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DEFORMATIONS OF SYMPLECTIC SINGULARITIES AND ORBIT

METHOD FOR SEMISIMPLE LIE ALGEBRAS

IVAN LOSEV

Abstract. We classify filtered quantizations of conical symplectic singularities and use
this to show that all filtered quantizations of symplectic quotient singularities are spher-
ical symplectic reflection algebras of Etingof and Ginzburg. We further apply our clas-
sification and a classification of filtered Poisson deformations obtained by Namikawa to
establish a version of the Orbit method for semisimple Lie algebras. Namely, we produce
a natural map from the set of coadjoint orbits of a semisimple algebraic group to the set
of primitive ideals in the universal enveloping algebra. We show that the map is injec-
tive for classical Lie algebras and conjecture that in that case the image consists of the
primitive ideals corresponding to one-dimensional representations of W-algebras. Along
the way, we get several new results on the Lusztig-Spaltenstein induction for coadjoint
orbits.

Dedicated to Sasha Premet, on his 60th birthday, with admiration.
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1. Introduction

1.1. Filtered deformations of Poisson algebras. Our general setting is as follows.
Let A be a finitely generated Poisson algebra over C that is equipped with

• an algebra grading A =
⊕∞

i=0Ai such that A0 = C (such a grading will be called
positive)

• and the Poisson bracket has degree −d, where d is a positive integer.

A basic example is as follows. We take a symplectic vector space V and a finite group Γ of
its linear symplectomorphisms. Then we can take the algebra A = C[V ]Γ of Γ-invariants
in C[V ], this is a graded Poisson subalgebra of C[V ] with d = 2.

We are interested in filtered deformations of A, i.e., in filtered associative algebras A
together with an isomorphism grA

∼
−→ A of graded algebras. We only consider two classes

of deformations that are compatible with the bracket on A. First, we consider filtered
Poisson deformations, i.e., commutative algebras A0 equipped with a Poisson bracket
decreasing the filtration degree by d such that grA0 ∼

−→ A becomes a Poisson algebra
isomorphism. Second, we consider filtered quantizations A. Those are non-commutative
algebras such that the Lie bracket decreases filtration degree by d and grA

∼
−→ A is an

isomorphism of Poisson algebras.
We want to describe filtered Poisson deformations and filtered quantizations of A up

to an isomorphism (of deformations). This problem doesn’t have a nice solution if we
do not impose any restrictions on A. We will assume that X := SpecA has symplectic
singularities. In this case, filtered Poisson deformations were classified by Namikawa,
[N3], while the classification of quantizations is one of the main results of the present
paper (Theorem 3.4).

1.2. Symplectic singularities. Recall, following Beauville, [Be], the definition of a va-
riety with symplectic singularities. Let X be a normal algebraic variety such that Xreg

carries a symplectic form, ωreg. Since X is normal, the form ωreg gives rise to the Poisson
bracket on OX so X becomes a Poisson algebraic variety.

Let X̂ be a resolution of singularities for X . We say that X has symplectic singularities

if ωreg extends to a regular form on X̂ . In fact, this is independent of the choice of X̂.
Below in this section, we will assume that X := Spec(A) has symplectic singularities.

Symplectic quotient singularities V/Γ provide an example of symplectic singularities,
[Be]. Another classical example arises as follows. We take a semisimple Lie algebra g and

the nilpotent cone N ⊂ g∗. Then X := N has symplectic singularities (for X̂ we can take
the Springer resolution T ∗(G/B)).
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Return to the general situation: X := Spec(A) with symplectic singularities, where A
a positively graded algebra. Namikawa has constructed a “Cartan space” P(= PX) and
a “Weyl group” W (= WX) for X . The latter acts on the former as a crystallographic
reflection group. In the case of the nilpotent cone, we recover the Cartan subalgebra and
the Weyl group of g.

The simplest form of the main result of [N3] can be stated as follows: the filtered
Poisson deformations are canonically indexed by the points of the quotient P/W . In this
paper, we will show that the filtered quantizations of A are indexed by the points of the
same quotient P/W .

Let us explain how the quantizations are constructed in the general case. The variety
X admits distinguished partial resolutions called Q-factorial terminalizations. The fil-
tered Poisson deformations/quantizations of X are essentially produced by taking global
sections of Poisson deformations/quantizations of OX̃ , where X̃ is a Q-factorial terminal-
ization of X . The filtered Poisson deformations/quantizations of OX̃ are parameterized
by the points of P. Moreover, W -conjugate parameters give rise to isomorphic algebras
of global sections, see e.g. [BPW, Proposition 3.10].

In the case when X = N our result says that all filtered quantizations of C[N ] are
obtained as the central reductions of the universal enveloping algebra U(g).

In the case of A = C[V ]Γ filtered deformations of A were constructed algebraically
by Etingof and Ginzburg, [EG], as spherical subalgebras eHt,ce in symplectic reflection
algebras Ht,c, where t ∈ C and c is a vector in a space of dimension dimP. The algebra
eHt,ce is a filtered Poisson deformation of C[V ]Γ when t = 0, and is a filtered quantization
when t = 1. Results of Bellamy, [Bel], show that any filtered Poisson deformation of C[V ]Γ

is isomorphic to eH0,ce for some c. The results of the present paper show that every filtered
quantization of C[V ]Γ has the form eH1,ce for some c. The connection to deformations of
Q-terminalizations turns out to be an important tool to study the symplectic reflection
algebras, [Lo10].

1.3. Orbit method. One of the general principles of Lie representation theory is that
interesting irreducible representations of Lie groups or Lie algebras should have to do with
the orbits of the coadjoint representation of the corresponding group. The most famous
manifestation of this principle is Kirillov’s orbit method, [Ki], that describes irreducible
unitary representations of nilpotent Lie groups. Namely, let G be a nilpotent Lie group.
Kirillov has constructed a natural bijection between g∗/G, the set of coadjoint G-orbits,
and the set of isomorphism classes of irreducible unitary representations of G.

An algebraic version of this result was found by Dixmier, [D1], see also [D2, Section 6].
Namely, let g be a nilpotent Lie algebra over C. Consider the universal enveloping algebra
U(g). Recall that by a primitive ideal in an associative algebra one means the annihilator
of a simple module. One of the points of considering primitive ideals is that, while the
set of isomorphism classes of irreducible representations is huge and wild for almost all
g, the set of primitive ideals has reasonable size and it is often possible to describe it. In
[D1], Dixmier has proved that the set Prim(g) of primitive ideals in U(g) is in a natural
bijection with g∗/G.

For a long time, there was, and still is, a question of how to adapt the Orbit method to
semisimple Lie groups or algebras that are far more interesting than nilpotent ones from
the representation theoretic perspective. In this paper, we study the algebraic version
and seek to find an analog of Dixmier’s result. The classification of primitive ideals in
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U(g) is known, thanks to the work of Barbasch, Joseph, Lusztig, Vogan and others, see
[CM, Section 10] for a review, but a connection with (co)adjoint orbits is very subtle and
indirect. The algebraic version of the Orbit method was studied previously, for example,
in [V1, McG].

To explain our result, we need the notion of a Dixmier algebra (due to Vogan, [V1]).
Let G be a semisimple algebraic group, g its Lie algebra.

Definition 1.1. By a Dixmier algebra we mean an algebra A equipped with a rational
action of G together with a quantum comoment map U(g) → A such that A is finitely
generated as a U(g)-module.

In Theorem 5.3, we will produce a natural embedding, O1 7→ A(O1), of g
∗/G into the

set of isomorphism classes of Dixmier algebras. All algebras occurring in the image are
completely prime, i.e., have no zero divisors.

For the classical Lie algebras, we can get a stronger result. Let J (O1) denote the kernel
of U(g) → A(O1). In Theorem 5.3, we will see that the map O1 7→ J (O1) is injective
provided g is classical (we also expect this to be the case when g is exceptional). The
ideals in the image correspond to 1-dimensional representations of W-algebras and, for g
classical, we expect that all such ideals occur in the image1.

1.4. Birational induction. Let us elaborate on how the embedding of g∗/G into the set
of completely prime Dixmier algebras is constructed. First, we will identify g∗/G with
the set of equivalence classes of birationally minimal induction data defined as follows.

Take a Levi subalgebra l ⊂ g, a nilpotent orbit O′ ⊂ l∗, and ξ ∈ (l/[l, l])∗. Following
Lusztig and Spaltenstein, [LS], we include l into a parabolic subalgebra p = l ⋉ n. We
write p⊥ for the annihilator of p in g∗. Consider the generalized Springer map G×P (ξ +

O
′
+ p⊥) → g∗. Here we view ξ + O

′
+ p⊥ as a closed subvariety in n⊥, this subvariety

is P -stable. The image of the generalized Springer map is the closure of a single G-orbit
and it is generically finite onto its image. We denote this map considered as a map onto
its image by π.

The following definition introduces an important terminology to be used in the paper.

Definition 1.2. Recall that l stands for a Levi subalgebra of g, O′ for a nilpotent orbit
in l∗ and ξ for an element of (l/[l, l])∗.

• A triple (l,O′, ξ) is called an induction datum.
• The orbit Oξ is said to be induced from (l,O′, ξ).
• When π is generically injective, i.e., birational, we will say that Oξ is birationally
induced from (l,O′, ξ).

• We say that O′ is birationally rigid if it cannot be birationally induced from a
proper Levi.

• If π is birational and O′ is birationally rigid, then we say that (l,O′, ξ) is a bira-
tionally minimal induction datum.

The group G acts naturally on the set of induction data and one can show that the map
(l,O′, ξ) 7→ Oξ is a bijection between the set of G-equivalence classes of the birationally
minimal induction data and the set g∗/G of coadjoint orbits, see Theorem 4.4.

Now pick a coadjoint orbitO1 and let (l,O′, ξ) be the corresponding birationally minimal

induction datum. Let G/H denote the open G-orbit in G×P (O
′
+n). This is a finite cover

1This conjecture has been recently proved in [T].
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of some nilpotent orbit O and hence a symplectic variety. Moreover, X := Spec(C[G/H ])
has symplectic singularities and P = (l/[l, l])∗, see Proposition 4.7. We let A(O1) to be
the quantization of C[X ] corresponding to the parameter ξ. This is the Dixmier algebra
that we assign to O1.

Remark 1.3. In this paper, we only need to consider induction from coadjoint orbits.
More generally, one can consider induction from their covers. Many geometric results of
this paper generalize to that setting, see, for example, [Ma2],[N5].

1.5. Content of the paper. Let us describe the content of this paper.
In Section 2 we discuss symplectic singularities, their Q-factorial terminalizations and

their deformations. In Section 2.1 we introduce the notion of a symplectic singularity
following Beauville, give some examples and discuss the Q-factorial terminalizations. In
Section 2.2 we recall the notion of a filtered Poisson deformation of a not necessarily affine
Poisson variety and the classification of such deformations of Q-factorial terminalizations
following [N1]. In Section 2.3 we apply this to studying Poisson deformations of conical
symplectic singularities. In Section 2.4 we recall results of Namikawa, [N4, N3], on the
universal conical Poisson deformation of a conical symplectic singularity. The only new
results in Section 2 are contained in Section 2.5, where we study the negative degree
Poisson derivations of the algebra of functions on a conical symplectic singularity.

In Section 3 we study quantizations of conical symplectic singularities. We start, Section
3.1, by recalling the general definition of a filtered quantization and classification results
in the symplectic case obtained in [BeKa, Lo5]. In Section 3.2 we produce quantizations
of a conical symplectic singularity starting from those of its Q-terminalization following
[BPW]. Also in that section we state the main classification result, Theorem 3.4. This
theorem is then proved in the three subsequent sections. Then, in Section 3.6 we treat the
case of symplectic quotient singularities and show that in this case all quantizations are
spherical symplectic reflection algebras of Etingof and Ginzburg, [EG]. Finally, in Section
3.7, we study the question of when filtered Poisson deformations (resp., quantizations)
are isomorphic as filtered Poisson (resp., associative) algebras.

In Section 4 we study various questions related to the geometry of coadjoint orbits. In
Section 4.1 we recall some basic results on the Lusztig-Spaltenstein induction. In Section
4.2 we recall sheets in semisimple Lie algebras, introduce the related notion of birational
sheets and state a result, Theorem 4.4, describing their structure. In Section 4.3 we study
Q-terminalizations of normalizations of nilpotent orbit closures giving conceptual proofs
of results previously obtained by Namikawa, [N2], and Fu, [F]. Then we compute Weyl
groups of these normalizations and their suitable covers, Section 4.4, generalizing results
of Namikawa, [N3, Section 2]. We use results of Sections 4.3 and 4.4 to prove Theorem
4.4 in Section 4.5.

In Section 5 we establish our version of the orbit method. We start by recalling results
and constructions related to W-algebras. In Section 5.1 we present their construction
following [Lo1, Lo2]. Then in Section 5.2 we recall the restriction functor for Harish-
Chandra bimodules from [Lo2] and its basic properties. Section 5.3 is the main part,
there we state and prove Theorem 5.3 that provides a map g∗/G→ Prim(g). We discuss
the image of this map in Section 5.4.

Acknowledgements. This paper would have never appeared without help from Pavel
Etingof and Dmitry Kaledin. I would like to thank them as well as Yoshinori Namikawa,
Sasha Premet, and David Vogan for stimulating discussions. Finally, I would like to thank
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happy to dedicate the paper to Sasha Premet on his 60th birthday, this paper, as well
as much of my other work, is inspired by his fascinating results. The paper was partially
supported by the NSF under grants DMS-1161584, DMS-1501558. This work has also
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2. Symplectic singularities and their deformations

2.1. Symplectic singularities and Q-terminalizations. Let X be a normal Poisson
algebraic variety over C such that the smooth locus Xreg is a symplectic variety. Let ωreg

denote the symplectic form on Xreg. Following [Be, Definition 1.1], we say that X has

symplectic singularities if there is a projective resolution of singularities ρ : X̂ → X such

ρ∗(ωreg) extends to a regular (but not necessarily symplectic) 2-form on X̂ . Once such X̂

exists, for any other projective resolution ρ1 : X̂1 → X , the form ρ∗1(ω
reg) also extends to

a regular 2-form, see [Be, (1.2)].
Now let X be an affine Poisson variety. We say that X is conical if there is an algebra

grading C[X ] =
⊕∞

i=0C[X ]i and a positive integer d such that

• C[X ]0 = C.
• {f, g} ∈ C[X ]i+j−d for any i, j and f ∈ C[X ]i, g ∈ C[X ]j .

By a conical symplectic singularity we mean a conical variety with symplectic singu-
larities. Let us give two classical examples of conical symplectic singularities, see [Be,
(2.5),(2.6)].

Example 2.1. Let V be a symplectic vector space and Γ ⊂ Sp(V ) be a finite subgroup.
Then V/Γ is a conical symplectic singularity with d = 2.

Example 2.2. Let g be the Lie algebra of an algebraic group. Then g∗ is a Poisson alge-
braic variety whose symplectic leaves are coadjoint orbits. Assume that g is semisimple.
Let O be a nilpotent orbit in g∗. The algebra C[O] is finitely generated, in fact, it is the
normalization of C[O]. The variety X := Spec(C[O]) is a conical symplectic singularity
with d = 1.

We will need the definition and some properties of Q-factorial terminalizations. Let X̃
be a normal algebraic variety. Recall that X̃ is called Q-factorial if for any Weil divisor
a nonzero integral multiple is Cartier.

Proposition 2.3 (Proposition 2.1 in [Lo10]). Let X have symplectic singularities. Then

there is a birational projective morphism ρ : X̃ → X, where X̃ has the following properties:

(a) X̃ is an irreducible, normal, Poisson variety (and hence has symplectic singulari-
ties).

(b) X̃ is Q-factorial.
(c) X̃ has terminal singularities.

(d) codimX̃ X̃
sing > 4.

(e) If X is, in addition, conical, then X̃ admits a C×-action such that ρ is C×-
equivariant.

Below we will say that X̃ is a Q-factorial terminalization (or Q-terminalization) of X .

Example 2.4. Consider the situation of Example 2.1. Suppose, first, that Γ does not
contain symplectic reflections, i.e., elements γ with rk(γ − id) = 2. Then X itself satisfies
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properties (a)-(e). An opposite extreme is when X has a symplectic resolution of singular-
ities. This happens, for example, when Γ is a so called wreath-product group Γ = Sn⋉Γn1 ,
where Γ1 is a finite subgroup of SL2(C) and V = C2n.

Q-terminalizations of the varieties Spec(C[O]) will be considered in more detail in
Section 4.3.

To finish let us provide an important property of a terminalization X̃ .

Proposition 2.5. If X is affine, then C[X̃reg] = C[X̃ ] = C[X ], H i(X̃,OX̃) = 0 for all

i > 0, and H i(X̃reg,OX̃) = 0 for i = 1, 2.

Proof. While this is classical (see, e.g., the proof of [N1, Lemma 12]), we provide a proof
for reader’s convenience.

Let ι denote the inclusion X̃reg →֒ X̃ . Since X̃,X are singular symplectic, (a) of
Proposition 2.3, they have rational singularities, see [Be, Proposition 2.3]. In particular,
they are Cohen-Macaulay. Thanks to this, we have ι∗OX̃reg = OX̃ , R

iι∗OX̃reg for 0 < i <

codimX̃ X̃
sing − 1, i.e., by (d) of Proposition 2.3, for i = 1, 2. This reduces the proof

to showing that C[X̃ ] = C[X ] and H i(X̃,OX̃) = 0 for i > 0. These two claims follow

because X̃ → X is proper and birational and X has rational singularities. �

2.2. Filtered Poisson deformations. Let X ′ be a Poisson variety.
We are going to recall three notions of Poisson deformations of X ′.

We can talk about formal Poisson deformations ofX ′. Let B̂ be a quotient ofC[[~1, . . . , ~k]]

for some k > 0. By definition, a formal Poisson deformation of X ′ over B̂ a pair (X ′

B̂
, ι),

where

• X ′

B̂
is a flat formal Poisson scheme over the formal spectrum Specf(B̂)

• and ι is an isomorphism X ′

B̂
×Specf(B̂) pt

∼
−→ X ′ of Poisson schemes.

An isomorphism of deformations (X ′1
B̂
, ι1), (X ′2

B̂
, ι2) is an isomorphism of formal Poisson

schemes X ′1
B̂

∼
−→ X ′2

B̂
over Specf(B̂) such that the induced isomorphism X ′1

B̂
×Specf(B̂) pt

∼
−→

X ′2
B̂
×Specf(B̂) pt intertwines ι

1 with ι2.

