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Feynman–Kac Formula and Asymptotic
Behavior of the Minimal Energy for the
Relativistic Nelson Model in Two Spatial
Dimensions

Benjamin Hinrichs and Oliver Matte

Abstract. We consider the renormalized relativistic Nelson model in two
spatial dimensions for a finite number of spinless, relativistic quantum
mechanical matter particles in interaction with a massive scalar quantized
radiation field. We find a Feynman–Kac formula for the corresponding
semigroup and discuss some implications such as ergodicity and weighted
Lp to Lq bounds, for external potentials that are Kato decomposable
in the suitable relativistic sense. Furthermore, our analysis entails upper
and lower bounds on the minimal energy for all values of the involved
physical parameters when the Pauli principle for the matter particles is
ignored. In the translation invariant case (no external potential), these
bounds permit to compute the leading asymptotics of the minimal energy
in the three regimes where the number of matter particles goes to infinity,
the coupling constant for the matter–radiation interaction goes to infinity
and the boson mass goes to zero.

1. Introduction

1.1. General Introduction

The Nelson model, describing a fixed number of spinless non-relativistic quan-
tum particles linearly coupled to a field of spinless bosons, is an important test-
ing ground for various mathematical aspects of the ultraviolet problem. Orig-
inally proposed by Nelson [23,24] as an example of an explicitly ultraviolet-
renormalizable theory, it is the subject of ongoing research up to date.

We investigate an adaption of the original Nelson model in which the
particles have a relativistic dispersion relation, from now on referred to as
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the relativistic Nelson model, and focus on its probabilistic analysis. From a
physical point of view, such an ultraviolet-renormalizable relativistic model is
of special interest, because one expects the particles to obey the relativistic
dispersion relation if the system can also describe very high energies. Due to
a stronger ultraviolet divergence in three space dimensions, we restrict our
attention to the case of two space dimensions. We assume the bosons to have
a mass, for otherwise the model would be unstable in two dimensions.

The renormalization problem for the relativistic Nelson model has been
treated in the articles [32] and [9,12] in two and three spatial dimensions,
respectively. Recently, Schmidt [28] renormalized the two-dimensional model
using the technique of interior boundary conditions, which allowed him to
prove stronger convergence results and to give an explicit expression for the
renormalized operator. A related model, in which a fermionic scalar field is
linearly coupled to a bosonic scalar field, has recently been renormalized via
a resummation scheme technique in [1], where the physical example can also
only be treated in two space dimensions.

Motivated by the recently revived interest in the model, we derive a
Feynman–Kac formula for the renormalized relativistic Nelson Hamiltonian
and discuss some of its applications. Similar formulas for the non-relativistic
model have been derived in [10,22,24]. The technique we use is built upon
that of [22]. Explicitly, we derive an expression for the Feynman–Kac semi-
group with ultraviolet cutoff and a cutoff dependent energy counter term,
which still is mathematically meaningful when the cutoff is dropped. We then
prove that the generator of this semigroup without cutoff is the norm resolvent
limit of ultraviolet regularized Nelson Hamiltonians with added energy counter
terms as the cutoff goes to infinity. In particular, the generator of our limiting
semigroup agrees with the renormalized Hamiltonians constructed in [28,32].
Compared to [22], we need to replace the Brownian motion as generator of
the particle dynamics by a suitable Lévy process. Further, in comparison with
[28,32], the probabilistic technique easily allows us to treat a broad class of
external potentials.

Along similar lines to [22], our probabilistic analysis also entails a vari-
ety of lower bounds on the minimal energy of the relativistic Nelson model,
with only a minor amount of extra work. Combined with more well-known
trial function arguments, it further yields upper bounds, which asymptotically
match with the lower ones in the translation invariant case (no external po-
tential). More precisely, we are able to compute the leading asymptotics of the
minimal energy in the three regimes where the number of matter particles goes
to infinity, the coupling constant for the matter-radiation interaction goes to
infinity and the boson mass goes to zero. Here, we are always discussing the
minimal energy in our model without any symmetry restrictions imposed on
the matter particles (no Pauli principle).

Further results of our analysis are weighted Lp to Lq bounds on the
semigroup, which also is shown to map bounded sets in Lp onto equicontin-
uous sets of functions. As observed in [19,22], the general structure of our
Feynman–Kac formula easily entails ergodicity of the semigroup, a result that
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has been obtained in [31] for the fiber Hamiltonian at total momentum zero in
the translation invariant case but seems to be new for the full Hamiltonian. A
well-known implication of our continuity and ergodicity results is the continu-
ity, non-degeneracy and strict positivity (for the appropriate phase factor) of
ground-state eigenvectors (if any). The weighted Lp to Lq bounds can be used
to turn L2-bounds on the exponential localization of ground-state eigenvectors
into pointwise decay estimates; see [14] for such results in the original Nelson
model. A Markov property satisfied by our Feynman–Kac integrands and the
ergodicity are the crucial prerequisites for the construction of path measures
associated with ground states; see again [14].

Structure and Notation

The article is structured as follows: In the remainder of this introduction, we
define the relativistic Nelson model studied here and take a first glance at our
Feynman–Kac formula, as its thorough presentation is somewhat lengthy. Pre-
cise statements of our results on the Feynman–Kac formula, ergodicity, as well
as bounds on and asymptotics of the minimal energy can be found in Sect. 2. In
Sect. 3, we prove the Feynman–Kac formula, relying on a number of properties
of our Feynman–Kac semigroups as well as an integral equation satisfied by
the Fock space operator part of the Feynman–Kac integrands with ultraviolet
cutoff. It is not difficult to verify the latter integral equation, whence this is
done first in Sect. 4. Establishing all required results on the semigroups is the
objective of the successional three sections: In Sect. 5, we provide technical
results on the two main contributions to the analogue of Feynman’s complex
action in our model, an effective interaction potential and a martingale part.
The full complex action is studied in Sect. 6; the bounds derived therein will
eventually imply our lower bounds on the minimal energy. In Sect. 7, we then
treat the full integrands in the Feynman–Kac formula and prove Markov, semi-
group and continuity properties as well as weighted Lp to Lq bounds. The final
Sect. 8 is devoted to proving upper bounds on the minimal energy. The main
text is followed by four appendices, respectively, dealing with the relativistic
Kato class, basic integral processes attaining values in the one-boson Hilbert
space, a corollary of an exponential tail estimate for Lévy type stochastic inte-
grals due to Applebaum and Siakalli [2,29] and bounds on the free relativistic
semigroup.

Let us fix some general notational conventions:
• The characteristic function of a set M ⊂ R

n, n ∈ N, is denoted by χM .
• The two-dimensional open ball of radius r > 0 about 0 is denoted as

Br := {y ∈ R
2| |y| < r}; B0 := ∅. (1.1)

• The open unit ball about the origin in R
2N is denoted as

B′
1 := {x ∈ R

2N | |x| < 1}. (1.2)

• For a, b ∈ R, we write a ∧ b = min{a, b} and a ∨ b = max{a, b}.
• The set of bounded operators on some Banach space X is denoted by

B(X ).
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• The Borel σ-algebra of some topological space S is denoted by B(S).
• The symbol D(·) denotes domains of definition. If A is a selfadjoint oper-

ator in some Hilbert space, then D(A) is equipped with the graph norm
of A.

1.2. The Relativistic Nelson Model in Two Spatial Dimensions

Let us now define the model studied in this paper. For brevity we shall freely
use some standard notation for operators acting in the bosonic Fock space F ,
which is modeled over the one-boson space L2(R2); the definitions of F and
all relevant operators acting in it are recalled in Sect. 2.1.

In the translation invariant case our model is determined by four param-
eters: The number N ∈ N and mass mp � 0 of the matter particles, the boson
mass mb > 0 and the coupling constant g ∈ R \ {0} for the matter-radiation
interaction. The dispersion relations for a single matter particle and a single
boson are given, respectively, by

ψ(η) := (|η|2 + m2
p)1/2 − mp, η ∈ R

2, (1.3)

ω(k) := (|k|2 + m2
b)1/2, k ∈ R

2. (1.4)

The coupling function for the matter-radiation interaction is given by

v := gω−1/2. (1.5)

We shall use the capital letter Ki to denote multiplication by ki, i.e.,

(Kif)(k) := kif(k), k ∈ R
2, for every f : R

2 → C and i ∈ {1, 2}.
(1.6)

Since v /∈ L2(R2), the bosonic field operators ϕ(e−iK·yv), y ∈ R
2, are ill-

defined. This makes the energy renormalization procedure necessary that we
employ in the construction of the Hamiltonian H hereinafter:

Let us write

x = (x1, . . . , xN ), with x1, . . . , xN ∈ R
2, (1.7)

and introduce the ultraviolet cutoff coupling functions

vΛ := χBΛv, Λ ∈ [0,∞). (1.8)

Since vΛ ∈ L2(R2) for all Λ ∈ [0,∞), the field operators ϕ(e−iK·xj vΛ) are now
well-defined. Furthermore, they are infinitesimally bounded, uniformly in x,
with respect to the radiation field energy dΓ(ω).

Finally, we add an external potential

V = V+ − V− : R
2N −→ R, with V+ := V ∨ 0.

Throughout this article V is assumed to be Kato decomposable with respect
to the Lévy process describing the trajectories of the N matter particles. The
latter notion will be explained in the beginning of Sect. 2.3. For the moment,
it is sufficient to know that our assumptions on V imply its local integrability
and infinitesimal form boundedness of its negative part V− with respect to the
Hamiltonian for the free matter particles

∑N
j=1 ψ(−i∇xj

).
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We can now define the regularized relativistic Nelson Hamiltonian with
ultraviolet cutoff Λ ∈ [0,∞), denoted HΛ. It acts in the Hilbert space
L2(R2N ,F). Analogously to (1.7), we write

ξ = (ξ1, . . . , ξN ), with ξ1, . . . , ξN ∈ R
2, (1.9)

and denote by Ψ̂ the F-valued Fourier transform of Ψ ∈ L2(R2N ,F). Then the
form domain Q(HΛ) of HΛ is the set of all Ψ ∈ L2(R2N ,F) such that Ψ(x)
is in the form domain of the radiation field energy dΓ(ω) for a.e. x and such
that

q[Ψ] :=

N∑

j=1

∫

R2N

ψ(ξj)‖Ψ̂(ξ)‖2
Fdξ +

∫

R2N

(
V+(x)‖Ψ(x)‖2

F + ‖dΓ(ω)1/2Ψ(x)‖2
F
)
dx

is finite. By the above considerations, the quadratic form hΛ : Q(HΛ) → R

given by

hΛ[Ψ] := q[Ψ] −
∫

R2N

V−(x)‖Ψ(x)‖2
Fdx

+
N∑

j=1

∫

R2N

〈Ψ(x)|ϕ(e−iK·xj vΛ)Ψ(x)〉Fdx + NEren
Λ ‖Ψ‖2, (1.10)

for all Ψ ∈ Q(HΛ), is closed and lower semibounded. In its definition we
already added the energy counter term NEren

Λ with

Eren
Λ :=

∫

BΛ

g2

ω(k)(ω(k) + ψ(k))
dk, Λ ∈ [0,∞). (1.11)

By definition, HΛ is the unique selfadjoint operator in L2(R2N ,F) representing
hΛ.

The renormalized relativistic Nelson Hamilton in two space dimensions
is now given by

H := norm-resolvent-lim
Λ→∞

HΛ. (1.12)

As alluded to above, existence of the norm resolvent limit has been established
in [28,32], at least for the case V = 0.

Our Feynman–Kac formula for H (Theorem 2.1) can be stated as follows:
For all t > 0 and Ψ ∈ L2(R2N ,F), there is a unique continuous representative
of e−tHΨ satisfying

(e−tHΨ)(x) = E

[
euN

t (x)−∫ t
0 V (Xx

s )dsFt/2(−UN,−
t (x))Ft/2(−UN,+

t (x))∗Ψ(Xx
t )

]
,

for all x ∈ R
2N . Here X is a vector of N independent identically distributed R

2-
valued Lévy processes with Lévy symbol −ψ, and Xx = x+X. The real-valued
continuous and adapted stochastic process uN (x) is the complex action and
UN,±(x) are continuous adapted stochastic processes taking values in L2(R2).
Furthermore, for fixed h ∈ L2(R2), Ft(h) is an operator on F explicitly given
as an exponential series of creation operators a†(h) controlled by the semi-
group at time t of the free radiation field; see (2.4). Its adjoint Ft(h)∗ contains
annihilation terms. The processes uN (x) and UN,±(x) are given by explicit
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formulas involving (stochastic) integrals that are mathematically meaningful
directly without any cutoff. Nevertheless, we will actually re-prove the exis-
tence of (1.12), mainly to verify that H generates the semigroup defined by the
right hand side of the Feynman–Kac formula. Here we shall make use of our
assumption that V be Kato decomposable in a relativistic N -particle sense.

If the boson mass was zero, there would still exist a canonical selfadjoint
realization of HΛ for suitable V , whose spectrum was, however, unbounded
from below; see, e.g., Lemma 8.1 and Corollary 8.3. Hence, an energy renor-
malization is impossible for zero boson mass. This is why we assume mb to be
strictly positive, while mp is only required to be non-negative.

2. Main Results

In this section, we present our main results in detail. To this end, we first recall
some necessary Fock space calculus in Sect. 2.1 as well as relevant facts on the
Lévy process X and related probabilistic objects in Sect. 2.2. In Sect. 2.3,
we will step by step introduce all processes appearing in our Feynman–Kac
formula and state the latter in Theorem 2.1. Applications of the Feynman–Kac
formula are described in Sect. 2.4 (ergodicity), Sect. 2.5 (two-sided bounds on
the minimal energy) and Sect. 2.6 (asymptotics of the minimal energy).

2.1. Important Operators on Fock Space

Here we shall briefly recall the definitions from Fock space theory necessary
for an understanding of this article. For a more detailed introduction, we refer
the reader to [3,25].

The bosonic Fock space over L2(R2) is the direct sum of Hilbert spaces

F := C ⊕
∞⊕

n=1

L2
sym(R2n), (2.1)

with L2
sym(R2n) denoting the closed subspace in L2(R2n) of all its elements φn

satisfying φn(kπ(1), . . . , kπ(n)) = φn(k1, . . . , kn), a.e. for every permutation π

of {1, . . . , n}; here k1, . . . , kn ∈ R
2.

The first operator in F we introduce is the selfadjoint radiation field
energy denoted dΓ(ω). Each subspace in (2.1) is reducing for dΓ(ω). Its action
on φ = (φn)∞

n=0 ∈ D(dΓ(ω)) is given by

(dΓ(ω)φ)0 = 0 and (dΓ(ω)φ)n(k1, . . . , kn) =
n∑

j=1

ω(kj)φn(k1, . . . , kn),

(2.2)

a.e. for every n ∈ N. Here φ ∈ F is in the domain of dΓ(ω), if and only if the
expressions on the right hand sides in (2.2) define a new vector in F .

Next, we introduce the annihilation operator, a(f), associated with f ∈
L2(R2). It is the closed operator whose action on φ = (φn)∞

n=0 ∈ D(a(f)) reads

(a(f)φ)n(k1, . . . , kn) = (n + 1)1/2

∫

R2
f(k)φn+1(k, k1, . . . , kn)dk, (2.3)
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a.e. for every n ∈ N, and (a(f)φ)0 = 〈f |φ1〉. Again φ ∈ F is in D(a(f)), if and
only if the previous right hand sides yield a vector in F . Finally, the creation
operator, a†(f), and the selfadjoint field operator, ϕ(f), associated with f are
given by

a†(f) := a(f)∗, ϕ(f) := (a†(f) + a(f))∗∗.

As is well-known, a(f), a†(f) and ϕ(f) are relatively dΓ(ω)1/2-bounded
for all f ∈ L2(R2), because mb > 0; see, e.g., [3, Theorem 5.16]. More generally,
the n-th powers of these operators are relatively dΓ(ω)n/2-bounded for all
n ∈ N. Employing suitable relative bounds we can in fact verify operator norm
convergence of the following series, that we shall encounter in our Feynman–
Kac formula,

Ft(h) :=
∞∑

n=0

1
n!

a†(h)ne−tdΓ(ω), t > 0, h ∈ L2(R2). (2.4)

These series have been introduced in [11] and details can be found in Appen-
dix 6 of that paper. For instance,

‖Ft(h)‖ � S(‖h‖t), t > 0, h ∈ L2(R2), (2.5)

where the time-dependent norm ‖ · ‖t on L2(R2) is given by

‖h‖2
t :=

∫

R2

(

1 +
1

tω(k)

)

|h(k)|2dk, (2.6)

and

S(z) :=
∞∑

n=1

2nzn

(n!)1/2
, z ∈ C. (2.7)

2.2. Lévy Processes for Particle Paths

Next, we introduce in detail the Lévy process X describing (fictitious) paths of
the N relativistic matter particles. Furthermore, we collect some remarks on
associated Poisson point processes and stochastic integrals which are necessary
to understand the stochastic calculus applied later on. The intention is to
clarify notation and make this article more accessible for readers who might not
be well-acquainted with Lévy processes. Relevant textbooks are, e.g., [2,15,20].

Throughout the article, let us assume that (Ω,F, (Ft)t�0, P) is a filtered
probability space satisfying the usual hypotheses of completeness and right-
continuity, i.e., (Ω,F, P) is complete, F0 contains all sets of P-measure zero and
Ft =

⋂
s>t Fs for all t � 0. The letter E denotes expectations with respect to

P.

2.2.1. Lévy Processes for Relativistic Particles. For every j ∈ {1, . . . , N},
we let Xj = (Xj,t)t�0 denote an (Ft)t�0-Lévy process associated with the
Lévy symbol −ψ given by (1.3). Hence, each Xj is an adapted stochastically
continuous R

2-valued process with stationary increments such that Xj,0 = 0,
P-a.s., Xj,t − Xj,s and Fs are independent for all t > s � 0 and the law of
Xj,t has the density ρmp,t := (2π)−1(e−tψ)∨ for all t > 0. Here ∨ denotes
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inverse Fourier transformation. The well-known explicit expressions for ρmp,t

are recalled (in arbitrary dimension) in (D.6) and (D.7). It might be helpful
for some readers to mention that each Xj is an example of an inverse Gaussian
process; see, e.g., [2, Example 1.3.32].

The processes X1, . . . , XN model the individual relativistic matter par-
ticles and we assume these processes to be independent. We gather them in
the R

2N -valued process X := (X1, . . . , XN ) which again is (Ft)t�0-Lévy. In
this article we stick to the convention that Banach space-valued stochastic
processes with time horizon [0,∞) are called càdlàg, iff all their paths are
right-continuous on [0,∞) and have left-sided limits at every point in (0,∞).
Since we are working under the usual hypotheses, we may and shall assume
that X is càdlàg in this sense. Then Xt− stands for the pointwise defined left
limit lims↑t X for all t > 0.

For every x ∈ R
2N , we further abbreviate Xx := x+X and Xx

j := xj+Xj ,
so that for instance Xx

j,t− = xj + lims↑t Xj,s for t > 0; recall (1.7).

2.2.2. Lévy Measures. To be able to work with the pure jump processes X
and Xj we have to know their Lévy measures. Recall that a Lévy measure is a
Borel measure λ on R

d such that λ({0}) = 0 and 1 ∧ | · | ∈ L2(λ). In our case
they describe the distribution of the jumps of X and Xj , respectively; see [2,
§1.2.4] for a detailed introduction.

The Lévy measure of Xj , which does not depend on j, is denoted by
ν : B(R2) → [0,∞]. As is well known, ν has the density ρ with respect to the
two-dimensional Lebesgue-Borel measure, where

∀y ∈ R
2 \ {0} : ρ(y) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m
3/2
p

21/2(π|y|)3/2
K3/2(mp|y|), if mp > 0,

1
2π|y|3 , if mp = 0,

(2.8)

and, say, ρ(0) = 0. Here, K3/2 is a modified Bessel function of the third kind;
see Appendix D.1 for more details. In fact we can directly obtain ρ(y) from the
law ρmp,t(y) of Xj by calculating the limit limt↓0

1
t ρmp,t(y) for y ∈ R

2 \ {0}.
Thus, dν(y) = ρ(y)dy and, by (D.5),

∫

R2
|y|1+ε ∧ |y|1−εdν(y) < ∞, ε > 0;

∫

B1(0)

|y|dν(y) = ∞. (2.9)

The former integrability property reveals that ν is indeed a Lévy measure. It
is the one associated with each process Xj , as the Lévy–Khintchine formula
for the logarithm of the characteristic function of Xj reads

−ψ(η) = −ψ(−η) =
∫

R2
(e−iη·y − 1 + iχB1(y)η · y)dν(y), η ∈ R

2, (2.10)

with the two-dimensional ball B1 as defined in (1.1); see, e.g., [2, §1.2.6]. This
equality also reveals that Xj is a pure jump process, since the Lévy–Khintchine
formula for the characteristic function directly corresponds to the Lévy–Itô
decomposition of the Lévy process, cf. [2, §1.2.4] for details.
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Since X1, . . . , XN are independent Lévy processes with common Lévy
symbol −ψ, the symbol of the 2N -dimensional process X, call it −ψX , satisfies

e−tψX(ξ) = E[ei(ξ1·X1,t+···+ξN ·XN,t)] =
N∏

j=1

E[eiξj ·Xj,t ] =
N∏

j=1

e−tψ(ξj), ξ ∈ R
2N ,

for every t � 0, where we use the notation (1.9). Thus,

ψX(ξ) =
N∑

j=1

ψ(ξj) = −
∫

R2N

(e−iξ·z − 1 + iχB′
1
(z)ξ · z)dνX(z), ξ ∈ R

2N .

(2.11)

Here B′
1 is the 2N -dimensional open unit ball defined in (1.2), and the Lévy

measure νX : B(R2N ) → [0,∞] of X is

νX :=
N∑

j=1

δ0 ⊗ · · · ⊗ δ0 ⊗ ν︸︷︷︸
j′th factor

⊗δ0 ⊗ · · · ⊗ δ0, (2.12)

with δ0 denoting the Dirac measure on the Borel sets of R
2 concentrated in

0. To read off the formula for νX , we made use of (2.10) and observed that
χB′

1
(z) = χB1(z�) whenever zj = 0 for all j �= �.

