ′) of X , it is easy
to see if it is nonsingular or not (cf. Lemma 1.6). If it is nonsingular, µ′ is a crepant
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projective resolution ofX . If it is singular, then any other Q-factorial terminalizations of
X are also singular by [Na 3], Corollary 25; hence X has no crepant projective resolution
in such a case.

In the subsequent article [Na, Part 2], we will determine the Weyl group W (X) of X
and count how many different Q-factorial terminalizations X has.

0 Preliminaries

(P.1) Symplectic varieties
Let X be a normal variety over C. Let ω be a regular 2-form on Xreg. Then (X,ω)

is a symplectic variety if
(a) ω is non-degenerate and d-closed, and
(b) for a resolution f : X̃ → X of X , the 2-form f ∗ω on f−1(Xreg) extends to a

regular 2-form on X̃ .
A symplectic variety X has only canonical singularities; hence it has only rational

singularities. The following properties of a symplectic variety will be frequently used in
this article.

Proposition 0.1. Let (X,ω) be a symplectic variety of dim 2n and let f : X̃ → X be
a resolution of X. Write KX̃ = f ∗KX +

∑

aiEi with f -exceptional prime divisors Ei

(each coefficient ai being called the discrepancy of Ei). Let Ei0 be an f -exceptional prime
divisor with ai0 = 0. Then dim f(Ei0) = 2n− 2.

Proof. Put S := f(Ei0). We blow up X̃ further to get a projective birational
morphism ν : Z → X̃ such that F := (f ◦ ν)−1(S) is a simple normal crossing divisor
of Z. F contains the proper transform F0 of Ei0 by ν as an irreducible component. By
definition ω lifts to a regular 2-form ω̃ on Z. Since the discrepancy of F0 is zero, ω̃ is
a non-degenerate 2-form on Z at a general point p ∈ F0. We may assume that p is a
smooth point of F0. Let φ be the defining equation of F0 at p. Then one can take a
system of local parameters φ, φ2, ... , φ2n of Z at p in such a way that

ω̃(p) = dφ ∧ dφ2 + ...+ dφ2n−1 ∧ dφ2n ∈ ∧
2(T ∗Z)p.

This implies that ∧n−1ω̃|F0 6= 0. According to [Fr], §1, we put Ω̂i
F := Ωi

F/τi for i ≥ 0,
where τi is the subsheaf of Ωi

F consisting of the sections supported on Sing(F ). In
particular, Ω̂0

F = OF . Then ω̃|F determines a nonzero element of H0(F, Ω̂2
F ). Take a

(non-empty) smooth open set U of S so that the fiber Fx of (f ◦ ν)|F : F → S over
x ∈ U is a simple normal crossing variety for any x ∈ U and that F is locally a product
of Fx and U . Replace S by U and F by (f ◦ ν|F )

−1(U). Define

G := Ker[Ω̂2
F → Ω̂2

F/S ].

Then there are exact sequences

0→ G → Ω̂2
F → Ω̂2

F/S → 0
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0→ (f ◦ ν)|∗FΩ
2
S → G → (f ◦ ν)|∗FΩ

1
S ⊗ Ω̂1

F/S → 0.

This can be checked as follows. Let F0, ..., Fk be the irreducible components of F . For
each p with p ≤ k, we put

F [p] :=
∐

0≤i0<i1<...<ip≤k

Fi0 ∩ · · · ∩ Fip.

Denote by µp : F
[p] → F the natural map. For simplicity, we write α for (f ◦ ν)|F , and

αp for (f ◦ ν)|F ◦ µp. Note that F [p] is a disjoint union of smooth varieties. If we put

Gp := Ker[Ω2
F [p] → Ω2

F [p]/S],

then there are exact sequences

0→ Gp → Ω2
F [p] → Ω2

F [p]/S → 0

0→ α∗
pΩ

2
S → Gp → α∗

pΩ
1
S ⊗ Ω1

F [p]/S → 0.

By taking (µp)∗ of these exact sequences, we get the exact sequences

0→ (µp)∗Gp → (µp)∗Ω
2
F [p] → (µp)∗Ω

2
F [p]/S → 0

0→ α∗Ω2
S ⊗ (µp)∗OF [p] → (µp)∗Gp → α∗Ω1

S ⊗ (µp)∗Ω
1
F [p]/S → 0

On the other hand, the sheaves Ω̂i
F and Ω̂i

F/S respectively have resolutions (see [Fr],

Proposition (1.5) for details):

0→ Ω̂i
F → (µ0)∗Ω

i
F [0] → (µ1)∗Ω

i
F [1] → ...

0→ Ω̂i
F/S → (µ0)∗Ω

i
F [0]/S → (µ1)∗Ω

i
F [1]/S → ...

By combining these exact sequences, we finally get the following commutative dia-
grams with exact rows and exact columns

... ... ... ... ...
x





x





x





0 −−−→ (µ1)∗G1 −−−→ (µ1)∗Ω
2
F [1] −−−→ (µ1)∗Ω

2
F [1]/S

−−−→ 0
x





x





x





0 −−−→ (µ0)∗G0 −−−→ (µ0)∗Ω
2
F [0] −−−→ (µ0)∗Ω

2
F [0]/S

−−−→ 0
x





x





x





0 −−−→ G −−−→ Ω̂2
F −−−→ Ω̂2

F/S −−−→ 0
x





x





x





0 0 0

(2)
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... ... ... ... ...
x





x





x





0 −−−→ α∗Ω2
S ⊗ (µ1)∗OF [1] −−−→ (µ1)∗G1 −−−→ α∗Ω1

S ⊗ (µ1)∗Ω
1
F [1]/S

−−−→ 0
x





x





x





0 −−−→ α∗Ω2
S ⊗ (µ0)∗OF [0] −−−→ (µ0)∗G0 −−−→ α∗Ω1

S ⊗ (µ0)∗Ω
1
F [0]/S

−−−→ 0
x





x





x





0 −−−→ α∗Ω2
S ⊗OF −−−→ G −−−→ α∗Ω1

S ⊗ Ω̂1
F/S −−−→ 0

x





x





x





0 0 0

(3)

The exact sequences at the bottom rows are nothing but the desired exact sequences.
We derive a contradiction by assuming that i := CodimXS ≥ 3. ω̃|F ∈ H0(F, Ω̂2

F )
cannot be written as the pull-back of a 2-form ωS on S. In fact, since dimS ≤ 2n− 3,
∧n−1ωS = 0. If ω̃|F is the pull-back of ωS, then ∧n−1ω̃|F = 0, which means that
∧n−1ω̃|F0 = 0. This contradicts that ∧n−1ω̃|F0 6= 0. Since ω̃|F ∈ H0(F, Ω̂2

F ) is not the
pull-back of a 2-form on S, we see that H0(Fx, Ω̂

2
Fx
) 6= 0 or H0(Fx, Ω̂

1
Fx
) 6= 0 for a general

point x ∈ S by the exact sequences above. On the other hand, since (X, x) is a rational
singularity, we have H0(Fx, Ω̂

p
Fx
) = 0 for all p > 0 by [Na 2], Lemma (1.2). This is a

contradiction. Therefore CodimX(S) = 2. �

Corollary 0.2. Let π : Y → X be a crepant partial resolution of a symplectic variety
X of dim 2n and let E be a π-exceptional prime divisor. Then dim π(E) = 2n− 2.

Proof. Let ν : X̃ → Y be a resolution and let Ẽ be the proper transform of E by ν.
Put f = π ◦ ν. Then the discrepancy of Ẽ is 0. By Proposition 0.1 dim f(Ẽ) = 2n− 2.
�

Corollary 0.3. Let (X,ω) be a symplectic variety of dim 2n with CodimXSing(X) ≥ 4.
Then X has only terminal singularities.

Proof. Let f : X̃ → X be a resolution of X such that f |f−1(Xreg) : f−1(Xreg) ∼=
Xreg. Assume that X has worse singularities than terminal singularities. Then there
is an f -exceptional prime divisor F such that its discrepancy is 0. By Proposition 0.1,
dim f(F ) = 2n− 2. This contradicts that CodimXSing(X) ≥ 4. �

Let (X,ω) be an affine symplectic variety with R = Γ(X,OX). Assume that R is a
positively graded ring R = ⊕i≥0Ri with R0 = C. This means that X has a C∗-action
such that the closed point 0 ∈ X corresponding to the maximal ideal mR := ⊕i>0Ri is a
unique fixed point of the C∗-action. If ω is homogeneous with respect to this C∗-action
(i.e. t∗ω = tlω for some integer l and for t ∈ C∗), then we call (X,ω) a conical symplectic
variety. By the property (b) of a symplectic variety, the weight l is a positive integer.

(P.2) Induced orbits and generalized Springer maps
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Let Q ⊂ G be a parabolic subgroup of G and let Q = U ·L be a Levi decomposition
of Q by the unipotent radical U and a Levi subgroup L. Correspondingly the Lie algebra
q decomposes q = n ⊕ l as a direct sum of n := Lie(U) and l := Lie(L). Let O′ be a
nilpotent orbit of l. Then there is a unique nilpotent orbit O of g such that O meets
n+O′ in a Zariski open subset of n+O′. In such a case we say that O is induced from
O′ and write O = Indg

l (O
′). There is a generically finite map

µ : G×Q (n+ Ō′)→ Ō ([g, z]→ Adg(z)),

which we call a generalized Springer map. Let µ0 : µ−1(O)→ O be the induced map and
let ωKK be the Kirillov-Kostant form on O. Put Y 0 := G×Q (n+O′). Then (µ0)∗ωKK

extends to a symplectic 2-form on Y 0 by [Na 6], Proposition 4.2 (see also [Na 1], Lemma
(1.2.4)). By taking the wedge product of the symplectic forms, we get KY 0 = (µ|Y 0)∗KŌ.
Take the normalization Õ′ of Ō′ and put Y := G×Q (n+Õ′). Let Õ be the normalization
of Ō. Then the induced map µn : Y → Õ satisfies KY = (µn)∗KÕ. In particular, when
µ is birational, Y is a crepant partial resolution of Õ.

(P.3) Nilpotent orbits and their finite coverings
Let O ⊂ g be a nilpotent orbit of a complex semisimple Lie algebra g. Take a simply

connected complex algebraic group G with Lie(G) = g. Let π0 : X
0 → O be a finite etale

covering. Then the G-action on O extends to a G-action on X0 and π0 is a G-equivariant
covering. Let Ō be the closure of O ⊂ g. We can extend π0 to a finite covering map
π : X → Ō. Since X = SpecΓ(X0,OX0) and G acts on X0, G acts on X in such a way
that π is a G-equivariant.

For a point x ∈ O, let Gx ⊂ G be the stabilizer group of x. We take the universal
covering of O asX0 and pick a point x̃ ∈ X0 such that π0(x̃) = x. Let Gx̃ be the stabilizer
group of x̃ for the G-action on X0. Then Gx̃ coincides with the identity component of
Gx. Therefore π1(O) ∼= Gx/(Gx)0. By the Jacobson-Morozov theorem we take an sl(2)-
triple x, y and h in g. We denote by φ the map sl(2)→ g determined by the sl(2)-triple.
Put

gφ := {z ∈ g | [z, x] = [z, y] = [z, h] = 0}.

Obviously gφ ⊂ gx. Let ux be the nilradical of gx. Note that ux is the Lie algebra of
the unipotent radical of Gx. By Barbasch-Vogan and Kostant (cf. [C-M], Lemma 3.7.3),
there is a direct sum decomposition gx = ux⊕gφ. Correspondingly we have a semi-direct
product Gx = Ux ·Gφ. Moreover, the inclusion Gφ → Gx induces an isomorphism

Gφ/(Gφ)0 ∼= Gx/(Gx)0,

which, in particular, means that π1(O) ∼= Gφ/(Gφ)0.
A nilpotent orbit closure Ō has a natural scaling C∗-action for which ωKK has weight

1. Let s : C∗ → Aut(Ō) be a homomorphism determined by the scaling action. In
general this C∗-action does not lift to a C∗-action on X . But, if we instead define a new
C∗-action on Ō by the composite σ of

C∗ → C∗ (t→ t2), and s : C∗ → Aut(Ō),
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then the new C∗-action σ always lifts to a C∗-action on X by [B-K], §1. By defi-
nition, wt(ω) = 2 with respect to this C∗-action. π is etale in codimension one be-
cause CodimŌŌ − O ≥ 2. The map π factors through the normalization Õ of Ō. Put
ω := π∗

0ωKK. Then this means that (X,ω) is a symplectic variety. In fact, take a
resolution f : Y → Ō so that f−1(O) ∼= O, and make a commutative diagram

X ×Õ Y −−−→ Y

f ′





y

f





y

X
π

−−−→ Ō

(4)

Then Z0 := X0 ×O f−1(O) is isomorphically mapped to X0 by f ′. Let Z be the closure
of Z0 in X ×Ō Y , and let Z̃ be a resolution of Z. There is a commutative diagram

Z̃
π̃

−−−→ Y

f̃





y

f





y

X
π

−−−→ Ō

(5)

where Z̃ and Y are both smooth varieties. Since Õ has symplectic singularities, ωKK

extends to a 2-form ωY on Y . Then π̃∗ωY is a 2-form on Z̃ and we see that the 2-form ω
on X0 extends to the 2-form π̃∗ωY on Z̃. This means that (X,ω) is a symplectic variety.
Since wt(ω) = 2, (X,ω) is a conical symplectic variety.

1 g = sl(d)

A nilpotent orbit O of sl(d) is uniquely determined by its Jordan type. If the Jordan
normal form of x ∈ O has j1 Jordan blocks of size d1, j2 Jordan blocks of size d2, ...,
and jk Jordan blocks of size dk, then the Jordan type of O is a partition [dj11 , ..., d

jk
k ] of

d. In the remainder we assume that d1 > d2 > ... > dk. We indicate by O
[d

j1
1 ,...,d

jk
k
]
the

nilpotent orbit with Jordan type [dj11 , ..., d
jk
k ].

We first consider the case when O is the regular nilpotent orbit O[d] of sl(d). In this
case Ō[d] is the nilpotent cone of sl(d).

Proposition 1.1. (1) π1(O[d]) ∼= Z/dZ.
(2) X is Q-factorial for any etale covering π0 : X

0 → O[d].

Proof. Take x ∈ O[d] and consider an sl(2)-triple φ.
(1) As already remarked above, π1(O[d]) = Gφ/(Gφ)0. By Springer and Steinberg (cf.

[C-M], Theorem 6.1.3), one has

Gφ ∼= {(ζ, ..., ζ) ∈ GL(1)d | ζd = 1}(∼= Z/dZ).

(2) It is enough to prove that Pic(X0) is a finite group for X0. X0 can be written as
G/H with a subgroup H with (Gx)0 ⊂ H ⊂ Gx. Then we have an exact sequence (cf.
[K-K-V], Proposition 3.2)

χ(H)→ Pic(G/H)→ Pic(G),
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where χ(H) = Hom(H,C∗). Since Pic(G) is finite, we need to show that χ(H) is finite.
By the exact sequence

1→ Ux → (Gx)0 → (Gφ)0 → 1

we have an exact sequence

χ((Gφ)0)→ χ((Gx)0)→ χ(Ux).

Since (Gφ)0 = 1, the 1-st term is zero. The 3-rd term is zero because Ux is unipotent.
Hence χ((Gx)0) = 0. Now, by the exact sequence

χ(H/(Gx)0)→ χ(H)→ χ((Gx)0)

we see that χ(H) is finite because χ(H/(Gx)0) is finite.

Proposition 1.2. Assume that π0 : X
0 → O[d] is the universal covering. Then CodimXSing(X) ≥

4. In particular, X has only terminal singularities.

Proof. Take a point z from the subregular nilpotent orbit O[d−1,1] and let S be a
(complex analytic) transverse slice for O[d−1,1] ⊂ Ō[d] at z (cf. [K-P 1], Theorem 3.2).
Then S is a surface with an Ad−1-singularity at z. This means that the complex analytic
germ (S, z) is a 2 dimensional quotient singularity Vd, where

Vd := (C2/(Z/dZ), 0).

Here 1̄ ∈ Z/dZ acts on C2 by
(x, y)→ (ζx, ζ−1y)

with ζ a primitive d-th root of unity. Note that, for any e with e|d, the quotient map
(C2, 0)→ Vd factorizes as (C2, 0)→ Ve → Vd.

The inclusion map S−{z} → O[d] induces a homomorphism π1(S−{z})→ π1(O[d]).
We prove that it is an isomorphism. Suppose to the contrary. Then π−1(S) splits into
more than one connected components, each of which is a copy of Ve with some divisor
e( 6= d) of d; namely,

π−1(S) = V (1)
e ⊔ ... ⊔ V (e)

e ,

π−1
0 (S − {z}) = (V (1)

e − {0}) ⊔ ... ⊔ (V (e)
e − {0}).

If we put f := d/e, then V
(i)
e → S is a cyclic cover of degree f .

First we shall construct a cyclic covering ν : Y → O[d] of degree e in such a way that
ν is etale not only over O[d] but also over O[d−1,1]. Take a point p ∈ O[d]. Then π−1(p)
consists of exactly d points {p1, ..., pd} and π1(O[d]) acts on them. We may renumber
these points so that

(a) each V
(i)
e contains pj with j = i (mod e), and

(b) π1(O[d])(= Z/dZ) acts on these d points so that the generator 1̄ acts as the
permutation (1, 2, ..., d); namely, p1 → p2, p2 → p3, ..., pd−1 → pd, pd → p1.

The natural surjection Z/dZ→ Z/eZ determines a Z/eZ-covering ν : Y → Ō[d]. By
definition ν−1(S) splits up into e copies of Vd. This is the desired cyclic covering.
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On the other hand, Ō[d] can be resolved by the cotangent bundle W := T ∗(SL(d)/B)
of the full flag variety SL(d)/B. We call this resolution the Springer resolution and
denote it by s : W → Ō[d]. The Springer resolution s is a symplectic resolution; hence, s
is a semi-small map. Put Z := Ō[d]−O[d]−O[d−1,1]. Then, by the semi-smallness of s, we
have CodimW s−1(Z) ≥ 2. Since π1(W ) = {1}, we have π1(W − s−1(Z)) = {1}. By the
construction ν : Y → Ō[d] is etale over Ō[d] − Z. Then one can construct a (connected)
non-trivial etale cover ofW−s−1(Z) by pulling back ν by the mapW−s−1(Z)→ Ō[d]−Z.
This contradicts that π1(W − s−1(Z)) = {1}.

In the following we construct a Q-factorial terminalization of X for an arbitrary etale
cover π0 : X

0 → O[d]. Let us begin with the simplest cases.

Examples 1.3.

(1) When g = sl(2), π1(O[2]) = Z/2Z. Then X = C2 for the universal covering
X0 → O[2], and π : C2 → Ō[2] is the quotient map of Z/2Z by the action (x1, x2) →
(−x1,−x2).

(2) When g = sl(4), π1(O[4]) = Z/4Z. When X0 is the universal cover of O[4], we
already know that X has only Q-factorial terminal singularities by Proposition 1.1, (2)
and Proposition 1.2.