Now suppose that X ′ is equipped with a C×-action such that the Poisson bracket has
degree −d for some d ∈ Z>0. Let B̂ be the completion at 0 of a positively graded algebra.
In this situation we can talk about graded formal Poisson deformation ofX ′. By definition,
this is a formal deformation (X ′

B̂
, ι) together with an algebraic action of C× on X ′

B̂
subject

to the following properties:

(i) The action rescales the Poisson bracket by t 7→ t−d.

(ii) It is compatible with the action on B̂.
(iii) And ι is C×-equivariant.

An isomorphism of graded formal deformations is defined similarly to that of formal
deformations.

Let B be a positively graded algebra. We can introduce the notion of a graded Pois-
son deformation X ′

B of X ′ similarly to the notion of a graded formal deformation. The
difference is that now X ′

B is an actual scheme over Spec(B). We note that from a graded
deformation one can naturally get a graded formal deformation: replacing B with its
completion at 0 and X ′

B by the formal neighborhood of X ′ in X ′
B to be denoted by X ′∧

B .
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Proposition 2.6. Let X̃ be a Q-factorial terminalization of a conical symplectic singu-
larity. Set P := H2(X̃reg,C). Then there is a universal graded deformation X̃P of X̃
over P. The universal property is understood as follows: for any graded Poisson defor-
mation X̃B over Spec(B) there is a unique C×-equivariant morphism Spec(B) → P and
an isomorphism of graded deformations Spec(B)×P X̃P

∼
−→ X̃B (which is not required to

be unique).

Proof. The proof is in several steps and is based on [N1].
Step 1. Namikawa proved that the Poisson deformation functor of X̃ is pro-representable,

[N1, Theorem 14] and unobstructed [N1, Corollary 15]. This means that there is a uni-

versal formal deformation of X̃ . This is the direct limit of the schemes denoted by Xuniv
n

in the discussion before [N1, Lemma 20]. Since the Poisson deformation functor is un-
obstructed, the base of the universal deformation is the formal neighborhood of 0 in the
space of deformations of X̃ over the dual numbers. By [N1, Proposition 13], this space

coincides with the similarly defined space for X̃reg. By [N1, Lemma 12], the latter space
coincides with P = H2(X̃reg,C). We write P∧ for the formal neighborhood of 0 in P and

X̃∧
P for the universal formal deformation of X̃ .

Step 2. By [N1, Lemma 20], X̃∧
P is a graded formal deformation over P∧. We claim that

it is universal. Let B̂ be the completion of a positively graded algebra at 0 and X̃B̂ be a

graded formal deformation of X̃. By Step 1, we have a unique morphism Specf(B̂) → P∧

and an isomorphism of formal Poisson deformations X̃B̂

∼
−→ X̃1

B̂
:= Specf(B̂) ×P∧ X̃∧

P.

By the uniqueness of the former, Specf(B̂) → P∧ is C×-equivariant. So X̃1
B̂

becomes

a graded formal deformation. We need to prove that we can choose a C×-equivariant
Poisson isomorphism X̃B̂

∼
−→ X̃1

B̂
. The proof is standard but we provide it for reader’s

convenience.
Let m denote the maximal ideal in B̂. Set Bk := B̂/mk. We write X̃k, X̃

1
k for the

base changes of X̃B̂, X̃
1
B̂

to Spec(Bk). Note that for k = 1, both of these schemes are

just X̃ . It is enough to show that, for all k > 0, any C×-equivariant isomorphism of
Poisson deformations ϕk : X̃k

∼
−→ X̃1

k can be lifted to a C×-equivariant isomorphism of

deformations X̃k+1
∼
−→ X̃1

k+1.
Note that a Poisson deformation of an arbitrary Poisson variety X ′ over an Artinian

base B gives a sheaf of Poisson B-algebras onX ′ that deforms the structure sheaf: we take
the structure sheaf of X ′

B and sheaf theoretically pull it back to X ′. We get a deformation
of OX′ over B. Conversely, from such a sheaf, say OX′,B, we can get a deformation of
X ′ over Spec(B): we cover X ′ with open affine subsets, X ′ =

⋃
Ui, and glue the affine

schemes Spec(Γ(Ui,OX′,B)) along their intersections Spec(Γ(Ui ∩ Uj ,OX′,B)). We get a
Poisson deformation X ′

B over B.

Denote the sheaves on X̃ corresponding to X̃k+1, X̃
1
k+1 by Ok+1,O1

k+1. We have a C×-

equivariant isomorphism of sheaves of Poisson algebras ϕk : Ok
∼
−→ O1

k. We know that

there is a lift to an isomorphism Ok+1
∼
−→ O1

k+1. What we need to show that it can
be chosen to be C×-equivariant. Let AX̃ denote the set of lifts. This is an affine space
with associated vector space PDer(OX̃) ⊗ mk/mk+1, where PDer stands for the space of
Poisson derivations. We need to show that C× has a fixed point on AX̃ . Note that any
affine space admits a canonical embedding into a vector space equipped with a linear
function, say t, the image of the embedding is the level set t = 1. Let VX̃ be this space
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for AX̃ . It embeds as a subspace in the space of Bk+1-linear homomorphisms of sheaves

HomBk+1
(Õk+1, Õ1

k+1) as follows. For z 6= 0, the level set t = z embeds as the subset of
all maps ψ such that z−1ψ is an algebra homomorphism giving ϕk after base change to
Bk. The level set t = 0 embeds as PDer(OX̃) ⊗ mk/mk+1 (these maps vanish on mOk+1

and have image in mkO1
k+1). We need to show that the action of C× on VX̃ is rational

(i.e. comes from a grading), the existence of a fixed point in AX̃ will follow.

By a result of Sumihiro, [S], we can cover X̃ with open affine C×-stable subsets Ui, i =
1, . . . , m. Restricting sheaves Ok+1,O1

k+1 to Ui we get graded Poisson flat Bk+1-algebras
Ok+1(Ui),O

1
k+1(Ui). We can consider the subspaces VUi

⊂ HomBk+1
(Ok+1(Ui),O

1
k+1(Ui))

defined similarly to VX̃ . We have a C×-equivariant embedding VX̃ →֒
⊕

i VUi
by restric-

tion. So it is enough to show that the C×-action on VUi
is rational.

The algebra Ok+1(Ui) is generated by homogeneous elements, say f1, . . . , fℓ, of degrees
d1, . . . , dℓ. Note that every element of VUi

⊂ HomBk+1
(Ok+1(Ui),O1

k+1(Ui)) is uniquely
determined by the images of f1, . . . , fℓ. This gives a C×-equivariant embedding VUi

→֒⊕ℓ
j=1O

1
k+1(Ui)〈−dj〉, where in the brackets we have a grading shift. The action of C× on

the target of this embedding is manifestly rational. This finishes the proof of the claim
that X̃∧

P is a universal graded formal deformation.

Step 3. By [N1, Lemma 22], the formal scheme X̃∧
P over P∧ with an action of C×

admits the algebraization: a graded Poisson deformation X̃P over P such that the formal

neighborhood of X̃ in X̃P is identified with X̃∧
P. We claim that X̃P has the required

universal property.
Indeed, let X̃B be another graded deformation. Then we have the graded formal de-

formation X̃∧
B over the completion B̂ of B. By Step 2, we have a unique C×-equivariant

morphism of formal schemes Specf(B̂) → P∧ and an isomorphism of graded formal de-
formations

(2.1) Specf(B̂)×P∧ X̃∧
P

∼
−→ X̃∧

B.

The morphism Specf(B̂) → P∧ is induced by the unique C×-equivariant morphism

Spec(B) → P. The source of (2.1) is the formal neighborhood of X̃ in Spec(B) ×P X̃P.

The proof of [N1, Proposition A.5] shows that the algebraizations Spec(B)×P X̃P, X̃B are

uniquely recovered from their formal neighborhoods of X̃ together with the C×-action.
This shows that (2.1) comes from a unique isomorphism of graded Poisson deformations

Spec(B)×P X̃P
∼
−→ X̃B. �

Remark 2.7. In this remark we relate results of [N1] to those of [KV]. Kaledin and Verbit-
sky, [KV, Theorem 3.6], show that for a smooth symplectic variety X ′ with H i(X ′,OX′) =
0 for i = 1, 2, there is a universal formal deformation with base being the formal neigh-
borhood of 0 in H2(X ′,C). The vanishing condition above holds for X ′ = X̃reg thanks to
Proposition 2.5.

Using the construction relating Poisson deformations over Artinian bases to sheaves
(Step 2 of the proof of Proposition 2.6) we can relate the Poisson deformations of X̃ to
those X̃reg. Namely, given a deformation X̃B over an Artinian base Spec(B), we form

the corresponding sheaf OX̃,B, restrict it to X̃reg via the sheaf-theoretic pullback and

take the corresponding deformation of X̃reg. To get back we apply the pushforward for
ι : X̃reg → X̃. As we have pointed out in the proof of Proposition 2.5, R1ι∗OX̃reg = 0.
Any deformation of OX̃reg over B has a filtration with successive quotients OX̃reg . An
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easy argument using the long exact sequence in cohomology shows that ι∗ sends any
deformation of OX̃reg to a deformation of OX̃ over B. So we get a bijection between the
deformations of OX̃reg ,OX̃ over B.

It follows that the Poisson deformation functors for X̃ and X̃reg are isomorphic. In
particular, the existence of the universal formal deformation for X̃ implies that for X̃reg

and vice versa.
We also note that in the setting of [KV] we can talk about graded formal deformations

of X ′ if it comes with a C×-action that rescales the Poisson bracket by t 7→ t−d. Similarly
to Step 2 of Proposition 2.6, the universal deformation over the formal neighborhood of
0 in H2(X ′,C) is a universal graded formal deformation.

2.3. Deformations from Q-terminalizations. Let A be a positively graded Poisson
algebra with deg{·, ·} = −d. For example, we can take A = C[X ], where X is a conical
symplectic singularity.

By a filtered Poisson deformation of A we mean a pair (A0, ι), where

• A0 is a Z>0-filtered Poisson algebra, A0 =
⋃
i∈Z A

0
6i, such that {A0

6i,A
0
6j} ⊂

A0
6i+j−d,

• and ι is an isomorphism grA0 ∼
−→ A of graded Poisson algebras.

We note that to give a filtered Poisson deformation of A is the same as to give a
graded Poisson deformation of Spec(A) over Spec(C[~]), where ~ has degree 1. Indeed,
starting with A0 we can form its Rees algebra R~(A0) and set X~ := Spec(R~(A0)). The

isomorphism ι gives rise to an isomorphism pt×Spec(C[~])X~
∼
−→ Spec(A) that makes X~

into a graded Poisson deformation of Spec(A). Conversely, starting with a graded Poisson
deformation X~ we set A0 := C[X~]/(~− 1) getting a filtered Poisson deformation of A.

We proceed to a construction of filtered Poisson deformations of C[X ]. Let X̃ stand for

a Q-factorial terminalization of X . We set P := H2(X̃reg,C) and let X̃P be the universal

graded deformation of X̃ , see Proposition 2.6. Our primary goal in this section is to
construct filtered Poisson deformations of C[X ] out of X̃P.

First, we are going to describe the structure of the space P following [N4] and [N3].
Kaledin, [K1, Theorem 2.3], proved that X has finitely many symplectic leaves. More-

over, he proved that for any leaf L ⊂ X , there is a formal slice to L in X : if we pick a point
x ∈ L and let X∧x ,L∧x denote the formal neighborhoods of x in X and L, respectively,
then there is an affine formal Poisson scheme Σ′ with X∧x ∼= L∧x × Σ′.

Let L1, . . . ,Lk be the codimension 2 symplectic leaves of X . The formal slice Σ′
i to

Li in X is an ADE type Kleinian singularity (C2)∧0/Γi (here •∧0 stands for the formal

neighborhood at 0) so we can consider the Weyl group Ŵi, i = 1, . . . , k of that ADE type.

We write Σi for C
2/Γi, Σ̃i for its minimal resolution and set P̂i := H2(Σ̃i,C). The space

P̂i is the Cartan space for Ŵi.
Choose a point x ∈ Li. The preimage of x in X̃ is the same as the preimage of 0 ∈ Σi

in Σ̃i, see the discussion in the beginning of [N3, Section 1]. So this preimage is the union
of P1’s intersecting according to the Dynkin diagram of the root system associated to

Ŵi. The fundamental group π1(Li)(= π1(Li, x)) acts on the preimage via the monodromy

action. Hence it acts on P̂i, Ŵi by diagram automorphisms. Let Pi ⊂ P̂i,Wi ⊂ Ŵi

denote the fixed points. Following Namikawa, see the discussion in the beginning of [N3,

Section 1], define the Namikawa-Weyl group as W (=WX) :=
∏k

i=1Wi.
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Lemma 2.8. We have P = H2(Xreg,C)⊕
⊕k

i=1Pi.

Proof. Let X1 denote the complement in X to the union of all symplectic leaves with
codimension 4 or higher. So X1 = Xreg ⊔

⊔k
i=1 Li. According to [N4, Proposition 4.2],

P = H2(X1,C)⊕
⊕k

i=1Pi. What we need to do therefore is to show that H2(X1,C) =
H2(Xreg,C).

Pick a point x ∈ Li. Let Σ ⊂ X be a slice to Li through x in the complex analytic
category. Using Hamiltonian flows for suitable analytic functions in a neighborhood of x
(and shrinking Σ if necessary) we can identify a complex analytic neighborhood of x with
B × Σ, where B is a neighborhood of x in Li. Since X is normal, Σ is also normal as
a complex analytic space. It is 2-dimensional so it must be a Kleinian singularity of the
same type as Σi.

Pick tubular neighborhoods Y1, . . . , Yk of L1, . . . ,Lk and set Y ×
i := Yi \ Li. So, by the

previous paragraph, topologically Yi is a locally trivial fibration over Li with fiber D/Γi,
where D is an open unit ball in C2. In particular, Hj(Yi,C) = Hj(Li,C) for all j. Also
note that Γi acts freely on D×. It follows that Hj(D×/Γi,C) = Hj(S3,C)Γi , in particular,
this homology group is zero when j = 1, 2. It follows that Hj(Y ×

i ,C) = Hj(Li,C) for
j = 1, 2. Hence the pullback homomorphism Hj(Yi,C) → Hj(Y ×

i ,C) is an isomorphism
for j = 1, 2. The Mayer-Vietoris exact sequence for the covering X1 = Xreg ∪ (

⊔
Yi) gives

H1(Xreg,C)⊕
k⊕

i=1

H1(Yi,C) →
k⊕

i=1

H1(Y ×
i ,C) → H2(X1,C)

→ H2(Xreg,C)⊕
k⊕

i=1

H2(Yi,C) →
k⊕

i=1

H2(Y ×
i ,C).

By the argument above in this paragraph the first and the last map restrict to isomor-
phisms

⊕k
i=1H

j(Yi,C) →
⊕j

i=1H
1(Y ×

i ,C). It follows that the pull-back mapH2(X1,C) →
H2(Xreg,C) is an isomorphism. �

Let us proceed to producing filtered Poisson deformations of C[X ] from X̃P.

Proposition 2.9. The following is true:

(1) The algebra C[X̃P] is finitely generated and free as a module over C[P]. Moreover,

we have C[X̃P]/(P) = C[X ].

(2) The group W acts on C[X̃P] by graded Poisson algebra automorphisms and the
action is compatible with that on P. The induced action on C[X ] is trivial.

Proof. Let X be the flat deformation of X over P/W established in [N4], before Theorem
5.5 there. Combining [N4, (14)] with [N3, Theorem 1.1] we get the following commutative
diagram

X̃P X

P P/W
❄ ❄

✲

✲

Consider the induced morphism

(2.2) X̃P → P×P/W X .
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It is projective by the construction. We claim that

(*) the target is normal and (2.2) is birational.

This claim implies that C[X̃P]
∼
−→ C[P×P/W X ]. This, in turn, implies (2). Also note that

X is flat over P/W by the construction in [N4, (5.4)] and carries a C×-action compatible
with that on P/W because X is obtained by algebraization of a formal deformation. So
C[X ] is a flat graded module over C[P]W . Hence it is free. So (*) implies (1) as well.

Let us prove that P×P/W X is normal. As we have seen in the proof of Proposition 2.5,
the variety X is Cohen-Macaulay. Since P×P/W X is flat over P, deforms X and comes
with a contracting C×-action, the variety X is also Cohen-Macaulay. To show that it is
normal we need to check that it is smooth outside of a codimension 2 locus. Equivalently,
we need to show that the morphism P×P/W X → P is smooth outside of a codimension
2 locus. The variety X is normal hence smooth outside of a codimension 2 locus. Thanks
to the contracting C×-action the same is true for the other fibers of P×P/W X → P. So
the variety P×P/W X is smooth outside of a codim 2 locus. Hence it is normal.

Now we prove that (2.2) is birational. For a Zariski generic point λ ∈ P the induced
morphism of fibers X̃λ → XWλ is an isomorphism, see [N4, Theorem 5.5,(c)]. This shows
(2.2) is birational and completes the proof. �

Let us write XP for Spec(C[X̃P]) (i.e., P×P/W X from the previous proof) and Xλ for
the fiber of XP → P over λ.

Now let us examine the situation when Xλ, Xλ′ give isomorphic filtered Poisson defor-
mations.

Proposition 2.10. We have C[Xλ] ∼= C[Xλ′] as filtered Poisson deformations of C[X ] if
and only if λ′ ∈ Wλ.

This follows from results of [N3] (but also can be proved independently). We postpone
the proof until the next section. Note also that our present setting is different from that
of Proposition 2.6: there we considered varieties that are Q-factorial terminal and Poisson
deformations were parameterized by H2(?,C). Here X is, generally, not of this form.

Remark 2.11. Recall the decomposition P = H2(Xreg,C) ⊕
⊕k

i=1Pi. We can write
a deformation parameter λ as (λ0, λ1, . . . , λk) according to this decomposition. Then
λ0 ∈ H2(Xreg,C) controls the deformation of Xreg, while λi controls the deformation of
the slice Σi, i = 1, . . . , k induced by the deformation of X . We will not use this claim in
what follows.

2.4. Universal deformation of X. In [N4, Theorem 5.1], Namikawa has proved that
the Poisson deformation functor of X is unobstructed. Here is variant of his result for
graded Poisson deformations.

Proposition 2.12. Recall that X is a conical symplectic singularity. There is a positively
graded polynomial algebra B and a graded Poisson B-algebra A such that C⊗BA

∼
−→ C[X ]

with the following universal property:

• For any finitely generated positively graded algebra B′ and a graded Poisson B′-
algebra A′ such that C⊗B′ A′ ∼

−→ C[X ] there is a unique graded algebra homomor-
phism B → B′ and a B′-linear Poisson graded algebra isomorphism B′⊗BA

∼
−→ A′

intertwining the isomorphisms C⊗B′ A′ ∼
−→ C[X ]

∼
−→ C⊗B A.

