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Abstract
We prove the equivalence between integral and local central limit theorem for spin sys-
tem interacting via an absolutely summable pair potential without any conditions on the
temperature of the system.

1. Introduction

Since the pioneering work by Dobrushin and Tirozzi [3], a certain effort has been spent in statistical
mechanics in order to understand conditions for the equivalence between the integral and the local
central limit theorem in the framework of interacting discrete spin systems. This kind of results
are very useful for instance in the context of the problem of the equivalence of the ensembles.

In [3] the authors proved the equivalence between integral and local central limit theorem for spin
systems in Z? with finite range interaction, while few years later Campanino, Capocaccia and
Tirozzi [2] generalized the proof to long range (translational invariant) pair potential J(z — y)

satisfying the condition
> T@)"? < o (1.1)
z€Z4

Recently Endo and Margarint, in [4], presented a similar proof in which the conditions on the decay
of the pair potential J(z —y) are conveniently weakened allowing J(x) to be absolutely summable,
but with the additional assumption that the temperature is sufficiently high. In [4] a remarkably
large literature on the subject has been provided, and we refer the reader to that discussion.

In this paper we prove the equivalence between integral and local central limit theorem for spin
systems interacting via an absolutely summable pair potential (which does not need to be trans-
lational invariant), without any further assumption on the temperature of the system. In order
to achieve this result we make a judicious use of classical results concerning cluster and polymer
expansion, together with a suitable decimation of the space as in [2]. In particular, we use the
estimates on polymer activities based on tree graphs inequalities valid for pair potentials originally
discussed in [9, 10], the recent generalization of the Penrose tree graph identity given in [11] and
the results and estimates on the gas of non overlapping subsets discussed in [5, 1].

To our knowledge, although it has been known for a long time that the integral central limit theorem
holds for spin systems interacting via an absolutely summable potential with some additional
conditions (for instance FKG inequalities, see e.g. [7, 8]), there are no results in literature about
the validity of the local central limit theorem with the same conditions.

2. The model

We work in Z?. In each site = € Z% we define a spin variable s, which we suppose for simplicity to
take values in a bounded interval I of Z, (i.e. s, can take all value set I = [m,m +1,...,n —1,n]
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with m,n € Z and m < n). However, all results obtained in this paper can be generalized
straightforwardly for bounded spin systems in which the variable s, is lattice distributed with
maximal span, see [3], [2] and [4]. We recall that random variable s, is lattice distributed if there
are two real numbers a and h such that s, = a +mh with m € Z. The number A is called the span
of the distribution and h is maximal if the same representation for s, cannot be obtained for any
a’,h' € R such that b/ > h (see [6]).

We set 0 = maxg, ey |s;| and |I] the cardinality of I. Let Q denote the set of all spin configurations
in Z% and if A C Z9 then Q, is the set of all spin configurations in A. We denote by sp a generic
configuration in A. Note that if A is finite then Q4 contains |I|lA! different configurations where
|I| denotes the cardinality of I. Given a boundary condition w € Q and given A C Z¢ finite, the
Hamiltonian HY (sp) of the system in A as the function from 2, to R given by

—HZ (sp) Z JpySzSy + Z Z JpySzwy (2.1)

{z,y}eA reN yeA®

(the minus sign is there just to accord to physicists’ convention). We set A° = Z%\ A and

he(sy) Z Ty SzWy- (2.2)

yeA©

The pair potential J,, € R (with no definite sign) is supposed to be absolutely summable. Namely,

sup Z | Joy| = J < +o0. (2.3)
z€Z4 y#£T

The probability of a spin configuration sy in A (Gibbs measure) is given by

e—HZ(sa) eZ{z,y}eAn Jaysesy+ ,en, M (se)

PA(sa) = = 2.4
A(sa) 73 7% (2.4)
where
Z ez{zvy}ef\n nySxSy"rZzeAn h;’(sx) (25)
SAEQA

is the partition function.
We further define the single spin probability distribution at the site z € A as
he (sz)

Zw

xT

e

Pe(se) = (2.6)

where Z = >, o, ehz(s2) | Hereafter E(-) will denote hereafter the expectation w.r.t. the single
spin probability measure p¥(s,). Note that, due to (2.3) we have, for all allowed values of s,
and uniformly in z and w that |h%(s,)| < Jo?. Therefore the single spin probability distribution
satisfies, for any s, and any w, the lower bound