Next assume that X0 is a double cover of O[4]. The nilpotent cone Ō[4] has a Springer
resolution T ∗(SL(4)/Q1,1,1,1). Here Q1,1,1,1 is a parabolic subgroup of SL(4) stabilizing
a flag 0 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ C4 with dimGriF = 1 for all i. Let n1,1,1,1 be the nilradical
of Q1,1,1,1. By using the Killing form of sl(4), we have an identification

T ∗(SL(4)/Q1,1,1,1) ∼= SL(4)×Q1,1,1,1 n1,1,1,1.

Let Q2,2 be the parabolic subgroup of SL(4) stabilizing the flag 0 ⊂ F 2 ⊂ C4. Then
Q2,2 has a Levi decomposition

Q2,2 = U · L,

where U is the unipotent radical of Q2,2 and L is a Levi part of Q2,2. In our case

U = {

(

I2 ∗
0 I2

)

}.

L = {

(

A 0
0 B

)

| det(A)det(B) = 1}.

Corresponding to the decomposition we have a direct sum decomposition of Lie
algebras

q2,2 = n⊕ l.

In our case
l = sl(2)⊕2 ⊕ z,

where z is a 1-dimensional center of l. Take a nilpotent orbit closure Ō[2] × Ō[2] in
sl(2)⊕2 ⊕ z. The parabolic subgroup Q2,2 acts on q2,2. Since n is an ideal of q2,2, n is
stable under the Q2,2-action. On the other hand, l is not stable. Let z ∈ l and q ∈ Q2,2.
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Then Adq(z) decomposes into the sum of the nilradical part (Adq(z))n and the Levi part
(Adq(z))l. Let Q1,1 → Q1,1/U = L be the quotient map and let q̄ ∈ L be the image of
q ∈ Q2,2 by this map. The Levi subgroup L acts on l by the adjoint action. Then

(Adq(z))l = Adq̄(z).

In particular, if z ∈ Ō[2] × Ō[2], then (Adq(z))l ∈ Ō[2] × Ō[2]. Therefore Q2,2 acts on
n+ (Ō[2] × Ō[2]). Then SL(4)×Q2,2 (n+ Ō[2] × Ō[2]) gives a crepant partial resolution of
Ō[4]. Moreover, the Springer resolution of O[4] factors through this partial resolution:

SL(4)×Q1,1,1,1 n1,1,1,1 → SL(4)×Q2,2 (n+ Ō[2] × Ō[2])→ Ō[4].

We want to make a double cover X ′ of SL(4)×Q2,2 (n+ Ō[2] × Ō[2]) so that the diagram

X ′ X

SL(4)×Q2,2 (n+ Ō[2] × Ō[2]) Ō[4]

✲
µ

❄

π′

❄

π

✲

commutes and µ gives aQ-factorial terminalization ofX . By (1) we have a finite covering

C2 ×C2 → Ō[2] × Ō[2]

of degree 4. Then Z/2Z acts onC4(= C2×C2) by (x1, x2, y1, y2)→ (−x1,−x2,−y1,−y2).
We denote by C4/〈+1,−1〉 the quotient space. The covering map above then factors
through C4/〈+1,−1〉:

C4 → C4/〈+1,−1〉 → Ō[2] × Ō[2].

We want to make n+C4/〈+1,−1〉 into a Q2,2-space and to define X ′ to be SL(4)×Q2,2

(n+C4/〈+1,−1〉).

Claim 1.3.1. The adjoint action of L on Ō[2] × Ō[2] lifts to an action on C4/〈+1,−1〉.

Proof. As already remarked above,

L = {

(

A 0
0 B

)

| det(A)det(B) = 1}.

Define a subgroup T of L by

T = {

(

λI2 0
0 λ−1I2

)

| λ ∈ C∗}.

We identify SL(2)× SL(2) with a subgroup of L by

{

(

A 0
0 B

)

| A,B ∈ SL(2)}.
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Then the inclusion map SL(2)× SL(2) ⊂ L induces an isomorphism

SL(2)× SL(2)/〈+1,−1〉 ∼= L/T.

SL(2)×SL(2) naturally acts onC4; hence SL(2)×SL(2)/〈+1,−1〉 acts onC4/〈+1,−1〉.
As a consequence, L/T acts onC4/〈+1,−1〉. In particular, L acts onC4/〈+1,−1〉, which
is a lift of the adjoint action of L on Ō[2] × Ō[2]. �

Now Q2,2 acts on the space n+C4/〈+1,−1〉 as follows. Take a point z + v from the
space. Here z ∈ n and v ∈ C4/〈+1,−1〉. We denote by v̄ the image of v by the map
C4/〈+1,−1〉 → Ō[2] × Ō[2]. For q ∈ Q2,2 we denote by q̄ ∈ L the image of q by the map
Q2,2 → Q2,2/U = L. We define

q · (z + v) := (Adq(z + v̄))n + q̄ · v ∈ n+C4/〈+1,−1〉.

Here q̄ ∈ L acts on v ∈ C4/〈+1,−1〉 as described in Claim 1.3.1. Let us consider the
composed map

SL(4)×Q2,2 (n+C4/〈+1,−1〉)→ SL(4)×Q2,2 (n+ Ō[2] × Ō[2])→ Ō[4].

The Stein factorization of this map is nothing but X . As a consequence we have a
commutative diagram

SL(4)×Q2,2 (n+C4/〈+1,−1〉)
µ

−−−→ X

π′





y

π





y

SL(4)×Q2,2 (n+ Ō[2] × Ō[2]) −−−→ Ō[4]

(6)

We can generalize this construction to more general situations. Let us consider
the regular nilpotent orbit O[d] of sl(d). Assume that e is a divisor of d. We put
f := d/e. By Proposition 1.1, (1) π1(O[d]) = Z/dZ. The surjective homomorphism
Z/dZ → Z/eZ determines an etale cover X0 → O[d] of degree e. We will construct
a Q-factorial terminalization of X by the same idea of Examples 1.3. Let Qe,e,...,e be
a parabolic subgroup of SL(d) with flag type (e, ..., e). Let Qe,...,e = U · L be a Levi
decomposition where

U = {













Ie ∗ ∗ ∗ ∗
0 Ie ∗ ∗ ∗
... ... ... ... ...
0 0 0 Ie ∗
0 0 0 0 Ie













},

L = {













A1 0 0 0 0
0 A2 0 0 0
... ... ... ... ...
0 0 0 Af−1 0
0 0 0 0 Af













| Ai ∈ GL(e), det(A1) · · · det(Af ) = 1}.
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We have
qe,...,e = n⊕ l,

l = sl(e)⊕f ⊕ z,

where z is the f −1 dimensional center of l. We take a nilpotent orbit closure Ō×f
[e] inside

l. Then
SL(d)×Qe,...,e (n+ (Ō×f

[e] )

is a crepant partial resolution of Ō[d]. Let X[e] → Ō[e] be the finite covering of degree
e corresponding to the universal covering of O[e]. The adjoint action of SL(e) on Ō[e]

extends to an action on X[e]. The center Z of SL(e) is written as

{ζIe ∈ SL(e) | ζe = 1}.

Then Z acts effectively on X[e] as covering transformations of X[e] → Ō[e]. In fact, let
x ∈ O[e] and put G := SL(e). Then the universal cover X0

[e] of O[e] is written as G/(Gx)0.

Now Gx/(Gx)0 ∼= Gφ/(Gφ)0. By the description of Gφ in the proof of Proposition 1.1,
(1) we see that Gφ = Z and (Gφ)0 = {1}. Since Gx/(Gx)0 acts effectively on G/(Gx)0,
we see that Z acts effectively on G/(Gx)0; hence, acts effectively on X[e]. Then Z×f acts

on X×f
[e] . Define a subgroup S(Z×f) of Z×f by

S(Z×f) := {(ζ1Ie, ..., ζfIe) ∈ Z×f | ζ1 · ·ζf = 1}.

Notice that S(Z×f) ∼= (Z/eZ)⊕f−1. Then the mapX×f
[e] → Ō×f

[e] factors throughX×f
[e] /S(Z

×f):

X×f
[e] → X×f

[e] /S(Z
×f)→ Ō×f

[e] .

By definition the 2-nd map is a Z/eZ-Galois covering.

Claim 1.3.2. The adjoint action of L on Ō×f
[e] lifts to an action on X×f

[e] /S(Z
×f).

Proof. Define a subgroup T of L by

T := {













ζ1Ie 0 0 0 0
0 ζ2Ie 0 0 0
... ... ... ... ...
0 0 0 ζf−1Ie 0
0 0 0 0 ζfIe













| ζi ∈ C∗, ζ1 · · · ζf = 1}.

We identify SL(e)×f with a subgroup of L defined by

{













A1 0 0 0 0
0 A2 0 0 0
... ... ... ... ...
0 0 0 Af−1 0
0 0 0 0 Af













| Ai ∈ SL(e) ∀i}.
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Then the inclusion SL(e)×f → L induces an isomorphism SL(e)×f/S(Z×f) ∼= L/T . As
SL(e)×f acts on X×f

[e] , L/T acts on X×f
[e] /S(Z

×f). Hence L acts on X×f
[e] /S(Z

×f). �

Now Qe,...,e acts on n+X×f
[e] /S(Z

×f) as follows. Take a point z+v ∈ n+X×f
[e] /S(Z

×f).

Here z ∈ n and v ∈ X×f
[e] /S(Z

×f). We denote by v̄ the image of v by the map

X×f
[e] /S(Z

×f) → Ō×f
[2] . For q ∈ Qe,...,e we denote by q̄ ∈ L the image of q by the

map Qe,...,e→ Qe,...,e/U = L. We define

q · (z + v) := (Adq(z + v̄))n + q̄ · v ∈ n+X×f
[e] /S(Z

×f).

Here q̄ ∈ L acts on v ∈ X×f
[e] /S(Z

×f) as described in Claim 1.3.2.

Recall that π : X → Ō[d] is a finite Z/eZ-cover. We have a commutative diagram

SL(d)×Qe,...,e (n+X×f
[e] /S(Z

×f))
µ

−−−→ X

π′





y

π





y

SL(d)×Qe,...,e (n+ Ō×f
[2] )

s
−−−→ Ō[d]

(7)

Here µ is the Stein factorization of s ◦ π′. X×f
[e] is Q-factorial by Propositon 1.1, (2).

Then X×f
[e] /S(Z

×f) is also Q-factorial by the following lemma.

Lemma 1.4. Let f : V → W be a finite Galois covering of normal varieties. If V is
Q-factorial, then W is also Q-factorial.

Proof. Let D be a prime Weil divisor of W . We need to show that mD is a Cartier
divisor for a suitable m. Put E := f−1(D) and regard it as a reduced Weil divisor. By
the assumption rE is a Cartier divisor on V for some r > 0. Take a point x ∈ W . By
[Mum], Lecture 10, Lemma B, one can choose an open neighborhood U of x ∈ W such
that rE is a principal divisor of f−1(U). We take a defining equation ϕof rE|f−1(U). Let
G be the Galois group of f . Then

Φ :=
∏

g∈G

ϕg

is a local equation of the Cartier divisor |G|rE. Since Φ is G-invariant, it can be regarded
as an element of Γ(U,OW ). Then Φ is a local equation of some multiple of D on U . �

The variety SL(d)×Qe,...,e (n+X×f
[e] /S(Z

×f)) is a fiber bundle over SL(d)/Qe,...,e with

a typical fiber n+X×f
[e] /S(Z

×f). By [Ha], II, Proposition 6.6, we have

Cl(X×f
[e] /S(Z

×f) ∼= Cl(n+X×f
[e] /S(Z

×f)),

where Cl denotes the divisor class group. By using this we see that n+X×f
[e] /S(Z

×f) is

Q-factorial since X×f
[e] /S(Z

×f) is Q-factorial,. Then SL(d)×Qe,...,e (n+X×f
[e] /S(Z

×f)) is
also Q-factorial by the following lemma.

13



Lemma 1.5. Let f : V → T be an etale fiber bundle over a nonsingular variety T with
a typical fiber Y . Assume that

(1) Y is a Q-factorial normal variety.
(2) Y has only rational singularities with CodimY Sing(Y ) ≥ 3.
Then V is also Q-factorial.

Proof. Take a closed point v ∈ V and put t = f(v). Replace T by a suitable open
neighborhood of t. Put n = dimT . Then one has a sequence of nonsingular subvarieties
{t} ⊂ T1 ⊂ T2 ⊂ ... ⊂ Tn−1 ⊂ Tn = T with dimTi = i. Put Vi := V ×T Ti. Then
we get a sequence V0(= Y ) ⊂ V1 ⊂ V2 ⊂ ... ⊂ Vn = V . Here each Vi is a Cartier
divisor of Vi+1. Since rational singularities are Cohen-Macaulay, we can apply [Ko-Mo],
Corollary (12.1.9) for Y ⊂ V1 to see that V1 is Q-factorial around V0. Now V1 satisfies
the conditions (1) and (2). Therefore we can apply [ibid, Corollary (12.1.9)] repeatedly
for Vi ⊂ Vi+1 and finally see that V is Q-factorial around Vn−1. In particular, V is
Q-factorial around f−1(t) ⊂ V . Since v is an arbitrary closed point, V is Q-factorial. �

Lemma 1.6. For e > 2, X[e] is singular. For e > 1 and f > 1, X×f
[e] /S(Z

×f) is singular.

Proof. Assume that X[e] is smooth for e > 2. Since X[e] → Ō[e] is a finite quotient
map, Ō[e] would be a symplectic quotient singularity. Then the closure of any symplectic
leaf of Ō[e] would be again a quotient singularity. On the other hand, the closure Ō[2,1e−2]

of the minimal nilpotent orbit O[2,1e−2] is not a quotient singularity if e > 2. In fact, the
Springer resolution s of Ō[2,1e−2] is given by the cotangent bundle T ∗Pe−1 of Pe−1. The
exceptional locus of the Springer resolution is the zero locus of the cotangent bundle,
which has codimension e − 1(≥ 2). This means that Ō[2,1e−2] is not Q-factorial. In
fact, take an s-ample effective divisor H on T ∗Pe−1 and consider s∗H . If Ō[2,1e−2] is
Q-factorial, then ms∗H is Cartier for some m > 0. Then s∗(ms∗H) and mH coincides
outside Exc(s), which has codimension > 1. Hence, they coincide on T ∗Pe−1. Take a
curve C ⊂ Exc(s) so that s(C) is a point. Then (s∗(ms∗H).C) = 0. On the other hand,
(mH,C) > 0 because H is s-ample. This is a contradiction. In particular, Ō[2,1e−2] is not
a quotient singularity. Therefore X[e] is singular. When e > 2, we can prove similarly

that X×f
[e] /S(Z

×f) is singular by using the quotient map X×f
[e] /S(Z

×f) → Ō×f
[e] . When

e = 2, X[e] = C2. But, if f > 1, then any non-zero element of S(Z×f) has the fixed locus

of codimension ≥ 4. Hence X×f
[2] /S(Z

×f) is singular. �

Since X[e] has terminal singularities, the product X×f
[e] has terminal singularities. The

fixed locus of any nonzero element of S(Z×f) has codimension ≥ 4; hence X×f
[e] /S(Z

×f)
has only terminal singularities.

Lemma 1.7. Let O[d] ⊂ sl(d) be the regular nilpotent orbit with d > 2. Assume that
X0 → O[d] is an etale covering of degree e > 1 and let X → Ō[d] be the associated finite
cover of Ō[d]. Then the map

SL(d)×Qe,...,e (n+X×f
[e] /S(Z

×f))→ X

is a Q-factorial terminalization of X. In particular, X has no crepant resolutions.
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We next consider the nilpotent orbit O[di] of sl(di). Put G = SL(di). As before ,
take an element x from O[di] and fix an sl(2)-triple φ containing x. Then

Gφ = {(A, ..., A) ∈ GL(i)×d | det(A)d = 1}.

Gφ has exactly d connected components. Let ζ be a primitive d-th root of unity. Then
each connected component is given by

{(A, ..., A) ∈ GL(i)×d | det(A) = ζ i}, i = 0, 1, ..., d− 1.

Note that Gφ/(Gφ)0 ∼= Z/dZ.

Proposition 1.8. (1) π1(O[di]) ∼= Z/dZ.
(2) X is Q-factorial for any etale covering π0 : X

0 → O[di].

Proof. (1) We have already seen that (1) holds.
(2) We can prove (2) in the same manner as in Proposition (1.1), (2). Note that

χ((Gφ)0) = {0} because (Gφ)0 ∼= SL(i)×d. �

The closure Ō[di] contains the largest orbit O[di−1,d−1,1] in Ō[di]−O[di]. Note that Ō[di]

has Ad−1-surface singularities along O[di−1,d−1,1] (cf. [K-P 1], Theorem 3.2). Moreover,
Ō[di] has a Springer resolution. Since the universal covering of O[di] is a cyclic covering
of degree d, we can prove the following in the same way as Proposition 1.2.

Proposition 1.9. Assume that π0 : X0 → O[di] is the universal covering. Then
CodimXSing(X) ≥ 4. In particular, X has only terminal singularities.

For a partition [dj11 , ..., d
jk
k ] of j1d1+...+jkdk, consider the nilpotent orbit O[d

j1
1 ,...,d

jk
k
]
⊂

sl(j1d1 + ... + jkdk). Let d := gcd(d1, ..., dk). By [C-M], Corollary 6.1.6, we have
π1(O[d

j1
1 ,...,d

jk
k
]
) ∼= Z/dZ. Let π0 : X0 → O

[d
j1
1 ,...,d

jk
k
]
be the universal covering and let

π : X → Ō
[d

j1
1 ,...,d

jk
k
]
be the associated finite cover. We will construct a Q-factorial

terminalization of X by using Propositon 1.9.

Example 1.10.

Let Qi1d,...,ird ⊂ SL((i1 + ... + ir)d) be parabolic subgroup of flag type (i1d, ..., ird).
We assume that gcd(i1, ..., ir) = 1. Let Qi1d,...,ird = U · L be a Levi decomposition with

U = {













Ii1d ∗ .∗ ... ∗
0 Ii2d ∗ ... ∗
... ... ... ... ...
0 0 ... Iir−1d ∗
0 0 ... 0 Iird













}

and

L = {













A1 0 .0 ... 0
0 A2 0 ... 0
... ... ... ... ...
0 0 ... Ar−1 0
0 0 ... 0 Ar













|A1 ∈ GL(i1d), ..., Ar ∈ GL(ird), det(A1)···det(Ar) = 1}.
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The subgroup of L consisting of the matrices with A1 ∈ SL(i1d), ..., Ar ∈ SL(ird) is
isomorphic to SL(i1d)×...×SL(ird). In the remainder we identify SL(i1d)×...×SL(ird)
with this subgroup of L. Let us consider the product of the nilpotent orbits Ō[di1 ]× ...×
Ō[dir ] in sl(i1d)× ...× sl(ird). Let X[diα ] → Ō[diα ] be the finite cover associated with the
universal covering of O[diα ] for each 1 ≤ α ≤ r. Then we have a finite covering

f : X[di1 ] × ...×X[dir ] → Ō[di1 ] × ...× Ō[dir ].

