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TRAPPED SURFACE FORMATION FOR SPHERICALLY

SYMMETRIC EINSTEIN-MAXWELL-CHARGED SCALAR

FIELD SYSTEM WITH DOUBLE NULL FOLIATION

XINLIANG AN∗1 AND ZHAN FENG LIM2

Abstract. In this paper, under spherical symmetry we prove a trapped
surface formation criterion for the Einstein-Maxwell-charged scalar field sys-
tem. We generalize an approach introduced by Christodoulou for studying
the Einstein-scalar field. In appendix, with double null foliation we also re-
prove Christodoulou’s result and for Minkowskian incoming characteristic
initial data, we improve Christodoulou’s bound.

1. Introduction

1.1. Motivation. In a series of papers [9]-[12], Christodoulou studied singu-
larity formation for the Einstein-scalar field system:

Ricµν −
1

2
Rgµν = 8πTµν ,

Tµν = ∂µφ∂νφ−
1

2
gµν∂

σφ∂σφ.

(1.1)

Through these papers, Christodoulou proved in four steps that under spher-
ical symmetry, the weak cosmic censorship conjecture holds. More precisely,
Christodoulou proved that for (1.1) with large initial data, a so-called naked
singularity may form; however, for generic initial data, these singularities are
covered by a black hole region and are invisible for observers far away. These
are celebrated results.
The Penrose diagram of a spherically symmetric gravitational collapse space-

time for (1.1) with generic initial data is as follows:

Γ

S

T

S0
i+

i0

H

I+
A

Here, Γ is the center of symmetry−invariant under SO(3), and i+, I+, i0 are
timelike infinity, future null infinity, and spacelike infinity respectively. The
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boundary of the causal past of i+ is H, which is called the event horizon. T
is the trapped region, where not even light can escape to I+. A is called the
apparent horizon and it is the lower boundary of T . S0 is the first singular
point along Γ and S is the singular boundary of T .
A crucial step of Christodoulou’s proof of the weak cosmic censorship con-

jecture is [9]. There, Christodoulou established a sharp trapped surface1 for-
mation criterion for (1.1). Christodoulou’s original proof in [9] was based on
a geometric Bondi coordinate system with a null frame.
However, at present, the double null foliation is a more popular choice of

coordinate system. There have been many recent works published in general
relativity using a double null foliation. In order to generalize Christodoulou’s
results in [9]-[12] to other matter models, here we adopt the double null fo-
liation. In our paper, we will review Christodoulou’s result in the setting of
a double null foliation. Then, we will generalize his result to the Einstein-
Maxwell-charged scalar field system.
Within the study of spherically symmetric systems, there are interesting

results on formation of trapped surfaces and singularities for other matter
models, e.g. Einstein-Vlasov studied by Andréasson [6], Andéasson-Rein[7],
Moschidis[19], Einstein-Euler studied by Burtscher and LeFloch [8], Einstein-
scalar field studied by Li-Liu [17], An-Zhang [4], An-Gajic [5], Einstein-null
dust studied by Moschidis[20], Einstein-scalar field with positive cosmological
constant by Costa [13]. For the Einstein-Maxwell-(real) scalar field system, we
refer interested readers to [14, 15] by Dafermos, [18] by Luk and Oh on the
recent development of proving strong cosmic censorship. And for the Einstein-
Maxwell-charged scalar field system, we refer to [21]-[23] by Van de Moortel.

1.2. The Main Result. We consider the characteristic initial value problem
for (1.1) in the rectangular region.

R

(u0, 0)

Γ

v
(u0, v1)

u

(0, v1)

(u0, v2)

We employ the double-null foliation with
u and v as optical functions; that is,
gαβ∂αu∂βu = 0 and gαβ∂αv∂βv = 0. Thus,
we have u = constant as the outgoing null
hypersurface; v = constant as the incoming
null hypersurface.

Due to spherical symmetry, we have a central
axis Γ. We prescribe initial data along the
outgoing cone u = u0 and the incoming cone
v = v1.