In the notation of [N4, (14)] we have B = C[x1, . . . , xd] and A = C[X ].
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Proof. By [N4, Theorem 5.1], the formal neighborhood of X in X is the universal formal
Poisson deformation ofX . Arguing as in Step 2 of the proof of Proposition 2.6, we see that
this formal neighborhood is a universal graded formal Poisson deformation. Then an easy
analog of Step 3 of that proof shows that X is a universal graded Poisson deformation.
Translating to the language of algebras, we get the claim of this proposition. �

Corollary 2.13. We have B = C[P]W and A = C[XP]
W .

Proof. By [N3, Theorem 1.1], B = C[P]W . (2.2) shows that C[X ] is C[XP]
W . �

Using this corollary we can give a proof of Proposition 2.10.

Proof of Proposition 2.10. Recall, see the discussion in the beginning of Section 2.3, that
the filtered deformations of C[X ] are in one-to-one correspondence with graded defor-
mations of X over C[~]. In particular, C[Xλ] corresponds to the graded deformation
C ×P/W XP/W , where the morphism C → P/W is given by z 7→ W (λzd). Thanks to
the universal property of XP/W , Proposition 2.12, Corollary 2.13, we see that an iso-
morphism C[Xλ] ∼= C[Xλ′ ] of filtered Poisson deformation is equivalent to the coincidence
of the morphisms C → P/W coming from λ and λ′, which, in turn, is equivalent to
λ′ ∈ Wλ. �

2.5. Poisson derivations. Here is the main result of this section.

Proposition 2.14. Let, as before, X be a conical symplectic singularity. Then all Poisson
derivations of C[X ] are Hamiltonian.

The crucial step in the proof is the following lemma (that is classical for symplectic
resolutions) whose proof in the generality we need was communicated to me by Kaledin.

Lemma 2.15. We have H1(X̃reg,C) = 0.

Proof. Let us write Oan for the sheaves of holomorphic functions on X̃ and its open
subvarieties. We have the exponential exact sequence

H0(X̃reg,Oan) → H0(X̃reg, (Oan)×) → H1(X̃reg,C) → H1(X̃reg,Oan)

First of all, we claim that H1(X̃reg,Oan) = 0. Indeed, we have an exact sequence

H1(X̃,Oan) → H1(X̃reg,Oan) → H2
X̃sing (X̃,O

an)

As in the algebraic situation, the first and the third terms are zero (see, e.g., [Ma1,

Appendix]) and so H1(X̃reg,Oan) is zero. So we get an exact sequence

(2.3) H0(X̃reg,Oan) → H0(X̃reg, (Oan)×) → H1(X̃reg,C) → 0.

Note that, by the Hartogs theorem, we have

H0(X̃reg,Oan) ∼= H0(X̃,Oan), H0(X̃reg, (Oan)×) ∼= H0(X̃, (Oan)×).

From the analog of (2.3) for X̃, we conclude that H1(X̃reg,C) ∼= H1(X̃,C). So we need
to show that the latter space vanishes.

Let π : X → X̃ be a resolution of singularities. By [K2, Corollary 1.5], we have
R1(ρ ◦ π)∗CX = 0 (recall that ρ stands for the morphism X̃ → X) and R1π∗CX = 0.
Since, obviously, π∗CX = CX̃ , we use the standard spectral sequence for the composition
of derived functors to check that R1ρ∗CX̃ = 0. Since X is conical (and hence contractible),

this implies that H1(X̃,C) = 0. �
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Proof of Proposition 2.14. We will show that all Poisson vector fields on X lift to X̃reg,
then our claim will follow from Lemma 2.15.

Recall the open subvariety X1 ⊂ X from the proof of Lemma 2.8. Let X̃1 be the
preimage of X1 in X̃ . We claim that

(2.4) codimX̃ X̃ \ X̃1 > 2.

Assume the contrary. Let Z be an irreducible divisor inside X̃\X̃1. Let D1, . . . , Dk denote
the irreducible components of the preimage of X1 \Xreg in X̃. Since H i(X̃reg,Oan) = 0

for i = 1, 2, we see that H2(X̃reg,C) coincides with the complexified analytic Picard
group of X̃reg. Let us write [D1], . . . , [Dk], [Z] for the classes of the line bundles cor-

responding to these divisors in H2(X̃reg,C). Recall, Lemma 2.8, that H2(X̃reg,C) =
H2(Xreg,C)⊕ Span([D1], . . . , [Dk]). Since [Z] projects to zero in H2(Xreg,C), it must lie
in Span([D1], . . . , [Dk]).

Thanks to [BCHM, Corollary 1.4.3], we can contract all divisors in X̃ but Z, we get a
normal variety X ′ with a morphism X ′ → X . We also have a rational map X̃ → X ′ that
is defined outside of a codimension 2 locus in X̃ because X̃ is proper over X . It is easy
to see that Z defines a nontorsion class in the analytic Picard group of X ′reg. Indeed,
if this class is torsion, then we have an analytic function on X ′ whose vanishing locus is
exactly Z. It must be pulled back from an analytic function on X whose vanishing locus
has complement of codimension at least 2 and is nonempty, which is impossible. Since Z
defines a nontorsion class in the analytic Picard group of X ′reg, we apply pullback to X̃
to see that [Z] 6∈ Span([D1], . . . , [Dk]), a contradiction. This shows (2.4).

Let ξ be a Poisson vector field on X , equivalently, on π−1(Xreg) ⊂ X̃reg. What we need
to show is that ξ extends to a regular vector field on π−1(X∧x), where x is a point in a
codimension 2 leaf in X . This in turn will follow if we check that the restriction of ξ to
X∧x is Hamiltonian. But X∧x is a symplectic quotient singularity. Note that any Poisson
vector field on (V/Γ)∧0 lifts to a Γ-invariant Poisson vector field on V ∧0 . It follows that
any Poisson vector field on (V/Γ)∧0 and hence on X∧x is Hamiltonian. This completes
the proof. �

3. Quantizations of symplectic singularities

3.1. Quantizations and period maps. This section is a quantum counterpart of Sec-
tion 2.2.

Let A be a graded Poisson algebra with bracket of degree −d, where d is a positive
integer. By a filtered quantization of A one means a pair (A, ι), where

• A is a filtered associative algebra, A =
⋃
i>0A6i, such that [A6i,A6j] ⊂ A6i+j−d,

• and ι is a graded Poisson algebra isomorphism grA
∼
−→ A.

By an isomorphism ψ of filtered quantizations (A, ι), (A′, ι′) we mean a filtration pre-
serving algebra isomorphism ψ : A → A′ such that grψ intertwines ι, ι′.

Our goal is to classify the filtered quantizations of C[X ], where X is a conical symplectic
singularity. As with filtered Poisson deformations, we are going to produce quantizations
of C[X ] from those of X̃. We now explain what one means by a filtered quantization of

X̃ .
LetX ′ be a Poisson scheme equipped with a C×-action that rescales the Poisson bracket

by t 7→ t−d. We assume that every point in X ′ has a C×-stable affine open neighborhood.
By a result of Sumihiro, [S], this is the case when X ′ is normal. By a filtered quantization
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D of X ′ we mean a sheaf of filtered associative algebras in the conical topology on X ′,
where the filtration is complete and separated, together with an isomorphism ι : grD

∼
−→

OX′ of graded Poisson algebras. We note that quantizations of C[X ] are in a natural
bijection with quantizations of X via taking global sections to get from X to C[X ] and
taking the microlocalization to get back, see the discussion on “Variations on formal
microlocalization...” in [G, Section 1].

We can also talk about graded formal quantizations. These are pairs (D~, ι). Here D~ is
a sheaf a C[[~]]-algebras in the Zariski topology on X that is flat over C[[~]] and complete
and separated in the ~-adic topology. We require that [D~,D~] ⊂ ~dD~, which gives
rise to a Poisson bracket on D~/(~). We also require that C× acts on D~ by C-algebra
automorphisms with t.~ = t~. For ι we take a C×-equivariant Poisson isomorphism
D~/(~)

∼
−→ OX .

For a C×-stable open affine subset U ⊂ X ′ the algebra Γ(U,D~) acquires a C×-action.
The action on Γ(U,D~)/(~

k) = Γ(U,D~/(~
k)) is not required to be rational. However, we

can replace the C×-action on D~ canonically to make the action on Γ(U,D~)/(~
k) rational.

Let us explain how to do this. Consider the subgroup C×
fin ⊂ C× of finite order elements.

It acts diagonalizably in any, not necessarily rational, representation of C×. Note that
Γ(U,D~)/(~

k) is C×-equivariantly filtered with successive quotients C[U ]. It follows that
the characters of C×

fin in Γ(U,D~)/(~
k) are restrictions of characters of C×. There is a

unique rational action of C× on Γ(U,D~)/(~
k) extending the action of C×, it is by algebra

automorphisms. These actions glue to an action on D~ as in the previous paragraph.
Below we will always assume that the action of C× on Γ(U,D~)/(~

k) is rational for all
open affine subsets U ⊂ X ′.

With this assumption there is a natural bijection between the sets of isomorphism
classes of filtered quantizations and of graded formal quantizations. Namely, take a filtered
quantization D of OX′ . Form the Rees sheaf R~(D) of D and complete it in the ~-adic
topology. Then we extend this completion (that is still a sheaf in the conical topology)
to the Zariski topology by localizing. We get a graded formal quantization in the sense of
[Lo5, Section 2.2]. Conversely, given a graded formal quantization D~ ofX

′ we can restrict
it to the conical topology. Inside this restriction we can consider the subsheaf D~,fin of
C×-finite sections. Because of the rationality assumption on the action of C× on D~,
we recover D~ as the ~-adic completion of D~,fin. The sheaf D~,fin/(~− 1) comes with a
natural filtration. This filtration is complete and separated because the ~-adic topology on
D~ is so. So the resulting sheaf is a filtered quantization of X ′. It is straightforward to see
that these procedures define mutually inverse bijections between the sets of isomorphism
classes of filtered and of graded formal quantizations.

Now suppose X ′ is smooth and symplectic. In this case a filtered quantization D defines
a class in H2(X ′,C) to be called the period of D, see [BeKa, Section 4], where the case
of formal quantizations was considered, and [Lo5, Section 2] that treats graded formal
quantizations.

The following proposition should be thought of as a quantum version of Proposition
2.6 and Remark 2.7.

Proposition 3.1. Assume that X ′ is smooth and symplectic and H i(X ′,OX′) = 0 for
i = 1, 2. Then the following claims hold:

(1) taking the period defines a bijection between the isomorphism classes of filtered
quantizations and P := H2(X ′,C).
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(2) Moreover, there is a “universal quantization” D′
P. This a sheaf of filtered flat

C[P]-algebras in the conical topology with complete and separated filtration and

an isomorphism grD′
P/(P)

∼
−→ OX′. The completion of grD′ at 0 ∈ P is the

deformation of the universal deformation of X ′, see Remark 2.7. Moreover, the
quantization D′

λ corresponding to λ is obtained by specializing D′
P to λ.

Proof. Both (1) and (2) were proved in [Lo5, Corollary 2.3.3] for the graded formal quan-
tizations of X ′. Let us elaborate on the proof of (2) in the setting of filtered quantizations.
Take the universal graded formal deformation of X ′, see Remark 2.7, and its canonical
quantization as in [Lo5, Corollary 2.3.3]. Pull it back to X ′ getting a sheaf of C[[P, ~]]-
algebras on X ′ deforming OX′ . We can convert it into a sheaf of filtered algebras as
discussed before the proposition. The claim about the specializations of D′

P (in the lan-
guage of graded formal quantizations) is [BPW, Proposition 3.1]. �

Now consider the variety X̃, a Q-factorial terminalization of a conical symplectic sin-
gularity X , and set P := H2(X̃reg,C).

Corollary 3.2. The following claims hold:

(1) The filtered quantizations of X̃ are classified by P. The filtered quantization Dλ

corresponding to λ is the pushforward of the filtered quantization D′
λ of X̃reg cor-

responding to λ.
(2) Let DP denote the pushforward of the universal quantization D′

P from X̃reg to X̃.
Then Dλ is the specialization of DP to λ ∈ P.

Proof. As for Poisson deformations over Artinian bases in Remark 2.7, the sheaf theoretic
pullback and pushforward define mutually inverse bijections between the sets of isomor-
phism classes of filtered quantizations of X̃reg and of X̃, compare to [BPW, Proposition
3.4]. Now we use (1) of Proposition 3.1 to establish (1).

Now we prove (2). Consider the sheaf D′
P,~ as in the proof of (2) of Proposition 3.1.

For any Artinian quotient B of C[[P, ~]], the base change B ⊗C[[P,~]] D
′
P,~ is filtered with

quotients isomorphic to OX̃reg . So R1ι∗(B ⊗C[[P,~]] D
′
P,~) = 0. Since the filtration on D′

P,~

induced by the maximal ideal in C[[P~]] is complete and separated, we get R1ι∗D′
P,~ = 0.

It follows that ι∗D′
P,~ is a deformation of OX̃ over C[[P, ~]]. The sheaf ι∗DP of filtered

algebras is obtained from ι∗D′
P,~ by passing to C×-finite sections and taking the quotient

by ~−1. Specializing this sheaf to λ we get a filtered quantization of X̃ whose restriction
to X̃reg is D′

λ. By the construction in (1), this is the quantization Dλ. �

3.2. Quantizations from Q-terminalizations. Now we will produce some filtered quan-
tizations of C[X ] following [BPW, Section 3] and state our main classification result.

Set Aλ := Γ(Dλ),AP := Γ(DP), where Dλ,DP were introduced in the previous section.
The following is a quantum version of Proposition 2.9.

Proposition 3.3. The following is true:

(1) The algebras Aλ,AP are filtered quantizations of C[X ],C[XP], respectively. More-
over, Aλ is the specialization of AP to λ.

(2) The group W acts on AP by filtered algebra automorphisms so that the associated
graded action on C[XP] coincides with the action from Proposition 2.9. Moreover,
the actions of W on AP and on P are compatible.
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Proof. The proof of (1) is standard, let us provide it for reader’s convenience.

We start by proving the claim for Aλ. Recall, Proposition 2.5, that C[X̃ ] = C[X ] and
H i(X̃,OX̃) = 0 for i > 0, in particular for i = 1. Consider the ~-adic completion Dλ,~ of
the Rees sheaf of Dλ. This is a graded formal deformation of OX̃ . As in the proof of (2)

of Corollary 3.2, H1(X̃,Dλ,~) = 0. This, in turn, implies that Γ(Dλ,~)/(~)
∼
−→ C[X̃ ]. The

algebra Aλ = Γ(Dλ) is obtained from Γ(Dλ,~) by taking the C×-finite sections and then

passing to quotient by ~ − 1. It follows that grAλ
∼
−→ C[X̃ ]. This is an isomorphism of

graded Poisson algebras. So Aλ is a quantization of C[X̃].
Now we prove that AP is a quantization of C[XP]. Let m denote the maximal ideal of

0 in C[P]. For k > 0, set X̃P,k := Spec(C[P]/mk) ×P X̃P. Since H i(X̃,OX̃) = 0 for all

i > 0, we use the long exact sequence in cohomology to show that H i(X̃P,k,OX̃P,k
) = 0 for

i > 0. Thanks to the formal function theorem, the completions of H i(X̃P,OX̃P
) vanish.

Thanks to the contracting C×-action on X̃P, we conclude that H
i(X̃P,OX̃P

) = 0 for i > 0.

Now the proof that AP is a filtered quantization of C[X̃P] repeats the proof for Aλ in the
previous paragraph.

Let us show that Aλ is the specialization of AP. Let P1 ⊂ P be an affine space.
We write DP1,~ for the completion of the Rees sheaf of the specialization DP1

of DP.
Similarly to the previous paragraph, the sheaf DP1,~ has no higher cohomology. Using the
long exact sequences in cohomology and the descending induction on dimP1 one proves
that Γ(DP1,~) is the specialization of Γ(DP,~). In particular, Aλ is the specialization of
AP to λ.

(2) is what is proved in the proof of [BPW, Proposition 3.10] (note that the statement
of that proposition is formally weaker). The smooth locus Xreg

P in XP is preserved by
W . As argued in the proof of [BPW, Proposition 3.10], since the restriction of DP to
Xreg

P is the canonical quantization of Xreg
P , the action of W on OXreg

P
lifts to DP|Xreg

P
and

hence to Γ(DP|Xreg
P

). And, as argued in the proof of [BPW, Proposition 3.10], the global

sections coincide with AP. By the construction, the action of W on grAP coincides with

the action on C[X̃P]. �

The following is one of the main results of this paper.

Theorem 3.4. Any filtered quantization of C[X ] is isomorphic to Aλ for some λ. More-
over, Aλ,Aλ′ are isomorphic as filtered quantizations if and only if λ′ ∈ Wλ.

In fact, the algebra AW
P enjoys a universal property similar to that of C[XP]

W . This
property is the subject of the next proposition, which is a more technical version of
Theorem 3.4 and also implies that theorem.

Proposition 3.5. Let B′ be a finitely generated commutative positively graded algebra
and A′ be a graded Poisson flat B′-algebra such that C⊗B′ A′ = C[X ]. Further, let A′ be
a B′-algebra that is a filtered quantization of A′ such that the structure map B′ → A′ is
a filtered algebra homomorphism whose associated graded map is B′ → A′. Then there is
a unique filtered algebra homomorphism C[P]W → B′ with the following properties:

(1) The associated graded of this homomorphism comes from the universal property of
C[XP]

W/C[P]W (see Proposition 2.12 and Corollary 2.13).

(2) We have a B′-linear isomorphism B′ ⊗C[P]W AW
P

∼
−→ A′ of filtered quantizations of

A′.
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Proposition 3.5 follows from Proposition 3.12 and Lemma 3.15 that will be stated and
proved later.

Our last task for this section is to explain how we can recover the parameter Wλ from
a filtered quantization Aλ. In order to do this, we will need to recall the construction and
properties of quantum slice algebras following [Lo9, Section 3.2].

Let x ∈ Li. Then we can form the completions C[X ]∧x ,C[TxLi]∧0,C[Σi]
∧0 . By [K1,

Theorem 2.3], we have an isomorphism

(3.1) C[X ]∧x ∼= C[TxLi]
∧0⊗̂C[Σi]

∧0 .

One can lift (3.1) to a quantum level. Form the Rees algebra R~(Aλ) of Aλ and consider
the completion R~(Aλ)

∧x at the maximal ideal of R~(Aλ) pulled back from the maximal
ideal of x in C[X ] under R~(Aλ) ։ C[X ]. Then, by [Lo9, Lemma 3.3], we have the
following decomposition

(3.2) R~(Aλ)
∧x ∼= A~(TxLi)

∧0⊗̂C[[~]]R~(A
i
λi
)∧0 ,

lifting (3.1), where A~ stands for the homogenized Weyl algebra of a symplectic vector
space.