We consider the finite subgroup µi1d × ...× µird of SL(i1d)× ...× SL(ird) consisting of
the elements (t1Ii1d, ..., trIird) with ti1d1 = ... = tirdr = 1. Moreover let H ′ be the subgroup
of µi1d × ...× µird determined by ti11 ...t

ir
r = 1. Define a surjection

α : µi1d × ...× µird → µd × ...× µd

by (t1, ..., tr)→ (ti11 , ..., t
ir
r ). Similarly, define a surjection

β : µd × ...× µd → µd

by (t1, ..., tr)→ t1...tr. Then H ′ is nothing but the kernel of the composed map

µi1d × ...× µird → µd.

0 0




y





y

0 −−−→ µi1 × ...× µir
ι

−−−→ H ′ −−−→ Coker(ι)




y





y

0 −−−→ µi1d × ...× µird

∼=
−−−→ µi1d × ...× µird −−−→ 0

α





y

β◦α





y

Ker(β) −−−→ µd × ...× µd
β

−−−→ µd −−−→ 0




y





y

0 0

(8)

Here Ker(α) = µi1 × ... × µir and ι is the natural inclusion. By the snake lemma,
Coker(ι) ∼= Ker(β). We put H := Ker(β). The subgroup µi1d × ... × µird of SL(i1d) ×
... × SL(ird) acts on X[di1 ] × ... × X[dir ] as covering transformations of f . But Ker(α)
acts trivially on X[di1 ]× ...×X[dir ]. This means that µd× ...µd acts on X[di1 ]× ...×X[dir ],
which is nothing but the Galois group of the map f . Since Coker(ι) ∼= Ker(β), the finite
covering

(X[di1 ] × ...×X[dir ])/H → Ō[di1 ] × ...× Ō[dir ]

is a cyclic covering of degree d.

Claim 1.10.1. The adjoint action of L on Ō[di1 ] × ... × Ō[dir ] lifts to an action on
(X[di1 ] × ...×X[dir ])/H.
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Proof. Define a subgroup T of L by

T = {













t1Ii1d 0 .0 ... 0
0 t2I[i2d] 0 ... 0
... ... ... ... ...
0 0 ... tr−1Iir−1d 0
0 0 ... 0 trIird













| ti11 ...t
ir
r = 1}.

Then the inclusion SL(i1d)× ...×SL(ird)→ L induces an isomorphism (SL(i1d)× ...×
SL(ird))/H ∼= L/T . Since (SL(i1d)× ...× SL(ird))/H acts on (X[di1 ] × ...×X[dir ])/H ,
L acts on (X[di1 ] × ...×X[dir ])/H , which gives a lift of the adjoint action. �

By Claim 1.10.1, Qi1d,...,ird acts on n+(X[di1 ]× ...×X[dir ])/H . Then we have a cyclic
covering

SL((i1 + ... + ir)d)×
Qi1d,...,ird (n+ (X[di1 ] × ...×X[dir ])/H)

→ SL((i1 + ...+ ir)d)×
Qi1d,...,ird (n+ Ō[di1 ] × ...× Ō[dir ])

of degree d. �

Now look at a nilpotent orbit O
[d

j1
1 ,...,d

jk
k
]
⊂ sl(j1d1+...+jkdk). Put d := gcd(d1, ..., dk).

Then the dual partition of [dj11 , ..., d
jk
k ] can be written as the form [id1, ...., i

d
r ] by using

suitable set of positive integers {i1, ...ir}. Here the same number may possibly appears
more than once in {i1, ..., ir}. For example, the partition [9, 6] has the dual partition
[23, 23, 13]. Note that 3 = gcd(9, 6). The dual partition of idj (j = 1, ..., r) equals [dij ] (j =
1, ..., r). Now let us consider the product of the nilpotent orbit closures Ō[di1 ]× ...×Ō[dir ]

in sl(i1d)× ...× sl(ird). Then SL((i1 + ...+ ir)d)×
Qi1d,...,ird (n+ Ō[di1 ]× ...× Ō[dir ]) gives

a crepant partial resolution of Ō
[d

j1
1 ,...,d

jk
k
]
.

Construction of a Q-factorial terminalization: Let X → Ō
[d

j1
1 ,...,d

jk
k
]
be the finite

covering associated with the universal covering of O
[d

j1
1 ,...,d

jk
k
]
. By using Example 1.10,

we have a commutative diagram

SL((i1 + ... + ir)d)×
Qi1d,...,ird (n+ (X[di1 ] × ...×X[dir ])/H)

µ
−−−→ X

π′





y

π





y

SL((i1 + ... + ir)d)×
Qi1d,...,ird (n+ Ō[di1 ] × ...× Ō[dir ]) −−−→ Ō

[d
j1
1 ,...,d

jk
k
]

(9)

Since X[di1 ] × ... × X[dir ] has terminal singularities and the fixed locus of each nonzero
element of H has codimension ≥ 4, (X[di1 ]×...×X[dir ])/H has only terminal singularities.
Since X[di1 ] × ...×X[dir ] is Q-factorial, (X[di1 ] × ...×X[dir ])/H is Q-factorial by Lemma
1.4. Therefore µ gives a Q-factorial terminalization of X .

Next assume that X → Ō
[d

j1
1 ,...,d

jk
k
]
is the finite covering associated with an etale

covering of O
[d

j1
1 ,...,d

jk
k
]
of degree e. We put f := d/e. In this case we take instead the

product of nilpotent orbit closures Ō×f

[ei1 ]
× ...× Ō×f

[eir ]
and consider the finite covering

X×f
[ei1 ]
× ...×X×f

[eir ] → Ō×f
[ei1 ]
× ...× Ō×f

[eir ].
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The situation being the same as the previous case, we define similarly a subgroup H of
µ×f
i1e
× ...× µ×

ire
. Then we have a commutative diagram

SL((i1 + ...+ ir)d)×
Q

(i1e)
f ,...,(ire)f (n+ (X×f

[ei1 ]
× ...×X×f

[eir ])/H)
µ

−−−→ X

π′





y

π





y

SL((i1 + ...+ ir)d)×
Q

(i1e)
f ,...,(ire)f (n+ Ō×f

[ei1 ]
× ...× Ō×f

[eir ]) −−−→ Ō
[d

j1
1 ,...,d

jk
k
]

(10)

and µ gives a Q-factorial terminalization.

Corollary 1.11. Let π : X → Ō be the finite covering associated with a nontrivial etale
covering of a nilpotent orbit O of sl(d). Then X has no crepant resolutions except when
π is the double covering C2 → Ō[2] ⊂ sl(2).

2 g = sp(2n)

We write a partition p of 2n as [drd, (d − 1)rd−1, ..., 2r2, 1r1] with rd 6= 0. Other ri may
possibly be zero; in such a case i does not appear in the partition. If ri > 0, then we call
i a member of the partition. Each nilpotent orbit of sp(2n) is uniquely determined by
its Jordan type. Such a Jordan type is a partition p of 2n with all odd members having
even multiplicities (cf. [C-M], §5). Conversely, for each such partition p of 2n, there is
a nilpotent orbit with Jordan type p. Let b be the number of distinct even members of
p. Then we have

Proposition 2.1. (1) π1(Op) ∼= (Z/2Z)⊕b.
(2) Assume that ri 6= 2 for all even members i of p. Then X is Q-factorial for any

etale covering X0 → Op.

Proof. Put G = Sp(2n). Let x ∈ Op and take an sl(2)-triple φ in sp(2n) containing
x. Put

Sp(ri)
×i
∆ := {(A, ..., A) ∈ Sp(ri)

×i | A ∈ Sp(ri)}

and
O(ri)

×i
∆ := {(A, ..., A) ∈ O(ri)

×i |A ∈ O(ri)}.

By [C-M, Theorem (6.1.3)] we have

Gφ ∼=
∏

i:odd

Sp(ri)
×i
∆ ×

∏

i:even

O(ri)
×i
∆ .

Hence
(Gφ)0 ∼=

∏

i:odd

Sp(ri)
×i
∆ ×

∏

i:even

SO(ri)
×i
∆ .

An important remark is that each factor of the right hand side is a simple Lie group
except that SO(2) ∼= C∗ and SO(4) is a semisimple Lie group of type A1 + A1. Since
π1(Op) ∼= Gφ/(Gφ)0, (1) is clear from the above. If the condition of (2) holds, then
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(Gφ)0 does not have SO(2) as a factor; hence χ((Gφ)0) = 0. The etale covering X0 of
Op can be written as G/H for a suitable subgroup H with (Gφ)0 ⊂ H ⊂ Gφ. By the
same argument as in Proposition (1.1), (2) we see that Pic(G/H) is a finite group, which
means that X is Q-factorial. �

Example 2.2.

Let O[2n] be the regular nilpotent orbit. By Proposition 2.1, (1) we have π1(O[2n]) ∼=
Z/2Z. Let X → Ō[2n] be the double covering associated with the universal covering
X0 → O[2n]. Put the n× n matrix

Jn =













0 0 0 ... 1
0 0 ... 1 0
... ... ... ... ...
0 1 ... 0 0
1 0 ... 0 0













.

Then

Sp(2n) = {A ∈ GL(2n) |At

(

0 Jn

−Jn 0

)

A =

(

0 Jn

−Jn 0

)

}.

Now let us consider the isotropic flag

0 ⊂ 〈e1〉 ⊂ 〈e1, e2〉... ⊂ 〈e1, e2, ..., e2n−1〉 ⊂ C2n

and let Q1n−1,2,1n−1 be the parabolic subgroup of Sp(2n) stabilizing the flag. Let U be
the unipotent radical of Q1n−1,2,1n−1 . One has a Levi decomposition Q1n−1,2,1n−1 = U · L
with

L = {





























t1 0 0 ... ... ... ... ... 0
0 t2 0 ... ... ... ... ... 0
... ... ... ... ... ... ... ... ...
0 ... 0 tn−1 0 ... ... ... 0
0 ... ... 0 A 0 ... ... 0
0 ... ... ... 0 t−1

n−1 0 ... 0
... ... ... ... ... ... ... ... ...
0 ... ... ... ... ... ... t−1

2 0
0 ... ... ... ... ... ... 0 t−1

1





























| t1, ..., tn−1 ∈ C∗, A ∈ Sp(2)}.

The Lie algebra l decomposes into the direct sum

l = gl(1)⊕n−1 ⊕ sp(2).

Take a nilpotent orbit O[2] of sp(2). Then we have a crepant partial resolution

Sp(2n)×Q1n−1,2,1n−1 (n+ Ō[2])→ Ō[2n].

Let C2 → Ō[2] be the double covering associated with the universal covering of O[2].
The adjoint action of Sp(2) on Ō[2] lifts to an action on C2. Since there is a natural
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projection L → Sp(2), L acts in the adjoint way on Ō[2], which lifts to an L-action on
C2. This means that Q1n−1,2,1n−1 acts on n+C2. Then we have a commutative diagram

Sp(2n)×Q1n−1,2,1n−1 (n+C2)
µ

−−−→ X

π′





y

π





y

Sp(2n)×Q1n−1,2,1n−1 (n+ Ō[2]) −−−→ Ō[2n]

(11)

The map µ is a crepant resolution of X . �

Let us consider a partition p = [drd, (d− 1)rd−1, ..., 2r2 , 1r1] of 2n such that
(i) ri is even for each odd i, and
(ii) ri 6= 0 for each even i.
For example, the partitions [52, 4, 2] and [6, 4, 2, 14] satisfy these conditions, but

[8, 4, 2, 12] does not satisfy (ii) because 6 does not appear. If d is even, then all d,
d − 2, d − 4, ..., 2 must appear in the partition. If d is odd, then all d− 1, d − 3, ..., 2
must appear in the partition. The following is a key proposition.

Proposition 2.3. Let p be a partition satisfying (i) and (ii). Let π : X → Ōp be the
finite covering associated with the universal covering of Op. Then CodimXSing(X) ≥ 4.

Proof. Let i > 1 be a member of p such that ri−1 = 0. This means that p has the
form

[drd, ..., iri , (i− 2)ri−2 , (i− 3)ri−3 , ..., 1r1]

Such an i is called a gap member. By the condition (ii) any gap member must be even.
For a gap member i, one can find a nilpotent orbit Op̄ ⊂ Ōp with

p̄ = [drd, ..., iri−1, (i− 1)2, (i− 2)ri−2−1, (i− 3)ri−3 , ..., 1r1].

By Kraft and Procesi [K-P], 3.4 we see that CodimŌp
Op̄ = 2 and the transversal slice

S for Op̄ ⊂ Ōp is an A1-surface singularity. Note that S is a quotient singularity
(C2/(Z/2Z), 0). Then we have a double cover (C2, 0)→ S.

Let {i1, i2, ..., ik} be the set of all gap members of p. As defined above, for these gap
members, we have nilpotent orbits

Op̄1 , ..., Op̄k
.

Notice that Ōp̄1 , ..., Ōp̄k
are nothing but the irreducible components of Sing(Ōp) which

have codimension 2 in Ōp. To prove that CodimXSing(X) ≥ 4, we only have to show
that X is smooth along π−1(Op̄j

) for each 1 ≤ j ≤ k. Let Sj be the transversal slices
for Op̄j

⊂ Ōp. Then it is equivalent to showing that π−1(Sj) are disjoint union of finite
copies of (C2, 0).

The gap member is closely related to the notion of induced orbits. There are two
types of inductions:

(Type I): Let i be a gap member of p (which may possibly be odd or even). Put
r := rd + ...+ ri and let Q ⊂ Sp(2n) be a parabolic subgroup of flag type (r, 2n− 2r, r)
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with Levi decomposition q = n ⊕ l. Notice that l = gl(r) ⊕ sp(2n − 2r). There is a
nilpotent orbit Op′ of sp(2n− 2r) with Jordan type

p′ = [(d− 2)rd, ..., (i− 2)ri+ri−2, (i− 3)ri−3, ..., 1r1]

such that Op = Indg
l (Op′). Notice that p′ satisfies (i).

Claim 2.3.1. (cf. [He], Theorem 7.1, (d)). The generalized Springer map

µ : Sp(2n)×Q (n+ Ōp′)→ Ōp

is a birational map.

Proof. This is true for any partition p with the condition (i). We write p as
[d1, d2, ..., ds] with d1 ≥ d2 ≥ ... ≥ ds > 0. The partition p determines a Young di-
agram Y (p). By definition Y (p) is a subset of Z2

>0 such that (l, j) ∈ Y (p) if and only if
(l, j) satisfies 1 ≤ l ≤ dj.

We can take a basis {e(l, j)}(l,j)∈Y (p) of C
2n so that

(a) {e(l, j)} is a Jordan basis for x, i.e. x·e(l, j) = e(l−1, j) for l > 1 and x·e(1, j) = 0.
(b) 〈e(l, j), e(p, q)〉 6= 0 if and only if p = dj − l + 1 and q = β(j). Here β is a

permutation of {1, 2, ..., s} such that β2 = id, dβ(j) = dj, and β(j) 6= j if dj is odd. The
basis {e(l, j)} are the same one as in [He], 5.1 (cf. [S-S], p.259, see also [C-M], 5.1). The
notation in [S-S] is slightly different, but we here employ the notation in [He], 5.1.

Put F :=
∑

1≤j≤r Ce(1, j). Then F ⊂ F⊥ is an isotropic flag such that x ·F = 0 and

x ·C2n ⊂ F⊥ and x is an endomorphism of F⊥/F with Jordan type p′. This is actually
a unique isotropic flag of type (r, 2n − 2r, r) satisfying these properties. Hence µ−1(x)
consists of one element. �

(Type II): Let i be an even member of p with ri = 2. Put r := rd+...+ri−1+1 and let
Q ⊂ Sp(2n) be a parabolic subgroup of flag type (r, 2n− 2r, r) with Levi decomposition
q = n⊕l. Notice that l = gl(r)⊕sp(2n−2r). There is a nilpotent orbit Op′ of sp(2n−2r)
with Jordan type

p′ = [(d− 2)rd, ..., iri+2 , (i− 1)ri+1+2+ri−1 , (i− 2)ri−2, ..., 1r1]

such that Op = Indg

l (Op′). Notice that ri+1 +2+ ri−1 is even because i is even; hence p′

satisfies the condition (i).

Claim 2.3.2. (cf. [He], Theorem 7.1, (d)). The generalized Springer map

µ : Sp(2n)×Q (n+ Ōp′)→ Ōp

is generically finite of degree 2.

Proof. Fix an element x ∈ Op and take the same basis {e(l, j)} of Cm as the previous
claim. We may assume that the permutation β satisfies β(r) = r + 1 and β(r + 1) = r
after a suitable change of the basis.

We put F :=
∑

1≤j≤r Ce(1, j). Then F ⊂ F⊥ is an isotropic flag such that x · F = 0

and x ·C2n ⊂ F⊥ and x is an endomorphism of F⊥/F with Jordan type p′.
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On the other hand, put F ′ :=
∑

1≤j≤r+1, j 6=r Ce(1, j). Then F ′ ⊂ (F ′)⊥ is an isotropic

flag such that x · F ′ = 0 and x · C2n ⊂ (F ′)⊥ and x is an endomorphism of (F ′)⊥/F ′

with Jordan type p′.
The isotropic flags of type (r, 2n − 2r, r) with these properties are exactly two flags

above. Indeed, at first, it can be checked that such a flag F contains the subspace
∑

1≤j≤r−1Ce(1, j). Then F is written as

F =
∑

1≤j≤r−1

Ce(1, j) +C(αe(1, r + 1) + βe(1, r))

for some (α, β) 6= 0. Put 〈e(1, r + 1), e(i, r)〉 = a1, 〈e(2, r + 1), e(i − 1, r)〉 = a2, ...,
〈e(i, r + 1), e(1, r)〉 = ai. Here a1, ..., ai are all nonzero. Since x ∈ sp(2n), we have
a2 = −a1, a3 = −a2, ..., ai = −ai−1. Since i is even, ai = −a1. Then we see that

F⊥ :=
∑

1≤j≤r−1, 1≤l≤dj−1

Ce(l, j) +C(αe(l, r + 1)− βe(l, r)).

If α and β are both nonzero, then xi−1(αe(i, r+1)−βe(i, r)) 6= 0. This contradicts that
x is an endomorphism of F⊥/F with Jordan type p′. Therefore, α = 0 or β = 0.

Assume that Q is the parabolic subgroup of Sp(2n) stabilizing the flag F ⊂ F⊥. We
have an Sp(2n)-equivariant (locally closed) immersion

ι : Sp(2n)×Q (n+Op′) ⊂ Sp(2n)/Q× sp(2n), [g, y]→ (gQ,Adg(y)).

Consider (F ⊂ F⊥, x) and (F ′ ⊂ (F ′)⊥, x) as elements of Sp(2n)/Q× sp(2n). Note that
ι([1, x]) = (Q, x) = (F ⊂ F⊥, x).

We want to prove that (F ′ ⊂ (F ′)⊥, x) is also contained in Im(ι). Let Q′ be the
parabolic subgroup stabilizing the flag F ′ ⊂ (F ′)⊥. Then one can write Q′ = gQg−1 for
some g ∈ Sp(2n). Let q′ = n′ ⊕ l′ be a Levi decomposition. By definition x ∈ n′ + O′

p′ ,
where O′

p′ is a nilpotent orbit in l′ with Jordan type p′. Then g−1xg ∈ n + g−1O′
p′g,

where g−1O′
p′g ∈ g−1l′g. The Lie algebra g−1l′g is a Levi subalgebra of q. Hence l and

g−1O′
p′g are conjugate by an element of Q. By changing g by gq′ for a suitable q′ ∈ Q,

we may assume from the first that g−1O′
p′g ⊂ l. Since g−1O′

p′g and Op′ have the same
Jordan type and the nilpotent orbits of sp(2n− 2r) are completely determined by their
Jordan types, we see that g−1O′

p′g = Op′ . This means that

x, g−1xg ∈ n+Op′.