2
6—2Jo

P2 (sg) > 7] = k(J,0). (2.7)
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Let now A, be the cube of size 2n + 1 centered at the origin. We set shortly P§ (-) = P}.(-) and
EZ (-) = E;(:) for the Gibbs measure on (5, and its expected value respectively. We further define

S, = st

Z‘EA'!L

the random variables

and

5 o Sn - E%(Sn)
n — /—Dn
where D,, is the variance of S,,.

Definition 1 The integral central limit theorem holds for the spin system under study if the fol-
lowing conditions are satisfied.

. Dy
nh_}ngo T a>0 (2.8)
WG 1 o2
nh_)n;o]P’n(Sn <x)= ez /_OO e 2dz (2.9)

Definition 2 The local central limit theorem holds for the spin system under study if (2.8) holds
and

_22(p)

e 2
I ‘\/Dm;‘; Sp = p) — ‘:0 2.10
Jim_sup (Sn=p) = —7= (2.10)

where
_pr— E (Sn)
VD,

The result of the present paper consists in the proof of the following theorem.

2n(p)

Theorem 1 Under the assumption (2.3), if the sequence of Gibbs measures P¥ satisfies the Integral
central limit theorem, then it satisfies also the local central limit theorem.

The rest of the paper is devoted to the proof of Theorem 1.

3. Preliminaries

The starting point is to observe that

1 _@ 1 o —it ( _ﬁ
——e 2 = — et Pl gt 3.1
Vor 27 J_ (38:1)
and
1 [T7VDn e :
VD P¥(Sp, =p) = — / E% (e ) e~ (P) gt (3.2)
2T —7v/Dy,

Equality (3.1) is a standard Gaussian integral while (3.2) holds in general for spin random variables
s which are lattice distributed (see above). We remind that in our case p can take only integer
values. Let us set



Then, by (3.2) and (3.1) we have

+7T\/D_7L e . [e'e) ) 2
Gn = / B (™5 )e=2n(P) gt — / e~ () o= 7 gt
—7\/ D,

—00

Let now § < m and let A < dv/D,, a sufficiently large positive constant. Thus

+A
G| < / BY(c5n) — o= |dt + / IE (!5 )|dt + / IE (/57 )|dt
—-A A<|t|<6v/ Dy 6V Dn<|t|<mVDn
2
+ e 2dt
X
Therefore
e_zglzfp) 1
sup |V Du B (Sn = p) =~ | < g [1D 4+ 1)+ 10+ 10
where
+4
G R A R N L
—A A<|t|<6v/Dy
I3 = / IE (/57 )|dt, I = / e dt.
5Dy <|t|<mvDn t1>A

Now we have trivially that ™ is as small as we please due to arbitrarily of A. Moreover, by the

integral central limit theorem, i.e. (2.9), we also have that lim,, L(Ll) = 0. Therefore we need to

bound If(?) and IT(L?’) and prove that they go to zero as n — oo.
Observe that ) s
[ ()] = [E(e VD).

Sn

So, by the change of variables 7 = ¢//D,,, and using that |Eﬁ(eitﬁ’_n )| is an even function of ¢, the

integrals I,(f) and IT(L?’) can be written as

5 ™
1) =2/D, / [ES(eS)dt, 1) =2y/Dy / [ (5% dt.
A J

Dnp,

We now define the decimation introduced in [2]. Let o € N and define

Zd(ro) = {(’I’Lﬂ"o, - ,ndro) T n; € Z},



i.e. Z%(ry) is a cubic sublattice of Z¢ of step 7. Let A, =A,N Z%(ry) and S, = Zme[\n $;. Then
B2 (e"5n) = E(E2 (5|5, 5, fixed)) = [E2 (e S0ES (505, 5 fixed))].
Thus
By (e"5m)] < sup B (€5, &, fixed)| = sup [Es (™) (3.4)

weQ(An\i\n)UA% WGQ[-\C
Here above /NX% =21 \ An = (A \]\n) U A¢ and IE‘;{ is the expectation w.r.t. the measure

eZ{z,y}E/’\n Jzy5x5y+zze/'\n h$ (sz)

Ph(sz,) = 7 (3.5)

where now
he(sg) = Z Ty Saty
yeAg
and
Z;LU = Z e Z{w,y}ef\n Joysesy+2 4ek,, hi(sw)'
S[-\nEQ]\n
We set
Ty = sup Y |y (3.6)
x€Z%(ro) yezd(rg)

y#w

Note that J,, can be done as small as we please by taking 7 sufficiently large. Moreover
We now state a key lemma from which Theorem 1 follows as an immediate corollary.