2.2.3. Infinitesimal Generator. For every bounded f ∈ C2(R2N ) with bounded
first and second order derivatives, we set

(ψX(−i∇)f)(x) := −
∫

R2N

(f(x + z) − f(x) − χB′
1
(z)∇f(x) · z)dνX(z),

(2.13)

for every x ∈ R
2N . Here the integrals on the right hand side exist due to the

assumptions on f , Taylor’s formula, (2.9) and (2.12).
For instance, assume that f = ǧ is the inverse Fourier transform of some

Borel measurable function g : R
2N → C such that R

2N � ξ �→ (1 + |ξ|2)g(ξ) is
integrable. Then, in view of (2.11) and Fubini’s theorem, the above definition
of ψX(−i∇) agrees with the usual one based on Fourier transformation, i.e.,

(ψX(−i∇)f)(x) =
1

(2π)N

∫

R2N

eiξ·xψX(ξ)g(ξ)dξ, x ∈ R
2N . (2.14)

Let us for orientation mention that functions of the form f = ǧ with g as
above also belong to the domain of definition of the infinitesimal generator of
the Feller semigroup associated with X; applying this generator to f yields
−ψX(−i∇)f .

2.2.4. Associated Poisson Point Processes of Jumps and Stochastic Integrals.
Twice in this article, we shall make crucial use of Itô’s formula for X: in our
derivation of the Feynman–Kac formula with ultraviolet cutoff and in order
to find a new formula for the complex action that still makes sense when the
cutoff is dropped. Therefore, we shall now briefly explain the point processes
and corresponding stochastic integrals appearing there. Itô’s formula itself will
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be discussed when needed in Sect. 3.2. Note that the complex action without
cutoff will contain a martingale part given as a stochastic integral.

We denote the jumps of X by ΔXt(γ) := Xt(γ) − Xt−(γ), t > 0, and
notice that the set of non-zero jump times D(γ) := {t > 0|ΔXt(γ) �= 0} is
at most countable for every γ ∈ Ω, since X is càdlàg. Then the Poisson point
process NX associated with X is the random measure given by

NX(A) :=
∑

t∈D

χA(t,ΔXt), A ∈ B([0,∞) × R
2N ).

When reading some formulas below, it is helpful to keep in mind that NX((0, t]×
(R2N \ B′

1)) < ∞, P-a.s., for every t > 0. At every fixed elementary event, NX

is an at most countable sum of Dirac measures and in particular
∫

(0,t]×R2N

Zs(z)dNX(s, z) =
∑

s∈D∩(0,t]

Zs(ΔXs),

for every product measurable integrand Z : [0,∞) × R
2N × Ω → [0,∞]. Here

and below, Zs(z) := Z(s, z, ·).
For every B ∈ B(R2N ) with νX(B) < ∞, (NX((0, t] × B))t�0 is an

(Ft)t�0-Poisson process with intensity νX(B), i.e., satisfying E[NX((0, t] ×
B)] = tνX(B). We remark that this is the precise way in which the Lévy
measure νX describes the distribution of the jumps of X. Further it implies
that the process (ÑX((0, t] × B))t�0 given by

ÑX((0, t] × B) := NX((0, t] × B) − tνX(B), t � 0, (2.15)

is a martingale. There exists a theory of stochastic integration extending the
relation (2.15); see, e.g., [15, §2 Sec. 3]. As corresponding integrands we only
encounter elements of H2 in this article, where, for p ∈ {1, 2}, Hp denotes
the set of predictable maps Z : [0,∞) × R

2N × Ω → R such that |Z|p is
integrable over [0, t] × R

2N × Ω with respect to ds ⊗ νX ⊗ P for all t � 0. For
every Z ∈ H2 the stochastic integral process (

∫
(0,t]×R2N Zs(z)dÑX(s, z))t�0 is

a càdlàg L2-martingale satisfying Itô’s isometry

E

[(∫

(0,t]×R2N

Zs(z)dÑX(s, z)
)2]

= E

[ ∫ t

0

∫

R2N

Zs(z)2dνX(z) ds

]

, (2.16)

for all t � 0. In the case Z ∈ H1 ∩ H2 we P-a.s. know that, for all t � 0, Z is
integrable over (0, t] × R

2N with respect to NX and
∫

(0,t]×R2N

Zs(z)dÑX(s, z)

=
∫

(0,t]×R2N

Zs(z)dNX(s, z) −
∫ t

0

∫

R2N

Zs(z)dνX(z) ds. (2.17)

The above integrals show up in the Lévy–Itô decomposition of X,

Xt =
∫

(0,t]×(R2N \B′
1)

zdNX(s, z) +
∫

(0,t]×B′
1

zdÑX(s, z), t � 0. (2.18)
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Here, the first member on the right hand side is the P-a.s. finite sum of all
jumps of X of size larger than 1. The second member is referred to as a
compensated sum of all remaining, small jumps; notice that, by (2.9) and
(2.12), its integrand is in H2 but not in H1.

2.3. The Feynman–Kac Formula

We can now move to the presentation of our Feynman–Kac formula. We start
by properly introducing the class of external potentials considered in this ar-
ticle:

2.3.1. Relativistic Kato Class for N Particles. Following [7] we introduce the
Kato class corresponding to the process X as

KX :=
{

f : R
2N → [0,∞) Borel meas.

∣
∣
∣
∣ lim

t↓0
sup

x∈R2N

E

[∫ t

0

f(Xx
s )ds

]

= 0
}

.

(2.19)

As indicated earlier the external potential V is always assumed to be Kato
decomposable in the sense of KX , i.e., χCV+, V− ∈ KX for all compact C ⊂
R

2N . As a consequence, V is locally integrable and V− is infinitesimally form
bounded with respect to the free particle Hamiltonian

∑N
j=1 ψ(−i∇xj

); cf. [7,
Theorem III.1 and the paragraph following its proof]. We also know that

NV (x) :=
{
γ ∈ Ω

∣
∣ V (Xx

• (γ)) : [0,∞) → R is not locally integrable
}

(2.20)

is a P-zero set for every x ∈ R
2N . Once and for all we fix the convention that

the integral paths
∫ •
0

V (Xx
s )ds equal 0 on NV (x). In Appendix A we discuss

some further properties of Kato decomposable potentials to be used later on.
For example, V is Kato decomposable in the sense of KX , if it has the

form

V (x) =
N∑

j=1

V{j}(xj) +
∑

1�i<j�N

V{i,j}(xi − xj), x ∈ R
2N ,

where χC(VA)+, (VA)− ∈ KX1 for all compact C ⊂ R
2 and all subsets A ⊂

{1, . . . , N} of cardinality one or two. Here KX1 is defined as in (2.19) with R
2N

replaced by R
2 and X replaced by X1. This follows from the independence of

X1, . . . , XN and since, for i < j and s � 0, the laws of Xi,s and Xj,s have
the same, rotationally symmetric probability density ρmp,s satisfying ρmp,s ∗
ρmp,s = ρmp,2s. In view of Corollary D.4, we know that Lp(R2) ∩ L2p(R2) ⊂
KX1 for every p ∈ (1,∞]. If mp = 0, the corollary implies Lp(R2) ⊂ KX1 for
all p ∈ (2,∞].

2.3.2. The Processes Appearing in the Creation/Annihilation Terms. Next,
we discuss the two processes to be substituted into the creation term Ft/2(h)
and the annihilation term Ft/2(h)∗ in our Feynman–Kac formula. The bound

‖e−sωv‖ � |g|(π/s)1/2, s > 0, (2.21)
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and Bochner’s theorem ensure existence of the following L2(R2)-valued
Bochner–Lebesgue integrals,

U−
t [γ] :=

∫ t

0

e−sω−iK·γsvds, U+
t [γ] :=

∫ t

0

e−(t−s)ω−iK·γsvds, t � 0.

(2.22)

Here γ : [0,∞) → R
2 is assumed to be Borel measurable, γs := γ(s) as usual,

and we used the notation (1.6). The regularizing effect of the damping terms
e−rω, r � 0, in (2.22) is illustrated by computing the integrals when γ is zero,
which gives (1 − e−tω)v/ω ∈ L2(R2). With this we define

UN,±
t (x) :=

N∑

j=1

e−iK·xj U±
t [Xj,•], x ∈ R

2N , t � 0. (2.23)

For each choice of the sign the L2(R2)-valued process (UN,±
t (x))t�0 is adapted

and all its paths are continuous; see Lemmas B.2 and B.3 for details.

2.3.3. The Complex Action. We shall next introduce the analogue of Feyn-
man’s complex action in our Feynman–Kac formula, which is the sum of three
contributions coming from the radiation field.

Let us abbreviate

β := (ω + ψ)−1v = gω−1/2(ω + ψ)−1 ∈ L2(R2). (2.24)

Then the simplest of the three contributions to the complex action is

cN
t (x) :=

N∑

�=1

〈UN,+
t (x)|e−iK·Xx

�,tβ〉, x ∈ R
2N , t � 0. (2.25)

This expression is in fact real-valued and uniformly bounded in x and t and on
Ω; see Remark 6.3. The process (cN

t (x))t�0 is manifestly adapted and càdlàg.
Secondly, the radiation field mediates an effective, translation and rota-

tion invariant pair interaction potential between the matter particles that we
call w : R

2 → R. The potential w comes into the picture as the distributional
Fourier transform of vβ which is an element of Lp(R2) for every p > 1. More
precisely, w denotes a representative of that Fourier transform that is contin-
uous on R

2 \ {0} and given by the following formulas: With J0 denoting the
Bessel function of the first kind and order 0, cf. Appendix D.1, we set

ϑ(r, s) :=
2πrJ0(rs)

ω(r)(ω(r) + ψ(r))
, r, s � 0, (2.26)

where we from now on introduce the slightly abusive notation

ω(r) := (r2 + m2
b)1/2, ψ(r) := (r2 + m2

p)1/2 − mp, r � 0.

Then w is given by the following well-defined Lebesgue integrals

w(y) := g2

∫ ∞

0

ϑ(r, |y|)dr, y ∈ R
2 \ {0}, (2.27)
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and we complement this by the (immaterial) convention w(0) := 0. For N � 2,
the total effective interaction term appearing in the complex action is

wN
t (x) :=

∑

1�j<��N

∫ t

0

2w(Xx
j,s − Xx

�,s)ds, x ∈ R
2N , t � 0. (2.28)

For N = 1, there is no effective interaction and we set w1
t (x) := 0. As we

shall see in Remark 5.3, w ∈ Lp(R2) for all p ∈ [2,∞), whence wN (x) is a
well-defined path integral process according to the conventions and examples
in Sect. 2.3.1.

Most work is needed to obtain control on the third contribution to the
complex action, namely the real-valued càdlàg square-integrable martingale
(mN

t (x))t�0 with

mN
t (x) :=

∫

(0,t]×R2N

N∑

j=1

〈UN,+
s (x)|e−iK·Xx

j,s−(e−iK·zj − 1)β〉dÑX(s, z).

(2.29)

Here zj is the j’th two-dimensional component of z similarly as in (1.7). As
we shall see in Lemma 5.1, the integrand in (2.29) belongs to the space H2

introduced in Sect. 2.2.4 and in particular mN
t (x) is a well-defined isometric

stochastic integral.
Combined, our formula for the complex action reads

uN
t (x) := wN

t (x) − cN
t (x) + mN

t (x), x ∈ R
2N , t � 0. (2.30)

As it turns out in Corollary 6.9, the paths of uN (x) are P-a.s. continuous,
although the last two members of the right hand side of (2.30) are merely
càdlàg.

2.3.4. Feynman–Kac Integrand and Formula. We are now in a position to
state our Feynman–Kac formula where we abbreviate

Wt(x) := euN
t (x)−∫ t

0 V (Xx
s )dsFt/2(−UN,+

t (x))Ft/2(−UN,−
t (x))∗. (2.31)

For every t > 0 the B(F)-valued function Wt(x) on Ω is Ft-measurable and
separably valued and its operator norm ‖Wt(x)‖ has moments of all orders;
see Remarks 3.2 and 7.4.

Theorem 2.1. Let Ψ ∈ L2(R2N ,F) and t > 0. Then e−tHΨ has a unique
continuous representative which for every x ∈ R

2N is given by

(e−tHΨ)(x) = E [Wt(x)∗Ψ(Xx
t )] . (2.32)

Proof. The continuity of the right hand side of (2.32) in x ∈ R
2N follows

from the stronger continuity result Proposition 7.13. Equation (2.32) itself is
established at the end of Sect. 3.4. As a byproduct we shall in fact obtain a
new proof of the existence of the norm resolvent limit (1.12). �

In the following subsections we present some applications of Theorem 2.1.
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2.4. Ergodicity

Let U : F → L2(g) := L2(Q, g) be a unitary map from the Fock space to a
Q-space, so that g is a probability measure on the set Q and all field operators
ϕ(h) with

h ∈ HR := {f ∈ L2(R2)| f(k) = f(−k), a.e. k} (2.33)

become Gaussian random variables on Q after conjugation with U . Confer,
e.g., [25] for constructions of Q-space. We denote by the same symbol the
constant direct integral of U , i.e., (UΨ)(x) = UΨ(x), a.e. x ∈ R

2N , Ψ ∈
L2(R2N ,F). Of course we have a canonical notion of positivity for functions in
L2(R2N , L2(g)) = L2(R2N × Q,dx ⊗ g), that we shall employ in the following
theorem. It is a consequence of Theorem 2.1 and its proof is a word by word
transcription of the proof of [22, Theorem 8.3]. The crucial point is that the
operators UFt/2(h)Ft/2(h)∗U∗ with t > 0 and h ∈ HR improve positivity on
L2(g)) as observed in [19,22], and UN,±

t (x) are in fact HR-valued in view of
(2.22).

Theorem 2.2. Let t > 0. Then Ue−tHU∗ improves positivity.

Sloan [32] has shown an analogous result for the fiber Hamiltonian at total
momentum zero in the renormalized translation-invariant relativistic Nelson
model. In the non-relativistic renormalized Nelson model the ergodicity of fiber
Hamiltonians attached to arbitrary total momenta—with respect to a different
positive cone in F—has been shown in [17,21].

A standard conclusion (see, e.g., [22, Corollaries 8.5 & 8.6]) is the follow-
ing:

Corollary 2.3. (i) Let Ψ ∈ L2(R2N ,F)\{0} be such that UΨ is non-negative.
Then

inf σ(H) = − lim
t→∞

1
t

ln〈Ψ|e−tHΨ〉.
(ii) Let f ∈ L2(R2N ) \ {0} be non-negative. Then

inf σ(H) = − lim
t→∞

1
t

ln
(∫

R2N

f(x)E[euN
t (x)−∫ t

0 V (Xx
s )dsf(Xx

t )]dx

)

.

2.5. Two-Sided Bounds on the Minimal Energy

With the aid of Corollary 2.3 and exponential moment bounds on the com-
plex action, we obtain the estimates on the minimal energy presented in the
following. We only consider the translation invariant case. Non-zero external
potentials V can be incorporated by using form bounds relative to H and
variational arguments.

2.5.1. Lower Bounds. The first lower bound in the next theorem seems to be
reasonably good for small coupling constants g. In this regime it provides a
lower bound proportional to −g4N3, which is the behavior observed for all
values of g and N in the non-relativistic Nelson model [22]. (The minimal
energy depends on the choice of the energy counter terms, of course. In [22]
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the authors work in 3D, set mp = 1 and use (1.11) with |k|2/2 put in place
of ψ(k).) The second and third bounds in the next theorem show the correct
behavior for large g and/or N as we shall see in Sect. 2.6.

Theorem 2.4. Consider the translation invariant case V = 0. There exist con-
stants b, b′ > 0 such that, for all coupling constants g and particle numbers N ,

inf σ(H) � −bg4N3

mb
· e8πg2N/mb − b′g4N2(N − 1)

mb

(

1 +
mp

mb

)

.

Furthermore, there exist constants c, c′ > 0 such that

inf σ(H) � −
{

πg2(2N2 − N) ln
(

g2N

mb

)}

− cg2N2 − c′(N − 1)mp,

if g2N � mb.

For mp > 0, the term in curly brackets {· · · } can be replaced by

2πg2N(N − 1) ln
(

g2N

mb

)

+ πg2N ln(1 ∨ (g2N)) +
πg2N

mp
[(g2N) ∧ 1].

Proof. To prove these bounds we choose a bounded, integrable, non-negative
and non-zero f : R

2N → R in Corollary 2.3(ii) and estimate f(Xx
t ) � ‖f‖∞.

After that we apply the exponential moment bounds on the complex phase
in Theorems 6.6 and 6.7 with p = 1. Since the parameter α > 1 appearing
in these theorems is arbitrary, we obtain the asserted lower bounds in this
way. �

2.5.2. Upper Bound. We complement the lower bounds from the previous the-
orem with an upper bound, which follows from a combination of Corollary 2.3
and our exponential moment bounds on the complex action with a more well-
known trial state argument.

Theorem 2.5. Assume that V = 0 and let θ ∈ (0, 1). Then there exists
C(θ,mp, 1∨mb) ∈ (0,∞), depending solely on the quantities displayed in its ar-
gument, as well as a universal constant c > 0 such that, whenever g2N > 2mb,

inf σ(H) � c(N − 1)mp + C(θ,mp, 1 ∨ mb)g2N2

− 2πθg2N(N − 1) ln
(

g2N

mb

)

− πθg2N ln(1 ∨ (g2N))

− χ{0}(mp)πθg2N ln
(

1 ∧ (g2N)
mb

)

.

Proof. The proof of this theorem can be found at the end of Sect. 8. �

2.6. Asymptotics of the Minimal Energy

Combined the upper and lower bounds in Sect. 2.5 reveal the asymptotics of
the minimal energy in the three regimes where the particle number N and the
coupling constant g are large and the boson mass is small.
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For convenience we do typically not display the dependence of H and
related objects on the parameters N , mp, mb and g in our notation. An ex-
ception will be the next theorem and the subsequent remark where the minimal
energy of H in the translation invariant case is denoted by

E(g,N,mp,mb) := inf σ(H) when V = 0.

Theorem 2.6. The following relations hold for V = 0,

lim
N→∞

E(g,N,mp,mb)
N2 ln(N)

= −2πg2, (2.34)

lim
|g|→∞

E(g,N,mp,mb)
g2 ln(g2)

= −π(2N2 − N), (2.35)

lim
mb↓0

E(g,N,mp,mb)
ln(mb)

= 2πg2N(N − 1), mp > 0, (2.36)

lim
mb↓0

E(g,N, 0,mb)
ln(mb)

= πg2(2N2 − N). (2.37)

Proof. All limit relations follow directly from Theorems 2.4 and 2.5, if we take
into account that the parameter θ ∈ (0, 1) appearing in Theorem 2.5 can be
chosen arbitrarily close to 1. �

Remark 2.7. In the case N = 1 with mp > 0, where (2.36) does not reveal
any leading asymptotic behavior as mb ↓ 0, the last statement in Theorem 2.4
implies the uniform lower bound

E(g, 1,mp,mb) � −πg2 ln(g2 ∨ 1) − πg2

mp
[g2 ∧ 1] − cg2. (2.38)

That is, singular contributions to the minimal energy coming from mb have
been compensated for by the renormalization energies Eren

Λ in this case.

3. Proof of the Feynman–Kac Formula

In this section we present the proof of our Feynman–Kac formula. In doing so
we employ some results of later sections as starting points. We proceed in this
way so that the reader can quickly grasp the general proof strategy leading to
the Feynman–Kac formula and see which ingredients are needed. The latter
are formulated precisely in Sect. 3.1 after the necessary notation has been set
up. We shall in particular introduce a Feynman-Kac semigroup (TΛ,t)t�0 for
every Λ ∈ (0,∞]. When Λ < ∞, the interaction terms in this semigroup are
ultraviolet cutoff at Λ. Proving the Feynman–Kac formula for the ultraviolet
regularized Hamiltonian HΛ then amounts to identifying HΛ as the generator
of (TΛ,t)t�0. This is done in Sect. 3.3, essentially by combining an integral
equation for the Fock space operator part of the ultraviolet cutoff Feynman–
Kac integrands, stated as a substitution rule in Sect. 3.1, with an Itô formula
discussed in Sect. 3.2. In the final Sect. 3.4 we establish the Feynman–Kac
formula for H, exploiting that TΛ,t → T∞,t, Λ → ∞, in operator norm for
every t � 0 as shown in Sect. 7.3.
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3.1. Definitions and Main Ingredients for the Proof

We start by defining the complex action ũN
Λ,t(x) for finite Λ and the Fock space

operator part WΛ,t(x) of the ultraviolet cutoff Feynman–Kac integrands. The
formula (3.2) for ũN

Λ,t(x) is a direct analogue of Feynman’s expression for the
complex action in the polaron model. To see the analogy, one has to pull the
integrations coming from (2.22) out of the scalar product in (3.2) and evaluate
the so-obtained new scalar products, which amounts to computing the Fourier
transform of v2

Λ. As opposed to the polaron model, we cannot simply drop
the cutoff Λ in (3.2) after these manipulations. Before doing so, and to derive
useful, Λ-uniform bounds on ũN

Λ,t(x), we have to re-write it by means of Itô’s
formula. This procedure results in the definition of the limiting complex action
uN

t (x) we saw in Sect. 2.3.3; see Lemma 6.5.

Definition 3.1. Let Λ ∈ (0,∞) and x ∈ R
2N . Then we define

UN,±
Λ,t (x) := χBΛUN,±

t (x), (3.1)

ũN
Λ,t(x) :=

N∑

j=1

∫ t

0

〈UN,+
Λ,s (x)|e−iK·Xx

j,svΛ〉ds − tNEren
Λ , (3.2)

for all t � 0. Furthermore, we set WΛ,0(x) := 1F and, for t > 0,

WΛ,t(x) := eũN
Λ,t(x)−∫ t

0 V (Xx
s )dsFt/2(−UN,+

Λ,t (x))Ft/2(−UN,−
Λ,t (x))∗. (3.3)

To unify notation we also set

W∞,t(x) := Wt(x), t � 0, x ∈ R
2N ,

where Wt(x) is defined in (2.31). We shall shortly make use of the following
observations:

Remark 3.2. Let x ∈ R
2N . We know from [11, §17] that (0,∞) × L2(R2) �

(s, h) �→ Fs(h) ∈ B(F) is continuous. Together with (3.2), Lemma B.3 and the
way we defined the limiting complex action uN

t (x) this implies that WΛ,t(x) :
Ω → B(F) is Ft-measurable and separably valued for all t � 0 and Λ ∈ (0,∞].
In conjunction with (3.2) and Lemma B.2 it further follows that all paths of
(WΛ,t(x))t�0 with Λ ∈ (0,∞) are continuous on the open half-axis (0,∞). (In
the case Λ = ∞, Corollary 6.9 will imply that (0,∞) � t �→ W∞,t(x) ∈ B(F)
is continuous P-a.s.)