The Q-orbit of x and the Q-orbit of g−1xg are both dense in n + Op′. Hence they
intersects. In other words, there is an element q ∈ Q such that g−1xg = qxq−1. Then gq ∈
ZSp(2n)(x) and Q′ = (gq)Q(gq)−1. Now let us consider an element [gq, x] ∈ Sp(2n) ×Q

(n+ Ōp′). Then ι([gq, x]) = (gQ, x) = (F ′ ⊂ (F ′)⊥, x). �

Let {i1, i2, ..., ik} be the set of all gap members of p and let ij be one of them. Put
r := rd+ ...+ rij and let Qj ⊂ Sp(2n) be a parabolic subgroup of flag type (r, 2n−2r, r)
with Levi decomposition qj = nj ⊕ lj. There is a nilpotent orbit Op

′

j
of lj with Jordan

type
p′
j = [(d− 2)rd, ..., (ij − 1)rij+1, (ij − 2)rij+rij−2 , (ij − 3)rij−3 , ..., 1r1]
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such that Op = Indg
l (Op

′

j
). We have a generically finite morphism called the generalized

Springer map
µj : Sp(2n)×

Qj (nj + Ōp
′

j
)→ Ōp.

By the previous claim, µj is a birational morphism. Let b′j be the number of distinct
even members of p′

j. Then b′j = b− 1. This, in particular, means that

π1(Op
′

j
) ∼= (Z/2Z)⊕b−1.

Let Xp
′

j
→ Ōp

′

j
be the finite covering associated with the universal covering of Op

′

j
.

Then nj +Xp
′

j
is a Qj-space; hence we get a (Z/2Z)⊕b−1-covering map

π′
j : Sp(2n)×

Qj (nj +Xp
′

j
)→ Sp(2n)×Qj (nj + Ōp

′

j
)

Let Xj be the Stein factorization of µj ◦ π
′
j . Then we have a commutative diagram

Sp(2n)×Qj (nj +Xp
′

j
)

µ′

j

−−−→ Xj

π′

j





y

πj





y

Sp(2n)×Qj (nj + Ōp
′

j
)

µj

−−−→ Ōp

(12)

By definition πj is a (Z/2Z)⊕b−1-covering and Xj factorizes π as

π : X
ρj
→ Xj

πj

→ Ōp,

where ρj is a Z/2Z-covering.

Claim 2.3.3. (1) µj is a crepant resolution around Op̄j
⊂ Ōp. In other words, µ−1

j (Sj)
is the minimal resolution of the A1-surface singularity Sj. On the other hand, µj is an
isomorphism over open neighborhoods of Op̄1, ..., Op̄j−1

, Op̄j+1
, ..., Op̄k

. In other words,
the maps µ−1

j (S1) → S1, ..., µ
−1
j (Sj−1) → Sj−1, µ

−1
j (Sj+1) → Sj+1, ..., µ

−1
j (Sk) → Sk

are all isomorphism.
(2) π−1

j (Sj) is a disjoint union of 2b−1 copies of Sj. π−1(Sj) is a disjoint union of

2b−1 copies of (C2, 0). In other words, πj is an etale cover over an open neighborhood of
Op̄j
⊂ Ōp, and ρj is a ramified double covering over an open neighborhood of π−1

j (Op̄j
) ⊂

Xj.

Notice that Claim 2.3.3, (2) implies Proposition 2.3.
Proof. (1) The gap members of p′

j are

i1 − 2, ..., ij−1 − 2, ij+1, ..., ik.

For the later convenience we put

i′1 := i1 − 2, ..., i′j−1 := ij−1 − 2, i′j+1 := ij+1, ..., i
′
k := ik.
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Corresponding to these gap members, we get nilpotent orbits O(p′

j)1
, ..., O(p′

j)j−1
, O(p′

j)j+1
,

..., O(p′

j)k
in Ōp

′

j
. These are irreducible components of Sing(Ōp

′

j
) which have codimension

2 in Ōp
′

j
. For each 1 ≤ l ≤ k (l 6= j), we have a natural embedding

Sp(2n)×Qj (nj + Ō(p′

j)l
) ⊂ Sp(2n)×Qj (nj + Ōp

′

j
).

One can check that
µj( Sp(2n)×Qj (nj + Ō(p′

j)l
) ) = Ōp̄l

.

From this fact we see that there is an irreducible component of Sing( Sp(2n)×Qj (nj +
Ōp

′

j
) ) which dominates Ōp̄l

for each l( 6= j), but there is no irreducible components of

Sing( Sp(2n)×Qj (nj + Ōp
′

j
) ) which dominates Ōp̄j

.

Since µj is a crepant partial resolution of Ōp and Ōp has A1-surface singularity along
Op̄l

, this means that µj is an isomorphism over an open neighborhood of Op̄l
⊂ Ōp for

l 6= j, but µj is a crepant resolution around Op̄j
⊂ Ōp.

(2) Since µj is a crepant partial resolution and π′
j is etale in codimension 1, the partial

resolution µ′
j is a crepant partial resolution. By (1) there is a µj-exceptional divisor E of

Sp(2n)×Qj (nj + Ōp
′

j
) which dominates Ōp̄j

. Then (π′
j)

−1(E) is a µ′
j-exceptional divisor

of Sp(2n) ×Qj (nj + Xp
′

j
) which dominates π−1

j (Ōp̄j
). If πj is ramified over Op̄j

, then

Xj is smooth along π−1
j (Op̄j

). This contradicts that µ′
j is a crepant partial resolution.

Hence π is unramified over Ōp̄j
, which is nothing but the first statement of (2). Next

suppose that the second statement of (2) does not hold. Then ρj is etale over an open
neighborhood of π−1

j (Op̄j
) ⊂ Xj . Let (Ōp)

0 be an open set obtained from Ōp by excluding

all irreducible components of Sing(Ōp) different from Ōp̄j
. We put X0

j := π−1
j ((Ōp)

0).

Then ρ−1
j (X0

j ) → X0
j is an etale cover. On the other hand, let X0

p
′

j
be the universal

covering of Op
′

j
. Then Sp(2n) ×Qj (nj +X0

p
′

j
) is simply connected. In fact, we have an

exact sequence

π1(nj +X0
p
′

j
)→ π1(Sp(2n)×

Qj (nj +X0
p
′

j
))→ π1(Sp(2n)/Qj)→ 1

Since π1(nj +X0
p
′

j
) = {1} and π1(Sp(2n)/Qj) = {1}, we have the result.

For l 6= j, µj is an isomorphism over an open neighborhood of Op̄l
⊂ Ōp by (1).

By Zariski’s Main Theorem µ′
j is also an isomorphism over an open neighborhood of

π−1
j (Op̄l

) ⊂ Xj. Moreover, µ′
j is a crepant resolution around π−1

j (Op
′

j
) ⊂ Xj. Write

Ōp = Op ⊔ Op̄1 ⊔ ... ⊔ Op̄k
⊔ F,

where F is the union of all nilpotent orbits in Ōp with codimension ≥ 4. Then

Sp(2n)×Qj(nj+Xp
′

j
) = (πj◦µ

′
j)

−1(Op)⊔(πj◦µ
′
j)

−1(Op̄1)⊔...⊔(πj◦µ
′
j)

−1(Op̄k
)⊔(πj◦µ

′
j)

−1(F ).

For l 6= j, we see that (πj ◦ µ
′
j)

−1(Op̄l
) has codimension 2 in Sp(2n) ×Qj (nj + Xp

′

j
).

Moreover, since CodimXj
π−1
j (F ) ≥ 4, we also see that (πj ◦ µ

′
j)

−1(F ) has codimension

≥ 2 by Corollary 0.2. This means that (µ′
j)

−1(π−1
j (Op∪Op̄j

)) is obtained from Sp(2n)×Qj
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(nj+Xp
′

j
) by removing a closed subset of codimension ≥ 2. Since (µ′

j)
−1(π−1

j (Op∪Op̄j
))

is smooth, it is contained in Sp(2n) ×Qj (nj + Xreg
p
′

j
). This implies that (µ′

j)
−1(X0

j ) is

obtained from a smooth variety Sp(2n)×Qj (nj +Xreg
p
′

j
) by removing a closed subset of

codimension ≥ 2. There is a surjection map

π1(Sp(2n)×
Qj (nj +X0

p
′

j
))→ π1(Sp(2n)×

Qj (nj +Xreg
p
′

j
)).

As already shown, the left hand side is trivial; hence, the right hand side is also trivial.
Now we have

π1((µ
′
j)

−1(X0
j ))
∼= π1(Sp(2n)×

Qj (nj +Xreg
p
′

j
) = {1}.

Since µ′
j is birational, π1(X

0
j ) = {1}. This contradicts that ρ−1

j (X0
j ) is a (connected)

etale cover of X0
j of degree 2. �

We here consider an additional condition for p:
(iii) ri 6= 2 for each even i.

Corollary 2.4. Let p be a partition satisfying (i), (ii) and (iii). Let π : X → Ōp be the
finite covering associated with the universal covering of Op. Then X has only Q-factorial
terminal singularities.

Proof. By the condition (iii), X is Q-factorial by Proposition 2.1, (2). Then the
result follows from Proposition 2.3. �

Construction of a Q-factorial terminalization: Let Ōp be an arbitrary nilpotent
orbit closure of sp(2n), and let X → Ōp be the finite covering associated with the
universal covering of Op. We shall construct explicitly a Q-factorial terminalization of
X . Since p is a Jordan type of a nilpotent orbit, p satisfies the condition (i). Let b be
the number of distinct even members of p.

By using the inductions of type (I) repeatedly for p, we can finally find a parabolic
subgroup Q of Sp(2n) and a nilpotent orbit Op′ of a Levi part l of q such that

(a) Op = Ind
sp(2n)
l (Op′).

(b) p′ satisfies the condition (ii), and b′ = b (where b′ is the number of distinct even
members of p′).

Notice that l is a direct sum of a simple Lie algebra sp(2n′), some simple Lie algebras
of type A and the center. Op′ is a nilpotent orbit of sp(2n′).

For the partition p′ thus obtained, we let e be the number of even members i of p′

such that ri = 2. By using the inductions of type (II) repeatedly for p′, we can finally
find a parabolic subgroup Q′ of Sp(2n′) and a nilpotent orbit Op′′ of a Levi part l′ of q′

such that
(a’) Op′ = Ind

sp(2n′)
l′ (Op′′),

(b’) p′′ satisfies the conditions (ii), (iii), and b′′ = b′ − e (where b′′ is the number of
distinct even members of p′′).

All together, we get a generalized Springer map

µ′′ : Sp(2n)×Q′′

(n′′ + Ōp′′)→ Ōp,
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where µ′′ is generically finite of degree 2b−b′′ . Let π′′ : X ′′ → Ōp′′ be the finite covering
associated with the universal covering of Op′′. By Corollary 2.4 X ′′ has only Q-factorial
terminal singularities. Note that deg(π′′) = 2b

′′

. There is a finite cover

π′′ : Sp(2n)×Q′′

(n′′ +X ′′)→ Sp(2n)×Q′′

(n′′ + Ōp′′)

of degree 2b
′′

. Then the Stein factorization of µ′′ ◦ π′′ coincides with X . We have a
commutative diagram

Sp(2n)×Q′′

(n′′ +X ′′) −−−→ X

π′′





y

π





y

Sp(2n)×Q′′

(n′′ + Ōp′′)
µ′′

−−−→ Ōp

(13)

The map Sp(2n)×Q′′

(n′′ +X ′′)→ X here obtained is a Q-factorial terminalization
of X .

Examples 2.5.

(1) Let us consider the nilpotent orbit O[62,42] ⊂ sp(20) and let π : X → Ō[62,42] be
the finite covering associated with the universal covering of O[62,42]. We have deg(π) = 4
by Proposition 2.1, (1). We shall construct a Q-factorial terminalization of X and we
shall show that it is actually a crepant resolution.

Let Q4,12,4 be a parabolic subgroup of Sp(20) with flag type (4, 12, 4). Let q4,12,4 =
n4,12,4⊕l4,12,4 be a Levi decomposition. Then l4,12,4 = sp(12)⊕gl(4) and O[62,42] is induced
from the nilpotent orbit O[42,22] ⊂ sp(12). This is a type I induction, and the generalized
Springer map

Sp(20)×Q4,12,4 (n4,12,4 + Ō[42,22])→ Ō[62,42]

is a birational map. Let Q1,10,1 be a parabolic subgroup of Sp(12) with the Levi decom-
position q1,10,1 = n1,10,1⊕ l1,10,1. Then l1,10,1 = sp(10)⊕ gl(1) and O[42,22] is induced from
O[32,22] ⊂ sp(10). This is a type II induction. Hence we get a generically finite map of
degree 2

Sp(20)×Q4,1,10,1,4 (n4,1,10,1,4 + Ō[32,22])→ Sp(20)×Q4,12,4 (n4,12,4 + Ō[42,22]).

Let Q3,4,3 be a parabolic subgroup of Sp(10) with flag type (3, 4, 3) with a Levi decom-
position q3,4,3 = n3,4,3 ⊕ l3,4,3. Then l3,4,3 = sp(4) ⊕ gl(3) and O[32,22] is induced from
O[14] ⊂ sp(4). This is a type II induction, and we get a generically finite map of degree
2

Sp(20)×Q4,1,3,4,3,1,4 n4,1,3,4,3,1,4 → Sp(20)×Q4,1,10,1,4 (n4,1,10,1,4 + Ō[32,22]).

We can illustrate the induction step above by

([14], sp(4))
TypeII
→ (O[32,22], sp(10))

TypeII
→ (O[42,22], sp(12))

TypeI
→ (O[62,42], sp(20)).

Composing these 3 maps together, we have a generically finite map of degree 4

Sp(20)×Q4,1,3,4,3,1,4 n4,1,3,4,3,1,4 → Ō[62,42].
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This map factors through X and Sp(20)×Q4,1,3,4,3,1,4 n4,1,3,4,3,1,4 gives a crepant resolution
of X .

(2) Let π : X → Ō[8,52,4,32] be the finite covering associated with the universal covering
of O[8,52,4,32]. By Proposition 2.1, (1) we have deg(π) = 4. We can take the following
inductions

(O[4,32,2,12], sp(14))
TypeI
→ (O[6,52,4,32], sp(26))

TypeI
→ (O[8,52,4,32], sp(28)).

Note that in each step the number of distinct even members does not change, and the
partition [4, 32, 2, 12] satisfies the conditions (i), (ii) and (iii). Let X[4,32,2,12] → Ō[4,32,2,12]

be the finite covering associated with the universal covering of O[4,32,2,12]. By Corol-
lary 2.4, X[4,32,2,12] has only Q-factorial terminal singularities. Then Sp(28) ×Q1,6,14,6,1

(n1,6,14,6,1 +X[4,32,2,12]) gives a Q-factorial terminalization of X . �

3 g = so(m)

We write a partition p of m as [drd, (d − 1)rd−1, ..., 2r2, 1r1] with rd 6= 0. Other ri may
be possibly zero; in such a case i does not appear in the partition. If ri > 0, then we
call i a member of the partition. Let O be a nilpotent orbit of g. Then its Jordan type
p is a partition of m such that all even members have even multiplicities (cf. [C-M],
§5). When p consists of only even members, we call p very even. If p is not very
even, then the orbit O is uniquely determined by the Jordan type p, and we denote by
Op the nilpotent orbit. On the other hand, if p is very even, there are two nilpotent
orbits with Jordan type p. The two orbits are conjugate to each other by an element of
O(m) \SO(m). When we want to distinguish them, we denote them by O+

p
, O−

p
, but we

usually denote by Op one of them. A partition p is called rather odd if all odd members
have multiplicity 1. Note that a very even partition is rather odd. Let a be the number
of distinct odd members of p. When g = so(2n + 1), we always have a > 0, but when
g = so(2n), we may possibly have a = 0.

Proposition 3.1. (1) If p is not rather odd, then

π1(Op) ∼= (Z/2Z)⊕max(a−1,0).

If p is rather odd, then there is a short exact sequence

1→ Z/2Z→ π1(Op)→ (Z/2Z)⊕max(a−1,0) → 1

so that Z/2Z is contained in the center of π1(Op).
(2) Assume that ri 6= 2 for all odd members i of p. Then X is Q-factorial for any

etale covering X0 → Op.

Proof. (1) Put G = Spin(m). There is a double covering ρm : G → SO(m) and
g = so(m). Take an element x from Op and take an sl(2)-triple φ in g containing x. By
[C-M, Theorem (6.1.3)] SO(m)φ is isomorphic to

S(
∏

i:even

Sp(ri)
×i
∆ ×

∏

i:odd

O(ri)
×i
∆ ) :=
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{(
∏

i:even

A×i
ri
,
∏

i:odd

B×i
ri
) ∈

∏

i:even

Sp(ri)
×i
∆ ×

∏

i:odd

O(ri)
×i
∆ |

∏

i:odd

det(Bri)
i = 1}.

ThenGφ = ρ−1
m (SO(m)φ); henceGφ is a double cover of S(

∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd O(ri)
×i
∆ ).

When p has only even members, S(
∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd O(ri)
×i
∆ ) =

∏

i:even Sp(ri)
×i
∆ ,

which is connected. When p has some odd members, S(
∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd O(ri)
×i
∆ )

has 2a−1 connected components. Therefore, in any case, S(
∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd O(ri)
×i
∆ )

has 2max(a−1,0) connected components.
If p is not rather odd, then the identity component of S(

∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd O(ri)
×i
∆ )

is
∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd SO(ri)
×i
∆ . Note that π1(SO(ri)) = Z/2Z for ri > 2 and

π1(SO(2)) = Z. For an odd i with ri ≥ 2, there is a unique surjective homomorphism
φi : π1(SO(ri)

×i
∆ )→ Z/2Z. We then have a surjection

∑

φi :
∏

i:odd, ri≥2

π1(SO(ri)
×i
∆ )→ Z/2Z.

The left hand side is identified with π1(
∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd SO(ri)
×i
∆ ). Therefore

it determines a connected etale double covering of
∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd SO(ri)
×i
∆ .

One can check that ρ−1
m (

∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd SO(ri)
×i
∆ ) is such an etale covering.

Hence ρ−1
m (S(

∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd O(ri)
×i
∆ )) has 2max(a−1,0) connected components. If

p is rather odd, then each connected component of S(
∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd O(ri)
×i
∆ ) is

isomorphic to
∏

i:even Sp(ri)
×i
∆ , which is simply connected. Hence ρ−1

m (S(
∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd O(ri)
×i
∆ )) has 2 · 2max(a−1,0) connected components.

(2) If p is rather odd, (Gφ)0 is isomorphic to
∏

i:even Sp(ri)
×i
∆ . Then χ((Gφ)0) = 0. If

p is not rather odd, then (Gφ)0 is a double covering of
∏

i:even Sp(ri)
×i
∆ ×

∏

i:odd SO(ri)
×i
∆ .