For the metric of the 3 + 1-dimensional spacetime, we impose spherical sym-
metry and write it with double-null coordinates:

gµνdx
µdxν = −Ω2(u, v)dudv + r2(u, v)

(

dθ2 + sin2 θdφ2
)

. (1.2)

1A trapped surface is a two-dimensional sphere, with both incoming and outgoing null
expansions negative.
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In the above diagram every point (u, v) represents a 2-sphere Su,v. The Hawk-
ing mass of such a 2-sphere is defined as

m(u, v) =
r

2
(1 + 4Ω−2∂ur∂vr). (1.3)

Along u = u0, we also define the initial mass input

η0 :=
m(u0, v2)−m(u0, v1)

r(u0, v2)
, and denote δ0 :=

r(u0, v2)− r(u0, v1)

r(u0, v2)
.

Finally, let u∗ denote the value of u ∈ [u0, u∗] such that r(u∗, v2) = 3δ0
1+δ0

·

r(u0, v2).

Theorem 1.1. (Christodoulou [9] and reproved in appendix)
Define the function

E(x) :=
x

(1 + x)2

[

ln

(

1

2x

)

+ 5− x

]

.

Consider the system (1.1) with characteristic initial data along u = u0 and
v = v1. For initial mass input η0 along u = u0, if the following lower bound
holds:

η0 > E(δ0),

then a trapped surface Su,v, with properties ∂vr(u, v) < 0 and ∂ur(u, v) < 0,
forms in the region [u0, u∗]× [v1, v2] ⊂ R .

Remark 1. For 0 < δ0 ≪ 1, we can check that the order of the lower bound

of η0, E(δ0), is of order δ0 ln(
1
δ0
). Hence, if η0 & δ0 ln

(

1
δ0

)

, a trapped surface

is guaranteed to form within R.

The above theorem is crucial for Christodoulou’s final proof of the weak cosmic
censorship in [12]. There, Christodoulou studied the first singular point formed
in the evolution of (1.1): if that point is not covered by a trapped region, then a
perturbation of the initial data would lead to the condition in Theorem 1.1 be-
ing satisfied. Hence, a trapped surface would form to cover that singular point.

We provide a reproof of Theorem 1.1 in the appendix. While Christodoulou’s
proof was written in Bondi coordinates, here we have rewritten it in a dou-
ble null foliation. Double null foliations are widely used in studying both the
exterior and interior regions of black holes for various matter models. Many re-
sults pertaining to spherical symmetry are also based on double null foliations.
Hence, there is strong motivation to rewrite [9] with a double null foliation.

By strenghtening the hypothesis on the initial data in Theorem 1.1, in appendix
we also improve Christodoulou’s bound:
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R

D(0, v1)

(u0, 0)

Γ

v
(u0, v1)

u

(0, v1)

(u0, v2)

Theorem 1.2. Assume that Minkowskian
data are prescribed along v = v1 and re-
quire φ(u, v1) = 0. Suppose that the following
lower bound on η0 holds:

η0 >
9

2
δ0,

then there exist a MOTS or a trapped surface
in [u0, u∗]× [v1, v2] ⊂ R, i.e. ∂vr ≤ 0 at some
point in [u0, u∗]× [v1, v2].

Remark 2. Theorem 1.2 improves the almost scale critical result in Theorem

1.1, i.e., η0 > δ0 ln

(

1
δ0

)

implies trapped surface formation, to a scale critical

result, i.e., η0 >
9
2
δ0 implies trapped surface formation. In [2], the first author

and Luk first noted that by prescribing Minkowskian data along v = v1, for
Einstein vacuum equations a scale-critical trapped surface formation criterion
could be established.2 For a being a large universal constant, the corresponding
requirement for η0 is η0 ≥ δa. For Einstein-scalar field system under spherical
symmetry, Theorem 1.2 improves the large universal constant a into a concrete
number 9/2.

The main result of our paper is the next theorem. We generalize the above
results to the Einstein scalar field coupled with the electromagnetic field. More
precisely, we consider the following Einstein-Maxwell-charged scalar field sys-
tem:

Rµν −
1

2
gµνR = 8πTµν ,

Tµν = T SF
µν + TEM

µν ,

T SF
µν =

1

2
Dµφ(Dνφ)

† +
1

2
Dνφ(Dµφ)

† −
1

2
gµν

(

gαβDαφ(Dβφ)
†
)

,

TEM
µν =

1

4π

(

gαβFαµFβν −
1

4
gµνF

αβFαβ

)

.