In the next proposition we state the substitution rule involving WΛ,t(x)
with finite Λ alluded to above. It can be combined with the Itô formula (3.6).
For every Λ ∈ (0,∞), we abbreviate

hΛ(x) := dΓ(ω) +
N∑

j=1

ϕ(e−iK·xj vΛ) + V (x) + NEren
Λ , x ∈ R

2N . (3.4)

Thus, each hΛ(x) is a selfadjoint operator in F with domain D(dΓ(ω)) con-
taining all terms in HΛ apart from the kinetic energy of the matter particles.



2894 B. Hinrichs and O. Matte Ann. Henri Poincaré

Proposition 3.3. Let Λ ∈ (0,∞), x ∈ R
2N , φ1 ∈ D(dΓ(ω)), φ2 ∈ F and

abbreviate

At := 〈φ1|WΛ,t(x)φ2〉F , t � 0.

Assume that V is bounded. Then A is adapted and all its paths are abso-
lutely continuous on every compact subinterval of [0,∞). Furthermore, A0 =
〈φ1|φ2〉F and, for every complex-valued predictable process (Zs)s�0 with locally
bounded paths,

∫ t

0

ZsdAs =
∫ t

0

Zs〈hΛ(Xx
s )φ1|WΛ,s(x)φ2〉Fds, t � 0. (3.5)

Proof. Adaptedness of A follows from Remark 3.2. The remaining statements
follow directly from Lemma 4.2. �

In view of Remark 3.2, our next definition is meaningful:

Definition 3.4. Let Λ ∈ (0,∞] and t � 0. Assume that Ψ : R
2N → F is

measurable and such that ‖WΛ,t(x)∗Ψ(Xx
t )‖F is P-integrable for all x ∈ R

2N .
Then, we define TΛ,tΨ : R

2N → F by

(TΛ,tΨ)(x) := E
[
WΛ,t(x)∗Ψ(Xx

t )
]
, x ∈ R

2N .

Since P(Xx
t ∈ N ) = 0 for all zero sets N ∈ B(R2N ) and t > 0, the

maps TΛ,t, t > 0, are also well-defined on equivalence classes of functions. We
will often and tacitly make use of this. The symbol TΛ,0 always stands for the
identity mapping, whether acting on measurable functions or their equivalence
classes.

In Sect. 7 we shall study the maps TΛ,t when applied to functions in
Lp(R2N ,F) with p ∈ (1,∞]. We summarize all results of that section needed
to derive the Feynman–Kac formula in the next proposition:

Proposition 3.5. For all t > 0, x ∈ R
2N and Ψ ∈ L2(R2N ,F), the random

variable ‖WΛ,t(x)∗Ψ(Xx
t )‖F is P-integrable and TΛ,tΨ is square-integrable.

Seen as a family of operators on L2(R2N ,F), (TΛ,t)t�0 is a strongly continu-
ous semigroup of bounded operators for every Λ ∈ (0,∞]. Furthermore, there
exists c ∈ (0,∞) such that ‖TΛ,t‖ � ec(1+t) for all t � 0 and Λ ∈ (0,∞].
Finally, TΛ,t → T∞,t as Λ → ∞ in operator norm for every t � 0.

Proof. This proposition summarizes assertions proven in Sect. 7. More pre-
cisely, the first integrability statement can be found in Proposition 7.5(i), the
stated L2-properties are a special case of Corollary 7.11 and Proposition 7.12,
and the limit Λ → ∞ is treated in Proposition 7.7. �

3.2. A Special Case of Itô’s Formula

To streamline later proofs and clarify where and how the operator ψX(−i∇)
emerges in our computations, we note the following special case of the standard
Itô formula for X. It will be applied in Sect. 3.3 and Lemma 6.5.
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Lemma 3.6. Assume that f ∈ C2(R2N ) is bounded with bounded first and sec-
ond order derivatives. Let (At)t�0 be an adapted càdlàg real-valued process all
whose paths have locally finite variation. Assume that sups∈[0,t] |As| ∈ L2(P)
for all t � 0. Finally, let x ∈ R

2N . Then, P-a.s.,

Atf(Xx
t ) = A0f(x) +

∫ t

0

f(Xx
s−)dAs −

∫ t

0

As(ψX(−i∇)f)(Xx
s )ds

+
∫

(0,t]×R2N

As−(f(Xx
s− + z) − f(Xx

s−))dÑX(s, z), t � 0.

(3.6)

The process comprised of the stochastic integrals in the second line is a mar-
tingale.

Proof. Since f is bounded with a bounded derivative,

sup
s∈[0,t]

|As−(f(Xx
s− + z) − f(Xx

s−))| � (|z| ∧ 1)(‖∇f‖∞ ∨ 2‖f‖∞) sup
s∈[0,t]

|As|,

for all z ∈ R
2N and t � 0. Thus, (s, z, γ) �→ As−(γ)(f(Xx

s−(γ)+z)−f(Xx
s−(γ)))

belongs to H2 in view of (2.9) and (2.12). In particular, recalling the discussion
before (2.16), its dÑX -integral is a martingale. Furthermore, since (a, z) �→
af(z) is in C2(R1+2N ), the standard textbook version of Itô’s formula (see,
e.g., [2, Theorem 4.4.7] or [15, §2 Theorem 5.1]) in conjunction with the Lévy–
Itô decomposition (2.18) of X directly implies

Atf(Xx
t ) = A0f(x) +

∫ t

0

f(Xx
s−)dAs

+
∫

(0,t]×(R2N \B′
1)

As−(f(Xx
s− + z) − f(Xx

s−))dNX(s, z)

+
∫

(0,t]×B′
1

As−(f(Xx
s− + z) − f(Xx

s−))dÑX(s, z)

+
∫ t

0

∫

B′
1

As

(
f(Xx

s + z) − f(Xx
s ) − z · ∇f(Xx

s )
)
dνX(z) ds,

(3.7)

for all t � 0, P-a.s.; recall the definition (1.2) of B′
1. Since f is bounded and

sups∈[0,t] |As| ∈ L1(P), by assumption, we further see that the map

(s, z, γ) �−→ χR2N \B′
1
(z)As−(γ)(f(Xx

s−(γ) + z) − f(Xx
s−(γ))) belongs to H1.

Hence, we can subtract the double integral
∫ t

0

∫

R2N \B′
1

As−(f(Xx
s− + z) − f(Xx

s−))dνX(z) ds (3.8)

in the second line of (3.7) and add it to the last one at the same time. Taking
(2.17) into account, we then find a dÑX -integral over (0, t] × (R2N \ B′

1) in
the second line of (3.7), that we can combine with the one over (0, t] × B′

1 in
the third line. Further, the càdlàg paths of A and X have at most countably
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many discontinuities. Thus, As− and Xx
s− can be replaced by As and Xx

s ,
respectively, in (3.8) without changing the value of the double integral. We
thus P-a.s. arrive at

Atf(Xx
t ) = A0f(x) +

∫ t

0

f(Xx
s−)dAs

+

∫

(0,t]×R2N

As−(f(Xx
s− + z) − f(Xx

s−))dÑX(s, z)

+

∫ t

0

∫

R2N

As

(
f(Xx

s + z) − f(Xx
s ) − χB′

1
(z)z · ∇zf(Xx

s )
)
dνX(z) ds,

for all t � 0. On account of (2.13) this proves (3.6). �

3.3. Feynman–Kac Formula with Ultraviolet Cutoff

We can now prove the Feynman–Kac formula in presence of a finite cutoff.

Theorem 3.7. Let Λ ∈ (0,∞) and t � 0. Consider TΛ,t as an operator on
L2(R2N ,F). Then e−tHΛ = TΛ,t and in particular TΛ,t is selfadjoint.

Proof. To start with we assume that V is bounded. By Proposition 3.5 and
the Hille–Yosida theorem, the semigroup (TΛ,t)t�0 has a closed generator, call
it G, whose spectrum is contained in {ζ ∈ C|Re[ζ] � −c} for some c � 0. We
shall show that HΛ = G, which is equivalent to TΛ,t = e−tHΛ , t � 0.

Let φ1 ∈ D(dΓ(ω)) and f ∈ C∞
0 (R2N ). Since V is bounded, we can infer

from (1.10), (2.14) and (3.4) that (a representative of) HΛfφ1 can be written
as

(HΛfφ1)(x) := (ψX(−i∇)f)(x)φ1 + f(x)hΛ(x)φ1, x ∈ R
2N . (3.9)

Let also φ2 ∈ F and fix x ∈ R
2N for the moment. Thanks to Lemma 4.2

we know that all paths of the process given by At := 〈φ1|WΛ,t(x)φ2〉F are
absolutely continuous on every compact subinterval of [0,∞). Employing (2.5)
and (B.1) (with ε = 0) and a trivial estimation of ũN

Λ,t(x) (see (6.13)) we find
some b ∈ (0,∞) (depending on Λ and ‖V ‖∞ besides other model parameters)
such that |At| � eb(1+t)‖φ1‖F‖φ2‖F , t � 0. Therefore, the Itô formula (3.6) is
available, and in conjunction with the substitution rule (3.5) it P-a.s. yields

〈φ1|WΛ,t(x)φ2〉Ff(Xx
t ) − 〈φ1|φ2〉Ff(x)

= −
∫ t

0

〈φ1|WΛ,s(x)φ2〉F (ψX(−i∇)f)(Xx
s )ds

−
∫ t

0

f(Xx
s−)〈hΛ(Xx

s )φ1|WΛ,s(x)φ2〉Fds

−
∫

(0,t]×R2N

〈φ1|WΛ,s(x)φ2〉F (f(Xx
s− + z) − f(Xx

s−))dÑX(s, z)

= −
∫ t

0

〈WΛ,s(x)∗(HΛfφ1)(Xx
s )|φ2〉Fds − [a martingale starting at 0]t,

(3.10)
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for all t � 0. Here we used (3.9) in the second step as well as that the term in
the fourth line defines a martingale, by Lemma 4.2, see the discussion before
(2.16). Upon taking expectations in (3.10), the martingale drops out and we
find

〈(TΛ,tfφ1)(x)|φ2〉F − 〈f(x)φ1|φ2〉F = −
∫ t

0

〈(TΛ,sHΛfφ1)(x)|φ2〉Fds, t � 0.

After choosing φ2 = Φ(x) for every x and some Φ ∈ L2(R2N ,F) and integrat-
ing with respect to x, we can use Fubini’s theorem to interchange the order of
the dx- and ds-integration. Since s �→ TΛ,sHΛfφ1 ∈ L2(R2N ,F) is continuous
and in particular Bochner-Lebesgue integrable over [0, t], this reveals that

TΛ,tfφ1 − fφ1 = −
∫ t

0

TΛ,sHΛfφ1ds, t � 0. (3.11)

Again by strong continuity of the semigroup, TΛ,sHΛfφ1 → HΛfφ1, s ↓ 0, in
L2(R2N ,F), whence (3.11) implies

lim
t↓0

1
t
(TΛ,tfφ1 − fφ1) = −HΛfφ1 in L2(R2N ,F).

This is equivalent to saying that fφ1 lies in the domain of G with Gfφ1 =
HΛfφ1. Again since Λ is finite and V bounded, we know that the linear hull
of all vectors of the form fφ1 with f and φ1 as above is a core for HΛ; see,
e.g., Lemma 8.1. Since G is closed, we conclude that HΛ ⊂ G. As noted above,
there is a uniform lower bound on the real parts of all points in the spectrum
of G. Since HΛ is lower semibounded, we clearly find some ζ ∈ C belonging to
the resolvent sets of both G and HΛ. Then HΛ ⊂ G and the second resolvent
identity imply (G − ζ)−1 = (HΛ − ζ)−1, thus G = HΛ.

To generalize this result we follow a standard approximation procedure:
Let V be Kato decomposable and bounded from below. Set Vn := n ∧ V and
denote by Tn

Λ,t, Hn
Λ and hn

Λ the corresponding semigroup members, Hamil-
tonian and quadratic form for n ∈ N. Let Φ ∈ L2(R2N ,F). By the above
result, e−tHn

ΛΦ = Tn
Λ,tΦ for all n ∈ N. By dominated convergence and Proposi-

tion 3.5, (Tn
Λ,tΦ)(x) converges to (TΛ,tΦ)(x) as n → ∞ for all x ∈ R

2N . Further,
hn
Λ ↑ hΛ on D(hΛ) as n → ∞, which by a convergence theorem for an increas-

ing sequence of quadratic forms entails strong resolvent convergence of Hn
Λ to

HΛ; see, e.g., [27, Theorems VIII.20(b) and S.14]. Thus, e−tH
n�
Λ Φ → e−tHΛΦ,

� → ∞, a.e. for some strictly increasing sequence (n�)�∈N in N. This proves
the theorem when V is bounded from below.

For general Kato decomposable V , we consider (−n)∨V and argue anal-
ogously, employing a convergence theorem for a decreasing sequence of qua-
dratic forms; see, e.g., [27, Theorems VIII.20(b) and S.16]. (When applying
Theorem S.16 in [27] we take into account that the quadratic forms corre-
sponding to V and to every (−n) ∨ V with n ∈ N all have the same domain,
namely Q(HΛ) described prior to (1.10)). �
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3.4. Feynman–Kac Formula for the Renormalized Hamiltonian

After the next corollary we can finally prove the Feynman–Kac formula for H.

Corollary 3.8. When its members are considered as operators on L2(R2N ,F),
the semigroup (T∞,t)t�0 is strongly continuous and every T∞,t is bounded and
selfadjoint with ‖T∞,t‖ � ec(1+t), t � 0, for some c > 0. Furthermore, HΛ con-
verges in norm resolvent sense to the selfadjoint, lower semibounded generator
of (T∞,t)t�0, as Λ → ∞.

Proof. Apart from the claimed selfadjointness, the first statement just repeats
parts of Proposition 3.5. Given t � 0, selfadjointness of T∞,t follows, however,
from the operator norm convergence TΛ,t → T∞,t, Λ → ∞, asserted in Propo-
sition 3.5 and the selfadjointness of each TΛ,t = e−tHΛ , Λ ∈ (0,∞), established
in Theorem 3.7. This implies existence of a selfadjoint, lower semibounded
generator of (T∞,t)t�0. The equivalence of the operator norm convergence of
all semigroup members TΛ,t → T∞,t and norm resolvent convergence of the
selfadjoint generators is well-known and follows directly from the represen-
tation of the resolvents of the generator as Bochner-Lebesgue integrals over
semigroup elements (HΛ + λ)−1 =

∫ ∞
0

e−t(HΛ+λ)dt, which holds for any λ < c
with c as in the first statement. �

Corollary 3.8 especially provides the

Proof. (Proof of the Feynman–Kac formula (2.32)) Corollary 3.8 extends the
known existence results [28,32] for the norm resolvent limit H := limΛ→∞ HΛ

to general Kato decomposable V . Furthermore, the corollary ensures that
e−tH = T∞,t, t � 0, which is equivalent to saying that (2.32) holds for a.e.
x ∈ R

2N , given any t > 0 and Ψ ∈ L2(R2N ,F). �

4. Integral Equation for UV Cutoff Feynman–Kac Integrands

In this section we only consider finite Λ. Our aim is to derive a pathwise integral
equation for matrix elements of WΛ,t(x) as defined in (3.3), that will complete
the proof of Proposition 3.3. To this end we need the integral equation for
UN,+

Λ,t (x) observed in the next lemma; recall the definitions (2.22), (2.23) and
(3.1).

Lemma 4.1. Let Λ ∈ (0,∞) and x ∈ R
2N . Abbreviate

vN
Λ,s(x) :=

N∑

j=1

e−iK·Xx
j,svΛ, s � 0. (4.1)

Then all paths of (UN,+
Λ,t (x))t�0 are absolutely continuous on every compact

subinterval of [0,∞) and

UN,+
Λ,t (x) =

∫ t

0

(vN
Λ,s(x) − ωUN,+

Λ,s (x))ds, t � 0. (4.2)
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Proof. Let γ : [0,∞) → R
2 be càdlàg and g ∈ L2(R2). In view of (2.23) it

suffices to show the second relation in

θ(t) := 〈g|χBΛU+
t [γ]〉 =

∫ t

0

〈g|e−iK·γsvΛ − ωχBΛU+
s [γ]〉ds, (4.3)

for all t � 0. Let n ∈ N and 0 � t0 < t1 < · · · < tn � t. Employing (2.22) and
straightforward estimations, we then find

n∑

i=1

|θ(ti) − θ(ti−1)| � ‖g‖‖vΛ‖(1 + t‖ωχBΛ‖∞)(tn − t0).

Hence, θ is absolutely continuous on every compact subinterval of [0,∞). Fur-
thermore, θ′(t) = 〈g|e−iK·γtvΛ − ωχBΛU+

t [γ]〉, whenever γ is continuous at
t > 0. Since the set of discontinuities of γ is countable, the second relation in
(4.3) now follows from the fundamental theorem of calculus for the Lebesgue
integral. �

When dealing with WΛ,t(x), it will be convenient to do the computations
for exponential vectors, i.e., Fock space vectors of the form

ε(h) := (1, h, . . . , (n!)−1/2h⊗n, . . . ) ∈ F , h ∈ L2(R2), (4.4)

where h⊗n(k1, . . . , kn) := h(k1) · · · h(kn), a.e. (k1, . . . , kn) ∈ R
2N with kj ∈ R

2.
As explained in [22, Remark 5.2],

Ft(g)ε(h) = ε(g + e−tωh), Ft(g)∗ε(h) = e〈g|h〉ε(e−tωh), (4.5)

for all t > 0 and g, h ∈ L2(R2). Hence, the action of WΛ,t(x) with Λ ∈ (0,∞)
on an exponential vector reads

WΛ,t(x)ε(h) = eũN
Λ,t(x)−∫ t

0 V (Xx
s )ds−〈UN,−

Λ,t (x)|h〉ε(e−tωh − UN,+
Λ,t (x)), (4.6)

for all t � 0 and x ∈ R
2N .

Lemma 4.2. Assume that V is bounded and let Λ ∈ (0,∞), x ∈ R
2N , φ1 ∈

D(dΓ(ω)) and φ2 ∈ F . Then

〈φ1|WΛ,t(x)φ2〉F − 〈φ1|φ2〉F = −
∫ t

0

〈hΛ(Xx
s )φ1|WΛ,s(x)φ2〉Fds, t � 0.

(4.7)

Proof. To start with recall that the linear hull of all exponential vectors
ε(h) with h ∈ D(ω) is a core for dΓ(ω). We also recall that ϕ(e−iK·yvΛ)
is relatively dΓ(ω)-bounded uniformly in y ∈ R

2. Finally, ‖UN,±
t (x)‖2

t/2 �
6πg2N2/mb, t > 0, according to (B.1), which together with (2.5) implies that
sups∈[0,t] ‖WΛ,s(x)‖ is finite for every t � 0 and pointwise on Ω. Thus, by
sesquilinearity and dominated convergence, it suffices to prove the assertion
for φi = ε(hi), i ∈ {1, 2}, with h1, h2 ∈ D(ω). Employing (4.6) and using that
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〈ε(g)|ε(h)〉F = e〈g|h〉, for all g, h ∈ L2(R2), we find 〈ε(h1)|WΛ,t(x)ε(h2)〉F =
eΘ(t), t � 0, with

Θ(t) := ũN
Λ,t(x) −

∫ t

0

V (Xx
s )ds − 〈UN,−

Λ,t (x)|h2〉 − 〈h1|UN,+
Λ,t (x)〉 + 〈h1|e−tωh2〉

=
∫ t

0

ϑ(s)ds + 〈h1|h2〉,

where, in view of (4.2) and (2.22) and Definition 3.1,

ϑ(s) :=
N∑

j=1

〈UN,+
Λ,s (x)|e−iK·Xx

j,svΛ〉 − NEren
Λ − V (Xx

s )

−
N∑

j=1

〈e−sω−iK·Xx
j,svΛ|h2〉 −

N∑

j=1

〈h1|e−iK·Xx
j,svΛ〉

+ 〈h1|ω(UN,+
Λ,s (x) − e−sωh2)〉. (4.8)

Since v(k) = v(−k) = v(−k), the scalar product in the first expression is real:

〈UN,+
Λ,s (x)|e−iK·Xx

j,svΛ〉 = 〈e−iK·Xx
j,svΛ|UN,+

Λ,s (x)〉. (4.9)

Further, since ϑ : [0,∞) → R is locally integrable, Θ is absolutely continuous
on every compact interval in [0,∞), and

eΘ(t) − eΘ(0) =
∫ t

0

ϑ(s)eΘ(s)ds, t � 0. (4.10)

On the other hand, using

a(g)ε(h) = 〈g|h〉ε(h), g, h ∈ L2(R2),

〈ε(g)|dΓ(ω)ε(h)〉F = 〈g|ωh〉e〈g|h〉, g ∈ L2(R2), h ∈ D(ω),

and taking (4.6) into account, we find

〈e−iK·Xx
j,svΛ|UN,+

Λ,s (x) − e−sωh2〉eΘ(s) = −〈ε(h1)|a(e−iK·Xx
j,svΛ)WΛ,s(x)ε(h2)〉F ,

〈h1|ω(UN,+
Λ,s (x) − e−sωh2)〉eΘ(s) = −〈ε(h1)|dΓ(ω)WΛ,s(x)ε(h2)〉F ,

〈h1|e−iK·Xx
j,svΛ〉eΘ(s) = 〈ε(h1)|a†(e−iK·Xx

j,svΛ)WΛ,s(x)ε(h2)〉F .