Proposition 3.6. In a quantization parameter λ = (λ0, . . . , λk), the component λ0 is the
period of the quantization of Xreg given by restricting Aλ. The orbit Wiλi is uniquely
recovered from the formal quantization R~(Ai

λi
)∧0 of C[Σi]

∧0.

Proof. The claim about λ0 is a consequence of the following general claim: if X ′ is such
as in Proposition 3.1, U ⊂ X ′ is an open C×-stable subvariety and D′ is the filtered
quantization of X ′, then the period of the restriction D′|U is the pullback of the period
of D′ to U . This general claim is a direct consequence of the construction of the period
in [BeKa, Section 4]. To get the characterization of λ0 we notice that the restriction of
Aλ to Xreg coincides with the restriction of the quantization D′

λ of X̃reg to Xreg. This is

because the morphism X̃ → X is an isomorphism over Xreg.
Now we prove the claim about Wiλi for i > 0. The proof is in two steps.
Step 1. First of all, we claim that if R~(Ai

λi
)∧0 and R~(Ai

λ′i
)∧0 are isomorphic as formal

quantizations of C[Σ′
i], then Ai

λi
and Ai

λ′i
are isomorphic as filtered quantizations of C[Σi].

This will follow if we prove the following claim

• any C[[~]]-algebra isomorphism R~(Ai
λi
)∧0

∼
−→ R~(Ai

λ′i
)∧0 that is the identity mod-

ulo ~ is the composition of a C[[~]]-algebra automorphism, say α, of R~(Ai
λ′i
)∧0 that

is the identity modulo ~ and a C[[~]]-algebra isomorphism R~(Ai
λi
)∧0

∼
−→ R~(Ai

λ′i
)∧0

intertwining the C×-actions.

Consider the group G of algebra automorphisms of R~(Ai
λ′i
)∧0 that rescale ~. This is a

pro-algebraic group. As such it is the semidirect product of a reductive algebraic group
and pro-unipotent pro-algebraic group. The projection from the reductive part to the
automorphism group of C[Σi]

′ is injective. It follows that every two embeddings of C×

into G that give the dilation action on Σ′
i are conjugate by an element that is the identity

on Σ′
i. We apply this to the C×-actions on R~(Ai

λ′i
)∧0 coming from R~(Ai

λi
), R~(Ai

λ′i
) and

let α be a conjugating element. This establishes the claim above.
Step 2. Now suppose Ai

λi

∼
−→ Ai

λ′i
, an isomorphism of filtered quantizations (meaning

that the associated graded isomorphism intertwines the isomorphisms with C[Σi]). By

Theorem 3.4, we have Ŵiλ
′
i = Ŵiλi. Recall, Section 2.3, that Ŵi is the Weyl group of the
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same ADE type as Σi andWi = ŴΞ
i for a suitable group Ξ of diagram automorphisms. So

it is enough to show that for λi, λ
′
i ∈ P̂Ξ

i , the equality Ŵiλ
′
i = Ŵiλi implies Wiλ

′
i =Wiλi.

Pick fundamental weights ̟j, j ∈ J, for Ŵi and let C denote the Weyl chamber for

Ŵi spanned by the weights ̟j. The group Ξ acts on J . Then CΞ = C ∩ P̂Ξ
i is spanned

by
∑

k∈Ξj̟j. This is a fundamental chamber for Wi = ŴΞ
i . Note that the locus {λi ∈

P̂Ξ
i |Ŵiλi ∩ P̂Ξ

i =Wiλi} is the union of finitely many vector subspaces defined over Q. So
in the proof it is enough to assume that λi, λ

′
i are real. Conjugating them by elements of

ŴΞ
i we can assume that they lie in CΞ, hence in C. Since they are Ŵi-conjugate, they

must coincide. �

3.3. Scheme Y . We start by constructing a finite type affine scheme Y over C together
with an action of C× ⋉ U , where U is a unipotent group. This scheme will, in a sense,
parameterize deformations of C[X ] compatible with the Poisson bracket, and the group
action will correspond to isomorphisms of deformations.

Definition 3.7. Let R be a finitely generated commutative C-algebra with 1. By a
deformation datum (over R) on R[X ] we mean a pair (∗, 〈·, ·〉) of R-bilinear maps R[X ]⊗R

R[X ] → R[X ] satisfying the following condition:

(i) ∗ is an associative product such that 1 ∈ R[X ] is a unit and f ∗ g − fg ∈⊕
k<i+j R[X ]k for any i, j and f ∈ R[X ]i, g ∈ R[X ]j (here, as usual, the sub-

script stands for the graded component of that degree).
(ii) 〈·, ·〉 is a skew-symmetric bracket onR[X ] such that 〈f, g〉−{f, g} ∈

⊕
k<i+j−dR[X ]k

for i, j, f, g as in (i).
(iii) There is z ∈ R such that f ∗ g − g ∗ f = z〈f, g〉. Note that (ii) implies that z is

unique.
(iv) We have 〈f ∗g, h〉 = f ∗〈g, h〉+〈f, h〉∗g for all f, g, h ∈ C[X ] (the Leibniz identity)

and also the Jacobi identity for 〈·, ·〉.

Clearly, if R = C and z = 0, then ∗ is a commutative product and 〈·, ·〉 is a Poisson
bracket so that (C[X ], ∗, 〈·, ·〉) defines a filtered Poisson deformation of C[X ]. If, on the
other hand, z = 1, then 〈·, ·〉 is recovered from ∗, and (C[X ], ∗) is a filtered quantization
of C[X ].

Definition 3.8. By an isomorphism of deformation data (∗, 〈·, ·〉), (∗′, 〈·, ·〉′) we mean an
R-linear map ϕ : R[X ] → R[X ] with the following properties:

(I) ϕ(f)− f ∈
⊕

i<k R[X ]i for any k and f ∈ R[X ]k.
(II) ϕ intertwines ∗ with ∗′, as well as 〈·, ·〉 with 〈·, ·〉′.

Clearly, isomorphic deformation data correspond to isomorphic filtered Poisson defor-
mations (for z = 0) and quantizations (for z = 1).

Now we proceed to constructing Y . For n ∈ Z>0, set V6n :=
⊕n

i=0C[X ]i. Let f1, . . . , fk
be a minimal set of homogeneous generators of C[X ] and let m be the maximum of the
degrees of the generators fi. Further, letG1, . . . , Gℓ be a minimal set of homogeneous (with
respect to the grading on C[X ]) relations between the generators f1, . . . , fk. Consider
degGi, the degree of Gi with respect to f1, . . . , fk and set

e := 1 + max(2, degG1, . . . , degGℓ).
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Set T := Hom(
⊕e

i=1 V
⊗i
6m, V6me) ⊕ Hom(V ⊗2

6m, V62m−d). A deformation pair defines an
element (α, β) of T , where α comes from the iterated product ∗ restricted to V6m and β
comes from the bracket 〈·, ·〉 restricted to V6m.

We will realize Y as a closed subscheme in T . First, note that conditions (i)-(iii) give
polynomial equations on T . For example, by (ii) we have 〈·, ·〉 6= 0. Then (iii) means that,
for f, g ∈ V6m, the elements f ∗ g − g ∗ f and 〈f, g〉 are proportional, which results in
polynomial equations on α, β. Let Y 1 denote the subscheme defined by these polynomial
equations. Note that, by the construction, z can be viewed as an element of C[Y 1]. Indeed,
both (f, g) 7→ f ∗ g − g ∗ f and (f, g) 7→ 〈f, g〉 give linear maps V ⊗2

6m 7→ V62m−d. The

locus, say Z, in HomC(V
⊗2
6m, V62m−d)

2, where two linear maps, say ϕ1, ϕ2, are proportional
is an algebraic subscheme, on its open subscheme Z0 where ϕ2 6= 0, the ratio ϕ1/ϕ2 is a
regular function. Now, by the construction, we have a morphism Y 1 → Z0, the element
z ∈ C[Y 1] is the pullback of the regular function ϕ1/ϕ2 (note that β is nonzero thanks to
(ii) in Definition 3.7).

Now consider a finite type commutative algebra R and an algebra homomorphism
(α, β) : C[Y 1] → R (where the meaning of α, β as before: α corresponds to ∗ and β
corresponds to 〈·, ·〉). We construct the unital associative algebra

(3.3) A(α,β) := (R⊗ T (V6me)) /(x− α(x), α(y)− αopp(y)− zβ(y)),

where x runs over
⊕e

i=0 V
⊗i
6m, y runs over V ⊗2

6m and we write αopp for α|V ⊗2

6m
◦ σ, where σ is

the permutation of tensor factors.
The R-algebra A(α,β) comes with a filtration induced from V6me and degR = 0. We

have a natural epimorphism

(3.4) R⊗ C[X ] → grA(α,β).

Lemma 3.9. The condition that (3.4) is an isomorphism is equivalent to a system of
polynomial equations on α, β. These equations are independent of R.

Proof. The condition that (3.4) is an isomorphism is equivalent to

(*) For each j > 0, the filtered piece (A(α,β))6j is a free R-module of rank dimV6j.
Note that (A(α,β))6j is automatically the quotient of a free R-module of rank
dimV6j – because (3.4) is an epimorphism.

Let I denote the kernel of R⊗T (V6me) → A(α,β). The ideal I comes with the R-module
map

R ⊗

(
(

e⊕

i=0

V ⊗i
6m)⊕ V ⊗2

6m

)
→ R⊗ T (V6me), (x, y) 7→ x− α(x) + α(y)− αopp(y)− zβ(y).

The image generates I as an R ⊗ T (V6me)-bimodule. Consider the filtration on the
R⊗T (V6me)-bimodule I induced from the natural filtration on R⊗

(
(
⊕e

i=0 V
⊗i
6m)⊕ V ⊗2

6m

)
.

The associated graded of I contains the ideal of relations of R ⊗ C[X ] (including the
commutativity relations). The condition (*) is equivalent to the following condition

(**) For each j > 0, we have that R⊗ T (V6me)6j/I6j is a free module of rank dimV6j
(while, a priori, the former is the quotient of a free module of the given rank).

The quotient R ⊗ T (V6me)6j/I6j is the cokernel of a matrix whose entries are poly-
nomials in the entries of α and β. For an arbitrary pair (α, β), the matrix is such that
the cokernel is the quotient of a free R-module of rank dimV6j. So the claim that the



DEFORMATIONS OF SYMPLECTIC SINGULARITIES AND ORBIT METHOD 21

cokernel is a free module of that rank is equivalent to the vanishing of all minors of a
specified size. This gives polynomial conditions on (α, β) that are independent of R. �

Let Y 2 ⊂ Y 1 denote the (scheme-theoretic) vanishing locus of polynomial equations
from Lemma 3.9. For any algebra homomorphism (α, β) : C[Y 2] → R we get the filtered

associative algebra A(α,β) with R ⊗ C[X ]
∼
−→ grA(α,β). There is at most one bracket

〈·, ·〉 on A(α,β) satisfying (iv) whose pullback to V ⊗2
6m coincides with β. Such a bracket

then automatically satisfies (ii) and (iii). Note that (iv) translates into a collection on
polynomial equations on α and β. Let Y ⊂ Y 2 denote the closed subscheme defined by
these equations.

By the construction, Y represents the functor of taking deformation data: to give a
deformation datum over R is the same thing as to give an R-point of Y . Denote this set
of points by Y (R).

Now we proceed to group actions on Y . Define the unipotent group U . We take the
subgroup of GL(V6me) consisting of all linear maps Φ : V6me → V6me with deg(Φ(f)−f) <
deg f for all f ∈ V6me. We have an induced action on T that preserves the defining ideal
of Y as well as z.

Also define an action of C× on V6me by t.f := t− deg ff for a homogeneous element
f ∈ V6me. Then C× normalizes U ⊂ GL(V6me) and also preserves the ideal of Y . Recall
that z can be viewed as an element of C[Y 1]. Hence z defines an element of C[Y ] (which
is a quotient of C[Y 1]), equivalently, a morphism Y → C.

Note that, by the construction, we have the following property:

(♠) The morphism Y → C given by z is U -invariant and C×-equivariant, t ∈ C× acts
on C by multiplication by t−d. Moreover, C[Y ],C[U ] are positively graded with
respect to the C×-action.

We write U(R) for the group of R-points of U . Note that U(R) acts on Y (R). We
write USpec(R) for the constant group scheme over Spec(R) with fiber U . So U(R) is the
group of sections Spec(R) →֒ USpec(R).

3.4. Generating maps and the algebras AY ,AY. Now we need another concept: that
of a generating map. Let B be a finitely generated commutative C-algebra (but not, a
priori, a C[Y ]-algebra) and let AB be a filtered B-algebra with

• B in degree 0,
• an isomorphism grAB

∼= B ⊗ C[X ] of graded Poisson algebras.
• a B-linear bracket 〈·, ·〉 satisfying (ii)-(iv) of Definition 3.7 for some z ∈ B,

Definition 3.10. By a generating map for AB we mean a filtered B-module map B ⊗
V6me → AB that becomes the inclusion B ⊗ V6me → B ⊗ C[X ] after passing to the
associated graded algebra.

If B′ is a B-algebra, then AB′ := B′ ⊗B AB inherits a generating map from AB.
Note that any generating map is injective and the image of B ⊗ V6m generates AB

(hence the name). Denote the set of generating maps by Gen(AB). It comes with a U(B)-
action. There is at least one generating map, and if we fix it, we get a U(B)-equivariant

bijection U(B)
∼
−→ Gen(AB).

Let us explain a connection between generating maps and deformation data. Every
generating map for AB gives rise to a deformation datum over B: by restricting the
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product and the bracket from AB to B ⊗ V6me. So we get a map of sets

(3.5) Gen(AB) → Y (B).

This map is U(B)-equivariant.

We also need a certain automorphism group. The space B⊗(
⊕d−1

i=0 C[X ]i) is a nilpotent
Lie subalgebra of AB with respect to 〈·, ·〉. So we can consider the Lie algebra

hB := (B ⊗ (

d−1⊕

i=0

C[X ]i))/B ⊗ C[X ]0

(h for Hamiltonian). Consider the corresponding unipotent group scheme HSpec(B) over
Spec(B). Note that we have a group scheme monomorphism HSpec(B) →֒ USpec(B) via
exp(a) 7→ exp(〈a, ·〉) for a ∈ hB.

The following lemma explains the meaning of HSpec(B).

Lemma 3.11. The group scheme over Spec(B) of filtered B-algebra automorphisms of
AB that are the identity on grAB coincides with HSpec(B).

Proof. Let ψ denote an automorphism of AB as in the statement of the lemma. Then
ln(ψ) is well-defined and is a B-linear derivation of AB that is zero on grAB. We need to
show that ln(ψ) = 〈a, ·〉 for a ∈ hB. Note that ln(ψ) gives rise to a homogeneous negative
degree Poisson B-linear derivation of grAB = B ⊗ C[X ], the top degree term of ln(ψ).
Proposition 2.14 implies that such a derivation is Hamiltonian. Since the Poisson center
of B ⊗ C[X ] is B, we see that the top degree term of ln(ψ) takes the form {f, ·} for a

unique homogeneous element f ∈ B⊗
⊕d−1

i=1 C[X ]i. This implies the analogous statement
for ln(ψ) itself finishing the proof of the lemma. �

Now let R be a finitely generated C[Y ]-algebra, let us write (α, β) for the corresponding
homomorphism C[Y ] → R. We get the algebra A(α,β) defined in (3.3). The algebra
corresponding to the identity automorphism of C[Y ] will be denoted by AY . Note that
the algebra AY is graded and comes with an action of U by C-algebra automorphisms
that is compatible with the action of U on C[Y ]. Also AY admits a Z>0-filtration with
C[Y ] in degree 0 such that grAY

∼= C[Y ]⊗C[X ] as a graded Poisson algebra (the Poisson
bracket on grAY comes from 〈·, ·〉). Note that this filtration does not come from the
grading on AY .

Every algebra A(α,β) defined by (3.3) comes with a canonical generating map that gives
the deformation datum specified by (α, β). This deformation map gives an identification
Gen(Aα,β) ∼= U(R), hence a map U(R) → Y (R). This map is functorial in R and hence
comes from a morphism of schemes UY = U × Y → Y × Y . This morphism is nothing
else but the graph of the action of U on Y . So the preimage of the diagonal is the
automorphism group scheme HY . To simplify the notation below we are going to denote
the preimage of the diagonal by Y. Note that, by construction, Y ⊂ U × Y is U -stable
for the action given by u.(u1, y) = (uu1u

−1, uy) and C×-stable.
We write AY for the algebra C[Y]⊗C[Y ]AY . This algebra comes with a generating map.

Namely, consider the diagonal action of U on the C[U ×Y ]-algebra C[U ]⊗AY . There is a
unique generating map for this algebra that is U×U -equivariant, where the first action of
U on itself from the left and the second action is diagonal, and whose fiber over 1 ∈ U is
the natural generating map for AY . Then we get a generating map for AY by base change
from C[U × Y ] to its quotient C[Y]. Note that this generating map is U -equivariant. A
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way to think about this generating map is that at the points of the diagonal {1}×Y ⊂ Y
we get the natural generating map for AY and then we extend this map by the action of
HY . The following is a universal property of AY and its generating map.

Proposition 3.12. Let AB be as in the beginning of the section. Fix a generating map
for AB. Then there is a unique algebra homomorphism C[Y] → B and a unique filtered
B-algebra isomorphism

AB
∼
−→ B ⊗C[Y] AY

that intertwines the brackets, the generating maps, and the isomorphisms grAB, gr(B⊗C[Y]

AY)
∼
−→ B ⊗ C[X ].

Proof. As was mentioned before, the choice of a generating map forAB gives rise to a point
in Y (B), or, equivalently, an algebra homomorphism C[Y ] → B. This homomorphism
equips AB with another generating map, which is pulled back from AY . This new map
does not need to coincide with the initial one, but gives the same deformation datum.
Since Gen(AB) is a torsor over U(B), a choice of two generating maps for AB gives a
morphism Spec(B) → UY . Since the generating maps give the same deformation data,
the morphism factors through Spec(B) → Y. By the construction, we have a filtered
algebra isomorphism

AB
∼
−→ B ⊗C[Y] AY

with the required properties. It is unique: the only automorphism of AB that fixes a
generating map is the identity. �

3.5. Structure of Y. Our goal here is to describe the structure of Y (in fact, of its very
close relative) and use this to give a proof of Proposition 3.5.