Here, the Einstein scalar field is coupled to the electromagnetic field by the
following form of the Maxwell equation:

∇νFµν = 2πei
(

φ(Dµφ)
† − φ†Dµφ

)

,

where Dµ := ∂µ + eiAµ is known as the gauge covariant derivative. Here e is
the coupling constant and Aµ is the electromagnetic potential. Using the gauge
covariant derivative instead of the usual derivative ensures that the physical
equations remain invariant under local U(1) transformations on φ.

2For more discussions about scaling consideration, interested readers are also refereed to
[1] and [3] by the first author.
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Recall that under spherical symmetry, we have the ansatz (1.2). Using the
Ω appearing in the ansatz, we define the charge Q(u, v) contained in a sphere
S(u, v) to be Q := 2r2Ω−2Fuv.

Theorem 1.3. (Main Theorem) Denoting the outgoing null hypersurface u =
u0 by C and the incoming null hypersurface v = v1 by C, we define

ǫ := sup
C∪C

Q2

r2
< 1, and L := sup

C

r|φ|2.

Let ω be any positive constant in (0, 2
3
). Choose v2 − v1 sufficiently small such

that

9e2

4(1− ǫ)2
(v2 − v1)

2 +
12πLe

1− ǫ
(v2 − v1) ≤

ω

4
, (1.4)

45πe2(v2 − v1)
2

π(1− ǫ)2
+ 160πe2r(u0, v2)

v2 − v1
1− ǫ

|φ1|
2 ≤ 4ω. (1.5)

Further require that the initial data along C are not supercharged, i.e.

m(u, v1) ≥ |Q|(u, v1). (1.6)

Denote

gω(x) :=
1 + ω

2

1− ω
2

1

(1 + x)2

((

21−
ω

2

ω
+

1

21+
ω

2 (1 + ω
2
)

)

x1−ω

2 −
2

ω
x−

1

1 + ω
2

x2

)

.

Assume the following lower bound on η0 holds

η0 > max

{

13ǫ

ω
+ gω(δ0),

9

21+
ω

2 (1 + δ0)2
δ
1−ω

2
0 + gω(δ0)

}

,

R
CC

(u0, 0)

Γ

(u0, v1)

(0, v1)

(u0, v2) then a trapped surface is guaranteed to form
in [u0, u∗]× [v1, v2] ⊂ R.

Remark 3. By comparing the order of the lower bounds (when 0 < δ0 ≪ 1)
of η0 in the hypothesis of the theorem, we can interprete the theorem as: If

η0 & δ
1−ω

2
0 + 13ǫ

ω
, a trapped surface forms in R. Since ω could be chosen

to be arbitrary small number in (0, 3
2
), if we require that ǫ (upper bound
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of Q2

r2
on C ∪ C) is small and satisfies 13ǫ

ω
≤ δ

1−ω

2
0 , our theorem is also an

almost-scale-critical result.

Remark 4. Moreover, although we use the symbol ǫ to denote the upper

bound of Q2

r2
on C ∪ C, ǫ is not necessarily to be small. In particular, we

could choose 0 < δ0 ≪ 1, ω = 1
2
and require ǫ to be of size 1. This is not

in the perturbative regime of Christodoulou’s result for Einstein-scalar field.
Intuitively, for this case our Theorem 1.3 is saying: if the incoming mass
contained between v1 and v2 is large enough to overcome the initial charge on
C ∪ C, then we can guarantee the formation of a trapped surface.

Remark 5. For initial data along v = v1, we require that the initial data are
not super-charged, i.e.

m(u, v1) ≥ |Q|(u, v1). (1.7)

It is natural to consider initial data, which are not-super-charged, otherwise
there could be non-physical super-charged naked singularity prescribed along
v = v1. At the same time, (1.7) also implies an important inequality used in
the proof of Proposition 3.3.

Lemma 1.4. Along v = v1, condition (1.7) implies

m

r
(u, v1) ≥

Q2

r2
(u, v1). (1.8)

Proof. Since there is no MOTS or trapped surface along v = v1, we have

2m

r
(u, v1) ≤ 1, which gives

m

r
(u, v1) ≤

1

2
.