Combining the previous three relations with (4.8) and (4.9), we see that (4.10)
is equivalent to the statement with φi = ε(hi). �

5. Main Contributions to the Complex Action

With this section we start our investigation of the Feynman–Kac semigroups,
that eventually will result in a proof of Proposition 3.5 and generalizations
thereof in Sect. 7. As mentioned earlier, a crucial step will be to derive a
more regular expression for the complex action ũN

Λ,t(x) permitting to drop the
ultraviolet cutoff. Before we do so in the succeeding Sect. 6, we shall study
the two main contributions to the new expression for the complex action in
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this section, namely a martingale contribution and the effective interaction
potential mediated by the radiation field.

For technical purposes, we introduce versions of these with infrared and
ultraviolet cutoffs, usually denoted by σ and Λ, respectively. The purpose of
σ is twofold: Firstly, when studying convergence properties as the ultraviolet
cutoff goes to infinity, we encounter difference terms with an effective, large in-
frared cutoff σ and with Λ = ∞. Secondly, to obtain good exponential moment
bounds on the complex action, we have to split up some of its contributions into
two parts, comprising boson momenta |k| < σ and σ � |k| < Λ, respectively,
and treat both parts differently.

5.1. The Martingale Contribution to the Complex Action

We first want to discuss the martingale introduced in (2.29) and certain in-
frared and/or ultraviolet cutoff versions of it. These are stochastic integrals
with respect to ÑX as described in Sect. 2.2.4. The integrands we are inter-
ested in are given by

hσ,Λ(x, s, z) :=
N∑

�=1

〈UN,+
σ,Λ,s(x)|e−iK·Xx

�,s−(e−iK·z� − 1)β〉, s � 0, x, z ∈ R
2N ,

where 0 � σ < Λ � ∞ and

UN,±
σ,Λ,s(x) := χBΛ\Bσ

UN,±
s (x) = χBc

σ
UN,±

Λ,s (x). (5.1)

As a consequence of Lemmas B.2 and B.3, (UN,+
σ,Λ,s(x))s�0 is adapted and

continuous. Thus, we can read off from the above formula that all paths
s �→ hσ,Λ(x, s, z) are left-continuous and, for fixed s � 0, the map (z, ω) �→
(hσ,Λ(x, s, z))(ω) is B(R2N ) ⊗ Ft-measurable. In particular, hσ,Λ(x, ·, ·) is pre-
dictable. Recall that the space of integrands H2 has been introduced prior to
(2.16).

Lemma 5.1. Let 0 � σ < Λ � ∞, x ∈ R
2N and consider

mN
σ,Λ,t(x) :=

∫

(0,t]×R2N

hσ,Λ(x, s, z)dÑX(s, z), t � 0. (5.2)

Then the following holds:
(i) hσ,Λ ∈ H2 and in particular the integrals in (5.2) are well-defined iso-

metric stochastic integrals. Up to indistinguishability they define a unique
càdlàg square-integrable martingale mN

σ,Λ(x) = (mN
σ,Λ,t(x))t�0.

(ii) For every p � 2 there exists cp > 0, depending solely on p, such that

E

[

sup
s∈[0,t]

|mN
σ,Λ,s(x)|p

]

� cpg
2p

(
N3p/2tp/2

ω(σ)p/2
+

Np+1t

ω(σ)p−1

)

, t � 0.

(iii) There exists a universal constant c > 0 such that

E

[

sup
s∈[0,t]

e±pmN
σ,Λ,s(x)

]

� α

α − 1
exp

(
cαp2g4N3t

ω(σ)
· e4παpg2N/ω(σ)

)

,

for all α > 1, p > 0 and t � 0.
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Proof. We split the proof into four steps.
Step 1: Bounds on hσ,Λ. Since U+

s [Xj,•] is, pointwise on Ω, given by a Bochner-
Lebesgue integral in L2(R2), we can insert the definitions (2.23) and (5.1) into
the formula for hσ,Λ and switch the order of integration and taking scalar
products. Applying Fubini’s theorem afterwards we thus get

hσ,Λ(x, s, z)

= g2
N∑

j,�=1

∫

BΛ\Bσ

∫ s

0

e−(s−r)ω(k)+ik·(Xx
j,r−Xx

�,s−)(e−ik·z� − 1)
ω(k)(ω(k) + ψ(k))

dr dk,
(5.3)

for all s � 0 and z ∈ R
2N . Under the double integral we can apply the bounds

|e−ik·z� −1| � 21−a� |k|a� |z|a� as long as a� ∈ [0, 1) to retain integrability. Thus,
we find, for all s � 0, z ∈ R

2N and a1, . . . , aN ∈ [0, 1),

|hσ,Λ(x, s, z)| � 2g2N

N∑

�=1

|z�|a�

∫

Bc
σ

∫ s

0

e−rω(k)|k|a�

ω(k)(ω(k) + ψ(k))
dr dk

� 2g2N

N∑

�=1

|z�|a�

∫

Bc
σ

|k|a�

ω(k)3
dk

� 4πg2N
N∑

�=1

|z�|a�

1 − a�
· 1
ω(σ)1−a�

, (5.4)

where we used |k|a� � ω(k)a� in the last step. Given a vector z ∈ R
2N and

� ∈ {1, . . . , N} such that zj = 0 for all j ∈ {1, . . . , N} \ {�}, the sum in (5.4)
reduces to one summand when we pick a� = 0 and aj ∈ (0, 1) for j �= �. Since,
by (2.12), at most one two-dimensional component of z ∈ R

2N is non-zero for
νX -almost every z ∈ R

2N , this implies

sup
s�0

|hσ,Λ(x, s, z)| � 4πg2N

ω(σ)
, νX − a.e. z ∈ R

2N . (5.5)

Given a ∈ (0, 1), we apply (5.5) whenever |z�|ω(σ) � (1 − a)1/a for some
� ∈ {1, . . . , N} and choose a1 = . . . = aN = a in (5.4) otherwise. For any p > 0
and νX -almost every z ∈ R

2N , this yields

sup
s�0

|hσ,Λ(x, s, z)|p � (4πg2N)p

ω(σ)p

N∑

�=1

1 ∧
(

ω(σ)pa

(1 − a)p
|z�|pa

)

. (5.6)

The Bessel function asymptotics (D.5) and (2.8) imply the estimate
∫

R2
1 ∧

(
ω(σ)pa

(1 − a − ε)p
|z�|pa

)

dν(z�)

�
∫

R2

{

1 ∧
(

ω(σ)pa

(1 − a − ε)p
|z�|pa

)}
c

|z�|3 dz� =
2πcpa

pa − 1
· ω(σ)
(1 − a − ε)1/a

,

(5.7)

which applies to all particle masses mp � 0 and p, a > 0, ε � 0 with pa > 1
and a + ε < 1. (The parameter ε is needed only in the proof of Lemma 5.2.)
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Choosing ε = 0 and a = 2/3, say, we arrive at
∫ t

0

∫

R2N

|hσ,Λ(x, s, z)|pdνX(z) ds � cpg
2pNp+1t

ω(σ)p−1
, t � 0, p � 2. (5.8)

Step 2: Proof of (i). By (5.8), hσ,Λ ∈ H2, whence (5.2) are well-defined iso-
metric stochastic integrals and the corresponding integral process is a square-
integrable martingale. Since we are working under the usual hypotheses, the
latter has a càdlàg modification that is unique up to indistinguishability, cf.
[2, Theorem 2.1.7].
Step 3: Proof of (ii). Let p � 2. According to Kunita’s inequality (see, e.g., [2,
Theorem 4.4.23]), there is a solely p-dependent cp > 0 such that

E

[

sup
s∈[0,t]

|mN
σ,Λ,s(x)|p

]

� cpE

[(∫ t

0

∫

R2N

|hσ,Λ(x, s, z)|2dνX(z) ds

)p/2]

+ E

[ ∫ t

0

∫

R2N

|hσ,Λ(x, s, z)|pdνX(z) ds

]

, t � 0.

Inserting (5.8), we find the bound asserted in (ii).
Step 4: Proof of (iii). Let α > 1 and p > 0. Then an elementary manipulation
of the exponential series yields

1
α

|e±αphσ,Λ(x,s,z) − 1 ∓ αphσ,Λ(x, s, z)| � αp2

2
|hσ,Λ(x, s, z)|2eαp|hσ,Λ(x,s,z)|.

(5.9)

Employing (5.5) in the exponent of the exponential on the previous right hand
side and using (5.8) with p = 2 we find, with some universal constant c > 0,

1
α

∫ t

0

∫

R2N

|e±αphσ,Λ(x,s,z) − 1 ∓ αphσ,Λ(x, s, z)|dνX(z) ds

� cαp2g4N3t

ω(σ)
· e4παpg2N/ω(σ), t � 0. (5.10)

The asserted exponential moment bound now follows from (5.4) (with a� = 0
for all �), (5.8) (with p = 2), (5.10), an inequality due to Applebaum and
Siakalli [2,29] and a standard argument based on a suitable layer cake repre-
sentation; see Lemma C.1. �

The next lemma about continuous dependence on the initial positions
of the matter particles is analogous to [22, Lemma 4.14]. It is proved in a
similar, standard fashion with Kunita’s inequality replacing the Burkholder
inequalities used in [22].

Lemma 5.2. Let 0 � σ < Λ � ∞. Then, for every x ∈ R
2N , the càdlàg

modification of mN
σ,Λ(x) found in the first part of Lemma 5.1 can be chosen

such that
(a) R

2N � x �→ (mN
σ,Λ,t(x))(ω) is continuous for all t � 0 and ω ∈ Ω.

(b) For all t � 0, ω ∈ Ω and compact K ⊂ R
2N ,

lim
s↓t

sup
x∈K

|mN
σ,Λ,s(x) − mN

σ,Λ,t(x)| = 0.
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Proof. Let x, x̃ ∈ R
2N . By (5.3),

h̃σ,Λ(x̃, x, s, z) := hσ,Λ(x̃, s, z) − hσ,Λ(x, s, z)

= g2
N∑

j,�=1

∫

BΛ\Bσ

∫ s

0

e−(s−r)ω(k)+ik·(Xj,r−X�,s−)

ω(k)(ω(k) + ψ(k))
· θj,�(k, x̃, x, z)dr dk,

where θj,�(k, x̃, x, z) := (eik·(x̃j−x̃�) − eik·(xj−x�))(e−ik·z� − 1). We note

|θj,�(k, x̃, x, z)| � 22−a� |x − x̃|ε|z�|a� |k|ε+a� ,

for all ε, a1, . . . , a� ∈ [0, 1]. Assuming ε+max{a1, . . . , aN} < 1, replacing 2|k|a�

by 4|x− x̃|ε|k|ε+a� in the second and third members of (5.4) and following the
derivation of (5.6), we obtain

sup
s�0

|h̃σ,Λ(x̃, x, s, z)|p � (8πg2N)p|x − x̃|pε

ω(σ)(1−ε)p

N∑

�=1

1 ∧
(

ω(σ)pa

(1 − ε − a)p
|z�|pa

)

,

for all a, p, ε > 0 such that a+ ε < 1. Here the right hand side is νX -integrable
provided that pa > 1. Again using (5.7) and choosing a = 2/3, we find

∫ t

0

∫

R2N

|h̃σ,Λ(x̃, x, s, z)|pdνX(z) ds � cp,εg
2pNp+1|x − x̃|pεt

ω(σ)p−pε−1
, t � 0,

for all p � 2 and ε ∈ (0, 1/3). (Here and in what follows constants depend only
on the quantities displayed in their subscripts.) Combining these remarks with
Kunita’s inequality, we arrive at

E

[

sup
s∈[0,t]

|mN
σ,Λ,s(x̃) − mN

σ,Λ,s(x)|p
]

= E

[

sup
s∈[0,t]

∣
∣
∣
∣

∫

(0,s]×R2N

h̃σ,Λ(x̃, x, s, z)dÑX(s, z)
∣
∣
∣
∣

p]

� cpE

[(∫ t

0

∫

R2N

|h̃σ,Λ(x̃, x, s, z)|2dνX(z) ds

)p/2]

+ E

[ ∫ t

0

∫

R2N

|h̃σ,Λ(x̃, x, s, z)|pdνX(z) ds

]

� cmb,p,ε,g,N (tp/2 + t)|x − x̃|pε,

for all t � 0, ε ∈ (0, 1/3) and p � 2. Choosing ε = 1/4 and p such that
pε = 2N + 1, we see that all assertions follow from the Kolmogorov–Neveu
lemma; see, e.g., [20, pp. 268/9]. �

5.2. Effective Interaction Terms

Next, we treat the effective interaction introduced in (2.27) and (2.28) together
with variants containing cutoffs.



Vol. 25 (2024) Feynman–Kac Formula and Asymptotic Behavior 2905

Since χBc
σ
vΛβ is integrable for finite Λ > σ � 0, we can consider the

Fourier integrals

wσ,Λ(y) := 〈eiK·yχBc
σ
vΛ|β〉

= g2

∫

BΛ\Bσ

e−ik·y

ω(k)(ω(k) + ψ(k))
dk = g2

∫ Λ

σ

ϑ(r, |y|)dr,
(5.11)

for 0 � σ < Λ < ∞ and y ∈ R
2, where ϑ is defined in (2.26). Since the Bessel

function J0 in (2.26) satisfies the bound (D.3), it is clear that

lim
Λ→∞

wσ,Λ(y) = wσ,∞(y) := g2

∫ ∞

σ

ϑ(r, |y|)dr, y ∈ R
2 \ {0}.

Setting wσ,∞(0) := 0, say, wσ,∞ : R
2 → R is the up to its value at 0 unique rep-

resentative of the distributional Fourier transform of χBc
σ
vβ that is continuous

on R
2 \ {0}.

Remark 5.3. Since vβ = g2/ω(ω+ψ) ∈ Lp̃(R2) for every p̃ > 1, the Hausdorff-
Young inequality implies wσ,∞ ∈ Lp(R2) and ‖wσ,∞‖p � ‖χBc

σ
vβ‖p′ for all

p ∈ [2,∞), where p′ is the exponent conjugated to p. For all p ∈ (1,∞), or
equivalently p′ ∈ (1,∞), and σ � 0, we further have

‖χBc
σ
vβ‖p′ � g2

(

π

∫ ∞

σ

2r

(r2 + m2
b)p′ dr

)1/p′

=
cpg

2

(σ2 + m2
b)1/p

,

for some solely p-dependent cp ∈ (0,∞). Combined, we find the bound

‖wσ,Λ‖p � cpg
2

(σ2 + m2
b)1/p

, 0 � σ < Λ � ∞, p ∈ [2,∞). (5.12)

We can now treat a (possibly) cutoff version of the full effective interaction
expression defined in (2.28). For all 0 � σ < Λ � ∞ and x ∈ R

2N , it is given
by

wN
σ,Λ,t(x) :=

N∑

j,�=1
j �=�

∫ t

0

wσ,Λ(Xx
�,s − Xx

j,s)ds

=
∑

1�j<��N

∫ t

0

2wσ,Λ(Xx
�,s − Xx

j,s)ds, whenever N � 2. (5.13)

Notice that wσ,Λ(−y) = wσ,Λ(y) for all y ∈ R
2. Also notice that we are again

using the conventions introduced in Sect. 2.3.1 in the case Λ = ∞; i.e., the
pathwise integrals in (5.13) are 0 by definition, unless they are well-defined for
all t � 0 which is the case with probability 1. For N = 1, we set w1

σ,Λ,t(x) := 0.
The next Lemma is an exponential moment bound for the effective inter-

action.

Lemma 5.4. There exist universal constants c, c′ > 0 such that

sup
x∈R2N

E

[

sup
s∈[0,t]

ep|wN
σ,Λ,s(x)|

]

� cN exp
(

tc′p2g4N2(N − 1)
( mp

ω(σ)2
+

1
ω(σ)

))

,
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for all 0 � σ < Λ � ∞, t � 0 and p ∈ [1,∞).

Proof. Let t > 0 and x ∈ R
2N . Exactly as in [22, Equation (4.26)] (where an

observation from [5] is used; see also [22, Appendix B]), we can exploit the
independence of the processes X1, . . . , XN to obtain the bound

E

[

sup
s∈[0,t]

ep|wN
σ,Λ,s(x)|

]

� max
1�j<��N

E

[

sup
s∈[0,t]

e2pN
∫ t
0 |wσ,Λ(Xx

�,s−Xx
j,s)|ds

](N−1)/2

.

Pick two indices j and � with 1 � j < � � N . Since Xj and X� are independent
and since ψ(−η) = ψ(η) for all η ∈ R

2, we know that the difference X� −Xj is
a Lévy process associated with the Lévy symbol −2ψ. Therefore, we can apply
the bound (D.24) with a = d = p = 2 to deduce that

E

[

sup
s∈[0,t]

e2pN
∫ t
0 |wσ,Λ(Xx

�,s−Xx
j,s)|ds

]

� c exp
(
c′(m1/2

p ‖2pNwσ,Λ‖2 + ‖2pNwσ,Λ‖4)
2t

)
,

with universal constants c, c′ > 0. Combining the above remarks with (5.12),
we arrive at the asserted inequality. �

We can also bound the p’th moments of the effective interaction.

Lemma 5.5. Let p ∈ [1,∞). Then there exists cp > 0, depending solely on p,
such that for all 0 � σ < Λ � ∞, t � 0 and x ∈ R

2N ,

E

[

sup
s∈[0,t]

|wN
σ,Λ,s(x)|p

]

� cpg
2pNp(N − 1)ptp−1/2

(
mp

ω(σ)2
+

1
ω(σ)

)1/2

. (5.14)

Proof. First applying the ordinary and afterwards the generalized Minkowski
inequality, we find

E

[

sup
s∈[0,t]

|wN
σ,Λ,s(x)|p

] 1
p

�
∑

1�j<��N

E

[(∫ t

0

2|wσ,Λ(Xx
�,s − Xx

j,s)|ds

)p] 1
p

� 2
∑

1�j<��N

∫ t

0

E
[|wσ,Λ(Xx

�,s − Xx
j,s)|p

] 1
p ds.

Here X�,s − Xj,s has the same law as X1,2s. Thus, by (D.19) (with p = d = 2)
and (5.12),

E
[|wσ,Λ(Xx

�,s − Xx
j,s)|p

]
� c(‖wσ,Λ‖p

4p + m1/2
p ‖wσ,Λ‖p

2p)s
−1/2

� cpg
2p

s1/2

(
1

ω(σ)1/2
+

m
1/2
p

ω(σ)

)

, s > 0.

Putting these remarks together we arrive at (5.14). �

6. Discussion of the Complex Action

After the preliminary technical discussions of its main contributions in the
previous section, we now turn to the analysis of the complex action itself. In
Sect. 6.1 we shall rewrite the formula for the complex action with ultraviolet
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cutoff, obtaining a more regular expression that stays meaningful when the
cutoff is dropped. Sects. 6.2 and 6.3 are devoted to exponential moment bounds
and convergence properties as Λ → ∞, respectively. In most parts of this
section we allow for optional infrared cutoffs for the technical reasons explained
at the beginning of Sect. 5.

6.1. Definition of the Complex Action

First, we introduce an abbreviation for the complex action with finite Λ con-
taining an optional infrared cutoff; recall the earlier notation (3.2), (5.1) and
(4.1).

Definition 6.1. Let Λ ∈ (0,∞), σ ∈ [0,Λ), t � 0 and x ∈ R
2N . Then we define

ũN
σ,Λ,t(x) :=

∫ t

0

〈UN,+
σ,Λ,s(x)|vN

Λ,s(x)〉ds − tNEren
σ,Λ, (6.1)

where

Eren
σ,Λ := 〈χBΛ\Bσ

v|β〉. (6.2)

In view of (1.8) and (2.24) we indeed have Eren
0,Λ = Eren

Λ with Eren
Λ given

by (1.11). To reduce cluttering of indices a bit, we shall return to the earlier
notation ũN

0,Λ,t(x) = ũN
Λ,t(x) whenever σ = 0.

Using Itô’s formula, we shall rewrite the integral in (6.1) in Lemma 6.5.
The alternative expression for the complex action we find is (6.3) in the next
definition. As opposed to ũN

σ,Λ,t(x), the new expression uN
σ,Λ,t(x) is meaningful

for Λ = ∞ as well!
Recall the definition of the martingale contribution (5.2) and the effective

interaction (5.13). For all Λ ∈ (0,∞], we also abbreviate

βΛ := χBΛβ, βN
Λ,t(x) :=

N∑

j=1

e−iK·Xx
j,tβΛ, t � 0, x ∈ R

2N .

Definition 6.2. Let x ∈ R
2N . Then we define

uN
σ,Λ,t(x) := wN

σ,Λ,t(x) − cN
σ,Λ,t(x) + mN

σ,Λ,t(x), t � 0, (6.3)

for all 0 � σ < Λ � ∞, with

cN
σ,Λ,t(x) := 〈UN,+

σ,Λ,t(x)|βN
Λ,t(x)〉. (6.4)

Recall that the three contributions to the complex action and the action
itself for our model without any cutoffs have already been introduced in (2.26)
through (2.30). In fact,

uN
t (x) = uN

0,∞,t(x), and analogously with c,m or w put in place of u. (6.5)

Remark 6.3. We note for later use that

|cN
σ,Λ,t(x)| � 2πg2N2

ω(σ)
, σ, t � 0, (6.6)

for all x ∈ R
2N , by the last two relations in (5.4) with a� = 0.
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Remark 6.4. Let 0 � σ < κ < Λ � ∞ and x ∈ R
2N . Then (5.2), (5.11), (5.13)

and (6.4) P-a.s. imply

uN
σ,Λ,t(x) = uN

σ,κ,t(x) + uN
κ,Λ,t(x), t � 0. (6.7)

Lemma 6.5. Let 0 � σ < Λ < ∞ and x ∈ R
2N . Then, P-a.s.,

ũN
σ,Λ,t(x) = uN

σ,Λ,t(x), t � 0. (6.8)

Proof. We pick an orthonormal basis {ei : i ∈ N} of the real Hilbert space
HR defined in (2.33) and put Pn :=

∑n
i=1 |ei〉〈ei| for every n ∈ N. We intro-

duce the projections Pn as we wish to employ the Itô formula (3.6). (Alterna-
tively, we could also use an Itô formula for infinite dimensional processes [20,
Theorem 27.2] and re-write the dX-integrations and summations over jumps
appearing there.)