Let AW
P,~ denote the Rees algebra of the filtered algebra AW

P . This is a graded algebra

over C[P]W [~], where C[P]W ⊂ AW
P,~ is graded with P∗ of degree d and the degree of ~ is

1.

Corollary 3.13. There is a C×-equivariant scheme morphism ψ : P/W × C → Y such
that ψ∗(z) = ~d and there is a C[P/W, ~]-algebra isomorphism AW

P,~
∼= C[P/W, ~]⊗C[Y]AY.

Proof. This is because AW
P,~ comes with a generating map (as any other deformation).

This generating map can be chosen to be C×-equivariant. The bracket 〈·, ·〉 equals [·, ·]/~d.
These observations together with Proposition 3.12 imply the claim of the corollary. �

Now we describe Y0, the scheme theoretic fiber of Y at z = 0. Corollary 3.13 yields an
induced scheme morphism ψ0 : P/W → Y0.

Proposition 3.14. The U-equivariant morphism U × P/W → Y0 extending ψ0 is an
isomorphism.

Proof. The proof is in several steps.
Step 1. Consider the algebra C[U ] ⊗ C[XP]

W over C[U ] ⊗ C[P]W . It comes with a
generating map produced as follows. We pick a generating map in the fiber over 1 ∈ U
and then extend it to C[U ] ⊗ C[P]W ⊗ V6me → C[U ] ⊗ C[XP]

W so that corresponding
scheme morphism U ×XP/W → U ×P/W × V ∗

6me is U -equivariant. Here in the target
U acts by u.(u′, p, α) = (uu′, p, u.α). Compare with the description of the generating map
for AY in the previous section.

Step 2. Now let B be a positively graded algebra and let AB be a graded Poisson algebra
deforming C[X ]. Then we have a C×-equivariant generating map B ⊗ V6me → AB. We
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claim that there is a unique morphism of schemes Spec(B) → U ×P/W and a Poisson

algebra isomorphism AB
∼
−→ B⊗C[U ]⊗C[P/W ] (C[U ]⊗C[XP]

W ) intertwining the generating
maps.

By the universal property of C[XP]
W , see Proposition 2.12, there is a unique graded

algebra homomorphism C[P]W → B and a graded Poisson C[B]-algebra isomorphism
AB

∼= B ⊗C[P]W C[XP]
W that is the identity modulo the augmentation ideal in B. Since

the generating maps form a torsor over U(B), we further see that there is a unique

homomorphism C[U ] ⊗ C[P]W → B and a unique isomorphism AB
∼
−→ B ⊗C[U ]⊗C[P/W ]

(C[U ]⊗ C[XP]
W ) intertwining the generating maps.

Step 3. By Proposition 3.12, there is a unique scheme morphism ι1 : U ×P/W → Y0

and a unique Poisson C[U×P/W ]-algebra isomorphism C[U×P/W ]⊗C[Y0]AY0
→ C[U ]⊗

C[XP]
W intertwining the generating maps. On the other hand, AY0

is positively graded.
So, by Step 2, there is a unique scheme morphism ι2 : P/W × U → Y0 and a unique

Poisson algebra isomorphism AY0

∼
−→ C[Y0]⊗C[U×P/W ] (C[U ]⊗ C[XP]

W ) intertwining the
generating maps. So the morphisms ι1, ι2 are mutually inverse. �

Now we will describe the structure of a slight modification of Y. Set

Y′ := Spec(C[Y][~]/(z − ~d)).

Lemma 3.15. We have a C××U-equivariant isomorphism U×P/W ×Spec(C[~])
∼
−→ Y′

of schemes over Spec(C[~]). It gives rise to a C[Y′]-linear and U × C×-linear algebra

isomorphism C[~]⊗C[z] AY
∼
−→ C[U ]⊗AW

P,~.

Proof. Consider the algebra C[U ] ⊗ AW
P,~. It comes with a generating map defined as in

Step 1 of the proof of Proposition 3.14. This generating map is C×-equivariant by the
construction. So we get a unique graded algebra homomorphism C[Y] → C[U ]⊗C[P]W [~]
and a unique graded algebra isomorphism

C[U ]⊗AW
P,~

∼
−→
(
C[U ]⊗ C[P]W [~]

)
⊗C[Y] AY

that intertwines the brackets 〈·, ·〉 and the generating maps. The homomorphism C[Y] →
C[U ] ⊗ C[P]W [~] maps z to ~d and so extends to a graded C[~]-algebra homomorphism
C[Y′] → C[U ] ⊗ C[P]W [~]. At ~ = 0, it specializes to the isomorphism C[Y0]

∼
−→ C[U ] ⊗

C[P]W . Note that both C[Y′] and C[U ]⊗C[P]W [~] are positively graded. It follows that
C[Y′]

∼
−→ C[U ]⊗ C[P]W [~]. �

Proof of Proposition 3.5. Let B′,A′ be as in the statement of the proposition. Consider
the Rees algebras B′

~ := R~(B
′),A′

~ := R~(A′). Take z := ~d. Thanks to Proposition 3.12,
for each choice of a generating map for A′

~, we get a unique C[z]-linear homomorphism
C[Y] → B′

~ and a unique B′
~-linear isomorphism B′

~ ⊗C[Y] AY → A′
~ intertwining the

generating maps. Thanks to the uniqueness, these homomorphisms are graded. Different
choices of generating maps for A′

~ result in an action of U(B′
~) and hence do not change

the homomorphism C[P]W [~] → B′
~. Hence there is a unique C[~]-linear graded algebra

homomorphism C[P]W [~] → B′
~ and a gradedB′

~-algebra isomorphism B′
~⊗C[P]W [~]A

W
P,~

∼
−→

A′
~. We specialize at ~ = 1 and arrive at the claim of the proposition. �

3.6. Spherical symplectic reflection algebras. Let us consider the case of a symplec-
tic quotient singularity X = V/Γ. Let π : V → V/Γ denote the quotient morphism.
Recall that by a symplectic reflection in Γ we mean an element s ∈ Γ with rk(s− id) = 2.
To a symplectic reflection s we assign the subgroup Γs ⊂ Γ, the pointwise stabilizer of V s,
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and the quotient Ξs := NΓ(Γ
s)/Γs. The codimension 2 symplectic leaves are in one-to-one

correspondence with the conjugacy classes of the subgroups Γs. The leaf corresponding to
Γs is of the form {v ∈ V |Γv = Γs}/Ξs. So we see that the fundamental group is Ξs. From
here we deduce that the irreducible components of π−1(L) are labelled by the non-trivial
NΓ(Γ

s)-conjugacy classes in Γs.
The following lemma is proved in [Bel, Lemma 2.4].

Lemma 3.16. We have H2(Xreg,C) = 0.

From Lemma 3.16 and the preceding paragraph we conclude that the dimension of P
coincides with the number of conjugacy classes of symplectic reflections in Γ, this result
was obtained in [Bel, Theorem 1.3].

There is a way to deform C[V ]Γ discovered by Etingof and Ginzburg, [EG]. Namely, we
first deform the smash-product algebra C[V ]#Γ. Let t ∈ C and c be a Γ-invariant function
S → C, where S is the set of all symplectic reflections. Let ω denote the symplectic form
on V . For s ∈ S, we write ωs for the rank 2 form on V whose kernel coincides with V s

and whose restriction to im(s− 1) coincides with the restriction of ω. Then we can form
the algebra Ht,c (known as a symplectic reflection algebra) by

Ht,c = T (V )#Γ/

(
u⊗ v − v ⊗ u− tω(u, v)−

∑

s∈S

c(s)ωs(u, v)s|u, v ∈ V

)
.

This is a filtered deformation of C[V ]#Γ, see [EG, Theorem 1.3]. Now take the averaging
idempotent e ∈ CΓ. We can form the so called spherical subalgebra eHt,ce ⊂ Ht,c that
is a filtered associative algebra with unit e. It is a filtered deformation of C[V ]Γ that
induces the Poisson bracket tω−1 on C[V ]Γ, see the proof of [EG, Theorem 1.6]. So we
get a filtered quantization when t = 1.

Let c denote the space of Γ-invariant functions S → C, this is the space of parameters
c. The space c is in an affine bijection with P. Namely, we can split S into the union
S1⊔S2⊔. . . ⊔Sk, where Si stands for the symplectic reflections in Γi. Consequently, c splits
into the direct sum

⊕k
i=1 ci. Let ĉi denote the space of Γi-invariant functions Γi\{1} → C.

It comes with a natural action of Ξi. The space ci embeds as the Ξi-invariants into ĉi.

An affine isomorphism between ĉi and P̂i in the form we need was explained in [Lo5,

Section 6.2]. Namely, define the element Ci ∈ CΓi by |Γi|−1
(
1 +

∑
γ∈Γi

c(γ)γi

)
. Let

N1, . . . , Nri denote the nontrivial irreducible representations of Γi. Then we send an ele-
ment {c(γ)}|γ∈Γi

∈ ĉi to
∑ri

j=1(trNj
Ci)̟j, where ̟1, . . . , ̟ri are the fundamental weights

in P̂i. Note that this isomorphism ĉi
∼
−→ P̂i is Ξi-equivariant.

Let us denote the resulting affine isomorphism c
∼
−→ P by ι.

The following proposition generalizes [Lo5, Theorem 6.2.1].

Proposition 3.17. We have an isomorphism eH1,ce
∼
−→ Aι(c) of filtered quantizations of

C[V ]Γ.

In particular, every filtered quantization of C[V ]Γ is a spherical symplectic reflection
algebra (see [Bod, Ho, Le] for various special cases of this result). An analog of this result
for t = 0 was obtained by Bellamy in [Bel, Corollary 1.6].

Proof of Proposition 3.17. Thanks to Theorem 3.4, we already know that eH1,ce ∼= Aλ

for some λ ∈ P and we need to show that λ = ι(c). Consider the Rees algebra R~(eH1,ce)
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and its completion R~(eH1,ce)
∧x at a point x ∈ Li. According to [Lo3, Theorem 1.2.1],

we get an isomorphism of formal quantizations

R~(eH1,ce)
∧x ∼= A~(V

Γi)∧0⊗̂C[[~]]R~(e
iH i

1,ci
ei)∧0.

Here the notation is as follows. We write ci for the projection of c to ci. The notation
A~(V

Γi) is for the Rees algebra of the Weyl algebra of the symplectic vector space V Γi. The
notation H i

1,ci
is for the SRA associated to (Γi, V/V

Γi) and ei is the averaging idempotent
in Γi.

By Lemma 2.15, P0 = {0}. So, by Proposition 3.6, we reduce to proving that, in the
notation of that proposition, we have an isomorphism of filtered quantizations eiH i

1,ci
ei ∼=

Ai
λi
. This follows from [Lo5, Theorem 6.2.2]. �

This proposition establishes an isomorphism eH1,ce ∼= eH1,c′e of quantizations when
ι(c) and ι(c′) are W -conjugate. In the next section we will determine when eH1,ce, eH1,c′e
are isomorphic as filtered algebras.

Remark 3.18. One application of Proposition 3.17 is to construct shift H1,c+ψ-H1,c-
bimodules Sc,ψ, where ψ is an integral element of c, compare with [BC, Lo8]. For a fixed
ψ and a Zariski generic c, the bimodule Sc,ψ gives a Morita equivalence between H1,c and
H1,c+ψ, which can be established similarly to [Lo8, Corollary 3.5] using the fact that the
algebra H1,c is simple for a Weil generic c, [Lo3, Theorem 4.2.1]. We do not provide details
in the present paper, see [Lo10] instead.

3.7. Automorphisms and isomorphisms. Here we are going to study the relationship
between three different objects:

(1) The reductive part of the automorphism group of the graded Poisson algebra C[X ]
(note that this group is algebraic). The reductive part will be denoted by G.

(2) Filtered Poisson algebra isomorphisms C[Xλ]
∼
−→ C[Xλ′ ].

(3) Filtered algebra isomorphisms Aλ
∼
−→ Aλ′.

In what follows we always assume that d is even: we can always rescale the action of C×

on X to achieve this.
Note that G acts on the set of isomorphism classes of filtered Poisson deformations (resp,

quantizations) by replacing the isomorphism ι : grA
∼
−→ C[X ] with g ◦ ι, for g ∈ G. So we

have two, a priori different, actions of G on P/W viewed as the space of parameters for
filtered Poisson deformations and for filtered quantizations. These actions will be called
Poisson and quantum below. Note that the universal properties for the algebras C[XP]

W

(Corollary 2.13) and AW
P (Proposition 3.5) yield G-actions on C[XP]

W (by graded Poisson

algebra automorphisms) and on AW
P (by filtered algebra automorphisms). Let us explain

why this is the case for quantizations. Any element g ∈ G gives rise to an automorphism
g̃ : AW

P → AW
P by the universal property. The automorphism g̃ is defined uniquely up

to composing with a C[P]W -linear automorphism of AW
P that gives the identity on C[X ].

The group of such automorphisms is easily seen to be unipotent. So we can choose g̃ so
that the map g 7→ g̃ is a group homomorphism.

These actions preserve the subalgebras C[P]W and induce the Poisson and quantum
actions on P/W . Note that the quantum action on C[P]W is filtration preserving and
the Poisson action on C[P]W is obtained from the quantum action by passing to the
associated graded action.
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Lemma 3.19. We have a filtered Poisson algebra isomorphism C[Xλ]
∼
−→ C[Xλ′] (resp.,

filtered associative algebra isomorphism Aλ
∼
−→ Aλ′) if and only if Wλ,Wλ′ lie in the same

G-orbit for the Poisson (resp., quantum) action on P/W .

Proof. The if part follows from the preceding discussion. So we need to show, say, that if
Aλ,Aλ′ are isomorphic as filtered algebras, then Wλ,Wλ′ are in the same G-orbit.

An isomorphism A → A′ of filtered (associative/Poisson) algebras induces an isomor-
phism grA → grA′ of graded Poisson algebras. So Wλ,Wλ′ lie in the same orbit for the
group of graded Poisson automorphisms of C[X ]. We need to show that the unipotent
radical of this group acts trivially on P/W . Let g be an element in the unipotent radical.
Since it is unipotent, ln(g) makes sense. It is a graded Poisson algebra derivation of C[X ].
By Proposition 2.14, it is inner. So it is the Poisson bracket with a degree d element in
C[X ]. Lift this element to an element a ∈ (AW

P )6d. Since ln(g) is nilpotent, so is [a, ·].

So we can integrate [a, ·] to a C[P]W -linear filtered algebra isomorphism of AW
P lifting g.

From here we deduce that g acts trivially on C[P]W . �

We are now going to show that the Poisson and quantum actions are the same. In the
proof we will need a lemma describing the group of graded Poisson automorphisms of
C[V ]Γ. Namely, let V be a symplectic vector space and Γ be a finite group of its linear
symplectomorphisms. Set Θ := NSp(V )(Γ)/Γ. This groups acts on C[V ]Γ faithfully.

Lemma 3.20. The group G of graded Poisson automorphisms of C[V ]Γ coincides with Θ.

Proof. We have an inclusion Θ →֒ G. Note that V 0, the free locus for the Γ-action, is the
simply-connected cover of V 0/Γ = (V/Γ)reg. The Galois group of this cover is Γ. Every
automorphism of C(V/Γ) = C(V )Γ lifts to an automorphism of C(V ). The lift is unique
up to composing with an element of Γ. An automorphism of V 0/Γ therefore lifts to an
automorphism of V 0. So the G-action on V 0/Γ lifts to an action of an extension G̃ of G
by Γ on V 0 by automorphisms.

The action of G̃ on V 0 extends to an action on V because codimV (V \ V 0) > 2. It
commutes with the dilating C× and preserves the symplectic form. So it is via a group
homomorphism G̃ → Sp(V ). Also it descends to V/Γ and so normalizes Γ. We deduce
that G̃ ⊂ NSp(V )(Γ) and hence G ⊂ Θ. �

Proposition 3.21. The Poisson and quantum actions coincide. Moreover, both are trivial
on G◦.

Proof. Recall that the Poisson action on C[P]W is the associated graded action for the
quantum action. So we need to prove that the quantum action on C[P]W is by graded
algebra automorphisms and is trivial on G◦.

Take g ∈ G. Recall, Lemma 2.8, that P/W = H2(Xreg,C) ×
∏k

i=1Pi/Wi. We claim
that

(*) the projection P/W ։ H2(Xreg,C) intertwines the action of g with the usual
linear action on H2(Xreg,C).

Indeed, by Proposition 3.6, the image of Wλ under the projection to H2(Xreg,C) is the
period of the restriction of Aλ to Xreg. The period map is functorial by the construction
in [BeKa, Section 4]. This implies (*). Note that (*) in particular implies that the action
of G◦ on the factor H2(Xreg,C) of P/W is trivial.
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Recall that Σi denotes a slice to the symplectic leaf Li,Σi = C2/Γi, and Ξi is the group
of diagram automorphisms of the corresponding Dynkin diagram coming from the action
of π1(Li).

The element g permutes the symplectic leaves (we denote the corresponding permuta-
tion of {1, . . . , k} again by g). We have Γi ∼= Γg(i) and Ξi ∼= Ξg(i). Fix some identifications.
Then g gives rise to automorphisms of Γi and Ξi.

Fix a parameter λ ∈ P and a point x ∈ Li. Let λ′ be a representative of g(Wλ). So g

gives rise to a filtered isomorphism Aλ
∼
−→ Aλ′. Recall, (3.2), the decompositions

R~(Aλ)
∧x ∼= A~(TxLi)

∧0⊗̂C[[~]]R~(A
i
λi
)∧0 , R~(Aλ′)

∧gx ∼= A~(TgxLgi)
∧0⊗̂C[[~]]R~(A

gi
λ′gi

)∧0 .

So g gives an isomorphism of the right hand sides in these decompositions:

(3.6) α : A~(TxLi)
∧0⊗̂C[[~]]R~(A

i
λi
)∧0

∼
−→ A~(TgxLgi)

∧0⊗̂C[[~]]R~(A
gi
λ′gi

)∧0 .

We claim that we can compose α with a C[[~]]-linear automorphism of the target so that
the composition is C×-equivariant. Let γ, γ′ denote the actions of C× on the source and
the target of (3.6) and let γ0, γ

′
0 denote the actions modulo ~, note that the corresponding

isomorphism α0 can be viewed as an automorphism.
We argue similarly to Step 1 of the proof of Proposition 3.6. We can modify α so that

αγα−1 and γ′ commute. In particular, α0γ0α
−1
0 preserves

(TgxLgi)
∗ ⊂ A~(TgxLgi)

∧0⊗̂C[[~]]R~(A
gi
λ′gi

)∧0/(~)

by the degree reasons: this is the subspace of elements of degree d/2. So it preserves its

Poisson centralizer, R~(A
gi
λ′gi

)∧0/(~). Consider the maximal ideal m in that algebra so that

m/m2 is 3-dimensional. Since α0 is an automorphism, the eigenvalues of α0γ0α
−1
0 and γ′0

on m/m2 coincide. Combining this with the observation that these actions commute and
rescale the bracket by t 7→ t−d, we can use an easy case by case argument to see that they
coincide onm/m2. So the two actions on the target of (3.6) differ by a pro-unipotent family
of automorphisms and hence are conjugate by a pro-unipotent automorphism. Modifying
α accordingly, we get a C×-equivariant isomorphism in (3.6).