Together with the non-super charged condition, we also have

|Q|

r
(u, v1) ≤

m

r
(u, v1) ≤

1

2
. (1.9)

Then, we have

m

r
(u, v1)−

Q2

r2
(u, v1) ≥

|Q|

r
(u, v1)−

Q2

r2
(u, v1)

≥
|Q|

r
(1−

|Q|

r
)(u, v1) ≥ 0.

For the last inequality, we used (1.9). �

The inequality (1.8) is crucial in proving Proposition 3.3. And all subsequent
results in Section 3 depend on Proposition 3.3.

2. Preliminaries and Set-up

To study the problem of trapped surface formation, we need to choose a con-
venient coordinate system in which to express the Einstein field equations. We
describe the double null coordinate system for spherically symmetric spacetimes
in what follows.
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D(0, v1)

(u0, 0)

Γ

C

p : (u0, v1)

C

(0, v1)

Figure 1. Illustration of double null coordinate patch

Definition 2.1. A spacetime (M, g) is called spherically symmetric if SO(3)
acts on it by isometry, and the orbits of the group are (topological) 2-dimensional
spheres S. We define the area-radius coordinate r(S) such that A = 4πr2,
where A is the area of the S determined by the induced metric g|S.

3.

Under the assumption of spherical symmetry, a spacetime can be represented
by a two-dimensional diagram by considering only the quotient M/S. Hence,
a point on such diagram represents a 2-sphere in spacetime. There is no
loss in generality by assuming that the outgoing (v coordinate) and incoming
(u coordinate) null geodesics make 45-degree angles with the horizontal and
vertical axes. Furthermore, it is possible to bring the points at infinity to a
finite region through a conformal transformation, so that we can visualize the
entire spacetime in a finite region. Such a representation of a spacetime is
called a Penrose diagram.
We now introduce the setup of the coordinate system, along with important
points of interest on the Penrose diagram.

(1) Let Γ denote the axis of symmetry of the spacetime.
(2) Fix a point p on the penrose diagram. Label the incoming null geodesic

intersecting p by C, and the outgoing null geodesic intersecting p by
C. On the actual spacetime, C and C are therefore null hypersurfaces.

(3) Parametrize C with the variable u, and C by the variable v. At the
intersection of Γ and C, set u = 0. Extend C backwards until it
intersects Γ. At the intersection of Γ and C, we similarly set v = 0.
Fixing these values determines the coordinate of p, which we call (u0, v).

(4) In the domain of dependence of C ∪ C, we can now establish a coor-
dinate system: through every point in the domain of dependence runs

3This definition for r implies that g|S = r2(dθ2 + sin2θdφ2)
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an incoming and outgoing null geodesic emanating from C and C re-
spectively. Using the parameters u and v defined on C and C gives us
a coordinate for the point in question.

(5) Finally, let D(0, v1) denote the region in spacetime bounded by C, C
and Γ.

The construction above is illustrated in Figure 1. With respect to the double
null coordinate system, the spherically symmetric metric can be expressed as

g = −Ω2(u, v)dudv + r2(u, v)dθ2 + r2(u, v) sin2 θdφ2. (2.1)

We now define several useful geometric quantities:

Definition 2.2. The Hawking mass m(u, v) contained inside a sphere S(u, v)
is defined to be the quantity r

2
(1 + 4Ω−2∂ur∂vr).

Definition 2.3. We define the charge Q(u, v) contained in a sphere S(u, v) to
be

Q := 2r2Ω−2Fuv. (2.2)

Note: Fuv = ∂uAv − ∂vAu,where A is the electromagnetic potential. (2.3)

Due to gauge freedom in the electromagnetic potential, we can impose the
condition Av ≡ 0. Hence the above definition becomes:

Fuv = −∂vAu.