Let i ∈ {1, . . . , n}. Recalling that UN,+
σ,Λ,t is HR-valued, cf. Sect. 2.4, and in

view of (4.2), the paths of the adapted process given by Ai,t := 〈UN,+
σ,Λ,t(x)|ei〉

are real-valued and absolutely continuous on every compact subinterval of
[0,∞), and it satisfies

∫

(0,t]

ZsdAi,s =
∫ t

0

Zs〈χBc
σ
vN
Λ,s(x) − ωUN,+

σ,Λ,s(x)|ei〉ds, t � 0, (6.9)

for every real-valued predictable process (Zs)s�0 with locally bounded paths.
Furthermore, since Λ < ∞, the function fi : R

2N → R given by

fi(x) :=
N∑

j=1

〈ei|e−iK·xj βΛ〉, x ∈ R
2N ,

is smooth and bounded with bounded derivatives of any order. Thus,
ψX(−i∇)fi is well-defined by (2.13). Also taking (2.12) into account, applying
Fubini’s theorem and using (2.10) afterwards, we find

ψX(−i∇)fi(x) =
N∑

j=1

〈ei|e−iK·xj ψβΛ〉, x ∈ R
2N .

Applying the Itô formula (3.6) to each term under the sum over j and using
Ai,0 = 0 and (6.9) with Zs = fi(Xx

s−), we P-a.s. obtain

Ai,tfi(X
x
t ) =

N∑

j=1

∫ t

0

〈χBc
σ
vN
Λ,s(x)|ei〉〈ei|e−iK·Xx

j,sβΛ〉ds

−
N∑

j=1

∫ t

0

〈ωUN,+
σ,Λ,s(x)|ei〉〈ei|e−iK·Xx

j,sβΛ〉ds

−
N∑

j=1

∫ t

0

〈UN,+
σ,Λ,s(x)|ei〉〈ei|e−iK·Xx

j,sψβΛ〉ds

+

N∑

j=1

∫

(0,t]×R2N

〈UN,+
σ,Λ,s(x)|ei〉〈ei|e−iK·Xx

j,s−(e−iK·zj − 1)βΛ〉dÑX(s, z),
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for all t � 0, where the first two ds-integrals are the dAi,s-integral from the
Itô formula in conjunction with (6.9). Summing over i ∈ {1, . . . , n} we P-a.s.
find

〈PnUN,+
σ,Λ,t(x)|βN

Λ,t(x)〉 = I1(n, t) + I2(n, t) + I3(n, t) + I4(n, t), (6.10)

for all t � 0 and n ∈ N, with

I1(n, t) :=
∫ t

0

〈PnχBc
σ
vN
Λ,s(x)|βN

Λ,s(x)〉ds,

I2(n, t) := −
∫ t

0

〈PnωUN,+
σ,Λ,s(x)|βN

Λ,s(x)〉ds,

I3(n, t) := −
∫ t

0

〈PnUN,+
σ,Λ,s(x)|ψβN

Λ,s(x)〉ds,

I4(n, t) :=
∫

(0,t]×R2N

hn(s, z)dÑX(s, z),

where the integrand of I4(n, t) is given by

hn(s, z) :=
N∑

j=1

〈PnUN,+
σ,Λ,s(x)|e−iK·Xx

j,s−(e−iK·zj − 1)βΛ〉, s � 0, z ∈ R
2N .

Next, we pass to the limit n → ∞ for fixed t � 0. Since Pn → 1 strongly,
the expression on the left hand side of (6.10) converges pointwise on Ω to
cN
σ,Λ,t(x). By dominated convergence, (5.11), (5.13) and (6.2) we further have,

again pointwise on Ω,

I1(n, t) n→∞−−−−−→wN
σ,Λ,t(x) + tNEren

σ,Λ,

I2(n, t) + I3(n, t) n→∞−−−−−→ −
∫ t

0

〈UN,+
σ,Λ,s(x)|(ω + ψ)βN

Λ,s(x)〉ds

= −ũN
σ,Λ,t(x) − tNEren

σ,Λ.

Here we used (6.1) and (ω + ψ)βΛ = vΛ in the last step. Finally, recall that
hσ,Λ(x, ·), the integrand of the martingale mN

σ,Λ(x), has been introduced prior
to Lemma 5.1. Clearly, hn(s, z) → hσ,Λ(x, s, z), n → ∞, pointwise on Ω and
for all s � 0 and z ∈ R

2N . Since Λ is finite, we can employ some (g,N,mb)-
dependent constant (coming from (B.1) with ε = 0) times (|z|‖KβΛ‖) ∧ ‖2β‖
as square-integrable dominating function to conclude that hn → hσ,Λ(x, ·) in
L2((0, t]×R

2N ×Ω,ds⊗νX ⊗P). By means of Itô’s isometry (2.16) we deduce
that I4(n, t) → mN

σ,Λ,t(x), n → ∞, in L2(P) and in particular P-a.s. along a
suitable subsequence.

All these remarks prove P-a.s. an identity that is obviously equivalent to
the one in (6.8) for fixed t � 0. Since the processes on both sides in (6.8) are
càdlàg, they consequently are indistinguishable. �

6.2. Exponential Moment Bounds

Exponential moment bounds on the complex action are the essential quantita-
tive ingredient for the proofs of our lower bounds on the minimal energy. The
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first one, stated in the next theorem, is good for small g2N and obviously very
bad for large g2N .

Theorem 6.6. There exist universal constants b, c, c′ > 0 such that, for all
α > 1, p > 0, 0 < Λ � ∞, t � 0 and x ∈ R

2N ,

E

[

sup
s∈[0,t]

epuN
0,Λ,s(x)

]

� bN

(
α

α − 1

)1/2

e2πpN2g2/mb

· exp
(

tc′ · p2g4N2(N − 1)
mb

(
1 +

mp

mb

)
+ tc · αp2g4N3

mb
· e8παpg2N/mb

)

.

Proof. This follows from (6.3), (6.6), Lemmas 5.4 and 5.1 with σ = 0 and the
Cauchy–Schwarz inequality. (After using the Cauchy–Schwarz inequality, we
have to apply Lemmas 5.1 and 5.1 with 2p put in place of p; hence the factor
8π in the exponent of e8παpg2N/mb). �

We infer another exponential moment bound on the complex action, ex-
hibiting a better behavior for large g2N . For N = 1 and mp > 0 we also find
a bound that is uniform in mb > 0.

Theorem 6.7. There exist universal constants b, c, c′ > 0 such that, for all
α > 1, 0 < Λ � ∞, t � 0, x ∈ R

2N and p > 0 such that pg2N > mb,

E

[

sup
s∈[0,t]

epuN
0,Λ,s(x)

]

� bN

(
α

α − 1

)1/2

exp
(

tπpg2(2N2 − N) ln
(pg2N

mb

))

· exp
(
tc′(N − 1)(mp + pg2N) + tcαpg2N2e8πα

)
.

For mp > 0, the argument of the first exponential can be replaced by

t2πpg2N(N − 1) ln
(pg2N

mb

)
+ tπpg2N [ln(pg2N) ∨ 0] + t

πpg2N

mp
[(pg2N) ∧ 1].

Proof. Thanks to our assumption pg2N > mb, we can fix σ > 0 such that

ω(σ) = (σ2 + m2
b)1/2 = pg2N. (6.11)

Let us further assume that Λ > σ. Then, by (6.3), Remark 6.4 and Lemma
6.5, we may P-a.s. split up the complex action as

uN
0,Λ,s(x) = ũN

σ,s(x) − cN
σ,Λ,s(x) + wN

σ,Λ,s(x) + mN
σ,Λ,s(x), s � 0. (6.12)

The first two terms on the right hand side of (6.12) can be estimated trivially
using (6.6) and

ũN
σ,t(x) � g2N2

∫

Bσ

∫ t

0

∫ s

0

e−(s−r)ω(k)

ω(k)
dr dsdk − tNEren

σ

� tg2N2

∫

Bσ

1
ω(k)2

dk − tNEren
σ , t � 0. (6.13)

Direct computation and our choice of σ satisfying (6.11) lead to

g2(N2 − N)
∫

Bσ

1
ω(k)2

dk = 2πg2N(N − 1) ln
(

pg2N

mb

)

. (6.14)
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Since ω(k) > |k| � ψ(k), the remaining contribution proportional to N can be
estimated using

g2N

∫

Bσ

1
ω(k)2

dk − NEren
σ = g2N

∫

Bσ

ψ(k)
ω(k)2(ω(k) + ψ(k))

dk

� g2N

2

∫

Bσ

1
ω(k)2

dk = g2Nπ ln
(

pg2N

mb

)

.

(6.15)

Combining (6.13) to (6.15) we find

sup
s∈[0,t]

pũN
σ,s(x) � tπpg2(2N2 − N) ln

(pg2N

mb

)
, t � 0.

Finally, we can bound the expectation of the product of sups∈[0,t] e
pwN

σ,Λ,s(x)

and sups∈[0,t] e
pmN

σ,Λ,s(x) by means of the Cauchy–Schwarz inequality and Lem-
mas 5.1 and 5.4 with the above choice for σ. Putting all these remarks together
we obtain the asserted bound for general mp � 0.

If mp > 0, then we can instead use the following estimates in (6.15).
Observing that ψ(k)(ψ(k) + 2mp) = |k|2, we find

∫

Bσ∧1

g2ψ(k)
ω(k)2(ω(k) + ψ(k))

dk =
∫

Bσ∧1

|k|2
ω(k)2

· g2

ω(k)(ψ(k) + 2mp) + |k|2 dk

� g2

2mp

∫

Bσ∧1

1
ω(k)

dk

� πg2

mp
(σ ∧ 1) � πg2

mp
[(pg2N) ∧ 1],

and, similar to above,
∫

Bσ\Bσ∧1

g2ψ(k)
ω(k)2(ω(k) + ψ(k))

dk � g2

2

∫

Bσ\Bσ∧1

1
ω(k)2

dk � πg2[ln(pg2N) ∨ 0].

Replacing the bound in (6.15) by the latter two estimations proves the last
statement.

Finally, if Λ � σ, then we write uN
0,Λ,s(x) = ũN

Λ,s(x), s � 0, P-a.s., and
employ (6.13) and the first equality in (6.15) both with Λ put in place of σ.
Replacing BΛ by the larger ball Bσ, we then see that ũN

Λ,t(x) is again bounded
from above by the expression in the last line of (6.13) as it stands there. It is
now clear that all asserted bounds also hold for Λ � σ. �

6.3. Convergence Properties of the Complex Action

Using the bounds derived in Sect. 5, we can easily deduce convergence state-
ments for the complex action when removing the ultraviolet cutoff.
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Theorem 6.8. Let σ, t � 0 and p > 0. Then

sup
x∈R2N

E

[

sup
s∈[0,t]

|uN
σ,Λ,s(x) − uN

σ,∞,s(x)|p
]

Λ→∞−−−−−→ 0, (6.16)

sup
x∈R2N

E

[

sup
s∈[0,t]

∣
∣euN

0,Λ,s(x) − euN
0,∞,s(x)

∣
∣p
]

Λ→∞−−−−−→ 0. (6.17)

Proof. By (6.3) and Remark 6.4, for σ < Λ < ∞, we P-a.s. have

uN
σ,∞,s(x) − uN

σ,Λ,s(x) = wN
Λ,∞,s(x) − cN

Λ,∞,s(x) + mN
Λ,∞,s(x), s � 0.

Therefore, the convergence (6.16) follows directly from Lemmas 5.1 and 5.5,
(6.6) (all applied with (Λ,∞) put in place of (σ,Λ)) and Jensen’s and
Minkowski’s inequalities. Now (6.17) follows from the bound |ea − eb| � |a −
b|eaeb, a, b � 0, Hölder’s inequality, the exponential moment bound in Theo-
rems 6.6 and (6.16). �

The following conclusion easily follows and is a helpful technical ingredi-
ent for our proof of strong continuity of the Feynman–Kac semigroup.

Corollary 6.9. For any Λ ∈ (0,∞] and x ∈ R
2N , the paths [0,∞) � t �→

uN
0,Λ,t(x) are continuous P-a.s.

Proof. The statement directly follows from Definition 6.1 and Lemma 6.5 for
Λ < ∞. Further, by (6.16), there exists an increasing sequence of cutoffs
Λn ∈ (0,∞), n ∈ N, with limn→∞ Λn = ∞ such that uN

0,Λn,s(x) converges
P-a.s. to uN

0,∞,s(x) uniformly in s on any compact subinterval of [0,∞). This
takes care of the case Λ = ∞. �

7. Feynman–Kac Integrands and Semigroups

In this section we discuss the Feynman–Kac integrands and semigroups we
introduced in Sect. 3.1 and in particular we shall prove all assertions of Propo-
sition 3.5. In Sect. 7.1 we first provide some pathwise bounds on the Fock
space operator-valued part of the Feynman–Kac integrands, which in conjunc-
tion with our results on the complex action are applied in the succeeding
subsections. There we prove weighted Lp to Lq bounds on and convergence as
Λ → ∞ of semigroup members (Sects. 7.2 and 7.3), Markov and semigroup
properties (Sect. 7.4) and finally strong continuity of the semigroups as well
as equicontinuity in the range of semigroup elements (Sect. 7.5).

7.1. Some Pathwise Bounds

We start out by collecting some additional bounds on the Fock space opera-
tors Ft(h) defined in (2.4). Recall the definitions (2.6) and (2.7) of the time
dependent norms ‖·‖t and the series S, respectively, as well as the bound (2.5)
on the operator norm of Ft(h).
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Lemma 7.1. Let g, g̃, h, h̃ ∈ L2(R2) and t > 0. Then

‖Ft(g) − Ft(h)‖ � 4‖g − h‖t sup
τ∈[0,1]

S(‖τg + (1 − τ)h‖t

)
, (7.1)

and

‖Ft(g)Ft(g̃)∗ − Ft(h)Ft(h̃)∗‖
� 4(‖g − h‖t + ‖g̃ − h̃‖t)max

{S(‖g‖t),S(‖h‖t)
}

max
{S(‖g̃‖t),S(‖h̃‖t)

}
.

(7.2)

Furthermore, for all ε ∈ (0, 1],

‖(Ft(g)Ft(g̃)∗ − 1)(1 + dΓ(ω))−ε‖ � 4(‖g‖t + ‖g̃‖t)S(‖g‖t)S(‖g̃‖t) + (2t)ε.
(7.3)

Finally, if ωg ∈ L2(R2N ), then Ft(g)F ⊂ D(dΓ(ω)) and

‖dΓ(ω)Ft(g)‖ � 4‖ωg‖tS(‖g‖t) +
1
eτ

S(‖g‖t−τ ), τ ∈ (0, t). (7.4)

Proof. In [11, Lemma 17.4], it is shown that, for all f ∈ L2(R2),

∞∑

n=0

1
n!

‖a†(f)a†(g)ne−tdΓ(ω)‖ � 4‖f‖tS(‖g‖t), (7.5)

as well as that the Fréchet derivative of Ft satisfies

F ′
t (g)f =

∞∑

n=0

1
n!

a†(f)a†(g)ne−tdΓ(ω).

This directly implies (7.1), which in turn entails (7.2). Applying (7.2) with
h = h̃ = 0 and recalling that Ft(0) = e−tdΓ(ω), we see that, to verify (7.3), it
only remains to show that ‖(1 − e−2tdΓ(ω))(1 + dΓ(ω))−ε‖ � (2t)ε. The latter
bound, however, follows directly from the spectral calculus, dΓ(ω) � 0 and the
simple bound sups�0(1 − e−2ts)/(1 + s)ε � (2t)ε.

Finally, (7.4) follows by using the commutation relations [dΓ(ω), a†(g)] =
a†(ωg) and [a†(g), a†(ωg)] = 0, which hold on the range of a†(g)ke−tdΓ(ω) for
every k ∈ N0, the bounds (2.5), (7.5) and the simple estimate ‖dΓ(ω)e−τdΓ(ω)‖
� 1/eτ . �

In the next lemma, we consider the Fock space operator-valued part of
our Feynman–Kac integrands, i.e.,

DΛ,t(x) := Ft/2(−UN,+
Λ,t (x))Ft/2(−UN,−

Λ,t (x))∗,

where t > 0, x ∈ R
2N and Λ ∈ (0,∞]. The aim is to obtain norm bounds and

study their convergence properties as Λ goes to infinity or t goes to zero.
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Lemma 7.2. Abbreviate s∗ := S((12π/mb)1/2|g|N). Let t > 0, x ∈ R
2N , ε ∈

(0, 1/2) and Λ ∈ (0,∞]. Then

‖DΛ,t(x)‖ � s2
∗, (7.6)

‖dΓ(ω)DΛ,t(x)∗‖ � 4(6π)1/2|g|Nω(Λ)1/2s2
∗ +

4
et

s2
∗, if Λ < ∞, (7.7)

‖DΛ,t(x) − D∞,t(x)‖ � 8(6π)1/2|g|Ns2
∗

ω(Λ)1/2
, if Λ < ∞, (7.8)

‖(DΛ,t(x)∗ − 1)(1 + dΓ(ω))−ε‖ � tε
(

1 +
8(6π)1/2|g|Ns2

∗
(1 − 2ε)1/2m

(1−2ε)/2
b

)

. (7.9)

Proof. From (2.6) and (B.1) with ε = σ = 0, we know that

2−1/2‖UN,±
Λ,t (x)‖t/4 � ‖UN,±

Λ,t (x)‖t/2 � (6π/mb)1/2|g|N. (7.10)

Hence, (7.6) directly follows from (2.5). Similarly, (7.7) follows from (7.10) in
conjunction with (B.2), (2.5) and (7.4), the latter with (t/4, t/2) put in place
of (τ, t). Further, (7.2) and (7.10) imply that the left hand side of (7.8) is less
than or equal to 4(‖UN,+

Λ,∞,t(x)‖t/2 + ‖UN,−
Λ,∞,t(x)‖t/2)s2

∗. Again employing (B.1)
with ε = 0 and (Λ,∞) put in place of (σ,Λ), we see that (7.8) holds true
as well. Finally, (7.9) follows from (7.3), (7.10) and (B.1) applied with (ε, σ)
replaced by (2ε, 0). �
7.2. Weighted Lp to Lq Bounds

We now want to derive bounds on the maps TΛ,t introduced in Definition 3.4
seen as operators from Lp(R2N ,F) to Lq(R2N ,F) for any 1 < p � q � ∞.
We also cover Lipschitz-continuous weight functions, in the sense of the norm
given in (7.12). Similar bounds for the free relativistic semigroup are derived
in Appendix D and applied in what follows.

As in Appendix D, it would also be possible to include the case p = 1
in the discussion of the families (TΛ,t)t�0, Λ ∈ (0,∞]. This would, however,
require additional arguments proceeding along the lines in [22] at several places
in the article. As we have no actual need to include the case p = 1 here, we
refrained from doing so. (Only considering the case p = 2 would not lead to
any simplifications).

For a start it makes sense to clarify the following product measurability:

Lemma 7.3. Let Λ ∈ (0,∞] and t � 0. Then (WΛ,t(x))(γ) is B(R2N ) ⊗ F-
measurable and separably valued as a B(F)-valued function of (x, γ) ∈ R

2N ×Ω.

Proof. Recall the definition (2.20) of the P-zero sets NV (x) and the convention
introduced in Sect. 2.3.1. In view of the latter and

NV :=
{
(x, γ) ∈ R

2N × Ω
∣
∣ γ ∈ NV (x)

}

=

∞⋃

n=1

{

(x, γ) ∈ R
2N × Ω

∣
∣
∣
∣ max

�∈{+,−}

∫ n

0

V�(Xx
s (γ))ds = ∞

}

∈ B(R2N ) ⊗ F,

the expression
∫ t

0
V (Xx

s (γ))ds is B(R2N ) ⊗ F-measurable in (x, γ) for every
t � 0. Analogous remarks apply to wN

0,∞,t defined in (5.13). The assertion now
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follows from the continuity of h �→ Fs(h) (see, e.g., (7.1)), as well as from
Lemmas B.2 and 5.2 and Definitions 3.1 and 6.2. �

Remark 7.4. For all p, t > 0 we abbreviate

�V (p, t) := sup
Λ∈(0,∞]

sup
x∈R2N

E

[

sup
s∈[0,t]

‖WΛ,s(x)‖p

]1/p

. (7.11)

Recall that WΛ,s(x) depends on V . Also observe that ũN
Λ,s(x), which appears

in the definition (3.3) of WΛ,s(x) with Λ < ∞, can be replaced by uN
0,Λ,s(x)

under the expectation in (7.11) because of Lemma 6.5. Thus, �0(p, t)p is less
than or equal to the product of s2p

∗ from Lemma 7.2 with the minimum of
the applicable alternative right hand sides in the exponential moment bounds
of Theorems 6.6 and 6.7. Combining the lemma and the two theorems with
Hölder’s inequality and (A.1) (to bound expectations of exponentials of the
external potential V ), we obtain

�V (p, t) � ecθ,p,V− (1∨t)
�0(θp, t)1/θ � e(cθ,p,V−+c∗)(1∨t),

for all θ ∈ (1,∞). Here, c∗ ∈ (0,∞) depends on p, θ, the model parameters
mp, mb, g, N , the parameter α appearing in Theorems 6.6 and 6.7, but not on
t. Moreover, cθ,p,V− ∈ [0,∞) depends solely on p, θ and V−. If V− is bounded,
then we can also choose θ = 1 and cθ,p,V− = ‖V−‖∞.

For 1 � p � q � ∞, we shall denote the norm on the space of all bounded
operators from Lp(R2N ,F) to Lq(R2N ,F) by ‖ · ‖p,q in what follows. In the
next proposition we also set

|x|1 := |x1| + · · · + |xN |, x = (x1, . . . , xN ) ∈ R
2N , (7.12)

where | · | is the Euclidean norm on R
2.