The conclusion is that we have a filtered algebra isomorphism A(TxLi) ⊗ Ai
λi

∼
−→

A(TgxLgi)⊗Agi
λ′gi

.

Note that the algebras above are filtered quantizations of the symplectic quotient

singularity TxLi × C2/Γi. The space of quantization parameters is P̂i/Ŵi. The map

P̂i/Ŵi → P̂i/Ŵi coming from g is in the image of the action of the group Θ from Lemma

3.20. This group coincides with NSL2
(Γi)/Γi. The discussion of the isomorphism ĉi

∼
−→ P̂i

in Section 3.6 shows that the action of NSL2
(Γi)/Γi on P̂i is by linear automorphisms. So

the automorphism of P̂i/Ŵi induced by g is C×-equivariant.
Now we show that the automorphism of Pi/Wi induced by g is C×-equivariant. Step 2

of the proof of Proposition 3.6 shows that the map Pi/Wi → P̂i/Ŵi is injective. It also in-
tertwines the actions of g. It follows that the action of g on Pi/Wi is C

×-equivariant. This
finishes the proof of the claim that g acts on P/W by a C×-equivariant automorphism.

The claim that the action of G◦ on P/W is trivial follows from the observation that

the action of (NSL2
(Γi)/Γi)

◦ on P̂i is trivial. �

Corollary 3.22. The filtered Poisson algebras C[Xλ],C[Xλ′] are isomorphic if and only
if the filtered associative algebras Aλ,Aλ′ are. So we have a bijection between
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• Filtered Poisson deformations of C[X ] viewed up to a filtered Poisson algebra iso-
morphism,

• and filtered quantizations of C[X ] viewed up to a filtered algebra isomorphism.

Proof. The first claim follows from Proposition 3.21. Recall that both the filtered Poisson
deformations and the filtered quantizations are classified by P/W (Proposition 2.9 and
Corollary 2.13 for Poisson deformations and Theorem 3.4 for quantizations). Up to filtered
algebra isomorphisms both are classified by the orbits of the group G on P/W . �

Let us get back to spherical symplectic reflection algebras.

Proposition 3.23. We have a filtered algebra isomorphism eH1,ce ∼= eH1,c′e if and only
if Wc and Wc′ are Θ-conjugate.

Proof. This follows from Lemma 3.19 and Lemma 3.20. �

Remark 3.24. We will need a relative version of results of this section. Let G ⊂ G be
a connected reductive subgroup. By Proposition 3.21, G acts trivially on P/W , hence it
acts on each Aλ,A0

λ by filtered algebra automorphisms. As in Lemma 3.19, we have a

G-equivariant filtered algebra isomorphism Aλ
∼
−→ Aλ′ if and only if Wλ,Wλ′ are in the

same ZG(G)-orbit. The same holds for filtered Poisson deformations. Proposition 3.21

implies that there is a G-equivariant filtered algebra isomorphism Aλ
∼
−→ Aλ′ if and only

if there is a G-equivariant filtered Poisson algebra isomorphism A0
λ

∼
−→ A0

λ′. Also note
that the stabilizer of Wλ in ZG(G) acts on Aλ and A0

λ by G-equivariant filtered algebra
automorphisms.

4. Birational induction and sheets

From now on, G is a connected reductive algebraic group over C with Lie algebra g.

4.1. Lusztig-Spaltenstein induction. We use the notation of Section 1.4. Recall that
l ⊂ g is a Levi subalgebra, P ⊂ G is a parabolic subgroup such that p := Lie(P ) has Levi

l, O′ ⊂ l∗ is a nilpotent orbit, and ξ ∈ (l/[l, l])∗. Form the variety G×P (ξ+O
′
+ p⊥), the

homogeneous bundle over G/P with fiber ξ + O
′
+ p⊥. This variety maps to g∗. Let π

denote the map onto its image, to be called the generalized Springer map. Let Oξ denote
the open orbit in im π, it is known to be independent of the choice of P . Note that,

similarly to [LS, Theorem 1.3], (ξ +O
′
+ p⊥) ∩Oξ is a single P -orbit.

Lemma 4.1. The open G-orbit in G×P (ξ +O
′
+ p⊥) depends only on (l,O′, ξ), not on

the choice of P .

In the proof we will need the following construction, also to be used later. Let O denote
a nilpotent orbit in g∗. Pick an element χ ∈ O and let Q be a maximal reductive subgroup
of the stabilizer Gχ. Also we can pick an invariant form on g and identify g ∼= g∗. Let
e ∈ g be the element corresponding to χ. Include e into an sl2-triple e, h, f . We can
assume that h, f are Q-stable, then Q = ZG(e, h, f). The component group Q/Q◦ is
identified with the G-equivariant fundamental group of O, to be denoted by A(O).

Consider the Slodowy slice e + zg(f) and let S denote its image in g∗. Then S is
a transversal slice to O. Note that it is a Poisson variety with a Q-action. We also
have a contracting C×-action on S: let γ : C× → G denote the one-parameter subgroup
corresponding to h, then we define a C×-action on S via t.s := t−2γ(t)s. This action
contracts S to χ. The proofs can be found e.g. in [GG, Section 2].
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Proof of Lemma 4.1. The proof is in several steps.
Step 1. The claim easily reduces to the case when ξ is central (by replacing G with the

stabilizer Gξ). We can then assume that ξ = 0. Let O denote the open orbit in im π. Let
X ′ := Spec(C[O′]). Set X̌ = G ×P ((l/[l, l])∗ ×X ′ × p⊥). The open orbit in X̌ coincides

with that in G×P (O
′
+ p⊥).

The variety X̌ naturally maps to g∗ and also to (l/[l, l])∗. The morphism to (l/[l, l])∗ is
flat, G-invariant and C×-equivariant. Note that

(4.1) dim X̌ = dim(l/[l, l])∗ + dimO.

Step 2. Consider the preimage Š of S in X̌ and the restriction of X̌ → (l/[l, l])∗ to Š.
Our goal is to prove that this restriction is finite and étale.

We start by showing dim Š = dim(l/[l, l])∗. The slice S is transverse to all G-orbits it
intersects, see, e.g., [GG, Section 2.2]. Equivalently, the action morphism G × S → g∗

is smooth of relative dimension dimS. Since being smooth is stable under pullback, the
action morphism G× Š → X̌ is also smooth of relative dimension dimS. It follows that

dim Š = dim X̌ + dimS − dim g = (dim(l/[l, l])∗ + dimO) + dimS − dim g = dim(l/[l, l])∗.

The first equality follows from (4.1), and the second follows because dim g = dimS +
dimO.

Step 3. The variety Š inherits actions of C× and Q from S. The morphism Š → (l/[l, l])∗

is Q-invariant and C×-equivariant by the construction. We claim that the C×-action on
Š is contracting. Indeed, the morphism X̌ → g∗ × (l/[l, l])∗ is projective. It follows that
the morphism Š → S × (l/[l, l])∗ is projective. This morphism is C×-equivariant. The
C×-action on S × (l/[l, l])∗ contracts S × (l/[l, l])∗ to a point. Hence the action on Š is
contracting as well.

Step 4. We claim that the morphism Š → (l/[l, l])∗ is unramified. Thanks to the
contracting C×-action we need to show that the fiber over zero is a reduced finite scheme.
This fiber coincides with the scheme theoretic preimage of S in G ×P (X ′ × p⊥). The
morphism G ×P (X ′ × p⊥) → O is étale over O. The slice S intersects O transversally
at the single point, χ, and does not intersects the boundary of O. It follows that the
scheme theoretic preimage of S in G ×P (X ′ × p⊥) coincides with the preimage of χ in
the open orbit of G×P (X ′ × p⊥). This and the claim that the intersection of S with O
is transversal show the claim in the beginning of the step. Note that the preimage of S
in G×P (X ′ × p⊥) is a single Q/Q◦-orbit.

Step 5. We have seen in Steps 2-4 that dim Š = dim(l/[l, l])∗ and the morphism Š →
(l/[l, l])∗ is C×-equivariant and etale. Since the C×-action on Š is contracting (Step 3)
and the preimage of 0 ∈ (l/[l, l])∗ is finite, the morphism Š → (l/[l, l])∗ is finite. The
group Q acts on Š and the map Š → (l/[l, l])∗ is Q-invariant. It follows that Q◦ acts on
Š trivially.

Step 6. As we have pointed out in Step 4, the preimage of χ in Š is a single Q/Q◦-orbit,
that is the preimage of χ in the open orbit in G×P (X ′ × p⊥). Since the morphism Š →
(l/[l, l])∗ is étale and finite, the fiber of Š over any point of (l/[l, l])∗ is the same Q/Q◦-orbit.
Also note that the fiber of X̌ → (l/[l, l])∗ over a generic point ξ1 ∈ (l/[l, l])∗ is independent
of the choice of P : this fiber is G×L(ξ1×X ′). The morphisms G×L(ξ1×X ′) → g∗, (l/[l, l])∗

are also independent of the choice of P . So the fiber of Š → (l/[l, l])∗ over such a point
is independent of the choice of P . This is also the fiber over χ. The claim of the lemma
follows. �
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Below we write H for the stabilizer Gx.
Recall, Definition 1.2, that (l,O′, ξ) is called an induction datum. When ξ = 0 we

omit it and say that (l,O′) is an induction datum. We also can talk about birationally
induced and birationally rigid orbits. More generally, we say that the open orbit in

G×P (ξ +O
′
+ p⊥), an equivariant cover of a coadjoint orbit, is birationally induced from

(l,O′, ξ). Finally, recall, Definition 1.2, that if π is birational and O′ is birationally rigid,
then we say that (l,O′, ξ) is a birationally minimal induction datum.

We have the following properties of birationally minimal induction data.

Proposition 4.2. For any fixed l and birationally rigid O′ ⊂ l, the set (l/[l, l])∗regO′ of
all ξ ∈ (l/[l, l])∗ such that (l,O′, ξ) is birationally minimal, is the complement to a finite
union of subspaces. Also this locus is independent of the choice of P .

Proof. The independence of P directly follows from Lemma 4.1.
Now let ξ ∈ (l/[l, l])∗. We can naturally embed l∗ into g∗ because there is a unique

l-invariant complement to l in g. Hence we can view ξ as an element of g∗. Set l̃ := gξ,
this is a Levi subalgebra. Clearly, ξ ∈ (l/[l, l])∗regO′ if and only if the induction from (l,O′)

to l̃ is birational. So the inclusion ξ ∈ (l/[l, l])∗regO′ depends only on l̃. There is a finite

number of choices of l̃. So in order to complete the proof of the proposition, we only
need to show that if the induction from (l,O′) is birational, then so is the induction from
(l, ξ+O′) for any ξ ∈ (l/[l, l])∗. In order to see this consider the varieties Š ⊂ X̌ from the
proof of Lemma 4.1. The claim that the induction from (l,O′) is birational is equivalent
to the condition that the preimage of 0 ∈ (l/[l, l])∗ in Š is a single point. According to
Step 5 of that proof, the morphism Š → (l/[l, l])∗ is finite and etale. It follows that it is
an isomorphism. In particular, the preimage of S in G×P (ξ ×X ′ × p⊥) is a single point
for each ξ ∈ (l/[l, l])∗. So the morphism from the open orbit in G×P (ξ ×X ′ × p⊥) to g∗

must be generically injective. Equivalently, the induction from (l, ξ+O′) is birational. �

4.2. Sheets and birational sheets. Recall that by a sheet in g we mean an irreducible
component of {x ∈ g| dimGx = d} for some d. Each sheet contains a single nilpotent
orbit. The rigid nilpotent orbits are precisely the orbits O such that there is only one
sheet containing O and this sheet is O+(g/[g, g])∗, see, e.g., [Bor, BoKr2]. In general, the
sheets are indexed by the pairs (l,O′), where O′ is a rigid orbit in l: the corresponding
sheet consists of orbits induced from (l,O′, ξ) for ξ ∈ (l/[l, l])∗.

Let Z be a sheet and O be the unique nilpotent orbit contained in Z. It turns out that
the action of G on Z admits a geometric quotient. Recall the subgroup Q ⊂ G and an
affine subspace S ⊂ g∗ from Section 4.1. The following is [Ka, Theorems 0.3,0.4]. Note
that the component group of Q is A(O).

Proposition 4.3. The following is true:

(1) The action of Q◦ on Z ∩ S is trivial and A(O) permutes the components of Z ∩ S
transitively.

(2) The variety (Z ∩ S)/A(O) is the geometric quotient for the action of G on Z, in
particular, it is a categorical quotient and each fiber of Z → (Z ∩ S)/A(O) is a
single G-orbit.

In general, sheets do not behave well: they may intersect, may fail to be smooth, etc.
Birational sheets to be introduced now do not intersect and are very often smooth (and
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always smooth up to a bijective normalization). However, there are birational sheets that
do not contain nilpotent orbits.

Pick a Levi subalgebra l and a birationally rigid nilpotent orbit O′ ⊂ l. Let Zbir
l,O′ denote

the set of all orbits birationally induced from (l,O′, ξ), where ξ ∈ (l/[l, l])∗regO′ .
To (l,O′) we assign a finite group W (l,O′) acting on (l/[l, l])∗ as follows. The group

NG(L) naturally acts on the set of nilpotent orbits in l∗. Let NG(L,O
′) denote the

stabilizer of O′. We set W (l,O′) := NG(L,O
′)/L. Note that this finite group naturally

acts on (l/[l, l])∗. It follows from Proposition 4.2 (namely from the independence of P
part) that (l/[l, l])∗regO′ is W (l,O′)-stable.

The following theorem describes basic properties of birational sheets.

Theorem 4.4. The following is true:

(1) Any coadjoint orbit is induced from a unique (up to G-cojugacy) birationally min-
imal induction datum. In particular, we have g =

⊔
(l,O′) Z

bir
l,O′.

(2) Zbir
l,O′ is a locally closed subvariety of g. Its normalization is smooth and the mor-

phism from the normalization to Zbir
l,O′ is bijective.

(3) A geometric quotient for the G-action on Zbir
l,O exists. The normalization of the

quotient is (l/[l, l])∗regO′ /W (l,O′). This is a smooth variety. The morphism from
the normalization to the quotient is bijective.

This theorem will be proved in Section 4.5.

4.3. Structure of Q-terminalizations. In order to prove Proposition 4.2 and Theorem
4.4 we will need to examine the structure of Q-terminalizations. Results of this section
have been already obtained by Namikawa, [N2], for classical types, and Fu, [F], for excep-
tional types. Their proofs used case-by-case arguments, while our proof is conceptual.

Our main result in this section is the following proposition.

Proposition 4.5. Let O be a birationally rigid nilpotent orbit and let X := Spec(C[O]).
Then the following claims hold:

(1) P = {0}, equivalently (Proposition 2.12), C[X ] has no nontrivial filtered Poisson
deformations.

(2) X is Q-factorial and terminal, and H2(Xreg,C) = {0}.

Proof. In the proof we can assume that G is semisimple and simply connected. We also
can assume that the action of G on O is faithful, equivalently, O projects nontrivially to
all direct summands of g.

First, we show that (1) implies (2) (in fact, they are equivalent but we do not need

this). By [N4, Theorem 5.5(c)], for a generic element λ ∈ P, the morphism X̃λ → Xλ

is an isomorphism. In particular, if P = {0}, then X̃
∼
−→ X , hence X is Q-factorial and

terminal. The claim that P = {0} ⇒ H2(Xreg,C) = {0} follows from Lemma 2.8.
It remains to prove that if O is birationally rigid, then (1) holds, i.e., P = {0}. The

proof of this is in several steps.
Step 1. Here we consider the situation when O is an arbitrary nilpotent orbit. We

consider the deformation XP. We claim that we have a Hamiltonian G-action on XP

with moment map deforming that on X .
Consider the degree 1 component C[XP]1. Note that g →֒ C[X ]1 and C[XP]1 = C[X ]1⊕

P. Also note that since d = 1, C[XP]1 is a Lie algebra with respect to {·, ·} and the
embedding g →֒ C[X ]1 is an inclusion of Lie algebras. So we get an extension of g by
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the abelian Lie algebra P. Therefore g canonically splits. Note also that C[XP] acquires
a C[P]-linear action of g via {·, ·}. This action preserves the grading, hence it is locally
finite. Its weights are the same as in C[X ]. Hence it integrates to G. So we get the
required Hamiltonian action. Let µP : XP → g∗ denote the moment map and µλ be the
restriction of µP to Xλ.

We remark that µP is WX-invariant, equivalently, the image of g in C[XP] is WX-
invariant. Recall thatWX acts on C[XP] by graded Poisson automorphisms. The subspace
C[XP]1 is WX-stable and the projection C[XP]1 ։ C[X ]1 is WX-equivariant. The action
on C[XP]1 is by Lie algebra automorphisms. It follows that the preimage of g in C[XP]1
is WX-stable. Since the action is by Lie algebra automorphisms and g splits canonically,
g is WX -stable. And since the projection of g to C[X ]1 is injective, the action of WX on
g is trivial. So µP is indeed WX -invariant.

Step 2. We still assume that O is an arbitrary nilpotent orbit. We claim that, for every
λ ∈ P, the G-action on Xλ has an open orbit. There is an open G-orbit on X = X0.
The locus of x ∈ X with dimGx > dimX is open and C×-stable. Since the action of
C× is contracting, there is an open orbit in every fiber Xλ. So µλ is generically finite
and µλ(Xλ) is the closure of a single orbit to be denoted by Oλ. Since µ0 is finite and
the action of C× on XP is contracting, µλ is finite for all λ. Note that O ⊂ C×Oλ and
dimOλ = dimO.

Step 3. By Step 2, XP//G = P. It follows that µP induces a morphism P → g∗//G.
We claim that if P 6= {0}, then the image is different from {0}. Indeed, otherwise Oλ = O
for all λ. Moreover, since XP is a flat deformation of X , we see that the open orbit in Xλ

is O and not its proper cover. We get the map XP → P × O induced by µP. This map
is finite and birational so it is the normalization. Also it is Poisson and C×-equivariant.
So it lifts to a C×-equivariant Poisson isomorphism XP

∼
−→ X × P. Since XP/WX is a

universal deformation, this implies P = {0}. Contradiction. We see that if P 6= {0},
then the image of XP in g contains non-nilpotent elements.