Note that SO(r) is a simple Lie group except that SO(2) ∼= C∗ and SO(4) is a semisimple
Lie group of type A1 + A1. This means that, if ri 6= 2 for all odd i, then

χ(
∏

i:even

Sp(ri)
×i
∆ ×

∏

i:odd

SO(ri)
×i
∆ ) = 0.

Then the short exact sequence

1→ Z/2Z→ (Gφ)0 →
∏

i:even

Sp(ri)
×i
∆ ×

∏

i:odd

SO(ri)
×i
∆ → 1

yields an exact sequence of character groups

χ(
∏

i:even

Sp(ri)
×i
∆ ×

∏

i:odd

SO(ri)
×i
∆ ) )→ χ((Gφ)0)→ χ(Z/2Z).

The 1-st term is zero by the observation above, and the 3-rd term is a finite group. Hence
χ((Gφ)0) is also finite. As a result, χ((Gφ)0) is finite in any case under the assumption
(2). The remainder is the same as in the proof of Proposition (1.1), (2). �

Let π : X → Ōp be the finite covering associated with the universal covering
of Op and τ : Y → Ōp a finite covering determined by the surjection π1(Op) →
(Z/2Z)⊕max(a(p)−1,0) in Proposition 3.1, (1).
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Proposition 3.2. The adjoint action of SO(m) on Ōp lifts to an SO(m)-action on Y .
If p is not rather odd, then X = Y . If p is rather odd, then X is a double cover of Y
and the SO(m) action on Y does not lift to an SO(m)-action on X.

Proof. Put X0 := π−1(Op) and Y 0 := τ−1(Op). Choose x ∈ Op. By the proof
of Proposition 3.1, the double cover ρm : Spin(m) → SO(m) induces a double cover
(Spin(m)x)0 → (SO(m)x)0 when p is not rather odd, and induces an isomorphism
(Spin(m)x)0 ∼= (SO(m)x)0 when p is rather odd. In any case, Y 0 = SO(m)/(SO(m)x)0.
Hence SO(m) naturally acts on Y 0. Since Γ(Y,OY ) = Γ(Y 0,OY 0), SO(m) acts on
Y . The natural SO(m) action on SO(m)/SO(m)x is nothing but the adjoint action of
SO(m) on Op. This means that the SO(m)-action on Y 0 is a lift of the adjoint SO(m)-
action on Op. Therefore the SO(m)-action on Y is a lift of the adjoint action of SO(m)
on Ōp.

Assume that p is not rather odd. Then

X0 = Spin(m)/(Spin(m)x)0 = SO(m)/(SO(m)x)0 = Y 0.

Hence X = Y .

Assume that p is rather odd. Then π0 factorizes as X0 ρ0

→ Y 0 τ0
→ Op. Let us consider

the composite SO(m)×X0 → Y 0 of the map SO(m)×X0 id×ρ0

→ SO(m)×Y 0 and the map
SO(m)×Y 0 → Y 0 determined by the SO(m)-action on Y 0. The map SO(m)×X0 → Y 0

lifts to a map to X0 if and only if π1(SO(m)×X0) → π1(Y
0) is the zero map. Take a

point x̃ ∈ X0 such that π0(x̃) = x. Then the maps

SO(m)× {x̃} → SO(m)×X0 → Y 0

induces homomorphisms of fundamental groups

π1(SO(m)× {x̃})→ π1(SO(m)×X0)→ π1(Y
0) = Z/2Z.

Since π1(X
0) = 1, the first map is an isomorphism. Since SO(m) × {x̃} is a fibre

bundle over Y 0 with a typical fiber (SO(m)x)0, the map π1(SO(m) × {x̃}) → π1(Y
0)

is a surjection. As a consequence, π1(SO(m)× X0) → π1(Y
0) = Z/2Z is a surjection.

This means that the SO(m)-action on Y 0 does not lift to an SO(m)-action on X0. �

Lemma 3.3. Assume that p is not very even. Then the adjoint action of O(m) on Ōp

lifts to an O(m)-action on Y .

Remark. A lifting of an O(m)-action is not unique.
Proof. We fix an element x of Op and an sl(2)-triple φ containing x. Then O(m)φ is

isomorphic to
∏

i:even

Sp(ri)
×i
∆ ×

∏

i:odd

O(ri)
×i
∆ :=

{(
∏

i:even

A×i
ri
,
∏

i:odd

B×i
ri
) ∈

∏

i:even

Sp(ri)
×i ×

∏

i:odd

O(ri)
×i.

Note that
(O(m)φ)0 =

∏

i:even

Sp(ri)
×i
∆ ×

∏

i:odd

SO(ri)
×i
∆ .
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Since p is not very even, there is an odd member i0. We put

Hφ =
∏

i:even

Sp(ri)
×i
∆ ×

∏

i:odd6=i0

SO(ri)
×i
∆ × O(ri0)

×i0
∆ ,

and Hx = Ux ·Hφ. Then we have an isomorphism

Y 0 := SO(m)/(SO(m)x)0 ∼= O(m)/Hx.

The right hand side has a natural O(m)-action. This O(m)-action determines an O(m)-
action on Y . �

Let us consider the following conditions for a partition p of m.
(i) ri is even for each even i.
(ii) ri 6= 0 for every odd i.

Proposition 3.4. Let p be a partition of m which is not rather odd. Assume that p
satisfies the conditions (i) and (ii). Let X → Ōp be the finite covering associated with
the universal covering of Op. Then CodimXSing(X) ≥ 4.

Proof. Notice that the conditions (i) and (ii) are replacements of the conditions (i)
and (ii) in the previous section where the roles of odd and even members are reversed.
In this sense, this proposition is an SO(m)-analogue of Proposition 2.3. By virtue of
Proposition 3.2, this proposition is proved completely in the same way as Proposition
2.3. �

When p is rather odd, we encounter a different situation as the following example
illustrates.

Example 3.5.

In this example, we show that a usual induction step (cf. §2) does not work well for
a rather odd partition p. Put the m×m matrix

Jm =













0 0 0 ... 1
0 0 ... 1 0
... ... ... ... ...
0 1 ... 0 0
1 0 ... 0 0













.

Then
SO(m) = {A ∈ SL(m) | AtJA = J}.

Fix positive integers s1, ..., sk, q so that m = 2
∑

si+ q. Assume that q ≥ 3. Let Q′ be a
parabolic subgroup of SO(m) fixing the isotropic flag of flag type (s1, ..., sk, q, sk, ..., s1)

0 ⊂ 〈e1, ..., es1〉 ⊂ 〈e1, ...es1+s2〉 ⊂ ... ⊂ 〈e1, ..., e∑k
1 si
〉 ⊂ 〈e1, ..., e∑k

1 si+q〉

⊂ 〈e1, ..., e∑k
1 si+q+sk

〉 ⊂ ... ⊂ 〈e1, ..., e∑k
1 si+q+

∑k
1 si
〉 = Cm
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One has a Levi decomposition Q′ = U ′ · L′ with

L′ = {





























A1 0 0 ... ... ... ... ... 0
0 A2 0 ... ... ... ... ... 0
... ... ... ... ... ... ... ... ...
0 ... 0 Ak 0 ... ... ... 0
0 ... ... 0 B 0 ... ... 0
0 ... ... ... 0 A′

k 0 ... 0
... ... ... ... ... ... ... ... ...
0 ... ... ... ... ... ... A′

2 0
0 ... ... ... ... ... ... 0 A′

1





























|Ai ∈ GL(si), A
′
i = Jsi(A

t
i)

−1Jsi, B ∈ SO(q)}.

In particular, L′ ∼=
∏

GL(si) × SO(q). Let Q := ρ−1
m (Q′) and L := ρ−1

m (L′) for ρm :
Spin(m) → SO(m). The Lie algebra l of L is isomorphic to ⊕gl(si) ⊕ so(q). Let
p′ be a rather odd partition of q such that a(p) = a(p′) and let Op′ be a nilpotent
orbit of so(q) with Jordan type p′. Assume that p′ is obtained from p by a succession

of type I inductions and Op = Ind
so(m)
l (Op′). For an odd si, we consider the map

SL(si) × C∗ → GL(si) determined by (X, λ) → λ2X . This is a cyclic covering of
order 2si. The cyclic group µ2si acts on SL(si) × C∗ so that (X, λ) → (ζ−2

2si
X, ζ2siλ)

for a primitive 2si-th root ζ2si of unity. Let us consider a unique subgroup µsi of µ2si

of order si. Then SL(si) × C∗/µsi → GL(si) is a double cover of GL(si). For an
even si, we consider the map SL(si) × C∗ → GL(si) determined by (X, λ) → λX .
This is a cyclic covering of order si. The cyclic group µsi acts on SL(si) × C∗ so that
(X, λ) → (ζ−1

si
X, ζsiλ) for a primitive si-th root ζsi of unity. Let us consider a unique

subgroup µsi/2 of µsi of order si/2. Then SL(si)×C∗/µsi/2 → GL(si) is a double cover
of GL(si). Here we put ti = si when si is odd, and put ti := si/2 when si is even. We
then have a covering map

(SL(s1)×C∗)/µt1× ...× (SL(sk)×C∗)/µtk×Spin(q)→ GL(s1)× ...×GL(sk)×SO(q).

The Galois group of this covering is (Z/2Z)⊕k+1. Put H := Ker[(Z/2Z)⊕k+1
∑

→ Z/2Z],
where

∑

is defined by (x1, ..., xk+1)→
∑

xi.

Claim 3.5.1.

L = {(SL(s1)×C∗)/µt1 × ...× (SL(sk)×C∗)/µtk × Spin(q)} / H.

Proof. We first prove that ρ−1
m (GL(si)) = (SL(si) × C∗)/µti and ρ−1

m (SO(q)) =
Spin(q). For each 1 ≤ j ≤ s1 + ... + sk, we consider the non-degenerate quadratic sub-
space Vj := 〈ej, em+1−j〉 ofC

m. Then SO(Vj) is a subgroup of SO(m) and ρ−1
m (SO(Vj)) =

Spin(Vj) (cf. [F-H], (20.31)). Note thatGL(si) contains some SO(Vj). Since ρ
−1
m (SO(Vj))

is connected, we see that ρ−1
m (GL(si)) is a connected double cover of GL(si). Since

π1(GL(si)) = Z, we have a unique surjective homomorphism π1(GL(si)) → Z/2Z.
This means that ρ−1

m (GL(si)) = (SL(si) × C∗)/µti. Since the q dimensional sub-
space 〈e∑k

1 si+1, ..., e
∑k

1 si+q〉 is a non-degenerate quadratic space, we have ρ−1
m (SO(q)) =

Spin(q) by the same reason as above.
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We then have Cartesian diagrams

(SL(si)×C∗)/µti
ι̃i−−−→ L





y





y

GL(si)
ιi−−−→ L′

(14)

and

Spin(q)
ι̃q
−−−→ L





y





y

SO(q)
ιq
−−−→ L′

(15)

Here ιi and ιq are natural injections and all vertical maps are induced by ρm.
By using the group structure of L, we have a commutative diagram

∏

(SL(si)×C∗)/µti × Spin(q)
ι̃1·...·ι̃k·ι̃q
−−−−−→ L





y





y

∏

GL(si)× SO(q)
∼=
−−−→ L′

(16)

The covering group of the left vertical map is (Z/2Z)⊕k+1. The etale covering L → L′

is determined by a certain surjection φ : (Z/2Z)⊕k+1 → Z/2Z. Let τi : Z/2Z →
(Z/2Z)⊕k+1 be the inclusion map into the i-th factor. By the previous Cartesian dia-
grams, the composite φ◦ τi must be isomorphisms for all 1 ≤ i ≤ k+1. This means that
φ is defined by (x1, ..., xk+1)→

∑

xi. �

Let π′ : X ′ → Ōp′ be the finite covering associated with the universal cover-
ing of Op′ . Let τ ′ : Y ′ → Ōp′ be a finite covering determined by the surjection
π1(Op′) → (Z/2Z)⊕max(a(p)−1,0) in Proposition 3.1, (1). Put (Y ′)0 := τ ′−1(Op′) and
(X ′)0 := π′−1(Op′). The adjoint action of SO(q) on Op′ lifts to an SO(q)-action on
(Y ′)0. Since L′ =

∏

GL(si) × SO(q), L′ acts on (Y ′)0 (and on Y ′) by the projection
map L′ → SO(q). By the surjection L→ L′, L also acts on (Y ′)0 (and on Y ′).

We prove that this L-action never lifts to an L-action on (X ′)0. Let p : L→ SO(q)
be the composite of the map L→ L′ and the projection map L′ → SO(q). Take a point
y0 ∈ (Y ′)0 and define a map L→ (Y ′)0 by g → g · y0. By definition this map factorizes

as L
p
→ SO(q)→ (Y ′)0. It induces homomorphisms

π1(L)
p∗
→ π1(SO(q))→ π1((Y

′)0).

If the L-action on (Y ′)0 lifts to (X ′)0, then the composite of these homomorphisms is the
zero map (cf. the proof of Proposition 3.2). By Claim 3.5.1, the map p has connected
fibers. This means that p∗ is a surjection. Hence the map π1(SO(q))→ π1((Y

′)0) must
be zero. But this map is not the zero map because the SO(q)-action on (Y ′)0 does not
lift to (X ′)0 by Proposition 3.2.

32



Since L acts on Y ′, Q acts on n+ Y ′. We have a commutative diagram

Spin(m)×Q (n+ Y ′) −−−→ Z

τ̂





y





y

Spin(m)×Q (n+ Ōp′)
s

−−−→ Ōp

(17)

Here Z is the Stein factorization of s ◦ τ̂ . The horizontal maps are both crepant
partial resolutions. Let π : X → Ōp be the finite covering of Ōp associated with the

universal covering of Op. Then π factorizes as X
ρ
→ Z → Ōp. By the construction

deg(ρ) = 2. Since SO(m) acts on Spin(m) ×Q (n + Y ′), the finite map Z → Ōp is an
SO(m)-cover. Therefore this cover is nothing but the cover Y → Ōp determined by the
surjection π1(Op)→ (Z/2Z)⊕max(a−1,0). Then we have the following claim.

Claim 3.5.2. The Q-action on n + (Y ′)0 does not lift to a Q-action on n + (X ′)0.
Moreover, we have

π1(Spin(m)×Q (n+ (Y ′)0)) = {1}.

Proof. Applying the homotopy exact sequence to the Q-bundle: Spin(m) × (n +
(Y ′)0)→ Spin(m)×Q (n+ (Y ′)0), we get an exact sequence

π1(Q)
ob
→ π1(Spin(m)× (n+ (Y ′)0))→ π1(Spin(m)×Q (n+ (Y ′)0))→ 1.

The map ob is induced from a map

βy0 : Q→ Spin(m)× (n+ (Y ′)0) q → (q−1, q(0 + y0))

with some y0 ∈ (Y ′)0. We shall prove that ob is the obstruction map to lifting the Q
action on n+ (Y ′)0 to a Q-action on n+ (X ′)0. Let us consider the diagram

Q× (n + (X ′)0) n + (X ′)0




y





y

Q× (n+ (Y ′)0) −−−→ n+ (Y ′)0

(18)

Here the horizontal map on the bottom row is given by

Q× (n+ (Y ′)0)→ n+ (Y ′)0 (q, n+ y)→ q(n+ y).

The map
α : Q× (n + (X ′)0)→ n+ (Y ′)0

lifts to a map
α̃ : Q× (n + (X ′)0)→ n+ (X ′)0

if and only if
α∗ : π1(Q× (n + (X ′)0)→ π1(n+ (Y ′)0)

is the zero map. If such a lift α̃ exists, then we can find an element τ ∈ Aut(Y ′)0(X
′)0

such that
Q× (n + (X ′)0)

α̃
→ n+ (X ′)0

id+τ
→ n+ (X ′)0
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is a group action. We take a lift ỹ0 ∈ (X ′)0 of y0 ∈ (Y ′)0). Define a map iỹ0 : Q →
Q× (n+ (X ′)0) by iỹ0(q) = (q, 0 + ỹ0). Then we have a commutative diagram

Q
βy0−−−→ Spin(m)× (n+ (Y ′)0)

iỹ0





y

pr2





y

Q× (n+ (X ′)0)
α

−−−→ n+ (Y ′)0

(19)

Correspondingly we have a commutative diagram of fundamental groups

π1(Q)
ob= (βy0)∗−−−−−−→ π1(Spin(m)× (n+ (X ′)0)

∼=





y

∼=





y

π1(Q× (n+ (X ′)0)
α∗−−−→ π1(n+ (Y ′)0)

(20)

The vertical maps are isomorphisms because π1((X
′)0) = {1} and π1(Spin(m)) =

{1}. Therefore ob is the obstruction map to a lift.
We shall prove that ob is not the zero map. Let us consider the composite

β̄y0 : Q
βy0→ Spin(m)× (n+ (Y ′)0)

pr2
→ n+ (Y ′)0

pr2
→ (Y ′)0.

If we restrict β̄y0 to U ⊂ Q, then it is a constant map sending all elements g ∈ U to
y0 ∈ (Y ′)0. By the homotopy exact sequence

π1(U)→ π1(Q)→ π1(L)→ 1,

we see that β̄y0 induces homomorphisms

π1(L)→ π1(Spin(m)× (n+ (Y ′)0))→ π1(n+ (Y ′)0)→ π1((Y
′)0).

Here the last two maps are both isomorphisms because π1(Spin(m)) = 1 and π1(n) = 1.
Since the L-action on (Y ′)0 does not lift to (X ′)0, the map π1(L)→ π1((Y

′)0) is not the
zero map. This means that ob = (βy0)∗ is not the zero map.

Return to the original homotopy exact sequence. Then we have π1(Spin(m) × (n +
(Y ′)0) = Z/2Z. In our case the Q-action on n + (Y ′)0 does not lift to a Q-action on
n + (X ′)0. This means that π1(Spin(m)×Q (n+ (Y ′)0) = {1}. �

We are now in a position to consider a rather odd partition p. Let p = [drd, (d −
1)dr−1, ..., 2r2, 1r1] be a partition of m such that

(i) ri is even for each even i.
Let i and j be different members of p. Then i and j are called adjacent if there are no

members of p between i and j except themselves. We consider the following conditions
for p:

(iii) For any couple (i, j) of adjacent members, |i − j| ≤ 4. Moreover, |i − j| = 4
occurs only when i and j are both odd. The smallest member of p is smaller than 4.

For example, both [11, 82, 7, 3] and [7, 62, 32] satisfy the conditions (i) and (iii). Then
we have
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Proposition 3.6. Assume that a partition p satisfies the conditions (i) and (iii). More-
over, assume that p is rather odd. Let π : X → Ōp be the finite covering associated with
the universal covering of Op ⊂ so(m). Then CodimXSing(X) ≥ 4. In particular, X has
Q-factorial terminal singularities.