Proposition 7.5. In the case mp > 0, we assume that G : R
2N → R satisfies

|G(x) − G(x′)| � L|x − x′|1, x, x′ ∈ R
2N ,

with L ∈ [0,mp). In the case mp = 0 we set G = L = 0. If mp > L > 0,
then we pick some r > 1 such that rL < mp. Otherwise we set r = ∞ so that
r′ = 1. Let Λ ∈ (0,∞], p ∈ (1,∞], q ∈ [p,∞] and t > 0. Then the following
holds:

(i) The random variable ‖WΛ,t(x)∗(e−GΨ)(Xx
t )‖F is P-integrable for all x ∈

R
2N and Ψ ∈ Lp(R2N ,F).

(ii) eGTΛ,te−G maps Lp(R2N ,F) continuously into Lq(R2N ,F).
(iii) There exists b∗ > 0, depending solely on mp, N , L, p, q and r, such that

‖eGTΛ,te−G‖p,q � b∗

[
1
t2

∨ mp − L

t

]N( 1
p − 1

q )

eLNt
�V (p′r′, t).

We can actually work with the supremum over x ∈ R
2N instead of the

essential supremum when q = ∞, i.e., we can use the convention

‖eGTΛ,te−G‖p,∞ = sup
‖Ψ‖p�1

sup
x∈R2N

eG(x)‖(TΛ,te−GΨ)(x)‖F .
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Proof. All assertions are direct consequences of Lemma 7.3, Remark 7.4, Corol-
lary D.6. �

Our next lemma holds only for finite Λ. It is essential for our proof of the
continuity results in Proposition 7.13.

Lemma 7.6. Let Λ ∈ (0,∞), p ∈ (1,∞], q ∈ [p,∞] and 0 < τ1 � τ2 < ∞.
Then TΛ,t with t > 0 maps Lp(R2N ,F) into Lq(R2N ,D(dΓ(ω))) and

sup
t∈[τ1,τ2]

‖dΓ(ω)TΛ,t‖p,q < ∞.

Proof. In view of (6.13), (7.7) and (A.1) it is clear that

sup
t∈[τ1,τ2]

sup
x∈R2N

E[‖dΓ(ω)WΛ,t(x)∗‖θ] < ∞, θ ∈ [1,∞).

In conjunction with Corollary D.6 (there we choose d = 2, G = L = 0, r′ = 1)
this implies all statements. �
7.3. Convergence Properties

Next, we derive the semigroup convergence when removing the ultraviolet cut-
off.

Proposition 7.7. Let 1 < p � q � ∞ and 0 < τ1 � τ2 < ∞. Then

sup
t∈(0,τ1]

‖TΛ,t − T∞,t‖p,p
Λ→∞−−−−−→ 0, sup

t∈[τ1,τ2]

‖TΛ,t − T∞,t‖p,q
Λ→∞−−−−−→ 0.

Again we can work with the actual supremum over x ∈ R
2N when q = 0, i.e.,

in both convergence relations we can use the convention

‖TΛ,t − T∞,t‖p,∞ = sup
‖Ψ‖p�1

sup
x∈R2N

‖(TΛ,tΨ)(x) − (T∞,tΨ)(x)‖F , t > 0.

Proof. Let θ ∈ [1,∞). By Minkowski’s inequality, i.e., the triangle inequality
in Lθ(P), and Lemma 6.5, we have

E

[

sup
s∈[0,t]

‖WΛ,s(x) − W∞,s(x)‖θ

]1/θ

� E

[

e
∫ t
0 θV−(Xx

s )ds sup
s∈[0,t]

∣
∣euN

0,Λ,s(x) − euN
0,∞,s(x)

∣
∣θ‖DΛ,s(x)‖θ

]1/θ

+ E

[

e
∫ t
0 θV−(Xx

s )ds sup
s∈[0,t]

eθuN
0,∞,s(x)‖DΛ,s(x) − D∞,s(x)‖θ

]1/θ

,

for all t > 0 and x ∈ R
2N . Here the first expression can be bounded by Hölder’s

inequality together with (7.6) and Theorem 6.8 as well as (A.1), to bound the
factor involving the external potential V . To treat the second one we apply
Theorem 6.6, (7.8) and (A.1) instead. As a result we see that

sup
x∈R2N

E

[

sup
s∈[0,t]

‖WΛ,s(x) − W∞,s(x)‖θ

]
Λ→∞−−−−−→ 0, t > 0. (7.13)

Now the assertion follows from Corollary D.6 (again with d = 2, G = L = 0,
r′ = 1). �
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7.4. Markov and Semigroup Properties

Next, we derive a Markov property of our Feynman–Kac integrands that will
entail semigroup properties for the families (TΛ,t)t�0. The Markov property
will be a consequence of a flow relation we prove first in Lemma 7.9.

For these purposes it is convenient to observe the existence of certain
canonical representatives of the processes (WΛ,t(x))t�0. With D = D
([0,∞), R2N ) denoting the set of all càdlàg functions from [0,∞) to R

2N ,
these are given by product measurable separably valued maps

R
2N × D � (x, γ) �−→ WΛ,t[x, γ] ∈ B(F), (7.14)

such that, for all Λ ∈ (0,∞] and x ∈ R
2N ,

(WΛ,t(x))t�0 and (WΛ,t[x,X•])t�0 are indistinguishable. (7.15)

Here X• : Ω → D is the path map of X.
The canonical representatives are helpful for the following reasons: Firstly,

for every t � 0, we obtain time-shifted versions (WΛ,s[x,Xt+• − Xt])s�0 of
(WΛ,s(x))s�0 simply by substitution of the path map of the time-shifted Lévy
process. Moreover, since X• and Xt+• − Xt have the same law, it is then ob-
vious from (7.15) that WΛ,s(x) and WΛ,s[x,Xt+• − Xt] have identical laws as
well, for each s � 0. Secondly, having the product measurable map (7.14) in
whose arguments the independent random variables Xx

t and Xt+• − Xt can
be inserted, permits to apply the “useful rule” (see, e.g., [13, (6.8.14)]) for the
computation of the conditional expectation E

Ft in the proof of the Markov
property.

Let us give more details on (7.14) and (7.15): On D we introduce the
evaluation maps evt : D → R

2N , γ �→ γt, as well as the associated σ-algebra
D′ and filtration (D′

t)t�0, i.e.,

D′ := σ
(
evt : t ∈ [0,∞)

)
, D′

t := σ
(
evs : s ∈ [0, t]

)
, t � 0.

While the choice of our basic càdlàg Lévy process X is not unique, all possible
choices have the same law on D that we denote by P

′
can. That is, P

′
can =

P ◦ X−1
• where the path map X• is as usual considered as a measurable

map from (Ω,F) to (D,D′). The process (evt)t�0 on (D,D′, P′
can) is the so-

called canonical representative of X with paths in D. Furthermore, we let
(D,D, (Dt)t�0, Pcan) denote the completion of the filtered probability space
(D,D′, (D′

t)t�0, P
′
can). Since (evt)t�0 is Lévy with càdlàg paths, we know that

(Dt)t�0 is automatically right-continuous; see, e.g., [2, Theorem 2.1.10]. Thus,
(D,D, (Dt)t�0, Pcan) satisfies the usual hypotheses. Again we can write Pcan =
P ◦ X−1

• provided, however, that X• on the right hand side of this relation is
now treated as a measurable map from (Ω,F) to (D,D).

Let us now agree on the following notational convention for our stochastic
processes parametrically depending on x: When the data

(D,D, (Dt)t�0, Pcan, (evt)t�0) (7.16)

is put in place of (Ω,F, (Ft)t�0, P, (Xt)t�0) in their constructions, then we
replace the argument (x) of the processes by [x, ·]. For example, we denote by
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(mN
0,∞,t[x, ·])t�0, x ∈ R

2N , the particular versions of the martingales we obtain
by applying Lemma 5.2 to the data (7.16), and these martingales are used to
define W∞,t[x, ·].

The product-measurability of (7.14) for all Λ ∈ (0,∞] and t � 0 then
follows from Lemma 7.3 applied to the data (7.16). Manifestly, we further
have transformation rules for the following processes which have all been con-
structed pathwise:

UN,±
Λ,t (x) = UN,±

Λ,t [x,X•], for all Λ ∈ (0,∞];

ũN
Λ,t(x) = ũN

Λ,t[x,X•], WΛ,t(x) = WΛ,t[x,X•], for finite Λ ∈ (0,∞);
(7.17)

wN
0,∞,t(x) = wN

0,∞,t[x,X•], cN
0,∞,t(x) = cN

0,∞,t[x,X•].

These relations hold on Ω and for all t � 0 and x ∈ R
2N ; the fourth one follows

from the first three and a similar relation involving V . They prove (7.15) for
finite Λ. When Λ = ∞, the complex actions

uN
t [x, ·] := wN

0,∞,t[x, ·] − cN
0,∞,t[x, ·] + mN

0,∞,t[x, ·], t � 0, x ∈ R
2N ,

contain the stochastic integrals mN
0,∞,t[x, ·], whence (7.15) becomes less obvi-

ous.

Lemma 7.8. (uN
t (x))t�0 and (uN

t [x,X•])t�0 are indistinguishable. In particu-
lar, (7.15) holds for Λ = ∞ as well.

Proof. Denoting expectations with respect to Pcan by Ecan, the first assertion
follows from

E

[

sup
s∈[0,t]

|uN
s (x) − uN

s [x,X•]|2
]

= lim
Λ→∞

E

[

sup
s∈[0,t]

|ũN
Λ,s[x,X•] − uN

s [x,X•]|2
]

= lim
Λ→∞

Ecan

[

sup
s∈[0,t]

|ũN
Λ,s[x, ·] − uN

s [x, ·]|2
]

= 0, t � 0.

In the first equality we applied (6.16) (with σ = 0 and filtered probabil-
ity space (Ω,F, (Ft)t�0, P)) and took into account that (uN

0,Λ,t(x))t�0 and
(ũN

Λ,t[x,X•])t�0 are indistinguishable for finite Λ by Lemma 6.5 and (7.17).
The second equality follows from Pcan = P ◦ X−1

• . In the last one we again ap-
plied Lemma 6.5 and (6.16), now with filtered probability space (D,D, (Dt)t�0,
Pcan). �

We are now in a position to derive the flow relation, arguing similarly as
in [22, Proposition 5.5]:

Lemma 7.9. Let Λ ∈ (0,∞], t � 0 and x ∈ R
2N . Then, P-a.s.,

WΛ,s[Xx
t ,Xt+• − Xt]WΛ,t[x,X•] = WΛ,s+t[x,X•], s � 0. (7.18)
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Proof. To start with we consider only finite Λ. It will be convenient to ver-
ify the flow relation in this case by applying the operator-valued processes
to exponential vectors of the form (4.4). Repeatedly applying the following
analogue of (4.6),

WΛ,τ [z, γ]ε(h) = eũN
Λ,τ [z,γ]−∫ τ

0 V (z+γs)ds−〈UN,−
Λ,τ [z,γ]|h〉ε(e−τωh − UN,+

Λ,τ [z, γ]),

which holds for all τ � 0, z ∈ R
2N and γ ∈ D, we see that the P-a.s. validity

of

WΛ,s[X
x
t , Xt+• − Xt]WΛ,t[x, X•]ε(h) = WΛ,s+t[x, X•]ε(h), s � 0, h ∈ L2(R2),

is implied by the P-a.s. validity for all s � 0 of the four relations
∫ s+t

0

V (Xx
r )dr =

∫ s

0

V (z + Xt+r − Xt)dr

∣
∣
∣
∣
z=Xx

t

+
∫ t

0

V (Xx
r )dr, (7.19)

as well as

UN,−
Λ,s+t[x,X•] = e−tωUN,−

Λ,s [Xx
t ,Xt+• − Xt] + UN,−

Λ,t [x,X•], (7.20)

UN,+
Λ,s+t[x,X•] = UN,+

Λ,s [Xx
t ,Xt+• − Xt] + e−sωUN,+

Λ,t [x,X•], (7.21)

and

ũN
Λ,s+t[x,X•] = ũN

Λ,s[X
x
t ,Xt+• − Xt] + ũN

Λ,t[x,X•]

+ 〈UN,−
Λ,s [Xx

t ,Xt+• − Xt]|UN,+
Λ,t [x,X•]〉. (7.22)

Recall that the left and rightmost integrals in (7.19) are set equal to zero on the
P-zero set NV (x) introduced in (2.20), and the analogous convention applies
to the expression in the middle for each z. However, if γ ∈ Ω \ NV (x), and
Xx

t (γ) = z, then V (z+Xt+•(γ)−Xt(γ)) is locally integrable. This implies that
(7.19) holds for all s � 0 at least on Ω \NV (x). Straightforward computations
further show that (7.20) and (7.21) hold on Ω for all s � 0 and 0 < Λ � ∞.
Again by direct computations based on (6.1) (virtually identical to the ones
in the proof of [22, Lemma 4.18]), we can also verify (7.22) on Ω for all s � 0
and Λ ∈ (0,∞). (Here we also use that the scalar product in the second line of
(7.22) is real.) Since the set of exponential vectors is total in F , these remarks
prove the assertion for finite Λ.

By approximation we can P-a.s. extend (7.18) to Λ = ∞: Since Xx
t and

Xt+• − Xt are independent, the law of Xt has the probability density ρ⊗N
0,mp,t

defined prior to (D.20) and Xt+• − Xt has the same law as X•, we infer from
(7.15), Lemma 7.3 and (7.13) that

E

[

sup
s∈[0,τ ]

‖WΛ,s[X
x
t , Xt+• − Xt] − W∞,s[X

x
t , Xt+• − Xt]‖p

]

=

∫

R2N

E

[

sup
s∈[0,τ ]

‖WΛ,s[z, Xt+• − Xt] − W∞,s[z, Xt+• − Xt]‖p

]

ρ⊗N
0,mp,t(z − x)dz

Λ→∞−−−−−−→ 0, p > 1, τ > 0.

On account of this convergence relation and (7.13) we find an increasing se-
quence of cutoffs Λn ∈ (0,∞), n ∈ N, with Λn → ∞, n → ∞, such that, after



2920 B. Hinrichs and O. Matte Ann. Henri Poincaré

substituting Λ = Λn in (7.18), both sides convergence P-a.s. in operator norm
and locally uniformly in s � 0. The limiting relation is (7.18) with Λ = ∞. �

We are now in a position to derive the promised Markov property. We
shall denote by E

Ft the conditional expectation with respect to Ft for t � 0.

Theorem 7.10 (Markov property). Let Λ ∈ (0,∞], p ∈ (1,∞], s, t � 0, x ∈
R

2N and Ψ ∈ Lp(R2N ). Then, P-a.s.,

E
Ft [WΛ,s+t[x,X•]∗Ψ(Xx

s+t)] = WΛ,t[x,X•]∗(TΛ,sΨ)(Xx
t ). (7.23)

Proof. Let x ∈ R
2N . By Proposition 7.5(i) and (7.15), WΛ,s+t[x,X•]∗Ψ(Xx

s+t)
is P-integrable, whence the left hand side of (7.23) is well-defined. Furthermore,
we infer from Lemma 7.3 applied to the data (7.16) that the function Θ defined
by

Θ(x′, φ′, γ) := 〈φ′|WΛ,s[x′, γ]∗Ψ(x′ + evs(γ))〉F , x′ ∈ R
2N , φ′ ∈ F , γ ∈ D,

is B(R2N × F) ⊗ D-measurable. Pick x ∈ R
2N and φ ∈ F . Then

(Xx
t ,WΛ,t[x,X•]φ) : Ω → R

2N × F is Ft-measurable by Remark 3.2 and
(7.15), while the path map Xt+• − Xt : Ω → D is Ft-independent. On ac-
count of the first remark in this proof and Lemma 7.9 we further know that
Θ(Xx

t ,WΛ,t[x,X•]φ,Xt+• − Xt) is P-integrable. The “useful rule” for condi-
tional expectations, cf. [13, (6.8.14)], thus implies the first relation in

E
Ft [Θ(Xx

t ,WΛ,t[x,X•]φ,Xt+• − Xt)]

= E[Θ(x′, φ′,Xt+• − Xt)]
∣
∣
∣
(x′,φ′)=(Xx

t ,WΛ,t[x,X•]φ)

= E[Θ(x′, φ′,X•)]
∣
∣
∣
(x′,φ′)=(Xx

t ,WΛ,t[x,X•]φ)
, P − a.s.,

where the second equality holds because Xt+• −Xt and X• have the same law.
The resulting identity is equivalent to the second one in

〈φ|EFt [WΛ,s+t[x,X•]∗Ψ(Xx
s+t)]〉F

= E
Ft [〈φ|WΛ,t[x,X•]∗WΛ,s[Xx

t ,Xt+• − Xt]∗Ψ(Xx
s+t)〉F ]

= 〈φ|WΛ,t[x,X•]∗(TΛ,sΨ)(Xx
t )〉F , P-a.s.

Here the first equality follows from (7.18) and the fact that the F-valued
conditional expectation E

Ft can be interchanged with taking the scalar product
with φ. Applying this for every φ in a countable dense subset of F we arrive
at (7.23). �

Taking expectations on both sides of (7.23), using EE
Ft = E and em-

ploying (7.15), we obtain the following corollary:

Corollary 7.11. Let Λ ∈ (0,∞] and p ∈ (1,∞]. Then (TΛ,t)t�0 is a semigroup
of bounded operators on Lp(R2N ,F) such that ‖TΛ,t‖p,p � ec(1+t), t � 0, for
some constant c ∈ (0,∞) whose dependence on the model parameters and p
can be read off from Remark 7.4 and Proposition 7.5.
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7.5. Continuity Properties

We end this section by deriving the strong continuity and regularizing property
of the semigroup in the next two propositions.

Proposition 7.12. Let p ∈ (1,∞) and Λ ∈ (0,∞]. Then the semigroup (TΛ,t)t�0

is strongly continuous on Lp(R2N ,F).

Proof. Due to the semigroup property and the bound supt∈[0,1] ‖TΛ,t‖p,p < ∞
from Corollary 7.11, it suffices to show that TΛ,tΦ → Φ, t ↓ 0, for every Φ in
a dense subset of Lp(R2N ,F). Hence, we assume in the following that Φ is of
the form Φ = (1 + dΓ(ω))−1/4Ψ for some Ψ ∈ Lp(R2N ,F).

Minkowski’s inequality implies ‖TΛ,tΦ−Φ‖p � N1(t)+N2(t)+N3(t), for
all t > 0, where the norms Nj(t) are given by

N1(t)p :=
∫

R2N

∥
∥E

[
WΛ,t(x)∗(Φ(Xx

t ) − Φ(x))
]∥
∥p

Fdx,

N2(t)p :=
∫

R2N

∥
∥E

[(
euN

0,Λ,t(x)−∫ t
0 V (Xx

s )ds − 1
)
DΛ,t(x)∗Φ(x)

]∥
∥p

Fdx,

N3(t)p :=
∫

R2N

∥
∥E

[
(DΛ,t(x)∗ − 1)(1 + dΓ(ω))−1/4Ψ(x)

]∥
∥p

Fdx.

Employing Hölder’s inequality and setting f(z) := ‖Φ(· − z) − Φ‖p
p, z ∈ R

2N ,
we find

N1(t)p � E[f(Xt)] sup
s∈[0,1]

sup
x∈R2N

E[‖WΛ,s(x)‖p′
]p/p′

, t ∈ (0, 1],

where the double supremum is finite due to Remark 7.4. Furthermore, we know
that f is bounded and continuous. Since the laws of Xt, t > 0, converge weakly
to the Dirac measure concentrated in 0, we deduce that E[f(Xt)] → f(0) = 0
as t ↓ 0.

Furthermore, by (7.6),

N2(t)p � s2p
∗

∫

R2N

E
[∣
∣euN

0,Λ,t(x)−∫ t
0 V (Xx

s )ds − 1
∣
∣
]p‖Φ(x)‖p

Fdx. (7.24)

For fixed x ∈ R
2N , the integrand under the expectation in (7.24) goes P-a.s.

to 0 as t ↓ 0 by Corollary 6.9. It is dominated by Gx := 1 + e
∫ 1
0 V−(Xx

s )ds

sups∈[0,1] e
uN

0,Λ,s(x) as long as t ∈ (0, 1]. The majorant Gx is P-integrable by
Theorem 6.6 and (A.1), which in fact imply that supx∈R2N E[Gx] < ∞. Ap-
plying the dominated convergence theorem for each x, we first see that the
expectation in (7.24) goes to 0 as t ↓ 0 pointwise in x ∈ R

2N . Since ‖Φ(·)‖p
F

is integrable, we can invoke dominated convergence a second time to conclude
that N2(t) → 0 as t ↓ 0. By virtue of (7.9) and the integrability of ‖Ψ(·)‖p

F , it
is finally clear that N3(t) → 0 as t ↓ 0. �

The proof of the regularizing property is based on a similar one due to
Carmona [6, Proposition 3.3]; see also [4, Theorem 4.1] and [19, Theorem 8.1].
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Proposition 7.13. Let p ∈ (1,∞], Λ ∈ (0,∞] and 0 < τ1 � τ2 < ∞. Then the
family

{
TΛ,tΨ

∣
∣Ψ ∈ Lp(R2N ,F), ‖Ψ‖p � 1, t ∈ [τ1, τ2]

}

is uniformly equicontinuous on every compact subset of R
2N . Further, if V ∈

KX , then uniform equicontinuity holds on all of R
2N .