By substituting the expression (2.1), (2.2) and (2.3) into the Einstein field
equations and Maxwell equations, we arrive at the following system of equa-
tions with dynamical real-valued unknowns r, Au and Ω2, and complex-valued
unknown φ. For a more comprehensive explanation of these variables, we refer
to [16], from which the following Einstein-Maxwell-charged scalar field system
has been obtained.
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r∂v∂ur + ∂vr∂ur = −
Ω2

4

(

1−
Q2

r2

)

, (2.4)

r2∂u∂v log Ω = −2πr2
(

Duφ(∂vφ)
† + ∂vφ(Duφ)

†
)

−
1

2
Ω2Q

2

r2
+

1

4
Ω2 + ∂u∂vr,

(2.5)

∂u(Ω
−2∂ur) = −4πrΩ−2Duφ(Duφ)

†, (2.6)

∂v(Ω
−2∂vr) = −4πrΩ−2∂vφ(∂vφ)

†, (2.7)

r∂u∂vφ+ ∂ur∂vφ+ ∂vr∂uφ+ eiΨ(A) = 0, (2.8)

Ψ(A) = Au∂v(rφ)−
Ω2

4

Q

r
φ, (2.9)

Q = −2r2Ω−2∂vAu, (2.10)

∂uQ = 2πeir2
(

φ(Duφ)
† − φ†Duφ

)

= 4πer2Im
(

φ†Duφ
)

, (2.11)

∂vQ = 2πeir2
(

φ(∂vφ)
† − φ†∂vφ

)

= 4πer2Im
(

φ†∂vφ
)

, (2.12)

where Du := ∂u + ieAu, and e is the coupling constant between the scalar and
electromagnetic field. It is worth noting that to reduce the above system into
that of an uncharged scalar field, it suffices to set e = 0. Also, we can combine
(2.8), (2.9) and (2.10), which gives us:

r∂u∂vφ+ ∂ur∂vφ+ ∂vr∂uφ+ eiAu∂v(rφ)− ei
Ω2

4

Q

r
φ = 0

=⇒ ∂v(r∂uφ) + ∂ur∂vφ+ ei

(

Au∂v(rφ) + rφ∂vAu

)

= −ei
QφΩ2

4r

=⇒ ∂v(r∂uφ) + ∂ur∂vφ+ ei∂v(rφAu)

= ∂v(rDuφ) + ∂vφ∂ur = −ei
QφΩ2

4r
. (2.13)

The above system (2.4)-(2.13) is subject to initial conditions. There are two
types of initial conditions to be considered:

(1) The first type of initial conditions are derived from geometrical consid-
erations and are independent of the physical scenario. On the center of
symmetry Γ, we must have r = 0. In addition, by the spherical sym-
metry assumption, as we consider points infinitesimally close to the
center, its incoming null geodesics essentially become outgoing (in the
opposite direction). Hence we require that ∂vr(u0, 0) = −∂ur(u0, 0).
The evolution of r in the spacetime is then determined by equations
(2.4), (2.6), and (2.7).

On C ∪ C, we set Ω2 = 1. This amounts to fixing a normalization
for the coordinate system. The evolution of Ω2 in the coordinate patch
[u0, 0]× [v1,∞) is then given by equation (2.5).
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(2) The second type of initial conditions are those derived from quantities
such as the scalar field φ and electromagnetic potential Au. We can
prescribe initial data of φ freely on C ∪ C, which will completely de-
termine its first derivatives as C and C are characteristic hypersurfaces.

The electromagnetic potential Au along outgoing null hypersurfaces
can be determined through equation (2.10) up to an arbitrary constant,
which is in turn determined by (2.12). For completeness, it is worth
mentioning that there is no loss in generality in letting Au = 0 along Γ
due to gauge freedom, although we will not make use of this fact.

Using the above system of equations, we can compute the derivatives of the
Hawking mass:

∂um = ∂u

(

r

2
(1 + 4Ω−2∂ur∂vr)

)

=
∂ur

2
+ 2∂urΩ

−2∂ur∂vr + 2r∂u(Ω
−2∂ur)∂vr + 2rΩ−2∂ur∂u∂vr

=
∂ur

2
+ 2∂urΩ

−2∂ur∂vr − 8πr2Ω−2∂vr|∂uφ|
2

+ 2Ω−2∂ur

(

−
Ω2

4

(

1−
Q2

r2
)

− ∂vr∂ur

)

= −8πr2Ω−2∂vr|Duφ|
2 +

Q2∂ur

2r2
, (2.14)

∂vm = ∂v

(

r

2
(1 + 4Ω−2∂ur∂vr)

)

=
∂vr

2
+ 2∂vrΩ

−2∂ur∂vr + 2r∂v(Ω
−2∂vr)∂ur + 2rΩ−2∂vr∂u∂vr

=
∂ur

2
+ 2∂urΩ

−2∂ur∂vr − 8πr2Ω−2∂ur|∂vφ|
2

+ 2Ω−2∂vr

(

−
Ω2

4

(

1−
Q2

r2
)

− ∂vr∂ur

)

= −8πr2Ω−2∂ur|∂vφ|
2 +

Q2∂vr

2r2
. (2.15)

Finally, we define what is meant by a trapped surface.