X isQ-factorial by Proposition 3.1, (2). If CodimXSing(X) ≥ 4, then X has terminal
singularities by Corollary 0.3. We will prove Proposition 3.6 after some preliminaries.
Assume that p is a rather odd partition with (i) and (iii). Recall that a gap member i
of p is a member of p such that i > 1 and ri−1 = 0. For each gap member i, we will
take an orbit Op̄ ⊂ Ōp and look at the singularity of Ōp along Op̄ by using [K-P], 3.4.
Let us say that a gap member i is exceptional if i is an odd number with i ≥ 5 and
ri−1 = rj−2 = rj−3 = 0. In this case ri = 1 and ri−4 = 1 by the rather oddness and the
condition (iii). Otherwise we say that i is ordinary. For an exceptional gap member i,
one can find a nilpotent orbit Op̄ ⊂ Ōp with

p̄ = [drd, ..., (i+ 1)ri+1, (i− 2)2, (i− 5)ri−5, ..., 1r1].

Then CodimOp
Op̄ = 2 and the transverse slice for Op̄ ⊂ Ōp is an A3-surface singularity.

If i is an even gap member, then there are two cases. The first case is when ri−1 =
ri−2 = 0 and ri−3 6= 0. The second case is when ri−1 = 0, but ri−2 6= 0 (the case i = 2
being in this case). In the first case, ri is a non-zero even number by the condition (i);
hence, ri ≥ 2. Then one can find a nilpotent orbit Op̄ ⊂ Ōp with

p̄ = [drd, ..., iri−2, (i− 1)3, (i− 3)ri−3−1, ..., 1r1].

In the second case, ri and ri−2 are both nonzero even numbers; hence ri, ri−2 ≥ 2. Then
one can find a nilpotent orbit Op̄ ⊂ Ōp with

p̄ = [ddr , ..., iri−2, (i− 1)4, (i− 2)ri−2−2, ..., 1r1].

In both cases, CodimOp
Op̄ = 2. In the first case, the transverse slice S for Op̄ ⊂ Ōp is

an A1-surface singularity. Next let us consider the second case. If p is not very even,
then S is isomorphic to a union of two A1-surface singularities intersecting each other
in the singular point. In particular, Ōp is not normal along Op̄. If p is very even, S is
an A1-surface singularity. This can be understood more conceptually. In fact, there are
two orbits O±

p
with Jordan type p. The transverse slice for

Op̄ ⊂ Ō+
p
∪ Ō−

p

is then isomorphic to the union of two A1-surface singularities intersecting each other in
the singular point. Since we denote by Op one of the two orbits, the transverse slice for
Op̄ ⊂ Ōp is an A1-surface singularity.

If i is an ordinary, odd gap member, then there are two cases. The first case is when
ri−1 = ri−2 = 0 and ri−3 6= 0. The second case is when ri−1 = 0, but rj−2 6= 0. In the
first case, ri−3 is a nonzero even number by the condition (i); hence ri−3 ≥ 2. Then one
can find a nilpotent orbit Op̄ ⊂ Ōp with

p̄ = [drd, ..., iri−1, (i− 2)3, (i− 3)ri−3−2, ..., 1r1].
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In the second case, one can find a nilpotent orbit Op̄ ⊂ Ōp with

p̄ = [drd, ..., iri−1, (i− 1)2, (i− 3)ri−3 , ..., 1r1].

In this last case, p̄ may possibly be very even. In such a case, we will have two orbits
O±

p̄ . In both cases, CodimOp
Op̄ = 2 and the transverse slices for Op̄ ⊂ Ōp are A1-surface

singularities.
As a consequence, for an ordinary gap member i of p, the transverse slice for Op̄ ⊂ Ōp

is an A1-surface singularity or the union of two A1-surface singularities. In the first case
we call i an ordinary gap member of type A1. In the latter case we call i an ordinary gap
member of type A1 ∪ A1.

Let {i1, i2, ..., ik} be the set of all gap members of p. As defined above, for these gap
members, we have nilpotent orbits

Op̄1 , ..., Op̄k
.

More exactly, when p̄j is very even, we have two different orbits with Jordan type p̄j .
In such a case we understand that Op̄j

is both of them.
To prove that CodimXSing(X) ≥ 4, we only have to show that X is smooth along

π−1(Op̄j
) for each 1 ≤ j ≤ k. Let Sj be the transversal slices for Op̄j

⊂ Ōp. More
exactly, when p̄j is very even, we must consider two slices S±

j for O±
p̄j
. The claim is then

equivalent to showing that π−1(Sj) are disjoint union of finite copies of (C2, 0). Note
that Sj is an A3-surface singularity if ij is exceptional, and Sj is an A1-surface singularity
or of type A1 ∪ A1 if ij is ordinary.

The gap member is closely related to the notion of induced orbits.
(Type I) Let i be a gap member of p. Let Op ⊂ so(m) be a nilpotent orbit with

Jordan type. Put r := rd + ... + ri and let Q̄ ⊂ SO(m) be a parabolic subgroup of
flag type (r,m − 2r, r), and put Q := ρ−1

m (Q̄) ⊂ Spin(m). Take a Levi decomposition
q = n⊕ l. Notice that l = gl(r)⊕so(m−2r). There is a nilpotent orbit Op′ of so(m−2r)
with Jordan type

p′ = [(d− 2)rd, ..., (i− 1)ri+1, (i− 2)ri+ri−2 , (i− 3)ri−3 , ..., 1r1]

such that Op = Indg

l (Op′).

Claim 3.6.1. (cf. [He], Theorem 7.1, (d)). The generalized Springer map

µ : Spin(m)×Q (n+ Ōp′)→ Ōp

is a birational map.

Proof. First notice that Spin(m)×Q (n+ Ōp′) = SO(m)×Q̄ (n+ Ōp′). It is enough
to prove the claim by replacing Spin(m) by SO(m). Then it is completely analogous to
the corresponding statement for Sp(2n) in the previous section.

For x ∈ Op, we take a basis {e(l, j)}(l,j)∈Y (p) of C
m so that

(a) {e(l, j)} is a Jordan basis for x, i.e. x·e(l, j) = e(l−1, j) for l > 1 and x·e(1, j) = 0.
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(b) 〈e(l, j), e(p, q)〉 6= 0 if and only if p = dj − l + 1 and q = β(j). Here β is a
permutation of {1, 2, ..., s} such that β2 = id, dβ(j) = dj, and β(j) 6= j if dj is even (cf.
[S-S], p.259, see also [C-M], 5.1).

Put F :=
∑

1≤j≤r Ce(1, j). Then F ⊂ F⊥ is an isotropic flag such that x ·F = 0 and

x ·Cm ⊂ F⊥ and x is an endomorphism of F⊥/F with Jordan type p′. This is actually
a unique isotropic flag of type (r,m − 2r, r) satisfying these properties. Hence µ−1(x)
consists of one element. �

For later convenience, we also introduce an induction of type II.
(Type II) Let i be an odd member of p with ri = 2. Put r := rd+ ...+ri−1+1 and let

Q̄ ⊂ SO(m) be a parabolic subgroup of flag type (r,m− 2r, r) and put Q := ρ−1
m (Q̄) ⊂

Spin(m). Take a Levi decomposition q = n ⊕ l. Notice that l = gl(r) ⊕ so(m − 2r).
There is a nilpotent orbit Op′ of so(m− 2r) with Jordan type

p′ = [(d− 2)rd, ..., iri+2 , (i− 1)ri+1+2+ri−1 , (i− 2)ri−2, ..., 1r1]

such that Op = Indg
l (Op′).

Claim 3.6.2. (cf. [He], Theorem 7.1, (d)) The generalized Springer map

µ : Spin(m)×Q (n+ Ōp′)→ Ōp

is a birational map if one of the following holds:
(a) p′ is very even, or
(b) m = 2r.
Otherwise µ is a generically finite map of degree 2.

Proof. Since Spin(m)×Q (n+ Ōp′) = SO(m)×Q̄ (n+ Ōp′), it is enough to prove the
claim by replacing Spin(m) by SO(m). For x ∈ Op, we take the same basis {e(l, j)}
of Cm as the previous claim. After a suitable change of the basis, we may assume that
β(r) = r + 1 and β(r + 1) = r. We put F :=

∑

1≤j≤r Ce(1, j). Then F ⊂ F⊥ is

an isotropic flag such that x · F = 0 and x · Cm ⊂ F⊥ and x is an endomorphism of
F⊥/F with Jordan type p′. On the other hand, put F ′ :=

∑

1≤j≤r+1, j 6=r Ce(1, j). Then

F ′ ⊂ (F ′)⊥ is an isotropic flag such that x · F ′ = 0 and x · Cm ⊂ (F ′)⊥ and x is an
endomorphism of (F ′)⊥/F ′ with Jordan type p′. By a similar argument as in the proof
of Claim 2.3.2, the isotropic flags of type (r,m− 2r, r) with these properties are exactly
two flags above.

Assume that Q̄ is the parabolic subgroup of SO(m) stabilizing the flag F ⊂ F⊥. We
have an SO(m)-equivariant (locally closed) immersion

ι : SO(m)×Q̄ (n+Op′) ⊂ SO(m)/Q̄× so(m), [g, y]→ (gQ̄, Adg(y)).

Consider (F ⊂ F⊥, x) and (F ′ ⊂ (F ′)⊥, x) as elements of SO(m)/Q̄× so(2n). Note that
ι([1, x]) = (Q̄, x) = (F ⊂ F⊥, x). Let Q̄′ be the parabolic subgroup of SO(m) stabilizing
the flag F ′ ⊂ (F ′)⊥. If m 6= 2r, then Q̄ and Q̄′ are conjugate parabolic subgroups.
Moreover, if p′ is not very even, a nilpotent orbit of so(m − 2r) with Jordan type p′

is unique. Hence, if neither (a) nor (b) holds, we have (Q̄′, x) ∈ Im(ι) by the same
argument as in Sp(2n). This means that µ−1(x) consists of two elements.
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If (b) holds and r 6= 1, then Q′ is not conjugate to Q. In particular, (Q̄′, x) /∈ Im(ι).
This means that µ−1(x) consists of one element. When m = 2 and r = 1, two flags
F ⊂ F⊥ and F ′ ⊂ (F ′)⊥ are different, but Q̄ = Q̄′. Therefore µ−1(x) consists of one
element.

Finally, if (a) holds, we have one more nilpotent orbit O−
p′ of so(m − 2r) different

from Op′ with Jordan type p′. We have one more SO(m)-equivariant immersion

ι− : SO(m)×Q̄ (n+O−
p′) ⊂ SO(m)/Q̄× so(m).

We have Im(ι) ∩ Im(ι−) = ∅. Then (F ′ ⊂ (F ′)⊥, x) ∈ Im(ι−). This implies that µ−1(x)
consists of one element. �

For each gap member ij, consider an induction of type I:

p′
j = [(d− 2)rd, ..., (ij − 1)rij+1 , (ij − 2)rij+rij−2, (ij − 3)rij−3 , ..., 1r1].

We then have a generalized Springer map

µj : Spin(m)×Qj (nj + Ōp
′

j
)→ Ōp,

which is a birational map.

Lemma 3.7. (1) Assume that ij is an ordinary gap member of p. If Sj is an A1-surface
singularity, then µ−1

j (Sj) is the minimal resolution of Sj. If Sj is of type A1 ∪ A1,

then µ−1
j (Sj) is the minimal resolution of the normalization of Sj. On the other hand,

µ−1
j (Sl)→ Sl is an isomorphism for each l 6= j.

(2) Assume that ij is an exceptional gap member of p. Then µ−1
j (Sj) is a crepant

partial resolution of Sj with one exceptional curve Cj
∼= P1. µ−1

j (Sj) has A1-surface

singularities at two points p±j ∈ Cj. On the other hand, µ−1
j (Sl)→ Sl is an isomorphism

for each l 6= j.

Proof. (1) Assume that ij is ordinary. Then the gap members of p′
j are

i1 − 2, ..., ij−1 − 2, ij+1, ..., ik.

For the later convenience we put

i′1 := i1 − 2, ..., i′j−1 := ij−1 − 2, i′j+1 := ij+1, ..., i
′
k := ik.

Corresponding to these gap members, we get nilpotent orbits O(p′

j)1
, ..., O(p′

j)j−1
, O(p′

j)j+1
,

..., O(p′

j
)k

in Ōp
′

j
. Here we follow the notation explained below Proposition 3.6. These

are irreducible components of Sing(Ōp
′

j
) which have codimension 2 in Ōp

′

j
. Take l so

that 1 ≤ l ≤ k and l 6= j. (p′
j)l is very even if and only if p̄l is very even. If il is ordinary

gap member of p of type A1 (resp. of type A1 ∪ A1), then i′l is also an ordinary gap
member of p′

j of type A1 (resp. of type A1 ∪A1). If il is an exceptional gap member of
p, then i′l is an exceptional gap member of p′

j . For each l, we have a natural embedding

Spin(m)×Qj (nj + Ō(p′

j)l
) ⊂ Spin(m)×Qj (nj + Ōp

′

j
).
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One can check that
µj( Spin(m)×Qj (nj + Ō(p′

j)l
) ) = Ōp̄l

.

This implies the last statement of (1). There are no singularities of Spin(m)×Qj (nj+Ōp
′

j
)

lying over Op̄j
. This implies the first and the second statements of (1).

(2) Assume that ij is exceptional. Then ij −2 is still a gap member of p′
j . Hence the

gap members of p′
j are

i1 − 2, ..., ij−1 − 2, ij − 2, ij+1, ..., ik.

We put

i′1 := i1 − 2, ..., i′j−1 := ij−1 − 2, i′j := ij − 2, i′j+1 := ij+1, ..., i
′
k := ik.

Corresponding to these gap members, we get nilpotent orbits O(p′

j)1
, ..., O(p′

j)j
, ..., O(p′

j)k
.

Note that we have an additional orbit O(p′

j)j
in the exceptional case. Take l so that

1 ≤ l ≤ k. For each l, we have a natural embedding

Spin(m)×Qj (nj + Ō(p′

j)l
) ⊂ Spin(m)×Qj (nj + Ōp

′

j
).

One can check that
µj( Spin(m)×Qj (nj + Ō(p′

j)l
) ) = Ōp̄l

.

For l 6= j, we apply the same argument as in (1), and we see that the last statement of
(2) holds true. Let us consider the case l = j. We have

p̄j = [drd, ..., (ij + 1)rij+1, (ij − 2)2, (ij − 5)rij−5 , ..., 1r1],

p′
j = [(d− 2)rd, ..., (ij − 1)rij+1, ij − 2, ij − 4, (ij − 5)rij−5, ..., 1r1],

(p′
j)j = [(d− 2)rd, ..., (ij − 1)rij+1 , (ij − 3)2, (ij − 5)rij−5 , ..., 1r1].

We then see that (p′
j)j → p̄j is an induction of type II. When (p′

j)j is not very even, the
generalized Springer map

Spin(m)×Qj (nj + Ō(p′

j
)j
)→ Ōp̄j

is a generically finite map of degree 2. Moreover, it is an etale double cover over Op̄j
.

Since Ōp
′

j
has an A1-surface singularity along O(p′

j)j
, Spin(m)×Qj (nj + Ōp

′

j
) has an A1-

singularity along Spin(m)×Qj (nj+O(p′

j)j
). This implies the first and second statements

of (2). Assume that (p′
j)j is very even. Then there are two orbits O±

(p′

j)j
. Then each

generalized Springer map

Spin(m)×Qj (nj + Ō±

(p′

j)j
)→ Ōp̄j

is a birational map. Moreover, it is an isomorphism over Op̄j
. Spin(m) ×Qj (nj + Ōp

′

j
)

has an A1-surface singularity along two disjoint subvarieties Spin(m) ×Qj (nj + O+

(p′

j)j
)
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and Spin(m)×Qj (nj +O−

(p′

j)j
). Therefore the first and the second statements of (2) still

holds in this case. �

In the above, we associate a nilpotent orbit Op̄ ⊂ Ōp with a gap member i of p.
Assume that p is not very even and i is an even gap member with ri−2 6= 0. We already
remarked that the transverse slice S for Op̄ ⊂ Ōp is of type A1 ∪A1. In this case, Ōp is
not normal. So let us consider the normalization map ν : Õp → Ōp. Before going to the
proof of Proposition 3.6, we will give a description of ν.

Lemma 3.8. ν−1(Op̄) is a connected, etale double cover of Op̄.

Proof. By the description of S, the statement is clear except that ν−1(Op̄) is con-
nected.

We apply inductions to p repeatedly by using the gap members different from i and
finally get a partition p′ such that p′ has a unique gap member i′, which comes from
the originally fixed gap member i. For example, start with p = [102, 7, 5, 42, 22] and
i = 4. Then 10, 7, 2 are gap members different from 4. Take an induction for 2 to get
new partition p1 = [82, 5, 3, 22]. The partition p1 has gap members 8, 5 except 2, which
comes from the originally fixed gap member 4. We next take an induction for 5 to get
p2 = [62, 32, 22]. Finally we get p′ = [42, 32, 22] by taking an induction for 6.

Write the partition p′ as

p′ = [d′
rd′ , ..., (i′ + 1)r

′

i′+1, i′r
′

i′ , (i′ − 2)r
′

i′−2 , (i′ − 3)r
′

i′−3, ..., 1r
′

1].

By the construction, r′d′ , ..., r′i′+1, r
′
i′ , r

′
i′−2, r

′
i′−3, ... r′1 are all nonzero. There is a

generalized Springer map

µ′ : Spin(m)×Q′

(n′ + Ōp′)→ Ōp.

Put
p̄′ = [d′

r′
d′ , ..., i′

r′
i′
−2
, (i′ − 1)4, (i′ − 2)r

′

i′−2
−2, ..., 1r

′

1].

Then Ōp′ hasA1∪A1-singularity alongOp̄′. Let ν ′ : Õp′ → Ōp′ be the normalization map.

The subvariety Spin(m)×Q′

(n′ + Ō
p̄′) ⊂ Spin(m)×Q′

(n′ + Ōp′) is birationally mapped

to Ōp̄ by µ′. Put µ̄′ := µ′|Spin(m)×Q′(n′+Ō
p̄′)
. Then (µ̄′)−1(Op̄) ⊂ Spin(m) ×Q′

(n′ + O
p̄′)

and (µ̄′)−1(Op̄) → Op̄ is an isomorphism. Moreover, µ′ induces a birational map of the
normalizations of both sides:

µ′n : Spin(m)×Q′

(n′ + Õp′)→ Õp,

which induces a dominating map

Spin(m)×Q′

(n′ + (ν ′)−1(Ō
p̄′))→ ν−1(Ōp̄).

Therefore it suffices to show that (ν ′)−1(O
p̄′) is connected in order to show that ν−1(Op̄)

is connected. In fact, if (ν ′)−1(O
p̄′) is connected, then (ν ′)−1(Ō

p̄′) is irreducible. Then
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ν−1(Ōp̄) is also irreducible by the dominating map. This means that ν−1(Op̄) is con-
nected. By the argument above, we may assume that p contains all numbers from 1 to d
except i− 1. Apply the induction for the unique gap member i of p. We get a partition

pfull := [(d− 2)rd, ..., (i− 1)ri+1, (i− 2)ri+ri−2 , (i− 3)ri−3, ..., 1r1].

Notice that pfull has full members, i.e. all numbers from 1 to d−2. Put r := rd+ ...+ ri
and let Qr,m−2r,r be a parabolic subgroup of SO(m) with flag type (r,m − 2r, r). Put
Q := ρ−1

m (Qr,m−2r,r) for ρm : Spin(m) → SO(m).Then the Levi part l of q contains
so(m− 2r) as a direct factor. In particular, the nilpotent orbit Opfull

is contained in l.