Proof. By the uniform convergence as Λ → ∞ from Proposition 7.7 (recall the
last remark in that proposition) it suffices to prove the assertion when Λ is
finite, which we assume in the rest of this proof. We write

(PtΨ)(x) = E [Ψ(Xx
t )] =

∫

R2N

ρ⊗N
0,mp,t(x − y)Ψ(y)dy, Ψ ∈ Lp(R2N ,F),

where the probability density function ρ⊗N
0,mp,t is defined as in Appendix D with

d = 2. For given τ > 0, it is well-known that PτM is uniformly equicontinuous
on R

2N for any bounded family M ⊂ L∞(R2N ,F). In fact,

‖Pτf(x) − Pτf(y)‖ � ‖ρ⊗N
0,mp,τ (x − y − ·) − ρ⊗N

0,mp,τ‖1‖f‖∞, x, y ∈ R
2N , f ∈ M,

and x �→ ‖h(x − ·) − h‖1 is continuous for any h ∈ L1(R2N ). Hence, since
‖TΛ,t‖p,∞ is bounded uniformly in t ∈ [τ1/2, τ2] by Proposition 7.5, the set

{
PτTΛ,t−τΨ

∣
∣Ψ ∈ Lp(R2N ,F), ‖Ψ‖p � 1, t ∈ [τ1, τ2]

}

is uniformly equicontinuous on R
2N for every τ ∈ (0, τ1/2). In view of the

semigroup property from Corollary 7.11, it therefore suffices to prove

lim
τ↓0

sup
t∈[τ1,τ2]

sup
‖Ψ‖p�1

sup
x∈K

‖((Pτ − TΛ,τ )TΛ,t−τΨ)(x)‖F = 0, (7.25)

where K ⊂ R
2N is compact (or K = R

2N in case V ∈ KX).
However, by Proposition 7.5 and Lemma 7.6 and since Λ is assumed to

be finite,

M :=
{
(1 + dΓ(ω))1/4TΛ,t−τΨ

∣
∣ ‖Ψ‖p � 1, t ∈ [τ1, τ2], τ ∈ [0, τ1/2]

}

is bounded in L∞(R2N ,F). Further, for Φ ∈ L∞(R2N ,F), τ > 0 and x ∈ R
2N ,

∥
∥
(
(Pτ − TΛ,τ )(1 + dΓ(ω))−1/4Φ

)
(x)

∥
∥

F

=
∥
∥
∥E

[
(1 − WΛ,τ (x)∗)(1 + dΓ(ω))−1/4Φ(Xx

τ )
]∥
∥
∥

F

� E

[
|1 − e− ∫ τ

0 V (Xx
s )dx|eũN

Λ,τ (x)‖DΛ,τ (x)‖
]
‖Φ‖∞

+ E

[
|eũN

Λ,τ (x) − 1|‖DΛ,τ (x)‖
]
‖Φ‖∞

+ E

[
‖(1 − DΛ,τ (x)∗)(1 + dΓ(ω))−1/4‖

]
‖Φ‖∞. (7.26)

Since Λ < ∞ by the present assumption, a trivial bound analogous to (6.13)
entails |ũN

Λ,τ (x)| � 2πτg2N2 ln(ω(Λ)/mb) + τNEren
Λ . Therefore, (7.25) follows

from the above remark on M and (7.26) in conjunction with (7.6), (7.9) and
(A.3) and (A.4). This concludes the proof. �
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8. Upper Bound on the Minimal Energy

In this last section, we prove the upper bound on the minimal energy of the
translation invariant Hamiltonian stated in Theorem 2.5.

8.1. A Well-Known Trial Function Argument

In Lemma 8.2 we carry through a trial function argument yielding an up-
per bound on the minimal energy for finite Λ, which in combination with
our exponential moment bounds on the complex action will allow us to prove
Theorem 2.5 later on. The procedure we follow in the proof of Lemma 8.2.
is well-known and leads to the minimization of the Pekar functional in the
non-relativistic case in three dimensions; see, e.g., [22, §8.2] and the references
given there. Here we encounter relativistic analogues of Pekar’s functional (see
the last two displayed relations in the proof of Lemma 8.2), parametrically de-
pending on mb/g2N . For our purposes it will, however, be sufficient to simply
insert a family of Gaussians into these functionals.

In Sect. 8.1 we do not require the boson mass to be strictly positive, and
we only consider finite Λ. We pick a core D for dΓ(1 + ω) and set

C := span
{
fφ

∣
∣ f ∈ S (R2N ), φ ∈ D},

(H ′
ΛΨ)(x) := (ψX(−i∇)Ψ)(x) + dΓ(ω)Ψ(x) +

N∑

j=1

ϕ(e−iK·xj vΛ)Ψ(x), Ψ ∈ C ,

with S (R2N ) denoting the set of Schwartz functions on R
2N . Again ψX(−i∇)

is defined via Fourier tranformation analogously to (2.13). Since ω−1/2vΛ /∈
L2(R2) for mb = 0, we cannot rely on the Kato-Rellich theorem to ensure es-
sential selfadjointness of H ′

Λ in this case. We can, however, still apply Nelson’s
commutator theorem:

Lemma 8.1. If mb � 0 and Λ ∈ (0,∞), then H ′
Λ is essentially selfadjoint on

C .

Proof. Since ‖ϕ(h)φ‖ � 2‖h‖‖(1 + dΓ(1 + ω))1/2φ‖, h ∈ L2(R2), φ ∈ D , well-
known and simple estimations reveal that, for sufficiently large C ∈ (0,∞),
the operator K ′ := H ′

Λ + dΓ(1) + C is essentially selfadjoint on D(K ′) := C
by the Kato-Rellich theorem, its selfadjoint closure is lower bounded by 1 and
‖H ′

ΛΨ‖ � c‖K ′Ψ‖, Ψ ∈ C , for some c ∈ (0,∞). Furthermore,

2Im〈H ′
ΛΨ|K ′Ψ〉 =

N∑

j=1

∫

R2N

〈Ψ(x)|ϕ(ie−iK·xj vΛ)Ψ(x)〉Fdx,

by the commutation relation between field operators and dΓ(1); see, e.g., [3].
This implies |Im〈H ′

ΛΨ|K ′Ψ〉| � d〈Ψ|K ′Ψ〉, Ψ ∈ C , for some d ∈ (0,∞). The
assertion now follows from Nelson’s commutator theorem [26, Theorem X.37]
applied with the selfadjoint closure of K ′ as test operator. �

In what follows we shall denote the unique selfadjoint extension of H ′
Λ

again by the same symbol.
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Lemma 8.2. Let mb � 0, 0 � σ < Λ < ∞ and s > 0. Assume in addition that
σ > 0 when mb = 0. Then

inf σ(H ′
Λ) � π1/2s1/2g2N2

21/2
− g2N2

∫

BΛ\Bσ

e−|k|2/4sg4N2

|k|2 + m2
b

dk. (8.1)

Proof. Let f : R
2 → C be a Schwartz function, normalized in L2(R2), and let

h ∈ L2(R2) be such that supp(h) ⊂ BΛ. We set (recall the definition (4.4) of
ε(h))

fN (x) :=
N∏

j=1

f(xj), x ∈ R
2N , and ζ(h) := e−‖h‖2/2ε(h),

so that fN and ζ(h) are normalized in L2(R2N ) and F , respectively. Direct
computation shows that

〈fNζ(h)|H ′
ΛfNζ(h)〉 = N

∫

R2
ψ(η)|f̂(η)|2dη + ‖ω1/2h‖2

+ 2N

∫

R2
Re〈e−iK·yvΛ|h〉|f(y)|2dy.

Setting ρ := |f |2 and choosing h = −2πgNω−3/2χBΛ\Bσ
ρ̂, we obtain

inf σ(H ′
Λ) � N

∫

R2
ψ(η)|f̂(η)|2dη − g2N2

∫

BΛ\Bσ

|2πρ̂(k)|2
ω(k)2

dk.

Replacing f by its unitarily scaled version fa(y) := af(ay), y ∈ R
2, a > 0,

writing ρa := |fa|2 and taking f̂a(η) = f̂(η/a)/a and ρ̂a(k) = ρ̂(k/a) into
account, we deduce that

inf σ(H ′
Λ) � N

∫

R2
ψ(aη)|f̂(η)|2dη − g2N2

∫

BΛ\Bσ

|2πρ̂(k/a)|2
|k|2 + m2

b

dk.

Estimating ψ(aη) � a|η| and choosing a = g2N we find

inf σ(H ′
Λ) � g2N2

∫

R2
|η||f̂(η)|2dη − g2N2

∫

BΛ\Bσ

|2πρ̂(k/g2N)|2
|k|2 + m2

b

dk.

Since 2πρ̂ = f̂ ∗ f̂(− · ), it is convenient to choose f̂(k) := (2πs)−1/2e−|k|2/4s,
a Gaussian that is normalized in L2(R2). Then 2πρ̂(k) = (f̂ ∗ f̂)(k) = e−|k|2/8s.
Taking also

∫
R2 |η|e−|η|2/2sdη/2πs = (πs/2)1/2 into account we arrive at

(8.1). �

Corollary 8.3. If mb = 0 and Λ ∈ (0,∞), then H ′
Λ is unbounded from below.

Proof. In the case mb = 0, the right hand side of (8.1) goes to −∞ as σ ↓ 0. �
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8.2. Derivation of the Upper Bound

We now add the renormalization energy to both sides of (8.1) and derive
bounds on the so-obtained right hand side. The estimates found in this way
then allow us to prove Theorem 2.5. Throughout the remainder of this section,
we will again work under the assumption mb > 0.

Corollary 8.4. Assume that g2N > mb > 0 and choose Λg,N > 0 such that
Λ2

g,N + m2
b = g4N2. Let s > 0. Then, for every ε ∈ (0, 1), there exists c∗ > 1,

depending only on ε, mp and mb ∨ 1, such that

inf σ(H ′
Λg,N

+ NEren
Λg,N

) � π1/2s1/2g2N2

21/2
− 2π

e1/4s
g2N(N − 1) ln

(
g2N

mb

)

− πg2N

e1/4s
· 2 − 2ε

2 − ε
· [0 ∨ ln(c−1

∗ g2N)] +
π

4s
g2N

− χ{0}(mp)
πg2N

e1/4s
ln

(
1 ∧ (g2N)

emb

)

. (8.2)

Proof. We shall apply (8.1) with σ = 0 and Λ = Λg,N . Observing that
Λg,N/g2N < 1, we can estimate N(N − 1) copies of the integral on the right
hand side of (8.1) as

∫

BΛg,N

e−|k|2/4sg4N2

|k|2 + m2
b

dk � π

e1/4s

∫ Λg,N

0

2r

r2 + m2
b

dr =
2π

e1/4s
ln

(
g2N

mb

)

.

To deal with the N remaining copies and the term NEren
Λg,N

, we use

g2N

∫

BΛg,N

e−|k|2/4sg4N2

|k|2 + m2
b

dk − NEren
Λg,N

= g2N

∫

BΛg,N

e−|k|2/4sg4N2
ψ(k)

ω(k)2(ω(k) + ψ(k))
dk − g2N

∫

BΛg,N

1 − e−|k|2/4sg4N2

ω(k)(ω(k) + ψ(k))
dk

� g2N

e1/4s

∫

BΛg,N

ψ(k)

ω(k)2(ω(k) + ψ(k))
dk − 1

4sg2N

∫

BΛg,N

|k|2
ω(k)(ω(k) + ψ(k))

dk.

Since ω(k) � (|k|2 + (1 ∨ mb)2)1/2, we find some R∗ � 1 depending only
on ε, mp and 1 ∨ mb such that ψ(k) � (1 − ε)ω(k) as soon as |k| � R∗.
Since (0,∞) � a �→ a/(ω(k) + a) is increasing and we always have the bound
ω(k) � ψ(k), we can thus continue the above estimation as follows,

g2N

∫

BΛg,N

e−|k|2/4sg4N2

|k|2 + m2
b

dk − NEren
Λg,N

� g2N

2e1/4s

∫

BR∗∧Λg,N

ψ(k)

ω(k)3
dk +

g2N

e1/4s
· 1 − ε

2 − ε

∫

BΛg,N
\BR∗

1

ω(k)2
dk − vol(BΛg,N

)

4sg2N
.
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In the case mp > 0, we simply estimate the integral over BR∗∧Λg,N
from below

by 0. For mp = 0 it is equal to the expression in the first line of
∫

BR∗∧Λg,N

|k|
ω(k)3

dk

�
∫

BR∗∧Λg,N

1
ω(k)2

dk −
∫

BR∗∧Λg,N

mb

ω(k)3
dk

= π ln
(

(R∗ ∧ Λg,N )2 + m2
b

m2
b

)

− 2πmb

(
1

mb
− 1

√
(R∗ ∧ Λg,N )2 + m2

b

)

,

where we used |k| � ω(k) − mb. If R∗ ∧ Λg,N = Λg,N , then (R∗ ∧ Λg,N )2 +
m2

b = g4N2. Otherwise, (R∗ ∧ Λg,N )2 + m2
b � 1 + m2

b > 1 because R∗ � 1.
Hence, the term containing the logarithm in the previous bound is � 2π ln([1∧
(g2N)]/mb), while the second term is obviously � −2π. Finally, we calculate

∫

BΛg,N
\BR∗

1
ω(k)2

dk = π ln
(

g4N2

R2∗ + m2
b

)

χ(R2∗+m2
b,∞)(g

4N2),

where we obtain a lower bound on the right hand side by putting mb ∨ 1 in
place of mb in it. Putting all remarks above together we arrive at (8.2). �

Proof. (Proof of Theorem 2.5) In Corollary 8.4 we proved an upper bound on
the minimal energy of the relativistic Nelson operator Hσ with an ultraviolet
cutoff σ := Λg,N chosen such that σ2 +m2

b = g4N2. This upper bound already
contains all leading contributions to the upper bound for the renormalized
operator H asserted in Theorem 2.5 (when ε and s are chosen appropriately
as in the end of this proof). Hence, what remains to do, is to bound the minimal
energy of Hσ from below by the one of H modulo error terms that won’t harm
these leading contributions. By means of Corollary 2.3(ii) and its analogue
for Hσ we shall translate this task to the comparison of integrals involving
exponentials of complex actions, which can be done thanks to our exponential
moment bounds of Sect. 5.

Besides σ > 0 satisfying σ2 + m2
b = g4N2 we also pick some measurable

f : R
2N → R with 0 � f � 1 and

∫
R2N f(x)dx = 1. Furthermore, we pick some

p ∈ (1,∞) and let p′ denote its conjugated exponent. We again employ the
splitting (6.12) of uN

t (x) = uN
0,∞,t(x) with our new, p-independent choice of

σ, however. Applying Hölder’s inequality and afterwards (6.6), Lemma 5.1(iii)
and Lemma 5.4 (all with Λ = ∞ and σ as chosen above) we find

E
[
eũN

σ,t(x)f(Xx
t )

]
� ‖ecN

σ,∞,t(x)‖L∞(P)E
[
e−2pwN

σ,∞,t(x)f(Xx
t )

]1/2p

· E
[
e−2pmN

σ,∞,t(x)f(Xx
t )

]1/2p
E
[
ep′uN

t (x)f(Xx
t )

]1/p′

� bNc1/2p
α etc′p(N−1)(mp+g2N)+tcαpg2N2e8παp

· E
[
ep′uN

t (x)f(Xx
t )

]1/p′
,
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for all α > 1 with cα := α/(α − 1) and universal constants b, c, c′ > 0. This
entails

e−tc′p(N−1)(mp+g2N)−tcαpg2N2e8παp

bNc
1/2p
α

∫

R2N

f(x)E
[
eũN

σ,t(x)f(Xx
t )

]
dx

�
(∫

R2N

f(x)E
[
ep′uN

t (x)f(Xx
t )

]
dx

)1/p′

,

where we used Hölders inequality and ‖f‖1 = 1. Let H(
√

p′g) denote the
renormalized relativistic Nelson operator with coupling constant

√
p′g. Then

the complex action corresponding to it is p′uN
t (x), and we infer from the pre-

vious inequality and Corollary 2.3(ii) that

1
p′ inf σ(H(

√
p′g)) = − lim

t→∞
1
p′t

ln
(∫

R2N

f(x)E
[
ep′uN

t (x)f(Xx
t )

]
dx

)

� c′p(N − 1)(mp + g2N) + cαpg2N2e8παp + inf σ(Hσ).
(8.3)

Here Hσ again has coupling constant g as usual, and we used the relation

inf σ(Hσ) = − lim
t→∞

1
t

ln
(∫

R2N

f(x)E
[
eũN

σ,t(x)f(Xx
t )

]
dx

)

,

which in analogy to Corollary 2.3(ii) follows from the Feynman–Kac formula
for Hσ obtained in Theorem 3.7 and the proofs of [22, Theorem 8.3 and Corol-
laries 8.5 & 8.6]. Combining (8.3) with (8.2) (recall that Λg,N defined in Corol-
lary 8.4 is equal to our present choice of σ), multiplying by p′ and passing to
the limit α ↓ 1 we obtain

inf σ(H(
√

p′g)) � c′p(N − 1)(p′mp + p′g2N) + cpp′g2N2e8πp +
π1/2s1/2p′g2N2

21/2

− 2π

e1/4s
p′g2N(N − 1) ln

(
g2N

mb

)

− πp′g2N

e1/4s
· 2 − 2ε

2 − ε
· [0 ∨ ln(c−1

∗ g2N)] +
π

4s
p′g2N

− χ{0}(mp)
πp′g2N

e1/4s
ln

(
1 ∧ (g2N)

emb

)

,

for all s > 0 and ε ∈ (0, 1) with c∗ > 1 as described in Corollary 8.4. The
constants appearing here do not depend on g. We have, however, used that
g2N > mb. Assuming g2N > mbp′ we may thus put g/

√
p′ in place of g

in the above bound. Given θ ∈ (0, 1), we conclude afterwards by choosing
p = p′ = 2, s � 1 large enough as well as ε ∈ (0, 1) small enough such that
(2−2ε)/(2−ε)e1/4s � θ; we also observe the elementary bounds 1∧(g2N/2) �
(1 ∧ (g2N))/2 and 0 ∨ ln(g2N/2c∗) � ln(1 ∨ (g2N)) − ln(2c∗). �
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A. The Relativistic Kato Class

In this appendix, we briefly discuss some implications of our standing assump-
tion that the external potential V is Kato decomposable with respect to the
process X, i.e., that V− ∈ KX and χKV+ ∈ KX for any compact K ⊂ R

2N .
Here, the Kato class KX is as defined in (2.19).

The following statements are corollaries of a theorem originally proven
in [16]. Especially, we apply (A.1) with the choice f = pV−, p � 1.

Lemma A.1 ([8, Proposition 3.8]). Assume f ∈ KX . Then there exist b, c > 0
such that

sup
x∈R2N

E

[
e
∫ t
0 f(Xx

s )ds
]

� bect, t > 0. (A.1)

Further,

lim
t↓0

sup
x∈R2N

E

[
e
∫ t
0 f(Xx

s )ds
]

= 1. (A.2)

Combining (A.2) with the estimate |ez −1|p � ep|z|−1, we directly obtain
the following bound.

Corollary A.2 ([8, Proposition 3.9]). Let f : R
2N → R be measurable with

f± ∈ KX . Then

lim
t↓0

sup
x∈R2N

E

[∣
∣
∣e

∫ t
0 f(Xx

s )ds − 1
∣
∣
∣
p]

= 0, p � 1. (A.3)

Finally, following [4, Lemma C.4], we prove an analog of (A.3) for Kato
decomposable functions, i.e., functions in which f+ merely belongs to the local
Kato class.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Lemma A.3. Let f : R
2N → R be measurable with f− ∈ KX . Further, assume

χKf+ ∈ KX holds for all compact K ⊂ R
2N . Then, for any compact K ⊂ R

2N ,

lim
t↓0

sup
x∈K

E

[∣
∣
∣e− ∫ t

0 f(Xx
s )ds − 1

∣
∣
∣
p]

= 0, p � 1. (A.4)

Proof. Given x ∈ R
2N and γ : [0,∞) → R

2N Borel measurable, let

ΔR,t[x, γ] :=

{
1 if |x + γs| � R, s ∈ [0, t],
0 else.

Then, by the Cauchy–Schwarz inequality, we have

E

[∣
∣
∣e− ∫ t

0 f(Xx
s )ds − 1

∣
∣
∣
p]

� E [1 − ΔR,t[x,X]]1/2
E

[∣
∣
∣e− ∫ t

0 f(Xx
s )ds − 1

∣
∣
∣
2p

]1/2

+ E

[
(1 − ΔR,t[x,X])

∣
∣
∣e− ∫ t

0 f(Xx
s )ds − 1

∣
∣
∣
p]

.

(A.5)

By the assumptions and (A.3), we have

lim
t↓0

sup
x∈R2N

E

[
(1 − ΔR,t[x,X])

∣
∣
∣e− ∫ t

0 f(Xx
s )ds − 1

∣
∣
∣
p]

= 0, R > 0.

Further, since f− ∈ KX , E[|e− ∫ t
0 f(Xx

s )ds − 1|2p]1/2 is uniformly bounded in
t ∈ [0, 1] and x ∈ R

2N , by (A.1). Finally, using Lévy’s maximal inequality
similar to [4], also see [30, Theorem 3.6.5 and § 7], we find

E [1 − ΔR,t[x,X]] = P

(

sup
s∈[0,t]

|Xx
s | � R

)

� P

(

sup
s∈[0,t]

|Xs| � R/2
)

� 2P (|Xt| � R/2) , |x| � R/2.

By the stochastic continuity of X, the right hand side converges to zero as
t ↓ 0, cf. [2, p. 43]. Given a compact set K ⊂ R

2N , the statement now follows,
by choosing R > 0 such that K ⊂ BR/2 and combining the above observations
with (A.5). �

B. Processes Appearing in the Creation/Annihilation Terms

In this Appendix we derive some basic results on the processes UN,±(x) that
directly follow from their definition in (2.22) and (2.23).

In the main text we repeatedly make use of the following bounds in the
time-dependent norm ‖ · ‖t � ‖ · ‖ on L2(R2) given by (2.6):

Lemma B.1. Let 0 � σ < Λ � ∞, t > 0 and x ∈ R
2N . Then

‖χBΛ\Bσ
UN,±

t (x)‖2
t/2 � 6π

1 − ε
· g2N2tε

ω(σ)1−ε
for all ε ∈ [0, 1). (B.1)

Further, we have

‖ωχBΛ\Bσ
UN,±

t (x)‖2
t/2 � 6πg2N2ω(Λ), Λ < ∞. (B.2)
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Proof. For a, ε � 0 such that a + ε
2 � 1 and ε < 1, we find

‖ω−aχBΛ\Bσ
UN,±

t (x)‖2 � g2N2

∫

Bc
σ

∫ t

0

∫ t

0

e−sω(k)−uω(k)

ω(k)1+2a
du dsdk

= g2N2

∫

Bc
σ

(1 − e−tω(k))2

ω(k)3+2a
dk

� g2N2

∫

Bc
σ

t2a+ε

ω(k)3−ε
dk

=
2π

1 − ε
· g2N2t2a+ε

ω(σ)1−ε
. (B.3)

Applying this estimate with both a = 0 and a = 1/2, we arrive at (B.1). By a
similar argument, we have

‖ωaχBΛ\Bσ UN,±
t (x)‖2 � 2π

ε − 1
g2N2tε−2aω(Λ)ε−1, a � 0, ε ∈ (1, ∞) ∩ [2a, 2a + 2].