Definition 2.4. A trapped surface S in a spherically symmetric spacetime is
a point (u, v) on the Penrose diagram (which represents a sphere) such that
∂ur(u, v) < 0 and ∂vr(u, v) < 0. If ∂vr(u, v) = 0, we call (u, v) a marginally
outer trapped surface (MOTS).

In the following, we will only focus on a narrow strip of the double null
coordinate patch [u0, 0] × [v1, v2], for some v2 > v1. We are going to give
conditions under which trapped surface formation is guaranteed in this strip.
We introduce:
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R

D(0, v1)

(u0, 0)

Γ

v
(u0, v1)

u

(0, v1)

(u0, v2)

Figure 2. Problem setup on Penrose Diagram

ri(u) := r(u, vi), mi(u) := m(u, vi), i = 1, 2

δ(u) :=
r2(u)

r1(u)
− 1, δ0 := δ(u0)

η(u) :=
2(m2(u)−m1(u))

r2(u)
, η0 := η(u0)

x(u) :=
r2(u)

r2(u0)
(2.16)

See Figure 2 for an illustration. Henceforth, any dynamical quantity (except
for u and v) with the subscript {1, 2} shall be treated as a function of u with
v = vi, i = {1, 2} fixed. Furthermore, denote the region [u0, 0]× [v1, v2] by R.

3. A Trapped Surface formation criterion for the Complex

Scalar Field

3.1. Outline. Before giving the complete proof, we briefly describe the main
ideas.

(1) First, we prove that r(u, v) is decreasing with respect to u in Lemma

3.1, hence the dimensionless length scale x(u) := r2(u)
r2(u0)

decreases as u

increases, and x(u0) = 1.
(2) Then we employ a proof-by-contradiction argument: assuming that

D(0, v1) ∪ R does not have a trapped surface, we derive an inequality
for η in terms of x in the region [u0, u∗]× [v1, v2]. We further show that
dη

dx
is bounded from above, i.e. dη

du
is bounded from below, and therefore

we get a lower bound on η(u∗).

If this lower bound is greater than 1, i.e., η(u∗) = 2(m2−m1)
r2

(u∗) > 1,

it implies 2m2

r2
(u∗) > 1 and this means S(u∗, v2) is a trapped surface.
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Since (u∗, v2) is a point in R, the above gives us the desired contradic-
tion.

The key of above arguments is to bound dη

du
. A direct computation gives:

dη

dx
= −

η

x
−

16π∂vr2Ω
−2
2

x∂ur2

(

r22|Duφ2|
2 −

Ω−2
1 ∂vr1

Ω−2
2 ∂vr2

r21|Duφ1|
2

)

+
Q2

2

xr22
. (3.1)

We show in Lemma 3.4 that the non-supercharged assumption along v = v1
allows us to show that Q2

2/r
2
2 remains bounded by η, plus a small error term.

If η is large enough compared to Q2
2/r

2
2, then the error can be absorbed into η.

With the control of Q2
2/r

2
2 in terms of η, we further have

Θ2 :=
(

r2|Duφ2| − r1|Duφ1

)2
.

−∂ur2

8πΩ−2
2 ∂vr2

(m2 −m1)

(

1

r1
−

1

r2

)

(3.2)

and
Ω−2

2 ∂vr2

Ω−2
1 ∂vr1

(u) . e−η(u). (3.3)

We can substitute (3.2) and (3.3) into (3.1), to obtain

dη

dx
. −

η

x

(

1−
δ0

x(1 + δ0)− δ0

)

+
1

x

δ0
x(1 + δ0)− δ0

. (3.4)

Integrating this will give us a lower bound on η(u) for u ∈ [u0, u∗]. This

ensures that for u ∈ [u0, u
′], η(u) is always large enough compared to

Q2
2

r22
, so

that the differential inequality is always valid in a neighbourhood of u′, and
hence the domain of validity of (3.4) can be extended to the whole [u0, u∗].
Finally, the inequality also shows that η(u∗) > 1, a contradiction to the no-
trapped-surfaces assumption. Hence the initial assumption that D(0, v1) ∪ R
has no trapped surfaces cannot be true and this completes the argument.