By [Na 1], Corollary (1.4.3), the normalization Õpfull
of Ōpfull

has Q-factorial terminal

singularities except when pfull = [2(m−2r−2)/2, 12].
Therefore the generalized Springer map

µ : Spin(m)×Q (n+ Õpfull
)→ Ōp

gives a Q-factorial terminalization of Ōp except when
(a) pfull = [2(m−2r−2)/2, 12].
In case (a), Õpfull

is not yet Q-factorial. To construct a Q-factorial terminal-
ization of Ōp, we take a parabolic subgroup Qr,(m−2r)/2,(m−2r)/2,r of SO(m) and put

Q̃ := ρ−1
m (Qr,(m−2r)/2,(m−2r)/2,r). Then

µ̃ : T ∗(Spin(m)/Q̃) = Spin(m)×Q̃ ñ→ Ōp

gives a crepant resolution of Ōp.
Assume that (a) does not occur. Suppose that ν−1(Op̄) is not connected, Then we

have two different µ-exceptional divisors E± which respectively dominate the closures of
two connected components of ν−1(Op̄). We consider the following two cases separately

(Case I) pfull = [12]
(Case II) otherwise.
When Case (II) occurs, Q is a maximal parabolic subgroup. Hence, the relative

Picard number ρ(µ) of µmust be one. This contradicts that Exc(µ) contains 2 irreducible
divisors. We next consider Case (I). In this case Q is not maximal and ρ(µ) = 2. It is
easily checked that Case (I) happens only when p = [32, 22]. In this case π1(Op) = {1}.
Moreover, since the odd member 3 has multiplicity 2, Õp is not Q-factorial. In fact,
take x ∈ Op and put G := Spin(m). By the proof of Proposition 3.1, (1), we see that
χ((Gφ)0) is infinite. Now let us look at the proof of Proposition (1.1), (2). Then we
see that χ((Gx)0) is infinite and Pic(G/(Gx)0) is infinite. Since π1(Op) = {1}, we have
Gx = (Gx)0. This means that Pic(Op) is infinite; hence, Õp is not Q-factorial.

On the other hand, since ρ(µ) = 2, [E+] and [E−] span NS(µ) ⊗ Q, which means
that Õp is Q-factorial by [Na 1], Lemma (1.1.1). This is a contradiction.

Finally assume that (a) occurs. In this case ρ(µ̃) = 2. It is easily checked that
(a) happens only when p = [42, 32, 22]. Then π1(Op) = {1}. Moreover, since the odd
member 3 has multiplicity 2, Õp is not Q-factorial by the same argument as above. On
the other hand, since ρ(µ̃) = 2, [E+] and [E−] span NS(µ̃)⊗Q, which means that Õp is
Q-factorial by [ibid, Lemma (1.1.1)]. This is a contradiction. �
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Let τ : Y → Ōp be the finite covering determined by the surjection π1(Op) →
(Z/2Z)⊕max(a(p)−1,0) in Proposition 3.1, (1). Then τ is the finite covering associated with
the SO(m)-universal covering of O. The map π factors through Y :

X
ρ
→ Y

τ
→ Ōp.

Assume that p is a rather odd partition of m Let {i1, ..., ik} be the set of gap members
of p. For 1 ≤ j ≤ k, we take a transverse slice Sj for Op̄j

⊂ Ōp.

Proposition 3.9. (1) Assume that ij is an odd, ordinary gap member of p such that
rij−2 6= 0. Then a(p) ≥ 2 and Sj is an A1-surface singularity. Moreover, τ−1(Sj) is a

disjoint union of 2a(p)−2 copies of (C2, 0).
(2-i) Assume that ij is an ordinary gap member of p such that rij−2 = 0. Then Sj is

an A1-surface singularity. Moreover, τ−1(Sj) is a disjoint union of 2max(a(p)−1,0) copies
of A1-surface singularity.

(2-ii) Assume that ij is an even, ordinary gap member of p with rij−2 6= 0. If p is
very even, then Sj is an A1-surface singularity. If p is not very even, then Sj is a union
of two A1-singularities S

+
j and S−

j intersecting in one point. In the former case, τ−1(Sj)
is an A1-surface singularity. In the latter case, τ−1(S+

j ) and τ−1(S−
j ) are respectively

disjoint unions of 2max(a(p)−1,0) copies of A1-surface singularity.
(3) Assume that ij is an exceptional gap member of p. Then a(p) ≥ 2 and Sj is

an A3-surface singularity. Moreover, τ−1(Sj) is a disjoint union of 2a(p)−2 copies of an
A1-surface singularity.

Proof. For simplicity we respectively write p̄ for p̄j , p
′ for p′

j and i for ij . The
generalized Springer map µj is simply denoted by µ, and put Q := Qj (µj and Qj are
defined just before Lemma 3.7). Moreover, we put S := Sj .

(1) It remains to prove the last statement. We can write

p = [drd, ..., (i+ 1)ri+1 , i, i− 2, (i− 3)ri−3, ..., 1r1],

p̄ := [drd, ..., (i+ 1)ri+1, (i− 1)2, (i− 3)ri−3, ..., 1r1 ]

and
p′ := [(d− 2)rd, ..., (i− 1)ri+1, (i− 2)2, (i− 3)ri−3 , ..., 1r1].

Then p′ is a partition of m′ := m − 2(rd + ... + ri+1 + 1), which is not rather odd
because the odd member i − 2 has multiplicity 2. Let us consider the nilpotent orbit
Op′ ⊂ so(m′). Since a(p′) = a(p) − 1 and p′ is not rather odd, π1(Op′) has order
2a(p)−2. Let Qrd+...+ri+1+1,m′,rd+...+ri+1+1 ⊂ SO(m) be a parabolic subgroup of flag type
(rd + ...+ ri+1 + 1, m′, rd + ...+ ri+1 + 1) and put Q := ρ−1

m (Qrd+...+ri+1+1,m′,rd+...+ri+1+1)
for the double covering ρm : Spin(m)→ SO(m). We have a generalized Springer map

µ : Spin(m)×Q (n+ Ōp′)→ Ōp.

Assume that p̄ is not very even. We calculate π1(Op ∪ Op̄). We can write Sing(Ōp)
as a union of Op̄ and finite number of other nilpotent orbits:

Sing(Ōp) = Op̄ ⊔ O1 ⊔ ... ⊔Ok ⊔Ok+1 ⊔ ... ⊔Ok+l
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Here CodimOp
Oα = 2 for 1 ≤ α ≤ k and CodimOp

Oα ≥ 4 for k + 1 ≤ α ≤ k + l. By
Lemma 3.7, (1), the map µ is an isomorphism over Op ∪ O1 ∪ ... ∪ Ok, and µ induces a
crepant resolution of an open neighborhood of Op̄ ⊂ Ōp. Write

Spin(m)×Q(n+Ōp′) = µ−1(Op)⊔µ
−1(Op̄)⊔µ

−1(O1)⊔...⊔µ
−1(Ok)⊔µ

−1(Ok+1)⊔...⊔µ
−1(Ok+l)

Then µ−1(O1), ..., µ
−1(Ok) have codimension 2 in Spin(m)×Q (n+ Ōp′). On the other

hand, since CodimOp
Oα ≥ 4 for k + 1 ≤ α ≤ k + l, the inverse images µ−1(Ok+1), ...,

µ−1(Ok+l) have codimension ≥ 2 by Corollary 0.2. This means that µ−1(Op ∪ Op̄) is
obtained from Spin(m) ×Q (n + Ōp′) by removing a closed subset of codimension ≥ 2.
There is an isomorphism

µ∗ : π1(µ
−1(Op ∪ Op̄))→ π1(Op ∪ Op̄)

by [Ko], Theorem 7.8 because Op∪Op̄ has only quotient singularities. Since µ−1(Op∪Op̄)
is smooth, it is contained in Spin(m)×Q (n+Op′). Therefore, µ−1(Op∪Op̄) is obtained
from the smooth variety Spin(m)×Q(n+Op′) by removing a closed subset of codimension
at least 2. Hence we have

π1(µ
−1(Op ∪Op̄)) ∼= π1(Spin(m)×Q (n+Op′)).

By the exact sequence

π1(n+Op′)→ π1(Spin(m)×Q (n+Op′))→ π1(Spin(m)/Q)→ 1

we see that π1(Spin(m)×Q (n+Op′)) has order at most 2a(p)−2 because π1(Op′) has order
2a(p)−2. Let us consider the finite covering τ . By definition, deg(τ) = 2a(p)−1. Since S
is an A1-surface singularity, there are two possibilities. The first case is when τ−1(S) is
a disjoint union of 2a(p)−1 copies of an A1-surface singularity. The second case is when
τ−1(S) is a disjoint union of 2a(p)−2 copies of (C2, 0). We only have to show that the
first case does not occur. Actually, if the first case occurs, τ induces an etale covering
of Op ∪ Op̄. Since deg(τ) = 2a(p)−1, this implies that |π1(Op ∪ Op̄)| = 2a(p)−1. This is a
contradiction.

Next assume that p̄ is very even. In this case, there are two nilpotent orbits O±
p̄ with

Jordan type p̄. We can write

Sing(Ōp) = Ō+
p̄
∪ Ō−

p̄
∪ Ō1 ∪ ... ∪ Ōk ∪ Ōk+1 ∪ ... ∪ Ōk+l

Here CodimŌp
Oα = 2 for 1 ≤ α ≤ k and CodimŌp

Oα ≥ 4 for k + 1 ≤ α ≤ k + l. By the
same reasoning as the case when p̄ is not very even, we see that π1(Op ∪O+

p̄ ∪O−
p̄ ) has

order at most 2a(p)−2. Let S± be respectively transverse slices for O±
p̄ ⊂ Ōp. The adjoint

action of O(m) interchanges O+
p̄ and O−

p̄ . Since τ is O(m)-equivariant by Lemma 3.3,
τ−1(S+) and τ−1(S−) have the same splitting type. Therefore, there are two possibilities.
The first case is when τ−1(S±) are both disjoint unions of 2a(p)−1 copies of an A1-surface
singularity. The second case is when τ−1(S±) are both disjoint unions of 2a(p)−2 copies
of (C2, 0). Then we see that the first case does not occur by the same reasoning as in
the case p̄ is not very even. This completes the proof of (1).
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(2) Assume that i is a gap member of p except the case (1). Then p′ is also rather
odd. Moreover, a(p′) = a(p). When p is very even, p′ is also very even. In this case
there are two orbits with Jordan type p′. But there is a unique nilpotent orbit Op′ with
Jordan type p′ such that Op is induced from Op′. Let Xp′ → Ōp′ be the finite covering
associated with the universal covering of Op′ . Then the Q-action on n + Ōp′ does not
lift to a Q-action on n + Xp′ by Claim 3.5.2. Instead, we take a cover τ ′ : Yp′ → Ōp′

corresponding to the surjection π1(Op′) → (Z/2Z)⊕max(a(p′)−1,0) in Proposition 3.1, (1).
Then the Q-action on n + Ōp′ lifts to a Q-action on n + Yp′. Therefore we have a
commutative diagram

Spin(m)×Q (n+ Yp′)
µ′

−−−→ Y ′

π′





y τ ′





y

Spin(m)×Q (n+ Ōp′)
µ

−−−→ Ōp

(21)

Here Y ′ is the Stein factorization of µ ◦ π′. π factorizes as

X
ρ′

→ Y ′ τ ′
→ Ōp,

where deg(ρ′) = 2 and deg(τ ′) = 2max(a(p)−1,0). Notice that Q = ρ−1
m (Q̄) for a parabolic

subgroup Q̄ ⊂ SO(m). Hence Spin(m)×Q (n+Yp′) = SO(m)×Q̄ (n+Yp′). In particular,
SO(m) acts on Y ′ and τ ′ is a SO(m)-finite cover. Since deg(τ ′) = deg(τ), we see that
τ ′ = τ and Y ′ = Y .

(2-i): We only have to prove the last statement. The transverse slice S is an A1-
surface singularity. By Lemma 3.7, (1), µ induces a crepant resolution of an open
neighborhood of Op̄ ⊂ Ōp. Put E := µ−1(Op̄). Then E is a divisor and Spin(m)×Q (n+
Ōp′) is smooth around E. Since µ′ is a crepant partial resolution, π′ must be unramified
at E. In fact, suppose that π′ is ramified around E. Let us consider the commutative
diagram above over an open neighborhood of Op̄ ⊂ Ōp. Put E ′ := (π′)−1(E). Then
KSpin(m)×Q(n+Y

p′ ) = (π′)∗KSpin(m)×Q(n+Ō
p′ ) + rE ′ for some r > 0. Since Spin(m)×Q (n+

Ōp′) = µ∗KŌp
, we have

KSpin(m)×Q(n+Y
p′ ) = (π′)∗µ∗KŌp

+ rE ′.

On the other hand, since µ′ is crepant,

KSpin(m)×Q(n+Y
p′ ) = (µ′)∗KY = (µ′)∗τ ∗KŌp

= (π′)∗µ∗KŌp
.

This is a contradiction; hence, π′ is unramified along E.
This means that τ−1(S) is a disjoint union of 2max(a(p)−1,0) copies of an A1-surface

singularity.
(2-ii) : If p is very even, then deg(τ) = 1. Hence τ−1(S) is an A1-surface singularity.

Assume that p is not very even. Then S is a union of two A1-surface singularities. Let
ν : Õp → Ōp be the normalization. SO(m) naturally acts on Õp. Then ν−1(Op̄)→ Op̄

is an etale double cover. Moreover, ν−1(Op̄) is connected by Lemma 3.8. Hence SO(m)
acts on ν−1(Op̄) transitively. τ induces a finite covering τ̃ : Y → Õp. Then S̃ := ν−1(S)
is a disjoint union of two A1-surface singularities: S̃ = S̃+ ⊔ S̃−. We may assume that
S̃+ and S̃− are interchanged each other by a suitable element of SO(m).
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Let us consider τ−1(S). Notice that τ−1(S) = τ̃−1(S̃+)⊔ τ̃−1(S̃−). By Lemma 3.7, (i),
µ induces a crepant resolution of an open neighborhood of Op̄ ⊂ Ōp. Put E := µ−1(Op̄).
Then E is a divisor and Spin(m)×Q (n+ Ōp′) is smooth around E. Since µ′ is a crepant
partial resolution, π′ must be unramified at E by the same argument as in (2-i). This
means that τ̃−1(S̃+) and τ̃−1(S̃−) are respectively disjoint unions of 2max(a(p)−1,0) copies
of an A1-surface singularity.

(3) The transverse slice S for Op̄ ⊂ Ōp is an A3-surface singularity. By Lemma 3.7,
µ−1(S) is a crepant partial resolution of S with one exceptional curve C ∼= P1. µ−1(S) has
A1-surface singularities at two points p± ∈ C. We prove that π′−1(µ−1(S)) is a disjoint
union of 2a(p)−2 copies of the minimal resolution of an A1-surface singularity. This would
mean that τ−1(S) is a disjoint union of 2a(p)−2 copies of A1-surface singularity. For this
purpose we must look at the finite cover τ ′ : Yp′ → Ōp′ induced from the SO-universal
covering of Op′. Recall that

p′ = [(d− 2)rd, ..., (i− 1)ri+1, i− 2, i− 4, (i− 5)ri−5, ..., 1r1].

The nilpotent orbit closure Ōp′ contains nilpotent orbits of Jordan type (p̄′)j . By defi-
nition

(p̄′)j = [(d− 2)rd, ..., (i− 1)ri+1, (i− 3)2, (i− 5)ri−5, ..., 1r1].

Notice that we write i for ij and the subscript of (p̄′)j indicates this j.
The partition (p̄′)j may possibly be very even. In such a case, there are two orbits

with Jordan type (p̄′)j. If (p̄′)j is not very even, such an orbit is unique. In any case,
let O(p̄′)j be one of such orbits, and let T be a transverse slice for O(p̄′)j ⊂ Ōp′. T

is an A1-surface singularity. By applying Lemma (3.9) to τ ′, we see that (τ ′)−1(T ) is
a disjoint union of some copies of (C2, 0). Look at the map π′−1(µ−1(S)) → µ−1(S)
induced by π′. Recall that there are two points p± ∈ C such that µ−1(S) has A1-surface
singularities at these points. By the observation above, this map is ramified at p±. This
means that π′−1(µ−1(S)) is a disjoint union of 2a(p)−2 copies of the minimal resolution
of an A1-surface singularity. �

Proof of Proposition 3.6. The map π factors through Y :

X
ρ
→ Y

τ
→ Ōp.

By Proposition 3.9, π−1(Sj) is a disjoint union of the copies of (C2, 0) or a disjoint union
of the copies of A1-surface singularity. We prove that the latter case does not happen.

(a) Assume that Case (1) in Proposition 3.9 occurs. By the proposition, τ−1(Sj) is
already a disjoint union of (C2, 0). Then ρ is etale over an open neighborhood of τ−1(Sj);
hence π−1(Sj) is a disjoint union of the copies of (C2, 0).

(b) Next consider one of the following cases of Proposition 3.9:
Case (2-i),
Case (2-ii) and p is very even,
Case (3).
When p is not very even in Case (2-ii), we will need an additional care. Such a case

will be treated in (c).

45



Since π is a Galois cover, there are two possibilities for π−1(Sj). The first case is
when π−1(Sj) is a disjoint union of the copies of (C2, 0). The second case is when
π−1(Sj) is a disjoint union of the copies of an A1-surface singularity. If the second
case occurs, then ρ induces an etale cover of τ−1(Op ∪ Op̄j

) of degree 2. In particular,
π1(τ

−1(Op ∪ Op̄j
)) 6= {1}. Let τ 0j : Yp

′

j
→ Op

′

j
be the SO-universal covering and let

τj : Yp
′

j
→ Ōp

′

j
be its associated covering. Look at the commutative diagram

Spin(m)×Qj (nj + Yp
′

j
)

µ′

j

−−−→ Y

π′





y

τ





y

Spin(m)×Qj (nj + Ōp
′

j
)

µj

−−−→ Ōp

(22)

The birational map

(µ′
j)

−1(τ−1(Op ∪Op̄j
))→ τ−1(Op ∪ Op̄j

)

induces an isomorphism of the fundamental groups of both sides by [Ko], Theorem 7.8 be-
cause τ−1(Op∪Op̄j

) has only quotient singularities. We next calculate π1((µ
′
i)
−1(τ−1(Op∪

Op̄j
))). The closure Ōp contains Op as an open dense orbit and contains Op̄1, ..., Op̄k

as codimension 2 orbits. Other nilpotent orbits in Ōp have codimension ≥ 4. Therefore,
one can write

Ōp = Op ⊔Op̄1 ⊔ ... ⊔Op̄j
⊔ ... ⊔Op̄k

⊔ F,

where F is the union of all nilpotent orbits with codimension ≥ 4. Hence

Y = τ−1(Op) ⊔ τ−1(Op̄1) ⊔ ... ⊔ τ−1(Op̄j
) ⊔ ... ⊔ τ−1(Op̄k

) ⊔ τ−1(F ).