Applying this estimate with ε = 2 and both a = 1/2 and a = 1 yields (B.2). �

The next two Lemmas ensure in particular the continuity and adapted-
ness of UN,±(x) for both choices of the sign.

Lemma B.2. Let Λ ∈ (0,∞]. Then at every fixed elementary event, the map

[0,∞) × R
2N � (t, x) �−→ χBΛUN,±

t (x) ∈ L2(R2) is continuous. (B.4)

Proof. In view of (2.21), the assertion is clear when the minus sign is chosen in
(B.4). Let γ : [0,∞) → R

2 be Borel measurable. Then dominated convergence
ensures that Ij,Λ : [0,∞)2 → L2(R2) is continuous for every Λ ∈ (0,∞), where

IΛ(t, τ) :=
∫ t

0

e−|τ−s|ω−iK·γsvΛds, t, τ � 0.

Hence, [0,∞) � t �→ χBΛU+
t [γ] = IΛ(t, t) is continuous and so is the map in

(B.4) with plus sign as long as Λ < ∞. By virtue of (B.1), with (Λ,∞, 0) put
in place of (σ,Λ, ε) there, we further know that, pointwise on Ω, the norm
‖χBΛUN,+

t (x) − UN,+
t (x)‖ goes to 0 as Λ → ∞ uniformly in (t, x) ∈ [0,∞) ×

R
2N . Hence, the statement in (B.4) holds for Λ = ∞ as well. �

Lemma B.3. Let x ∈ R
2N . Then (UN,±

t (x))t�0 is predictable.

Proof. By virtue of (B.4) it suffices to show that both processes are adapted.
In view of (5.1) we only have to show that (U±

t [Xj,•])t�0 are adapted.
So fix t > 0 and j ∈ {1, . . . , N}. Then (χ[0,t)(s)e−(t−s)ω−iK·Xj,sv)s�0 is

adapted with right-continuous paths, hence progressively measurable. In par-
ticular the integrand in U+

t [Xj,•] =
∫
[0,t)

e−(t−s)ω−iK·Xj,svds is B([0, t]) ⊗ Ft-
measurable, whence U+

t [Xj,•] itself is Ft-measurable. Likewise,
(χ(0,∞)(s)e−sω−iK·Xj,s−v)s�0 is adapted with left-continuous paths, hence pro-
gressively measurable (predictable in fact). Furthermore, for every � ∈ Ω the
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left-continuous path s �→ Xj,s−(�) differs from s �→ Xj,s(�) at most at count-
ably many points, which permits to write U−

t [Xj,•] =
∫
(0,t]

e−sω−iK·Xj,s−vds

on Ω. As before we conclude that U−
t [Xj,•] is Ft-measurable. �

C. A Useful Exponential Estimate

Here we infer an exponential moment bound on some Lévy type stochastic
integral from a corresponding exponential tail estimate from [2,29]. We use this
bound to treat the martingale contribution to the complex action in Sect. 5.1.

To that end, we assume that ν∗ is some Lévy measure on R
d with d ∈ N

and that Ñ∗ is the martingale-valued measure on [0,∞)×R
d corresponding to

some càdlàg Lévy process with characteristics (0, 0, ν∗) on the filtered probabil-
ity space (Ω,F, (Ft)t�0, P) satisfying the usual hypotheses. Further, we assume
that h : [0,∞) × R

d × Ω → R is predictable such that, for all t � 0,

sup
s∈[0,t]

sup
z∈Rd

|h(s, z)| < ∞ and
∫ t

0

∫

Rd

h(s, z)2dν∗(z) ds < ∞, P − a.s.,

where h(s, z) := h(s, z, ·) as usual. These are the conditions required in [2,29]
to construct the corresponding càdlàg stochastic integral process Y and to
apply the Itô formula for Y , where

Yt :=
∫

(0,t]×Rd

h(s, z)dÑ∗(s, z), t � 0.

Moreover, these conditions and a bound analogous to (5.9) ensure that the
process Zα is well-defined P-a.s. by

Zα,t :=
1
α

∫ t

0

∫

Rd

(eαh(s,z) − 1 − αh(s, z)) dν∗(z)ds, t � 0.

Lemma C.1. In the situation described in the previous paragraph, let α > 1
and assume in addition that

sup
s∈[0,t]

Zα,s � fα(t), P − a.s.,

for all t � 0 and some deterministic function fα : [0,∞) → R. Then

E

[
sup

s∈[0,t]

eYs

]
� α

α − 1
efα(t), t � 0.

Proof. We know from [29, Theorem 3.2.5] (see also [2, Theorem 5.2.9]) that

P

(

sup
s∈[0,t]

(Y − Zα)s > τ

)

� e−ατ , τ, t > 0. (C.1)

Furthermore, it is clear that

E

[
sup

s∈[0,t]

eYs

]
� E

[

exp
(

sup
s∈[0,t]

(Y − Zα)s

)]

efα(t).
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For every measurable function q : Ω → R, the layer cake representation (see,
e.g., [18, Theorem 1.13]) entails, however,

∫

Ω

eqdP � 1 +
∫

{q>0}
(eq − 1)dP = 1 +

∫ ∞

0

P(q > τ) eτdτ.

The exponential tail estimate (C.1) thus implies

E

[

exp
(

sup
s∈[0,t]

(Y − Zα)s

)]

� 1 +
∫ ∞

0

e−(α−1)τdτ = 1 +
1

α − 1
.

Putting all these remarks together we arrive at the asserted bound. �

D. Bounds on the Relativistic Semigroup

In this appendix, we consider Lévy processes in dimension d ∈ N with d � 2,
whose Lévy symbols are given by some negative constant times the relativistic
dispersion relation

ψd(ξ) := (|ξ|2 + m2
p)1/2 − mp, ξ ∈ R

d. (D.1)

As in the main text, mp � 0. After briefly introducing the Bessel functions
also playing a role in the main part of the article, we use the second subsection
to derive some weighted Lp to Lq bounds for the semigroup associated with
these Lévy processes, in a straightforward fashion. In the third subsection, we
extend some of these bounds to N independent copies of the Lévy processes.
As we briefly observe in the last subsection, the Lp to L∞ bounds obtained in
the second one can be combined with Carmona’s derivation of his bounds on
Kac averages for Brownian motion [6], thus yielding bounds on Kac averages
for the considered Lévy processes. Without doubt all results of this appendix
are essentially well-known, but we couldn’t find a reference containing precisely
the bounds we need.

In the whole Appendix D, unexplained symbols like cν , cd,p, cd,p,q, c′
d,p

and so on denote positive constants solely depending on the quantities dis-
played in their subscripts. Their values might change from one estimate to
another.

D.1. Brief Remarks on Some Bessel Functions

In the main text we repeatedly employed Bessel functions and standard upper
bounds on their behavior. For the convenience of the reader, we collect the
essential formulas here. Standard literature includes the extensive monography
[33].

The Bessel function of the first kind and order 0 is given by

J0(s) =
∫ 2π

0

eis sin t dt

2π
= J0(−s), s ∈ R. (D.2)

In view of this formula and the asymptotic expansion of J0(s) at s → ∞ we
find some constant c > 0 such that

|J0(r)| � 1 ∧ c√
r
, r > 0. (D.3)
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Let ν ∈ (0,∞). Then the modified Bessel function of the third kind and order
ν is given by the integral formula

Kν(r) =
1
2

∫ ∞

0

tν−1e−r(t+t−1)/2dt, r > 0. (D.4)

Estimating t−1 � 0 and computing the resulting integral we find the first
upper bound in

0 < Kν(r) �

⎧
⎪⎨

⎪⎩

cν

rν
, r ∈ (0, 1],

cν

r1/2
e−r, r > 1.

(D.5)

The second one follows from the well-known asymptotics of Kν(r) as r → ∞.

D.2. Weighted Lp to Lq Bounds

In this subsection, we always assume that X is a d-dimensional Lévy process
with symbol −ψd given by (D.1). Hence, the law of Xt has a density ρmp,t,
which is equal to (2π)−d/2 times the inverse unitary Fourier transform of e−tψd .
The latter can be computed using the subordination identity, Fourier trans-
forms of Gaussians, elementary substitutions and (D.4). The well-known result
is

ρ0,t(y) =
Γ((d + 1)/2)

π(d+1)/2
· t

(t2 + |y|2)(d+1)/2
, y ∈ R

d, (D.6)

when mp = 0, and

ρmp,t(y) =
2m

(d+1)/2
p

(2π)(d+1)/2
· tempt

(t2 + |y|2)(d+1)/4
· K(d+1)/2

(
mp(t2 + |y|2)1/2

)
,

(D.7)

for mp > 0; cf. also, e.g., [18, §7.1]. For all t > 0 and L � 0, we abbreviate

Υt := {y ∈ R
d|mp(t2 + |y|2)1/2 � 1}, (D.8)

ρL,mp,t(y) := eL|y|ρmp,t(y), y ∈ R
d, (D.9)

ρ
(1)
L,mp,t := χΥt

ρL,mp,t, ρ
(2)
L,mp,t := χΥc

t
ρL,mp,t. (D.10)

Lemma D.1. Assume that mp > 0. Let t > 0 and L ∈ [0,mp). Then the
following bounds hold for all p ∈ [1,∞],

‖ρ
(1)
L,mp,t‖p � cd,pt

−d/p′
, (D.11)

‖ρ
(2)
L,mp,t‖p � cd,peLtmd/2

p (mp − L)−d/2pt−d/2p′
. (D.12)

In the case p = ∞, (D.11) and (D.12) also hold for L = mp. In particular,

E[eL|Xt|] =
∫

Rd

ρL,mp,t(y)dy � cd

(
1 + eLtmd/2

p (mp − L)−d/2
)
. (D.13)
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Proof. If mp(t2 + |y|2)1/2 � 1, then mpt � 1, L|y| � L/mp � 1. Hence, (D.7)
and (D.5) entail ρL,mp,t(y) � cd/td, which is the case p = ∞ of (D.11). If
otherwise mp(t2 + |y|2)1/2 > 1, then (D.7), (D.5) and L � mp yield

ρL,mp,t(y) � cdm
d/2
p

td/2
· sup

r�0
e−mpt(1+r2)1/2+mpt+Lrt.

To obtain (D.12) with p = ∞, we apply the bound

−mp

√
1 + r2 + mp + Lr � −(mp − L)

(√
1 + r2 − 1

)
+ L, (D.14)

whose right hand side is � L. For finite p � 1, the bound (D.11) follows from
∫

Υt

ρL,mp,t(y)pdy � cd,p

∫

Rd

tpep+pL/mp

(t2 + |y|2)(d+1)p/2
dy,

upon substituting y = tz on the right hand side. Furthermore,
∫

Υc
t

ρL,mp,t(y)pdy � cd,pm
dp/2
p

∫

Rd

tpepmpt+pL|y|

(t2 + |y|2)(d+2)p/4
· e−pmp(t2+|y|2)1/2

dy

= c′
d,pm

dp/2
p td−dp/2

∫ ∞

0

rd−1e−pmpt(1+r2)1/2+pmpt+pLrt

(1 + r2)(d+2)p/4
dr.

To dominate the integral in the last line above we first apply (D.14). Afterwards
we use the bound

√
1 + r2 − 1 =

r2

√
1 + r2 + 1

� r2

2
√

1 + r2
� 1

2
√

2
(r2 ∧ r), r � 0.

Together with rd/2/(1 + r2)(d+2)p/4 � 1 for r � 1, this permits to get
∫ ∞

0

rd−1

(1 + r2)(d+2)p/4
· e−pmpt(1+r2)1/2+pmpt+pLrtdr

� epLt

∫ 1

0

rd−1e−p(mp−L)tr2/2
√

2dr + epLt

∫ ∞

1

rd/2−1e−p(mp−L)tr/2
√

2dr

= epLt((mp − L)t)−d/2

∫ √
(mp−L)t

0

sd−1e−ps2/2
√

2ds

+ epLt((mp − L)t)−d/2

∫ ∞

(mp−L)t

ud/2−1e−pu/2
√

2du

� cd,pepLt((mp − L)t)−d/2,

where we estimated both integrals by integrals over (0,∞) in the last step. �

In the following we shall repeatedly employ the bound

‖h ∗ f‖q � ‖h ∗ f‖1−p/q
∞ ‖h ∗ f‖p/q

p � ‖h‖1−p/q
p′ ‖h‖p/q

1 ‖f‖p, (D.15)

which holds for all h ∈ L1(Rν)∩Lp′
(Rν), f ∈ Lp(Rν), p ∈ [1,∞] and q ∈ [p,∞]

in any dimension ν ∈ N. If q = ∞, then the L∞-norms on the left hand sides
of (D.15) as well as of (D.16) and (D.17) can be replaced by actual suprema.
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Lemma D.2. Suppose that mp = 0 and let p ∈ [1,∞] and q ∈ [p,∞]. Then

‖ρ0,t ∗ f‖q � cd,p,qt
−d(p−1−q−1)‖f‖p, f ∈ Lp(Rd), t > 0. (D.16)

Proof. In view of (D.15) and ‖ρ0,t‖1 = 1 it suffices to verify that ‖ρ0,t‖p′ =
cd,pt

−d/p for p ∈ [1,∞), which follows by scaling (y = tz). �

Lemma D.3. Let mp > 0, p, p̃ ∈ [1,∞] and q ∈ [p ∨ p̃,∞]. Then

‖ρL,mp,t ∗ f‖q � cd,p̃,qt
−d(p̃−1−q−1)‖f‖p̃

+ cd,p,qeLt

(
mp

mp − L

)d/2(
mp − L

t

)d(p−1−q−1)/2

‖f‖p,

(D.17)

for all f ∈ Lp(Rd) ∩ Lp̃(Rd), L ∈ [0,mp) and t > 0.

Proof. Again using the notation (D.9) and (D.10) and applying (D.15) for two
choices of exponents p and p̃ we find

‖ρL,mp,t ∗ f‖q � ‖ρ
(1)
L,mp,t‖1−p̃/q

p̃′ ‖ρ
(1)
L,mp,t‖p̃/q

1 ‖f‖p̃ + ‖ρ
(2)
L,mp,t‖1−p/q

p′ ‖ρ
(2)
L,mp,t‖p/q

1 ‖f‖p.

Combining this bound with (D.11) and (D.12) (with 1, p̃′ and 1, p′ put in place
of p, respectively) we arrive at (D.17) for mp > 0. �

By the previous two lemmas and the rotation invariance of ρL,mp,t,

E[eL|Xt|f(Xx
t )] = (ρL,mp,t ∗ f)(x) = (ρ(1)

L,mp,t ∗ f)(x) + (ρ(2)
L,mp,t ∗ f)(x),

(D.18)

for all t > 0, x ∈ R
d, f ∈ Lp(Rd) and p ∈ [1,∞], if 0 � L < mp or L = mp = 0.

The previous two lemmas combined with the case L = 0 of (D.18) further
imply the following result.

Corollary D.4. Considering arbitrary mp � 0 and p ∈ [1,∞], we always have

sup
x∈Rd

E[|f(Xx
t )|] � cd,pt

−d/2p(‖f‖2p + md/2p
p ‖f‖p), t > 0, (D.19)

provided that f ∈ Lp(Rd) ∩ L2p(Rd), if mp > 0, and f ∈ L2p(Rd), if mp = 0.

D.3. Weighted Lp to Lq Bounds for N Relativistic Particles

We also need a variant of our weighted Lp to Lq bounds applying to a vector
X = (X1, . . . , XN ) comprising N independent Lévy processes Xj , each having
Lévy symbol −ψd with mp � 0. To state the next result we write

ρ⊗N

L,mp,t(y) := ρL,mp,t(y1) · · · ρL,mp,t(yN ), y = (y1, . . . , yN ) ∈ (Rd)N .

The independence of X1, . . . , XN entails (recall our definition (7.12) of | · |1)
E[eL|Xx

t |1 |f(Xx
t )|] = (ρ⊗N

L,mp,t ∗ |f |)(x), x ∈ R
dN , f ∈ Lp(RdN ). (D.20)
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Lemma D.5. In the situation described in the preceding paragraph let t > 0,
L ∈ [0,mp) for mp > 0 and L = 0 for mp = 0, p ∈ [1,∞] and q ∈ [p,∞]. Then

‖ρ⊗N

L,mp,t ∗ f‖q � cN
d,p,qΘd,p,q(mp, L, t)N‖f‖p, (D.21)

for all f ∈ Lp(RdN ), where

Θd,p,q(mp, L, t) :=
1

td(p−1−q−1)
+ eLt

(
mp

mp − L

)d/2(
mp − L

t

)d(p−1−q−1)/2

,

for mp > 0, and Θd,p,q(0, 0, t) := t−d(p−1−q−1).

Proof. We put ρ
(i1,...,iN )
L,mp,t (y) :=ρ

(i1)
L,mp,t(y1) · · · ρ(iN )

L,mp,t(yN ) for i1, . . . , iN ∈ {1, 2}.
On account of (D.15),

‖ρ⊗N

L,mp,t ∗ f‖q �
2∑

i1,...,iN=1

‖ρ
(i1,...,iN )
L,mp,t ∗ f‖q

�
2∑

i1,...,iN=1

‖ρ
(i1,...,iN )
L,mp,t ‖1−p/q

p′ ‖ρ
(i1,...,iN )
L,mp,t ‖p/q

1 ‖f‖p

=
( 2∑

i=1

‖ρ
(i)
L,mp,t‖1−p/q

p′ ‖ρ
(i)
L,mp,t‖p/q

1

)N

‖f‖p.

Here we used that ‖ρ
(i1,...,iN )
L,mp,t ‖p̃ = ‖ρ

(i1)
L,mp,t‖p̃ · · · ‖ρ(iN )

L,mp,t‖p̃ for all p̃ ∈ [1,∞]
in the last equality. We conclude exactly as in the proofs of Lemma D.2 and
Lemma D.3, again using (D.11) and (D.12) for mp > 0. �

Corollary D.6. Let H be a separable Hilbert space and let Y : R
dN × Ω →

B(H ) be strongly product measurable. Write Y (x) := Y (x, ·) and assume that

C(θ) := sup
x∈RdN

E[‖Y (x)‖θ]1/θ < ∞, θ ∈ [1,∞).

Let t � 0, p ∈ (1,∞], q ∈ [p,∞] and Ψ ∈ Lp(RdN ,H ). Finally, let G, L and
r be given as in Proposition 7.5. Then Y (x)(e−GΨ)(Xx

t ) is P-integrable for all
x ∈ R

dN and the function Φ : R
dN → H defined by

Φ(x) := eG(x)
E[Y (x)(e−GΨ)(Xx

t )], x ∈ R
dN ,

is in Lq(RdN ,H ) with

‖Φ‖q � cN
d,p,qa(mp, rL)

dN
2

[
1
t2

∨ mp − L

t

] dN
2 ( 1

p − 1
q )

eNLtC(p′r′)‖Ψ‖p,

where p′ and r′ denote the dual exponents of p and r, respectively. In the above,
the essential supremum in ‖Φ‖∞ can be replaced by a supremum. Furthermore,
a(mp, rL) := mp/(mp − rL), if mp > 0, and a(0, rL) := 1.

Proof. Successively applying the bound |G(x)−G(Xx
t )| � L|Xt|1 and Hölder’s

inequality with p−1 + (rp′)−1 + (r′p′)−1 = 1, we find

E
[
eG(x)‖Y (x)(e−GΨ)(Xx

t )‖H

] � C(p′r′)E[erL|Xt|1 ]1/p′r{
E[eL|Xt|1‖Ψ(Xx

t )‖p
H ]1/p},
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for all x ∈ R
dN when p < ∞. If p = ∞, the expression in curly brackets {· · · }

should be replaced by ‖Ψ‖∞. Applying (D.20) and (D.21) (with f = 1 and
p = q = ∞), we find

E[erL|Xt|1 ]1/p′r � c
N/p′r
d eNLt/p′

(
mp

mp − rL

)dN/2p′r

. (D.22)

This finishes the proof in the case p = ∞, whence we assume p < ∞ from
now on. Since ‖Ψ(·)‖p

H is in L1(R2N ) with L1-norm ‖Ψ‖p
p, we can also apply

(D.20) and (D.21) (with 1 and q/p put in place of p and q, respectively) to the
function given by h(x) := E[eL|Xt|1‖Ψ(Xx

t )‖p
H ]. Since ‖h1/p‖q = ‖h‖1/p

q/p, this
leads to

‖h1/p‖q � cN
d,p,qe

NLt/p

(
mp

mp − L

) dN
2p

[
1
t2

∨ mp − L

t

] dN
2 ( 1

p − 1
q )

‖Ψ‖p. (D.23)

Combining the above Hölder estimate with (D.22) and (D.23) we arrive at the
asserted bound for finite p. �

D.4. Carmona’s Bound on Kac Averages in the Relativistic Case

Next, we observe the relativistic variant (D.24) of a bound derived by Car-
mona for Brownian motions. The crucial aspect of (D.24) is the comparatively
explicit dependence on the potential v of the exponent on the right hand side.
This becomes important in the derivation of our bounds on the minimal energy
of the relativistic Nelson operator.

Theorem D.7. Let a > 0 and Y be a d-dimensional Lévy process with Lévy
symbol −aψd, where ψd is given by (D.1). Furthermore, let p > d/2 and assume
that the Borel measurable function v : R

d → [0,∞] is 2p-integrable, if mp = 0,
and both p- and 2p-integrable, if mp > 0. Then

sup
x∈Rd

E

[

exp
(∫ t

0

v(x + Ys)ds

)]

� c′
d,p exp

(
cd,pa

−d/(2p−d)(md/2p
p ‖v‖p + ‖v‖2p)1/(1−d/2p)t

)
. (D.24)

Proof. Thanks to (D.19) we can almost literally follow Carmona’s proofs in
[6, Theorem 2.1 and Remark 3.1] to obtain (D.24) with a = 1. The general
case then follows from the equivalence of Y and (Xat)t�0 and elementary
substitutions; here X again has Lévy symbol −ψd. �
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