Lemma 2 Let k(J,0) as in (2.7), let 6, C' and c the positive numbers given by

~ k(J,0) B
0=y U=v

¢ = r(J,0)sin? (5/2) (3.7)

and let rg be chosen such that

5¢ c

e 1(e1—1)
" (14 d0)ec? }’ (3.8)

W

I 3 f [K(J0)]
e2 J2 < min
0 {96\/5036

[

then
(a) For anyt € (0,0]
B (5] < e 7 I (3.9)

(b) For any t € (6,7]
B2 (5)] < ¢3! (3.10)



Assuming Lemma 2 , Theorem 1 follows straightforwardly. Indeed, by (3.9), (3.10) and using (3.4),
the integrals 1t? and 1Y given in (3.3) can be bounded as

5 | A

@< [Pn e e dr (3.11)
n ‘An’ i Y
Ay
I® < 23/Dy (1 — 5)e~ 280, (3.12)

The r.h.s. of (3.11) goes to zero as n — oo due to (2.8) and the arbitrariness of A while the r.h.s.
of (3.12) goes to zero as n — oo due to (2.8).
The rest of the paper is devoted to the proof of Lemma 2.

4. Proof of Lemma 2, part (a)

Recalling the definition of the single spin distribution (2.6), the expectation E¥(-) w. r. t. the
measure (3.5) can be written as

- i JzySz
ZSAnle\ne Z{z,y}GAn yS sy( . )H"Eef\np:(sw)

Bo( - )= (4.1)
- A Jz x
Zs[\neﬂfxn € Ztmehn Tty [oca, P5(s2)
Therefore we can write
Ew(eitgn) — E‘;]f(t) (4 2)
" 2(0) '

where

)= > JI e I e I po(sa)- (4.3)
xE[\n xe]\n

sl_\n EQJ_\TL {"E,y}C[\n

Proposition 3 The function Z%(t) can be rewritten as the t-dependent grand canonical partition
function of a gas of non overlapping subsets of A,,. Namely the following identity holds.

k
= m=1+Y Y e (14)

k>1 {Ry,...,Ry}: R;CApn 1=1
R;#0, R;NR;=0

with activities given by

XX X I (et =) T (e = 1) [T p(se) if [R| > 2

sREQR9geGR SCR {m,y}GEg zeS TER

&G(R) = (4.5)
> (e = 1)pi(s2) if R={z}
Sx€1

where G denotes the set of all connected graphs with vertex set R and E4 denotes the edge set of
g € Gp.



Proof. The identity (4.4) is obtained via the standard Mayer trick on both the one point terms
of the form €%+ and the two point terms of the form e/+v5=%v. Namely in the r.h.s. of (4.3) write

[Leex,, elts Hwef\n[(eitsx — 1+ 1] and [T, yea, efeviaty = ] x, C[\n[(emesmsy —1) + 1] and
{z.y} {z.y}
develop the products. [

In the next section we will make use of the following well know expression (see e.g. [5]) of the
logarithm of Z¥(¢).

[e%S) k
—w 1
mEL(t) = o Yoo TR, Ry [ &R (4.6)
k=1"" (Ry,...R)EPk i=1
where P, = {R C A, : |R| > 1} and
1 ifk=1
¢T(R1, - 7Rk) = Z H (e_vh.c(Riij) _ 1) if k>2 (47)

geGy {i,j}EEg

with Vi, o(R;, Rj) = +oo if RiNR; # 0 and V, o(R;, Rj) = 0 if R;N R; = () and G}, denotes the set
of all connected graphs with vertex set {1,2,...,k} = [k].