Step 4. Now assume that O is birationally rigid. Pick a Zariski generic λ ∈ P. Let
ξ be the semisimple part of an element in Oλ, l be the stabilizer of ξ in g and O′ be
the nilpotent orbit in l such that ξ + O′ ⊂ Oλ. We claim that O is birationally induced

from (l,O′). Namely, let X ′ be the normalization of O
′
and X̃ ′ be its Q-terminalization.

Consider the variety X̃1
Cξ := G ×P (Cξ × X̃ ′ × p⊥). Here p be a parabolic subalgebra

with Levi subalgebra l and P is the corresponding subgroup. The variety X̃1
Cξ is a normal

Poisson Cξ-scheme and has a Hamiltonian G-action. Its algebra of regular functions is
finite over C[g∗] hence is finitely generated. Let X1

Cξ := Spec(C[X̃1
Cξ]). Note that the fiber

of X1
Cξ over ξ is the normalization of Oλ. The fiber over 0 is X1 := Spec(C[X̃1]), where

X̃1 = G×P (X̃ ′ × p⊥). Note that we get a finite G-equivariant morphism X1 ։ O that
factors through X1 ։ X .

Since the morphism XP → P is G-invariant and flat, for any irreducible G-module V ,
we have that HomG(V,C[XP]) is flat over C[P]. As was mentioned in the beginning of Step

3, C[XP]
G ∼
−→ C[P]. So HomG(V,C[XP]) is also finitely generated C[P]-module, hence is

projective. It follows that C[X ] ∼= C[Xλ] as G-modules. Analogously, C[X1] ∼= C[X1
λ].

We have G-equivariant finite dominant morphisms X1 ։ X and Xλ ։ X1
λ, the latter

is induced by the moment map µλ. Hence C[X1] ∼= C[X ] as G-modules. We conclude

that X1 ∼
−→ X . This contradicts O being birationally rigid and completes the proof of the

proposition. �
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Corollary 4.6. Let O be a nilpotent orbit. Then the following claims are true.

(1) There is a unique (up to G-conjugacy) birationally minimal induction datum (l,O′)
for O.

(2) The variety X̃ := G ×P (X ′ × p⊥) (where X ′ stands for Spec(C[O′])) is a Q-
terminalization of X.

Proof. We start by proving (2). We can find some minimal birational induction datum
(l,O′) for O. The variety X ′ is Q-factorial terminal by Proposition 4.5. Hence so is X̃.
Hence it is a Q-terminalization of X .

Let us prove (1). We need to prove that (l,O′) is unique up to conjugacy. Note that the
morphism XP/WX ։ P/WX is uniquely recovered from X thanks to Proposition 2.12

and does not depend on the choice of the Q-terminalization X̃ = G ×P (X ′ × p⊥), i.e.,
the choices of P and (l,O′). For λ ∈ P, the moment map Xλ → g∗ is also independent
of these choices. According to Step 4 of the proof Proposition 4.5, we recover (l,O′) as
follows. Consider the fiber Xλ of XP over a Zariski generic point λ ∈ P. Let Oλ denote
the open orbit in the image of Xλ in g∗ and let x ∈ Oλ. Then l is the stabilizer of the
semisimple part of x and and O′ is the L-orbit of the nilpotent part of x. �

4.4. Computation of Weyl groups. In this section we will get some information on
the Namikawa-Weyl group WX for X := Spec(C[G/H ]), where G/H is the open G-orbit

in X̃ = G ×P (X ′ × p⊥). Here X ′ = Spec(C[O′]) for a birationally rigid nilpotent orbit
O′ ⊂ l∗.

Our main result is as follows.

Proposition 4.7. Assume G is semisimple. The following claims are true:

(1) We have P = (l/[l, l])∗.

(2) The universal deformation X̃P of X̃ over P (Proposition 2.6) is isomorphic to
X̌ := G×P (P×X ′ × p⊥) as Poisson scheme over P with a C×-action.

(3) The Namikawa-Weyl group W = WX of X is a normal subgroup in W (l,O′).
Moreover, the quotient W (l,O′)/W is isomorphic to the group A of G-equivariant
Poisson automorphisms of X.

The group A is naturally identified with NZG(x)(H)/H , where x ∈ G/H . In particular,
if H = ZG(x), we see that W = W (l,O′). A formally weaker result (where O′ = {0})
was obtained in [N3, Section 2]. Note also that A coincides with the group of graded
G-equivariant automorphisms of C[X ].

Proof of Proposition 4.7. To compute P we note that since H i(X ′reg,C) = {0} for i = 1, 2

(see Proposition 4.5) and H1(G/P,C) = 0, we get H2(X̃reg,C) = H2(G/P,C) = (l/[l, l])∗.

Now we prove (2). Note that X̌ is a graded deformation of X̃ in the sense of Section
2.2. By Proposition 2.6, there is a unique linear map (l/[l, l])∗ → P and a C×-equivariant
Poisson isomorphism X̌

∼
−→ (l/[l, l])∗ ×P X̃P. We need to show that (l/[l, l])∗ → P is an

isomorphism. Thanks to (1) it is enough to show it is injective. Assume the contrary: let
λ ∈ (l/[l, l])∗ go to 0. This yields an isomorphism G×P (X ′×p⊥)

∼
−→ G×P ({λ}×X ′×p⊥).

In particular, we have an embedding G/P →֒ G ×P ({λ} × X ′ × p⊥). The target is a
homogeneous bundle over the affine variety G/Gλ with fiber Gλ ×Gλ∩P ({λ} ×X ′ × p⊥).
Any morphism from G/P to G/Gλ maps G/P to a single point because G/P is projective
and connected while G/Gλ is affine. So we have a closed embedding G/P →֒ Gλ ×Gλ∩P
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({λ} ×X ′ × p⊥). The latter variety is a bundle over the projective variety Gλ/(Gλ ∩ P )
whose fiber is affine. So the composition

G/P →֒ Gλ ×
Gλ∩P ({λ} ×X ′ × p⊥) ։ Gλ/(Gλ ∩ P )

is a finite morphism. The latter is impossible because dimG/P > dimGλ/(Gλ ∩ P ).
This contradiction finishes the proof of the claim that the linear map (l/[l, l])∗ → P is an
isomorphism and hence the proof of (2).

(3) will be proved in several steps.
Step 1. Note that, for a Zariski generic ξ ∈ (l/[l, l])∗, the orbits Oξ and Oξ′ induced

from (l,O′, ξ) and (l,O′, ξ′), respectively, coincide (here ξ′ ∈ (l/[l, l])∗) if and only if
ξ′ ∈ W (l,O′)ξ. It follows that, for a Zariski generic λ ∈ (l/[l, l])∗, the equality µλ(Xλ) =
µλ′(Xλ′) implies λ′ ∈ W (l,O′)λ. But the moment map µP is W -invariant, see Step 1 of
the proof of Proposition 4.5. It follows that W ⊂ W (l,O′).

Step 2. We are going to produce a group homomorphism W (l,O′) → A. Pick a Zariski
generic element λ ∈ (l/[l, l])∗. Consider the deformation XCλ of X over Cλ. It comes
with the morphism XCλ → Cλ×g∗//G C×Oλ that is a normalization morphism. Note that
w ∈ W (l,O′) defines a C×-equivariant morphism

Cλ×g∗//G C×Oλ
∼
−→ Cwλ×g∗//G C×Owλ

and hence aC×-equivariant isomorphismXCλ → XCwλ. This isomorphism isG-equivariant
and intertwines the moment maps, hence it is Poisson. Specializing to 0, we get an el-
ement of A to be denoted by aw,λ. Note that the group A is finite. So varying λ, we
get the same element aw,λ, we will write aw for aw,λ. Since aw1w2,λ = aw1,w2λaw2,λ by the
construction, we see that w 7→ aw is a group homomorphism.

Step 3. Let us show thatW ⊂W (l,O′) is the kernel of the homomorphism w 7→ aw. By
the previous step, w induces a filtered Poisson algebra isomorphism C[Xλ] → C[Xwλ] such
that the induced automorphism of C[X ] is aw. So w ∈ W if and only if the isomorphism

C[Xλ]
∼
−→ C[Xwλ] is that of filtered deformations if and only if aw = 1.

Step 4. Let us prove that the homomorphism W (l,O′) → A is surjective. Recall that
A acts on C[P]W by graded algebra automorphisms and on C[XP]

W by graded Poisson
algebra automorphisms. Under this action, g ⊂ C[XP]

W stays fixed. It follows that if
Wλ,Wλ′ are A-conjugate, then µλ(Xλ) = µλ′(Xλ′).

Also if a ∈ A acts trivially on C[P]W , then it acts trivially on P/W ×g∗//G g
∗ and hence

on its normalization XP/W . Therefore a = 1.
In particular, we can take a Zariski generic λ and use Step 1 to see that if a sends Wλ

to Wλ′, then λ, λ′ are W (l,O′)-conjugate. Since A acts faithfully on P/W , this implies
the surjectivity of W (l,O′) → A. �

Below we will need to relate Weyl groups for inductions to g and to some Levi subalgebra
of g. Namely, take a Levi l ⊂ g and a birationally rigid nilpotent orbit O′ ⊂ l∗. Let g

denote a Levi subalgebra of g containing l. Let O be the nilpotent orbit in g∗ induced
from (l,O′) and assume that the induction is birational. Let X denote the normalization
of O and let X := Spec(C[G×P (X ′ × p⊥)]).

Lemma 4.8. The group WX is contained in the pointwise stabilizer of (g/[g, g])∗ ⊂
(l/[l, l])∗ in WX .

Proof. In the proof we will need a slightly different construction of the homomorphism
W (l,O′) → A. Pick an element w ∈ W (l,O′) and its lift g to NG(l,O

′). Set P 1 := gPg−1,
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this is a parabolic subgroup of G with Levi subgroup L. Consider the universal defor-
mations of Q-factorial terminalizations associated to P, P 1, i.e., X̃P := G×P ((l/[l, l])∗ ×

X ′ × p⊥), X̃1
P := G×P 1

((l/[l, l])∗ ×X ′ × p1,⊥). Note that g gives rise to an isomorphism

of varieties X̃P → X̃1
P. It is not an isomorphism of schemes over P, rather the induced

map P → P is w. Passing to the spectra of the rings of regular functions we get an
isomorphism XP → XP. Its specialization to 0 coincides with aw: in order to see this we
can restrict to Cλ ⊂ P for a Zariski generic λ ∈ P, we recover the construction from Step
2 of the proof of Proposition 4.7.

Now we need to produce an embedding ofWX into the pointwise stabilizer of (g/[g, g])∗

inside WX . Thanks to our assumption that the induction from L to G is birational, we
have WX = W (l,O′), where W (l,O′) is the analog of W (l,O′) for G. Note that W (l,O′)
coincides with the pointwise stabilizer of (g/[g, g])∗ in W (l,O′). So we need to prove that
W (l,O′) maps trivially to A.

Set X := C[O] and let P := ((l ∩ [g, g])/[l, l])∗. Every element w ∈ W (l,O′) defines

an automorphism of XP that is the identity on X . Now choose P such that P := PG

is a parabolic subgroup in G. Construct P 1, X̃1
P from w. The morphisms X̃P, X̃

1
P → XP

factor through G×P ((g/[g, g])∗ ×XP × p
⊥). An element g ∈ NG(l,O

′) lifting w defines

an automorphism of the latter variety that is the identity on G×P ((g/[g, g])∗ ×X × p
⊥)

because w ∈ WX . It follows that the induced automorphism of X is the identity finishing
the proof. �

In the proof of Theorem 4.4 in the next section we will see that in Lemma 4.8 we
actually have an equality.

4.5. Consequences. In this section we prove Theorem 4.4.
We start with a criterium for C[Xξ],C[Xξ′] with ξ, ξ

′ ∈ (l/[l, l])∗regO′ to be isomorphic as
filtered algebras.

Lemma 4.9. Let ξ, ξ′ ∈ (l/[l, l])∗regO′ . Then the following are equivalent:

(1) C[Xξ],C[Xξ′] are G-equivariantly isomorphic as filtered Poisson algebras.
(2) The G-orbits induced from (l,O′, ξ), (l,O′, ξ′) coincide.
(3) ξ′ ∈ W (l,O′)ξ.

Proof. Clearly (3) implies (2). Let Oξ,Oξ′ denote the orbits induced from (l,O′, ξ) and
(l,O′, ξ′). Note that C[Xξ] ∼= C[Oξ] (a G-equivariant Poisson isomorphism) because
ξ ∈ (l/[l, l])∗regO′ and similarly C[Xξ′ ] ∼= C[Oξ′ ]. The argument of Step 4 of the proof
of Proposition 4.5 shows that if Oξ = Oξ′, then, in the notation there, we have a C×-
equivariant isomorphism X1

Cξ
∼= X1

Cξ′. Since C[Xξ] is the specialization of C[X1
Cξ] at 1 –

and similarly for C[Xξ′ ], the resulting isomorphism C[Xξ] ∼= C[Xξ′] is G-equivariant and
of filtered algebras. So (2) implies (1).

Let us show that (1) implies (3). The group of the graded G-equivariant Poisson
automorphisms of C[X ] is A. The implication (1)⇒(3) now follows from Remark 3.24. �

Proof of Theorem 4.4. The proof is in several steps.
Step 1. Let us prove (1). Clearly, the birational sheets cover g. So we need to prove that

an orbit determines a birationally minimal induction datum uniquely up to G-conjugacy
(which, in particular, implies that the birational sheets do not intersect). Recall that if
an orbit Gy with y ∈ g∗ is induced from (l,O′, ξ), then ξ is G-conjugate to ys. This allows
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to reduce the proof to the claim that every nilpotent orbit is birationally induced from a
unique birationally minimal induction datum. This is (1) of Corollary 4.6.

Step 2. To prove (2) and (3) we first need to establish the following claim:

(*) The action of A =W (l,O′)/WX on (l/[l, l])∗regO′ /WX is free.

Indeed, let ξ ∈ (l/[l, l])∗regO′ . Let G stand for the stabilizer of ξ in G. Let O denote
the nilpotent orbit in g induced from (l,O′). Set X = Spec(C[O]). By Lemma 4.8,
we have WX ⊂ WX,ξ. On the other hand, the group W (l,O′), the analog of W (l,O′)
for g, coincides with the stabilizer (W (l,O′))ξ. But the induction from (l,O′) to O is
birational, so by Proposition 4.7, we have WX = W (l,O′). Together with the equality
W (l,O′) = (W (l,O′))ξ, this shows (*).

Step 3. Now let us prove (3). Let X0
P denote the locus in X̃P consisting of orbits

of maximal dimension, it embeds into XP. Recall, (1) and (2) of Proposition 4.7, that

P = (l/[l, l])∗ and X̃P = G×P (P×X ′ × p⊥). As in the proof of Lemma 4.1, consider the

preimage Š ⊂ X̃P of the Slodowy slice S to O under µP : X̃P = G×P (P×X ′×p⊥) → g∗.
Clearly, Š ⊂ X0

P. The morphism µP : Š → S is still proper. As we have seen in the proof

of Lemma 4.1, see Steps 4 and 5, the morphism Š → P is finite and étale.
As we have seen in the proof of Lemma 4.8, we have a W (l,O′)-action on XP. Since

XP → g∗ is WX-invariant and S ⊂ g∗ is Q-stable, we see that Š ⊂ X0
P ⊂ XP is

W (l,O′)-stable. By Proposition 4.3, every G-orbit in Z intersects S in a single A(O)-orbit.
From here we deduce that the projection Š ։ P induces an isomorphism Š/W (l,O′)

∼
−→

P/W (l,O′).
Note that Zbir

l,O′ ∩ S coincides with the image of Š ∩ π−1((l/[l, l])∗regO′ ) under µP, where

we write π for the projection X̃P → P. This image is the complement of a closed
subset in the image of the proper morphism µP|Š. It follows that Zbir

l,O′ ∩ S is a lo-

cally closed subvariety. The proper epimorphism Š ∩ π−1((l/[l, l])∗regO′ ) ։ Zbir
l,O′/G fac-

tors through (Š ∩ π−1((l/[l, l])∗regO′ ))/W (l,O′). Moreover, it follows from Lemma 4.9

that if the images of two points from Š ∩ π−1((l/[l, l])∗regO′ ) in Zbir
l,O′/G coincide, then

the points are W (l,O′)-conjugate. So the morphism (Š ∩ π−1((l/[l, l])∗regO′ ))/W (l,O′) ։

Zbir
l,O′/G is also injective. Therefore it is a bijective normalization morphism. The variety(
Š ∩ π−1((l/[l, l])∗regO′ )

)
/W (l,O′) = (l/[l, l])∗regO′ /W (l,O′) is smooth by (*) in Step 2. This

proves (3).
Step 4. Let us prove (2). Note that X0

P∩π−1((l/[l, l])∗regO′ ) = µ−1
P (Zbir

l,O′). The subvariety

X0
P is the union of orbits of maximal dimension in XP. Since the action of W (l,O′) on

XP commutes with that of G, we see that W (l,O′) preserves X0
P. By Lemma 4.9, the

induced morphism (X0
P ∩ π−1((l/[l, l])∗regO′ ))/W (l,O′) → Zbir

l,O′ is injective. It is also proper

so it is finite. It remains to prove that (X0
P ∩ π−1((l/[l, l])∗regO′ ))/W (l,O′) is smooth. This

will follow if we show that W (l,O′) acts on X0
P∩π−1((l/[l, l])∗regO′ ) as a group generated by

reflections (by a reflection in this case we mean an automorphism whose fixed locus is a
divisor). We have seen in Step 2 that (W (l,O′))ξ = WX is a reflection group (in its action
on (l/[l, l])∗). So it remains to check that (W (l,O′))ξ fixes Xξ pointwise. Recall, Step 2,
that WX,ξ = (W (l,O′))ξ. Assume that an element w ∈ WX,ξ acts on Xξ nontrivially. The
action preserves the filtration on C[Xξ] and is the identity on the associated graded. But
a finite group of automorphisms cannot contain a non-unit element with these properties.
This finishes the proof of (2). �
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Remark 4.10. In fact, in most cases, the birational sheets as well as their quotients are
smooth. Namely, Zbir

l,O′ is smooth provided O (the orbit induced from (l,O′)) is not one of
the seven orbits in [PT, Table 0] and is not induced from one of these orbits. In particular,
the birational sheets in classical Lie algebras are always smooth. Let us sketch a proof of
the smoothness.