For l 6= j, the birational map µj is an isomorphism over an open neighborhood of
Op̄ ⊂ Ōp̄ by Lemma 3.7, (1). By Zariski’s Main Theorem, µ′

j is also an isomorphism
over an open neighborhood of τ−1(Op̄l

) ⊂ Y . Moreover, µ′
j gives a crepant resolution of

an open neighborhood of τ−1(Op̄j
) ⊂ Y . Here write

Spin(m)×Qj (nj+Ypj
) = (τ◦µ′

j)
−1(Op)⊔(τ◦µ

′
j)

−1(Op̄1)⊔...⊔(τ◦µ
′
j )

−1(Op̄k
)⊔(τ◦µ′

j)
−1(F ).

Then (τ ◦ µ′
j)

−1(Op̄l
) has codimension 2 in Spin(m) ×Qj (nj + Ypj

) for l 6= j. Since
CodimY τ

−1(F ) ≥ 4, we see that (τ ◦µ′
j)

−1(F ) has codimension ≥ 2 in Spin(m)×Qj (nj+
Ypj

) by Corollary 0.2. Therefore, (µ′
j)

−1(τ−1(Op ∪ Op̄j
)) is obtained from Spin(m)×Qj

(nj + Ypj
) by removing the subset of codimension ≥ 2. Let Y reg

p
′

j
be the smooth part of

Yp
′

j
. Since (µ′

j)
−1(τ−1(Op ∪Op̄j

)) is smooth, there is an inclusion

(µ′
j)

−1(τ−1(Op ∪ Op̄j
)) ⊂ Spin(m)×Qj (nj + Y reg

p
′

j
)

Hence, (µ′
j)

−1(τ−1(Op∪Op̄j
) is obtained from a smooth variety Spin(m)×Qj (nj +Y reg

p
′

j
)

by removing a closed subset of codimension ≥ 2. Therefore we have an isomorphism

π1((µ
′
j)

−1(τ−1(Op ∪ Op̄j
))) ∼= π1(Spin(m)×Qj (nj + Y reg

p
′

j
)).
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Put Y 0
p
′

j
:= τ−1

j (Op
′

j
). Then, by Claim 3.5.2, π1(Spin(m) ×Qj (nj + Y 0

p
′

j
)) = {1}. Since

there is a surjection

π1(Spin(m)×Qj (nj + Y 0
p
′

j
))→ π1(Spin(m)×Qj (nj + Y reg

p
′

j
)),

we see that π1(Spin(m)×Qj (nj+Y reg
p
′

j
)) = {1}. This is a contradiction. As a consequence,

π−1(Sj) is a disjoint union of the copies of (C2, 0).
(c) We finally assume that Case (2-ii) occurs and p is not very even. Then Sj is of

type A1 ∪ A1. Let ν : Õp → Ōp be the normalization map. Then S̃j := ν−1(Sj) is a
disjoint union of two A1-surface singularities: S̃j = S̃+

j ⊔S̃
−
j . S̃

+
j and S̃−

j are interchanged
each other by a suitable element of SO(m). Let us look at the double cover ρ. Since ρ
is Spin(m)-equivariant, there are two possibilities. The first case is when (τ̃ ◦ ρ)−1(S̃±)
are both disjoint unions of the copies of (C2, 0). The second case is when (τ̃ ◦ ρ)−1(S̃±)
are both disjoint unions of the copies of A1-surface singularity. Here τ̃ is the map from
Y to the normalization Õp of Ōp induced from τ : Y → Ōp. By the same argument as
in (b), the second case does not occur. As a consequence, π−1(Sj) is a disjoint union of
the copies of (C2, 0). �

Construction of a Q-factorial terminalization
Let p be a partition of m with Condition (i). Let Op ⊂ so(m) be a nilpotent orbit

with Jordan type p, and let X → Ōp be the finite covering associated with the universal
covering of Op. We are now in a position to construct a Q-factorial terminalization of
X .

(A) The case when p is rather odd.
We will use the following induction step.
(Double Induction of type I) Let i be a gap member of p. When i is odd, we assume

that i ≥ 5 and ri−1 = ... = ri−4 = 0. When i is even, we assume that i ≥ 4 and
ri−1 = ... = ri−3 = 0. We remark that such a gap member exists if p does not satisfy
the condition (iii) (which is defined just before Proposition 3.6). Put

p′ = [(d− 4)rd, ..., (i− 3)ri+1, (i− 4)ri+ri−4 , (i− 5)ri−5, ..., 1r1].

Then p′ satisfies (i) and is still rather odd. If we put s := rd+...+ri, then p′ is a partition
of m−4s. Let Q(2s,m−4s,2s) ⊂ SO(m) be a parabolic subgroup of flag type (2s,m−4s, 2s)
and put Q := ρ−1

m (Q(2s,m−4s,2s)) for the double cover ρm : Spin(m)→ SO(m). We write
the Levi decomposition of q as q = l⊕n. We have l = gl(2s)⊕so(m−4s). One can take

a nilpotent orbit O[2s] × Op′ in gl(sr)⊕ so(m − 4s) so that Op = Ind
so(m)
l (O[2s] × Op′).

The generalized Springer map

µ : Spin(m)×Q (n+ Ō[2s] × Ōp′)→ Ōp

is a birational map. We indicate this process simply by

p
Type I2

← p′.

Recall that a(p) is the number of distinct odd members of p. Now assume that p
does not satisfy the condition (iii). Then we can repeat double induction step of type
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I to p so that a does not change, and finally get a partition p′ with conditions (i) and
(iii).

p
Type I2

← p1
Type I2

← ...
Type I2

← pk = p′

In each step, we record the number si and put q := m− 4
∑

si.
Case 1: q ≥ 3
Put the m×m matrix

Jm =













0 0 0 ... 1
0 0 ... 1 0
... ... ... ... ...
0 1 ... 0 0
1 0 ... 0 0













.

Then
SO(m) = {A ∈ SL(m) | AtJA = J}.

Now let us consider the isotropic flag of type (2s1, 2s2, ..., 2sk, q, 2sk, ..., 2s2, 2s1):

0 ⊂ 〈e1, ..., e2s1〉 ⊂ 〈e1, ...e2s1+2s2〉 ⊂ ... ⊂ 〈e1, ..., e∑k
1 2si
〉 ⊂ 〈e1, ..., e∑k

1 2si+q〉

⊂ 〈e1, ..., e∑k
1 2si+q+2sk

〉 ⊂ ... ⊂ 〈e1, ..., e∑k
1 2si+q+

∑k
1 2si
〉 = Cm

Let Q′ be the parabolic subgroup of SO(m) stabilizing this flag. One has a Levi decom-
position Q′ = U ′ · L′ with

L′ = {





























A1 0 0 ... ... ... ... ... 0
0 A2 0 ... ... ... ... ... 0
... ... ... ... ... ... ... ... ...
0 ... 0 Ak 0 ... ... ... 0
0 ... ... 0 B 0 ... ... 0
0 ... ... ... 0 A′

k 0 ... 0
... ... ... ... ... ... ... ... ...
0 ... ... ... ... ... ... A′

2 0
0 ... ... ... ... ... ... 0 A′

1





























|Ai ∈ GL(2si), A
′
i = J2si(A

t
i)

−1J2si, B ∈ SO(q)}.

In particular, L′ ∼=
∏

GL(2si)×SO(q). We define a parabolic subgroup Q of Spin(m) by
Q := ρ−1

m (Q′) for ρm : Spin(m)→ SO(m). Then the Levi part L of Q is a double cover
of L, which is described as follows. There is a natural map SL(2si) × C∗ → GL(2si)
defined by (X, λ)→ λX . The kernel of this map is the cyclic group

µ2si := {(λ
−1I2si , λ) | λ

2si = 1}.

Let µsi be the subgroup of µ2si of order si. Then the covering map SL(2si)×C∗/µsi →
GL(2si) has degree 2. We then have a covering map

(SL(2s1)×C
∗)/µs1×...×(SL(2sk)×C

∗)/µsk×Spin(q)→ GL(2s1)×...×GL(2sk)×SO(q).
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The Galois group of this covering is (Z/2Z)⊕k+1. Put H := Ker[(Z/2Z)⊕k+1
∑

→ Z/2Z],
where

∑

is defined by (x1, ..., xk+1)→
∑

xi. By Claim 3.5.1 we have

L = {(SL(2s1)×C∗)/µs1 × ...× (SL(2sk)×C∗)/µsk × Spin(q)} / H.

The Levi part L has the same Lie algebra of that of L′. Hence we have l = ⊕gl(2si)⊕
so(q). We consider the nilpotent orbit

∏

O[2si ] × Op′ in l. By the construction

Op = Ind
so(m)
l (

∏

O[2si ] ×Op′).

Let X[2si ] → Ō[2si ] be the double covering associated with the universal covering of
O[2si ]. By Proposition 1.8, (2) and Proposition 1.9, X[2si ] has only Q-factorial terminal
singularities. Let Xp′ → Ōp′ be the finite covering associated with the universal covering
of Op′. By Proposition 3.6 Xp′ has only Q-factorial terminal singularities. (SL(2s1) ×
C∗)/µs1×...×(SL(2sk)×C

∗)/µsk×Spin(q) acts on
∏

X[2si ]×Xp′ because each SL(2si)×
C∗/µsi acts on X[2si ], and Spin(q) acts on Xp′ . By Proposition 3.1, (1) we have an exact
sequence

1→ Z/2Z→ π1(Op′)→ (Z/2Z)⊕max(a(p′)−1,0) → 1.

Then the generator of Z/2Z induces a covering involution −1 for Xp′ → Ōp′ . Hence
(Z/2Z)⊕k+1 acts on

∏

X[2si ] × Xp′ . Let H be the subgroup of (Z/2Z)⊕k+1 defined as
above. The quotient space

∏

X[2si ] × Xp′/H has only terminal singularities because
the fixed locus of every nonzero element of H has codimension ≥ 4. Moreover, since
∏

X[2si ] × Xp′ is Q-factorial,
∏

X[2si ] × Xp′/H is also Q-factorial by Lemma 1.4. The
Levi part L acts on (

∏

X[2si ]×Xp′)/H . This action is a lifting of the adjoint L-action on
∏

O[2si ] × Op′. Let us consider the Levi decomposition q = l⊕ n. Then the observation
above means that n+ (

∏

X[2si ] ×Xp′)/H is a Q-space. There is a finite cover

π′ : Spin(m)×Q (n+ (
∏

X[2si ] ×Xp′)/H)→ Spin(m)×Q (n+
∏

Ō[2si ] × Ōp′)

and deg(π) = deg(π′). We now have a commutative diagram

Spin(m)×Q (n+ (
∏

X[2si ] ×Xp′)/H)
µ′

−−−→ X

π′





y

π





y

Spin(m)×Q (n+
∏

Ō[2si ] × Ōp′)
µ

−−−→ Ōp

(23)

Here X coincides with the Stein factorization of µ ◦ π′. The map µ′ gives a Q-factorial
terminalization of X .

Case 2: q ≤ 2
When q = 0, p′ = [0]. In this case, p is very even. Hence π : X → Ōp is a

double covering. The cases q = 1, 2 do not occur. We define
∑

: Z/2Z⊕k → Z/2Z by
∑

(x1, ..., xk) :=
∑

xi and put H := Ker(
∑

). We have a commutative diagram

Spin(m)×Q (n+ (
∏

X[2si ]/H)
µ′

−−−→ X

π′





y

π





y

Spin(m)×Q (n+
∏

Ō[2si ])
µ

−−−→ Ōp

(24)
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Here X coincides with the Stein factorization of µ ◦ π′. The map µ′ gives a Q-factorial
terminalization of X .

(B) The case when p is not rather odd
We will use two induction steps of type (I) and of type (II).
By using the inductions of type (I) repeatedly for p, we can finally find a parabolic

subgroup Q of Spin(m) and a nilpotent orbit Op′ of a Levi part l of q such that

(a) Op = Ind
so(m)
l (Op′).

(b) a(p′) = a(p), and
(c) p′ satisfies the condition (ii).
For the partition p′ thus obtained, we let e be the number of odd members i of p′

such that ri = 2. By using the inductions of type (II) repeatedly for p′, we can finally
find a parabolic subgroup Q′ of Spin(m) and a nilpotent orbit Op′′ of the Levi part l′ of
q′ such that

(a’) Op′ = Ind
sp(2n′)
l′ (Op′′),

(b’) a(p′′) = a(p′)− e,
(c’) p′′ satisfies the condition (ii) and
(d’) the multiplicity of any odd member of p′′ is not 2.
All together, we get a generalized Springer map

µ′′ : Spin(m)×Q′′

(n′′ + Ōp′′)→ Ōp.

Hereafter we consider two cases separately.
Case 1: ri ≥ 3 for some odd member i of p
In this case, p′′ is not rather odd. By the assumption a(p) ≥ e + 1. Let X ′′ → Ōp′′

be the finite covering associated with the universal covering of Op′′ . Then X ′′ has only
terminal singularities by Proposition 3.4. On the other hand, X is Q-factorial by (d’).
Since p′′ is not rather odd, the Q′′-action on n′′ + Ōp′′ lifts to a Q′′-action on n′′ +X ′′.
There is a finite cover

π′′ : Spin(m)×Q′′

(n′′ +X ′′)→ Spin(m)×Q′′

(n′′ + Ōp′′).

We have

deg(µ′′) = 2e, deg(π′′) = 2max(a(p′′)−1,0) = 2max(a(p)−e−1,0) = 2a(p)−e−1

and deg(π) = 2a(p)−1. It can be checked that deg(π) = deg(π′′) · deg(µ′′). Therefore we
have a commutative diagram

Spin(m)×Q′′

(n′′ +X ′′) −−−→ X

π′′





y

π





y

Spin(m)×Q′′

(n′′ + Ōp′′)
µ′′

−−−→ Ōp

(25)

where X is obtained as the Stein factorization of the map µ′′◦π′′. The map Spin(m)×Q′′

(n′′ +X ′′)→ X here obtained is a Q-factorial terminalization of X .

Case 2: ri ≤ 2 for any odd member i of p
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In this case p′′ is rather odd. If there is an odd i such that ri = 1, then a(p) ≥ e+1.
If ri = 2 for all odd i, then a(p) = e ≥ 1. The last inequality holds because if e = 0,
then p is rather odd and this is not our case. Then we have a short exact sequence

1→ Z/2Z→ π1(Op′′)→ (Z/2Z)⊕max(a(p′′)−1,0) → 1.

Let Y ′′ → Ōp′′ be the finite covering determined by the surjection from π1(Op′′) to
(Z/2Z)⊕max(a(p′′)−1,0). Since p′′ has only odd, ordinary gap members, we can apply
Proposition 3.9, (1) for each gap member of p′′ to conclude that CodimY ′′Sing(Y ′′) ≥ 4.
Since p′′ is rather odd, Y ′′ is Q-factorial by Proposition 3.1, (2). Therefore Y ′′ has only
Q-factorial terminal singularities. Then the Q′′-action on n′′ + Ōp′′ lifts to a Q′′-action
on n′′ + Y ′′. There is a finite cover

τ ′′ : Spin(m)×Q′′

(n′′ + Y ′′)→ Spin(m)×Q′′

(n′′ + Ōp′′).

We have

deg(µ′′) =

{

2e (ri = 1 for some odd i)
2e−1 (ri = 2 for all odd i)

deg(τ ′′) = 2max(a(p′′)−1,0) = 2max(a(p)−e−1,0)

and deg(π) = 2max(a(p)−1,0). It can be checked that deg(π) = deg(τ ′′) · deg(µ′′) in any
case. Therefore we have a commutative diagram

Spin(m)×Q′′

(n′′ + Y ′′) −−−→ X

τ ′′





y

π





y

Spin(m)×Q′′

(n′′ + Ōp′′)
µ′′

−−−→ Ōp

(26)

where X is obtained as the Stein factorization of the map µ′′◦τ ′′. The map Spin(m)×Q′′

(n′′ + Y ′′)→ X here obtained is a Q-factorial terminalization of X .

Examples 3.10.

(1) Let us construct aQ-factorial terminalization of the finite covering X → Ō[15,82,3] ⊂
so(34) associated with the universal covering of O[15,82,3]. By double inductions of type I

[15, 82, 3]
TypeI2

← [11, 82, 3]
TypeI2

← [7, 42, 3]

we get a partition [7, 42, 3] of 18 with conditions (i) and (iii). Let Q̄ ⊂ SO(34) be
a parabolic subgroup stabilizing an isotropic flag of type (2, 6, 18, 6, 2) and put Q :=
ρ−1
34 (Q̄) for ρ34 : Spin(34) → SO(34). Let X[2] (resp. X[23]) be a finite covering of

Ō[2] ⊂ sl(2) (resp. Ō[23] ⊂ sl(6)) associated with the universal covering of O[2] (resp.
O[23]). Moreover, let X[7,42,3] be the finite covering of Ō[7,42,3] ⊂ so(18) associated with
the universal covering of O[7,42,3]. Then

Spin(34)×Q (n+ (X[2] ×X[23] ×X[7,42,3])/H)

is a Q-factorial terminalization of X . Here H := Ker[
∑

: (Z/2Z)⊕3 → Z/2Z].
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(2) Let X be the finite covering of Ō[113,32,1] ⊂ so(40) associated with the universal
covering of O[113,32,1]. By inductions of type I and of type II

[113, 32, 1]
TypeI
← [93, 32, 1]

TypeI
← [73, 32, 1]

TypeI
← [53, 32, 1]

TypeII
← [33, 22, 1]

we finally get a partition [33, 22, 1] of 14. Let Q̄ ⊂ SO(40) be a parabolic subgroup
stabilizing an isotropic flag of type (3, 3, 3, 4, 14, 4, 3, 3, 3) and put Q := ρ−1

40 (Q̄) for
ρ40 : Spin(40) → SO(40). Let us consider the nilpotent orbit O[33,22,1] ⊂ so(14). Let
X[33,22,1] → Ō[33,22,1] be the finite covering associated with the universal covering of
O[33,22,1]. Then

Spin(40)×Q (n+X[33,22,1])

is a Q-factorial terminalization of X .
(3) Let X be the finite covering of Ō[132,3,1] ⊂ so(30) associated with the universal

covering of O[132,3,1]. By inductions of type I and of type II

[132, 3, 1]
TypeI
← [112, 3, 1]

TypeI
← [92, 3, 1]

TypeI
← [72, 3, 1]

TypeI
← [52, 3, 1]

TypeII
← [42, 3, 1]

we finally get a partition [42, 3, 1] of 12. Let Q̄ ⊂ SO(30) be a parabolic subgroup
stabilizing an isotropic flag of type (2, 2, 2, 2, 1, 12, 1, 2, 2, 2, 2) and put Q := ρ−1

30 (Q̄) for
ρ30 : Spin(30) → SO(30). Let us consider the nilpotent orbit O[42,3,1] ⊂ so(12). Since
the partition [42, 3, 1] is rather odd, there is an exact sequence

1→ Z/2Z→ π1(O[42,3,1])→ Z/2Z→ 1.

Let Y[42,3,1] → Ō[42,3,1] be a double covering determined by the surjection π1(O[42,3,1]) →
Z/2Z. Then

Spin(30)×Q (n+ Y[42,3,1])

is a Q-factorial terminalization of X .
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