4.1 Estimate on |E%(e”§")| when t € (0,9] with 0 given in (3.7)
By Proposition 3,

B (eit5n)| = (exp { InZY (1) - lnE‘]‘;n(O)H = exp {5)%(1115‘}\’ (t) — lnE‘}\’n(O)) }

Then, by (4.6) we have that

k k
R(IE2 (Jt) -y (0)) = Z S o (R RR|[TaR) - [T eo(R)]. @3)
k>1 " (Ri,...,R,)EPk i=1 i=1
Set
k k
k(1) = [[&(R) — [ o(Ra). (4.9)
i=1 i=1
It is not difficult (but tedious) to check that §RdFC’Zt(t) ‘ +—o = 0. Moreover, since we also have that

Fy(0) = 0, by the Taylor remainder theorem, we can conclude that there exists a 0 < 6 <t < 0
such that

o A 11

w ztSn _ T ;

[E, (e"7)| = exp { Z A Z (B, ’Rk)%@ [H&(RZ)} t6}
k>1"" (Ry,....Ry,)€Pk =1

where P, = {R C A, : |R| > 1}. Let

. P (Tek,
E E d (R17--'7Rk)dt2 [Hgt(Rl)} ‘tz@
i=1

k>1 (Rh ~Ri)EPk



We can write

G(0) = G1(0) + Ga(0) + G3(0) + Ga(0)

where
2
Gi0) = 32 ¥ (o)) (o)) o (4.10)
xEAn
1 o 2 ,
Ga(0) = Z 5‘13 ({x}v{x})ﬁé}({x})’t:% (4.11)
xEAn
Ga(0) = > Zl@T({ } { })d—2£k({ Dl (4.12)
3 —IEAH = X X k,.ti.r;l;s:l? 2 + WLy)|t=0, .
1 & L
o)=Y = > @T(Rl,...,Rk)@{H&(Ri)]L_e, (4.13)
k>1 """ (Ry,..R,)eP i=1 -
Ji: |R;|>2
so that
2

B = exp { SR(Ga(0) + Gal6) + Galt) + Ga) |

< exp {g(mw) L RG(6) + [G5(6)] + \G4(9)!)} |

In order to control G;(0) (i = 1,2, 3,4) we need to evaluate dté’t({:n}) and 4 e ét({:n}) Recalling the
definition of & ({z}) given in (4 5), we have

d . itSy W ztsz
Loty =i Y se (). el = — 3 plsa)s (414
sg€l szl
whence

2
%%ft({x}) Lze = —E%(s2 cos(0s,))

where we recall that E¥(-) is the expectation w.r.t. the single spin probability measure p%(s;).
Moreover, when t < 9,

&e({z}) < do,

‘d&({w})‘ <o
dt -

d? < 2
ailla))] <% (4.15)

Bounding RG1(0)
Due to (3.7) and (2.7), § < 13-), we have that surely cos(fs,) > £ for any 6 < 6. Then

—2J02 2 2
B w2 _ w 9 S € o _ To
RG1(0) = EZ (s5 cos(0s,)) g P2 (8,)s5 cos(fsy) > 72’1’ 5 k(J,0)

Sx €1



where r(J, o) is the positive number defined in (2.7). This bound implies that

702 <

Bounding RG2(0)

We need to evaluate %{?({x}) appearing in the term Ga(6). We have, recalling (4.14)

2 & 2 t(1 % its w its
%sf({xp:z[(d@gt ”) +a(ap Tl })] —2[(B2(s6™0))? + () B2 (26)].
Now observe that

(B (sz(cos(sat — m/4)) (B (sz(cos(sat + m/4)))]

| %

R (E;’(Smeitsz))2 =
and cos(z & 7/4) is greater than 0 when |z| < 7/4. So, since § < —3—, we have that surely

EZ (sz(cos(sgt £=m/4)) >0

for any t < 4. In conclusion we have that
d&({z}) \?
R <7> <0
dt
Thus, recalling (4.15), we have, when 6 < ¢t < § that

Rl < 2l{a })\'d @({l‘})' < 2508

which implies that B
RG2(0) < 2003 |A,,). (4.17)