First, let us consider the birational sheet Zbir
l,O′ containing O. Let Z(O) denote the union

of sheets containing O. One can show that Zbir
l,O′ ∩ S = (Z(O) ∩ S)A(O). Using techniques

of [PT, Section 5] (where an analogous result was proved in the quantum case), one shows
that (Z(O)∩S)A(O) is an affine space provided O is not one of the orbits in Table 0 in the
introduction of loc.cit.. So we see that Zbir

l,O′∩S = Zbir
l,O′/G is smooth. But, for s ∈ S∩Zbir

l,O′,

we have TsZ
bir
l,O′ = TsGs⊕ Ts(Z

bir
l,O′ ∩ S). It follows that Zbir

l,O′ is smooth.

Now consider the case when Zbir
l,O′ does not contain a nilpotent orbit. Pick y ∈ Zbir

l,O′. Let

G = Gys and let Zbir
l,O′ be the birational sheet in g corresponding to l,O′, this birational

sheet contains yn. Then we have an étale morphism G×G (ys+Z
bir
l,O′) → Zbir

l,O′ with y lying

in the image. We deduce from the previous paragraph that both Zbir
l,O′ and Zbir

l,O′/G are
smooth provided O is not induced from one of the seven orbits in [PT, Table 0].

Remark 4.11. One can ask for an intrinsic characterization of birational sheets. As in
Step 4 of the proof of Proposition 4.5 we see that for a pair O1,O2 of G-orbits lying in the
same birational sheet, the G-modules C[O1],C[O2] are isomorphic. We conjecture that
the converse is also true: if the G-modules C[O1],C[O2] are isomorphic as G-modules,
then O1,O2 lie in the same birational sheet.

5. W-algebras and Orbit method

5.1. W-algebras. We start by recalling (finite) W-algebras that were originally defined
by Premet in [P1], although we will follow an approach from [Lo1]. Throughout the
section G is a semisimple group.

Pick a nilpotent orbit O ⊂ g∗. Let χ ∈ O. Recall that S stands for a Slodowy slice to
O in χ. It is acted on by Q× C×, where Q is a maximal reductive subgroup of Gχ.

We recall a filtered associative algebra W equipped with a Hamiltonian Q-action.
Namely, consider the universal enveloping algebra U = U(g) with its standard PBW
filtration U =

⋃
i>0 U6i. It will be convenient for us to double the filtration and set

FiU := U6[i/2]. Form the Rees algebra U~ :=
⊕

i(FiU)~
i. The quotient U~/(~) coincides

with S(g) = C[g∗]. Consider the completion U
∧χ

~ in the topology induced by the preimage
of the maximal ideal of χ. The space V := TχO is symplectic. So we can form the homog-
enized Weyl algebra A~ of V , i.e., A~ is the Rees algebra of the usual Weyl algebra A(V ).
We consider the completion A∧0

~ in the topology induced by the maximal ideal of 0 ∈ V .
Both U

∧χ

~ and A∧0

~ come equipped with actions of Q×C×. The action of Q on U
∧χ

~ ,A∧0

~ is
induced from the natural actions of Q on g and V , respectively. The group C× acts on g∗

via t.α := t−2γ(t)α, where γ : C× → G is the one-parameter subgroup associated to the
element h as in Section 4.1. The group C× naturally acts on V . Finally, we set t.~ := t~,
this defines C×-actions on U

∧χ

~ ,A∧0

~ by topological algebra automorphisms that commute
with the Q-actions.

It was checked in [Lo1, Section 3.3], see also [Lo6, Section 2.2] that there is a Q× C×-
equivariant C[~]-linear embedding A∧0

~ →֒ U
∧χ

~ such that we have the decomposition

(5.1) U
∧χ

~
∼= A∧0

~ ⊗̂C[[~]]W
′
~,
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where we write W ′
~ for the centralizer of A∧0

~ in U
∧χ

~ . The algebra W ′
~ comes with an

action of Q × C×. Let us write W~ for the C×-finite part of W ′
~, then W ′

~ is naturally
identified with the completion W

∧χ

~ . Set W := W~/(~−1). This is a filtered algebra with
a Hamiltonian Q-action that does not depend on the choice of the embedding A∧0

~ →֒ U
∧χ

~

up to an isomorphism preserving the filtration and the action. See [Lo6, Section 2.1]. The
associated graded algebra grW coincides with C[S], where S is the Slodowy slice.

5.2. Restriction functor for HC bimodules. By a G-equivariant Harish-Chandra U-
bimodule (or (U , G)-module) we mean a finitely generated U-bimodule B such that the
adjoint g-action is locally finite and integrates to an action of G. We can also intro-
duce the notion of a Q-equivariant HC W-bimodule, see [Lo2, Section 2.5]. We write
HCG(U),HCQ(W) for the categories of equivariant HC bimodules.

In [Lo2, Sections 3.3,3.4], we have constructed an exact functor •† : HCG(U) →
HCQ(W). Let us recall the construction of the functor. Pick a G-equivariant HC bi-
module B and equip it with a good filtration compatible with the filtration Fi U . So the
Rees C[~]-module B~ := R~(B) is a G-equivariant U~-bimodule. Consider the completion
B

∧χ

~ in the χ-adic topology. This is a Q×C×-equivariant U
∧χ

~ -bimodule (the action of Q
is Hamiltonian, while the action of C× is not). As was checked in [Lo2, Proposition 3.3.1],
B

∧χ

~ = A∧0

~ ⊗̂C[[~]]B
′
~, where B′

~ is the centralizer of A∧0

~ . So B′
~ is a Q × C×-equivariant

W
∧χ

~ -bimodule. One can show that B′
~ coincides with the completion of its C×-finite part

B~. We set B† := B~/(~− 1). This is an object in HCQ(W) that comes equipped with a
good filtration. This filtration depends on the choice of the filtration on B, while B† itself
does not.

Let us list properties of the functor •† established in [Lo2, Sections 3.3,3.4]. See [Lo2,
Theorem 1.3.3, Lemma 3.3.2, Proposition 3.4.1].

Lemma 5.1. The following is true:

(1) U† = W.
(2) •† is an exact functor.
(3) •† is a monoidal functor.
(4) grB† (with respect to the filtration above) coincides with the pull-back of grB to S.
(5) In particular, •† maps the category HCG

O
(U) of all HC bimodules supported on O

to the category HCQfin(W) of all finite dimensional Q-equivariant W-bimodules.

Further, •† annihilates HC
G
∂O(U).

Recall that by a Dixmier algebra one means an associative algebra A together with a
rational Hamiltonian action of G such that the corresponding quantum comoment map
U → A makes A a HC bimodule. Since •† is a monoidal functor it sends a Dixmier
algebra to an algebra A† that comes with a homomorphism W → A†. Moreover, a good
algebra filtration on A gives rise to an algebra filtration on A†. An isomorphism in (4) of
the lemma is that of algebras.

The functor •† : HC
G
O
(U) → HCQfin(W) has the right adjoint •† : HCQ

fin(W) → HCG
O
(U),

[Lo2, Proposition 3.4.1,(4)]. We will need the construction of the functor •† from [Lo2,
Sections 3.3,3.4] below so let us recall it.

Pick B ∈ HCQ
fin(W) and equip it with a Q-stable W-bimodule filtration (for example,

we can just take the trivial one). Then form the Rees bimodule B~ and the Q-equivariant
U

∧χ

~ -bimodule B′
~ = A∧0

~ ⊗̂C[[~]]B
∧χ

~ . We can equip B′
~ with a g-module structure via ξ.b :=
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1
~2
[ξ, b]. Let (B′

~)g−fin denote the g-finite part of B′
~. This module is C×-stable and we can

twist a C×-action (see [Lo2, Section 3.3] for details) to get one commuting with g. Let
(B′

~)fin denote the C
×-finite part in (B′

~)g−fin, this is a graded U~-bimodule. It follows from
[Lo2, Lemma 3.3.3] that this bimodule is finitely generated. Set B♦ = (B′

~)fin/(~ − 1).

This is a HC U-bimodule supported on O that comes with a natural filtration. Note that
B♦ has no sub-bimodules supported on ∂O by the construction.

Also note that Q/Q◦ naturally acts on B♦ by filtered U-bimodule automorphisms. We
set B† := (B♦)Q/Q

◦

, this gives a right adjoint functor of interest. We note that both the
kernel and the cokernel of the adjunction homomorphism B → (B†)

† are supported on
∂O, [Lo2, Proposition 3.4.1,(5)].

Now assume A is a finite dimensional algebra with a homomorphism W → A and a
compatible action of Q such that the composition q → W → A is a quantum comoment
map for the Q-action. The construction recalled above shows that both A♦ and A†

have Dixmier algebra structures. Moreover, for a Q-stable filtration on A such that the
homomorphism W → A is that of filtered algebras, we get natural filtrations on A♦,A†.
These are good algebra filtrations.

Now let us investigate what happens with B† and (B†)
†, where B is a quantization

of C[G/H ], where G/H is an equivariant cover of O. Recall that Gχ/H is the fiber of
G/H → O over χ, it is finite.

Lemma 5.2. The following is true:

(1) As a filtered algebra B† is Q-equivariantly isomorphic to the algebra of functions
C[Gχ/H ] (with the trivial filtration).

(2) We have gr(B†)
† = C[G/H ] and the natural homomorphism B → (B†)

† is an
isomorphism of filtered algebras.

Proof. Let us prove (1). That B† is an algebra with a natural filtration follows directly
from the discussion following Lemma 5.1. The isomorphism grB†

∼= C[Gχ/H ] follows from
(4) of Lemma 5.1. This is a graded algebra isomorphism, where C[Gχ/H ] is in degree 0.
This shows B†

∼= C[Gχ/H ].
Let us now prove (2). Let I be an H-stable codimension 1 ideal of W. We can form

the algebra A =
⊕

h∈Gχ/H
W/h.I. For example, B† is of this form by (1). Consider the

algebra A†. The algebra grA† is the quotient of the g-finite part of A∧0

~ ⊗̂C[[~]]A
∧χ

~ by the
ideal generated by ~. This embeds into the g-finite part of (A∧0

~ /(~)) ⊗ grA. By [Lo2,
Proposition 3.2.2,3.2.3], the latter coincides with C[G/H ].

Now consider the natural homomorphism B → (B†)
†. This is a homomorphism of

filtered algebras. The kernel is supported on ∂O by Lemma 5.1. Note however that B
has no zero divisors and so is prime. It follows from [BoKr1, Corollar 3.6] that the kernel
is zero. So B →֒ (B†)

†, an inclusion of filtered algebras. Together with the inclusion
gr(B†)

† →֒ C[G/H ] = grB, this implies that B →֒ (B†)
† is an isomorphism of filtered

algebras. �

5.3. Orbit method. Let O1 be an adjoint orbit corresponding to a birationally minimal
induction datum (l,O′, ξ). By Theorem 4.4, (l,O′, ξ) is recovered uniquely from O1 up
to G-conjugacy. Set X := Spec(C[G×P (X ′ × p⊥)]), where, as usual, X ′ := Spec(C[O′]).
Let Aξ denote the quantization of C[X ] with quantization parameter ξ. It is uniquely
determined by O1 as a filtered algebra with a G-action. Indeed, (l,O′, ξ) is determined
uniquely up to G-conjugacy from O1, see (1) of Theorem 4.4. Then we can use Corollary
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4.9 to see that C[Xξ] is uniquely determined up to a G-equivariant isomorphism of filtered
Poisson algebras. Remark 3.24 then shows that Aξ is uniquely determined up to a G-
equivariant isomorphism of filtered algebras.

The algebraAξ comes with a quantum comoment map g → Aξ. The classical comoment
map g → C[X ] lifts to a quantum comoment map g → Aξ, the argument is similar to
Step 1 of the proof of Proposition 4.5.

We will write A(O1) for Aξ, J (O1) for the kernel of U → A(O1). We note that J (O1)
is primitive. Indeed, the intersection of J (O1) with the center of U is a maximal ideal
in the center because (U/J (O1))

G →֒ AG
ξ and dimAG

ξ = dimC[X ]G = 1. Further, the
algebra Aξ has no zero divisors because its associated graded is C[X ], which has that
property. It follows that the ideal J (O1) is completely prime, hence prime. It is known,
see, for example, [J, Section 7.3], that a prime ideal in U whose intersection with the
center is a maximal ideal is primitive.

The following is our version of the Orbit method.

Theorem 5.3. The following is true.

(1) If there is a G-equivariant algebra isomorphism A(O1)
∼
−→ A(O2), then O1 = O2.

(2) Moreover, assume that g is classical. If J (O1) = J (O2), then O1 = O2.

We note that (1) is a weaker version of [V2, Conjecture 3.9] – we only deal with coadjoint
orbits and not with their covers2.

Proof. Let (l1,O
′
1, ξ1), (l2,O

′
2, ξ2) be the birationally minimal induction data giving O1,O2.

Let χ1, χ2 be points in the coadjoint orbits induced from (l1,O1, 0), (l2,O2, 0) and let
Hi ⊂ Gχi

be the finite index subgroups produced from (li,Oi, 0), i = 1, 2.
The proofs of (1),(2) are in several steps.
Step 1. If J (O1) = J (O2), then the nilpotent orbits induced from (li,O

′
i) are the same.

Indeed, the closure of the orbit induced from (li,O
′
i) is the associated variety of J (Oi).

Now note that J (Oi) coincides with the left annihilator of the HC bimodule A(Oi). So
if A(O1)

∼
−→ A(O2), then J (O1) = J (O2). Therefore we can assume that the nilpotent

orbits induced from (li,Oi) are the same. Let us write O for this common orbit and χ for
χi.

Step 2. Assuming A(O1) ∼= A(O2), a G-equivariant algebra isomorphism, let us show
that H1, H2 are conjugate in Gχ. Consider the W -algebra W corresponding to O and the
corresponding restriction functor •†. By (1) of Lemma 5.2, A(Oi)† = C[Gχ/Hi]. This
implies H1 and H2 are conjugate. We can conjugate them and assume they coincide.

Step 3. So if we have a G-equivariant algebra isomorphism A(O1)
∼
−→ A(O2), then

H1 = H2,J (O1) = J (O2). Set X := Spec(C[G/Hi]). Let us prove (1). The algebra
A(Oi)† together with a homomorphism W → A(Oi)† can be described as follows. Pick an
Hi-stable codimension 1 ideal I ⊂ W containing J (Oi)†. Form the Gχ/G

◦
χ-homogeneous

bundle of algebras over Gχ/Hi with fiber W/I, denote it by Ai. By the construction,
A(Oi)† = Ai. Since H1 = H2,J (O1) = J (O2), we have a Q-equivariant isomorphism
of algebras A1

∼= A2. From (2) of Lemma 5.2 we deduce that A(O1) ∼= A(O2), a G-
equivariant isomorphism of filtered algebras. Remark 3.24 implies that we have a G-
equivariant filtered Poisson algebra isomorphism C[Xξ1 ]

∼= C[Xξ2 ]. We use Lemma 4.9 to
conclude that O1 = O2.

2In the forthcoming paper [LMM] we prove the full conjecture using the same method
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Step 4. Let us proceed to proving part (2). We only need to check that H1 = H2. We
will prove a more general claim: we have H1 = H2 provided A(O) is abelian, which is
always the case for classical types.

So suppose thatH1 6= H2. Let I be anH1H2-stable codimension 1 ideal inW containing
J (Oi)†. Let Γi := Hi/H1 ∩H2,Γ := (H1H2)/(H1∩H2). Consider the Gχ/G

◦
χ-equivariant

algebra A that is the homogeneous bundle over ZG(e)/(H1 ∩ H2) with fiber W/I over
1. The group Γ acts on A by Gχ/G

◦
χ-equivariant filtered algebra automorphisms fixing

the image of W. Moreover, A(Oi)† = AΓi . So the group Γ also acts on A† by filtered
algebra automorphisms fixing the image of U(g). Similarly to (2) of Lemma 5.2, we have
G-equivariant filtered algebra isomorphisms A(Oi) ∼= (A†)Γi. In particular, we see that
the group Γ/Γi acts on A(Oi) by filtered algebra automorphisms lifting the action of this
group on C[G/Hi]. This means that the parameterWiξi of the quantization A(Oi) is stable
under the action of Γ/Γi (where we write Wi for the Namikawa-Weyl group of C[G/Hi]).
It follows from Remark 3.24 that the filtered deformation C[Xξi ] of C[G/Hi] also carries
an action of Γ/Γi by G-equivariant filtered Poisson algebra automorphisms. Since G
is semisimple, the moment map Xξi → g∗ is unique hence is preserved by Γ/Γi. This

contradicts the assumption that the moment map Xξi → Oi is birational and completes
the proof. �

Remark 5.4. There are 12 orbits in exceptional Lie algebras with noncommutative A(O):
it can be equal to S3 (10 orbits, the easiest example is the subregular orbit for G2), S4 (for
a single orbit in type F4) or S5 (for a single orbit in type E8). We have checked that the
conclusion of (2) is still true for most of these orbits and we do not know what happens
for the rest.

5.4. Toward description of the image. An interesting question is to describe the
image of the map g∗/G →֒ Prim(g). We will sketch the conjectural results.

Note that the orbits lying in the union Z(O) of all sheets containing O get mapped to
PrimO(g), the set of primitive ideals whose associated variety is O. Let W denote the
W-algebra corresponding to O. Recall, [Lo2, Section 1.2], that PrimO(g) is the quotient
of Irrfin(W), the set of isomorphism classes of finite dimensional irreducible modules over
W, by the action of A(O).

By Lemma 5.2, the kernel U(g) → Aξ, where Aξ is a quantization of C[G/H ] cor-
responds to a one-dimensional W-module. When A(O) is abelian, the argument of
Step 4 of the proof of Theorem 5.3 implies that any such kernel lies in the image of
Z(O)/G →֒ PrimO(g). When A(O) is not abelian, then this does not need to be the case,
one gets a counter-example for the subregular orbit in G2.

So suppose A(O) is abelian. Now let us impose another assumption on O: we assume
that O is not one of the six bad orbits in [P2, Introduction] and is not induced from such
an orbit. Recall that the six orbits (all in exceptional Lie algebras) are characterized by
the property that O ( Spec(C[O])reg, see the tables in [FJLS].

Results from [PT] imply that, under our assumption on O, every multiplicity free (in
the terminology of [PT]) primitive ideal in PrimO(g) arises as the kernel of U(g) → Aξ,
where Aξ is a suitable quantization of C[O]. Conversely, any such kernel is a multiplicity
free primitive ideal.

From now on let us suppose that g is classical. We conjecture that the image of
the injective map Z(O)/G → PrimO(g) from Theorem 5.3 coincides with the subset of
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all primitive ideals corresponding to the one-dimensional representations of W. This
conjecture constitutes a right statement of the Orbit method for classical Lie algebras3.
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