Bounding |G3(0)]
In order to bound To bound |G3(f)| we will use the following well known identity (see e.g. [5]).

e ({a}, ... {}) = (D) (k — DL (4.18)

k times

We have, for k> 3
2 2
S {ah) = ke~ e ((ah) (56D + ke (D (o
Hence, by (4.15), we have, for any t < 9,

(e < k= 1)0)t 0% + k(G

9



Therefore, since § < § < using (4.18), we have that surely

12’

1G3(0)] < o? (Z(aa)“[(k 1)+ (50)]) 1A, < 2503|An|. (4.19)
k>3

Collecting the bounds obtained above for RG1(0), RG2(6) and |G2(0)| we have that

RGL(60) + RGa(8) + |Ga(0)] < —|Ano? [7 . J)—géa

and recalling that § = ”g’;), we can conclude that as soon as 6 < § the following inequality holds.
- J7
RGA(0) + RGa(0) +G5(0)] < |4, )02 L7
Bounding |G4(0)]
We start by observing that
& 11 26 (R dst >
| [ar)] = Z e H &(R;) + Z Z G(R).  (4.20)
i=1 i=1 i=1 jE[k le[k]
J#z J#z 5749
. dgt & (R
We thus need an estimate of |§(R)|, | =5~ \ d |[=m \ when |R| > 2,.

Let us define

wo(R) = SREQR 9E€GR {z,y}€E, . (4.21)

(1 +60)" 3 Therpi(sa)| 3 I (eweesr 1)) if [R] > 2
do if |[R|=1

We have, for |R| > 2 and for any t < §

dgzzi(tR) _ Z Z Z H (eryszsy _ 1)%[ eltsz _ ”’ pr 3:(:

SREQR geGRr gig {z,y}eE, mGS TER
SHYDMDIEE | G 12 jsol | TT le™ = 1] TT #2052

SREQR S;R 9€GR {z,y}€E, Zii rER

(4.22)
<o Z Z ‘S‘ (50’ |S]|— 1‘ Z H J:vyszsy _ 1)‘ Hp‘m"(sx)
SREQR Sgéﬁ' geGRr {z,y}€Ey r€R
< o|R|(1+ d0) |R| Z ‘ Z H nysﬁsy - )‘ H P (sz)
srEQR ge€GR{z,y}l€E, TER

= o|R|wy(R)
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and

dzf R SxS d2 1Sy
IR SID B DI | G R | § ()[R ) 1S
SREQR geGR SCR {:C;y}EEg €S TER
< > IIwen| > > I (@ -1 [Zsiﬂwtsﬂ—u

Q R Gr SCR S wes
SREQR x€ geGRr o {z,y}eE, z€ ves
+ > Isasyl I I -1 . (4.23)
z,yeS z€S
z#y 2T,y

SCR
)

< o2uo(R)| Y- (IS160)/51~ + (I1(1s] - 1><5a>'5—2)] '

= o’wy(R )‘|R| ((1 +60) =L L (IR — 1)(1 + 50.)\R|—2)
< |R[*0%wy(R)

Therefore we have, for any t < §

d2&,(R)
dt2

dé,(R)
dt

)

Jwo(R)  if [R[ =1 Zwo(R) if Rl =1

B {U\Rywo(m if [R| > 2

B {0213\%0(3) if |[R| > 2

Since we are not interested in optimal bounds we can (very roughly) bound for any non empty
R C A, and for any t < §

dé,(R)
dt

o|R|

<=5 wo(R) , L)

dt?

< o i
< Z IR Puo(R).

Using the two bounds above and recalling (4.20) we have

2 k k
dtz[ﬂ@ )| _|<% (ZR P > [BlIR] | [Two(R)
i=1 (i.4)€[k]2 i=1
i#]
52 [k 2k
=5 (Zum) [T wo(r;)
i=1 i=1
02 k
< G I1 s
=1
0'2 b
:ﬁnm@)
=1



where we have denoted shortly wy(R) = wo(R)e!®l for R ¢ A,. Now we can bound |G4(0)|, when
0 < ¢, as follows.

2
]G4(6)\:§—2Z% S TR, R le

k>1 (Ry,....Ry)ePE
3i: |R;[>2

2
P 30 3r JD SN | P

REPn k>1 " (Ry,..R;)ePk

|R[=2 3i: R,=R
0,2
S (5_ Z wl(R)HR('wl)
RePn
|R|>2

wl = - Z ‘(ﬁT(R,Rl,...,Rk)’wl(Rl)---wl(Rk).

According to the standard cluster expansion theory of gas of non overlapping subsets (see [5] and
[1]), denoting

wgk) = sup Z wi (R), (4.24)
xEAn RCAn
z€R, |R|=k
if for some a > 0,
Zw%k)e“k <e' -1, (4.25)
n>1
then
g (w) < e, (4.26)

Hence using (4.26) and (4.24) we get that

(k)

To bound w;"~ when £ > 2 we can use the methods based on tree graph inequality first originally
introduced in [9] and recently generalized in [11]. Observe now that by assumption (2.3), the pair
potential J,, is stable. Namely, assumption (2.3) implies that for any finite R C Z%(rg) it holds

R
Z JrySaSy = —%JTOO’2
{z,y}CR

where J,, is the positive number defined in (3.6).

12



Therefore, following [11], we can bound, for any R C A,,

‘Z H (erys””sy—l <€2‘JT0 Z H —|Jzy8z8y|)

9€GR {z,y}€E, T€TR {:c,y}EEg

Eid} 2 —
<e? Jrgo O_2\R| 2 § : H |ny|

TETR {x7y}€ET

where Tg is the set of trees (connected graphs with no loops) with vertex set R. Hence

wgk) < (14 do)re ke Trgo? 2h—2 sup Z Z H | Syl

T€An 7€TR  RCAn {z,y}eE-

zE€R, |R|=k
f ook (4.27)
R RS SR S |
n €Ty (@1,..,z)EAE {z,]}EET
T =, CL‘Z#CD]
where now T,, denotes the set of trees with vertex set {1,2,...,n}. Using (3.6) it is standard to
check that
Z H mxj|_<]k1, VTETn
(T1,e0y xk)eA {Z,]}EET
1=, zlgézj
and using also that ZTeTk 1 = k*=2 (Cayley formula) we get, for k > 2
kJpn o2 Jok—2
wgk) S ek(l + 5J)k€ g O'2k_2¢]7{€0_1m
‘ (4.28)

’r

2¢2e B 2JTO]

where in the last line above we have used that ( ) < €* and that 14 do < 2. So, setting

Jroo'

v(rg) = 2e%e 2 2JT0 , e(d,r9) = min{edo, v(rg)}

we get that, for all £ > 1, wgk) < [e(8,70)]*. Tt is now easy to check that condition (4.25) is satisfied
taking @ = In2 and (d,79) < %, i.e., since by hypothesis do < 1—12 so that edo < 1/4, condition

(4.25) holds if v(rg) < i. Therefore, for ro such that v(rg) < +

1, we have

2 8a2|A,,
1G4(0)] = %Mn! Z2k[u(7‘o)]k < %1/2(7’0).
k>2

In conclusion, when 6 = §(.J,0) and v(rg) < I we get that

k(S 0) 8v2(rg)
2 52

RG1(0) + RG2(0) + |G3(0)] + |Ga(0)] < —|An|o?

13



Therefore, recalling the definition of §(J, o) given in the statement of Lemma 2, as soon as

k3(J, o
8v2(rg) < W

we get that

§R(G1(6) + Ga(0) + G3(0) + G4(6)> < —[Ralo? =

Note that (4.29) is surely satisfied if

Jrg 1 - K32(J,0)
"7 96v/2e203

Therefore if (4.30) holds then Part (a) of Lemma 2 is proved.

5. Proof of Lemma 2, part (b)

2’%(‘]70').

(4.29)

(4.30)

In order to prove part (b) of Lemma 2 we first state and demonstrate a preliminary bound regarding
the single spin probability distribution p¥(s,) introduced in (2.6). Recalling that E¥(-) denotes the
expected value w.r.t. the probability distribution p¥(s,), the following proposition holds.

Proposition 4 Let § and ¢ as in (3.7), and let t € [§,2m — §], then, uniformly in w we have that

B (e )| < e

Proof. We have

| B9 (eitse)| = -< Z P (82) cos(sxt))2 + ( Z Py (52) sin(sgct))2

L sz€l sg€l

— |3 pEsa)p(sh) cos(se — 5,1

1
2

| (82,85 )€I2

1 W w (! ’

=¢ {2 Do B (sa)p(sh) cos((se — s4)t)
(sz,s )612
=exp | - in2 ({2 = )t
- { Z % (s2)pY (s, sin ( 5 )
(82,84, )EI?
t

Sexp{ (J,0)sin (2)}

< exp {—FL2(J70') siHQ(g)}

(5.1)

1
2

-1

where in the first inequality we have used that = < e3@ =D for 4 > 0, in the second inequality

we have used the bound given in (2.7) and the last inequality follows from the assumption that

tels2r—4. O
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We can prove Part (b) of Lemma 2. Recalling that

By (")) =

with Z,,(¢) given in (4.3), let us we apply the Mayer trick only to the factor H{m SCAn eJzysesy We
get

En(t) _ Z Z H eitsgc H (erySzSy _1) H p;(sx)

geg]\n S[\nEQ]\n z€A, {z,y}€E, z€A,
itSy W JzySzS w( ilSy

=2 | X Il ™o II -] I E2e™)

gegj_\n SSg GQSQ :EESQ {x,y}EEg (EG[\n\Sg
:e_C|An‘ Z eC|Sg‘ Z H eitszp;)(sm) H (eryszsy _1)

gGQ;\n SSQGQSQ TESy {x,y}EEg
< I (eBz(e™)
€AR\Sy

where G; is the set of all graphs (either connected or not connected) with vertex set A, and
Sy = Uz yrer, {z,y}. Now let

=)= 3 (el S T ettt I (e

ge(}/—\n Usgéﬂsg TESy {z,y}eE,

Similarly to Proposition 3 we have the identity

k
B =1+Y. Y, J[&w®) (5.2)

k>1 {Ry,....,Rp}: R;CAnp i=1
IR;|>2, R;NR;=0

where now

GR) =N T8l > I (el —1).

oK, cQpr zeER 9€GR {z,y}€Ey

Using Proposition 4, we have that for any ¢ € [§, 2m — ¢]

ecEx(eitsl"w)‘ — 1,

so that we get
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and thus |E%(e'5n)| < e

:2(0) =Z5(t)|e= 0,t=0- Therefore

’Ew(eitsn)’ _ e—c\[\n|e§R(hlEfL(t)_lnE%(O))
© =
< e—c\i\uee"“E%(”‘*“"E%(O)‘ (5.3)

< oClhn] el EROH ISR O
where in the last line | In E\?\ (t) denotes the positive term series
=1
(=3, ( Zg > (R, IHIQ (5.4)

k=1 " (Ry,...,Ri)EPk

Now, recalling definition (4.21) and setting w.(R) = e“®lwg(R), we have that

g <e® S T o T e = 1) = elflug(R) = we(R)

UAnEQR r€R geGRr {z,y}€Ey

while
[€0(R)| < wo(R) < we(R)
Therefore, recalling definition (5.4) we have |InZ|2(0) < |InZ|¢(¢) so that

|I~E°;{(eit5")| < e—c|1~\n\ee2\ln5\n(t) (55)

Now, according to standard theory of gas of non overlapping subsets (see [1, 5]), if for some a > 0
the following inequality holds

Z wFe® < e —1 (5.6)
k>2
where w") as in the r.h.s. of (4.24) with w.(R) in place of wi (R), the positive term series | In Z7 ()]
is bounded above by a|A,|. So if we choose a = § we get that

Now, recalling (4.28) with ¢ in place of 1, we have the bound

wk) < [(14—50) el 2Jr0]k.

Therefore the condition (5.6) (with a = {) is surely satisfied if

k c
Z[(l—i—éa) 7 oelte 2J2 } <e1—1,
k>1
ie. if
e (ei —1)
~ (1+d0)ec?

JTO 02

1
T2 < (5.7)
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Therefore if (5.7) holds, Part (b) of Lemma 2 is proved.
In conclusion if (3.8) holds, then both statements (a) and (b) of Lemma 2 are satisfied.
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