3.2. Proof of Theorem 1.3. To begin the proof proper, we first give a (neg-
ative) upper bound for ∂ur in the region [u0, 0] × [v1,∞) as promised. The
following lemma is the analog of Lemma 4.1 in the uncharged case. This has
two important consequences described in the remarks.

Lemma 3.1. ∂ur ≤ −1−ǫ
2
Ω2 everywhere in D(0, v1) ∪

(

[u0, 0]× [v1,∞)
)

.

Proof. Rewrite (2.4) as

∂v
(

r∂ur
)

= −
Ω2

4

(

1−
Q2

r2

)

.

Applying the assumption that ǫ < 1 and Ω2 = 1 on C, the following inequalities
hold on C:

−
1

4
≤ ∂v(r∂ur)(u0, v) ≤ −

1

4
+

ǫ

4
.
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Integrating both sides and dividing by r:

−
v

4r(u0, v)
≤ ∂ur(u0, v) ≤ −

v(1− ǫ)

4r(u0, v)
. (3.5)

For the first inequality of (3.5) at v = 0, we get

−
1

4∂vr(u0, 0)
≤ ∂ur(u0, 0) = −∂vr(u0, 0) =⇒ ∂vr(u0, 0) ≤

1

2
. (3.6)

Since Ω2 = 1 on C, (2.7) gives us ∂v∂vr ≤ 0, i.e. r is concave with respect to
v. Combining this with the fact that r(u0, 0) = v(u0, 0) = 0, we have:

r

v
(u0, v) ≤ ∂vr(u0, 0).

Substituting this into the second inequality of (3.5), followed by applying (4.8),
we get

∂ur(u0, v) ≤ −
1− ǫ

4∂vr(u0, 0)
≤ −

1 − ǫ

2
.

By (2.6), Ω−2∂ur is decreasing along incoming null geodesics. Hence for a
general point in D(0, v1) ∪

(

[u0, 0]× [v1,∞)
)

, we have Ω−2∂ur ≤ −1−ǫ
2
. �

Remark 6. Under the assumption of no trapped surfaces, m(u, v) ≥ 0 for all
(u, v) ∈ D(0, v1) ∪

(

[u0, 0]× [v1,∞)
)

Proof. Given any point (u, v) ∈ R, we can extend the outgoing null geodesic
backwards until it intersects Γ at some coordinate (u, vc), so that r(u, vc) = 0.
Using (2.15), we have

∂vm = −8πr2Ω−2∂ur|∂vφ|
2 +

Q2∂vr

2r2
.

Since ∂ur ≤ 0 by Lemma 3.1, and ∂vr > 0 by the no trapped surface
assumption, we get ∂vm ≥ 0. Combining with the fact that m(u, vc) = 0, we
obtain the desired result. �

3.3. Estimates for Q, r. In this section we will bound Q in terms of the
Hawking mass in R, and show that ∂u∂vr ≤ 0 under appropriate conditions.
Obtaining a bound on Q will require a bound on r2

r1
, which in turn requires a

bound on Q. Hence we will develop these bounds using a bootstrap argument.

Proposition 3.2. Fix 0 < ω < 2
3
. Choose v2 − v1 sufficiently small satisfying

(1.4) and (1.5). Let v1 < va ≤ v2. Assume that r2(u)
r1(u)

≤ 3
2
, i.e., δ(u) ≤ 1

2
for

u ∈ [u0, 0], and that R := [u0, 0]× [v1, v2] is free of trapped surfaces. Then the
following inequality holds:

Q2
a(u)

r2a(u)
≤

ω

4
ηa(u) +

2Q2
1(u)

r21(u)
,

where

ηa(u) :=
2
(

ma(u)−m1(u)
)

ra
.
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Over here the subscript a indicates a quantity evaluated at the point (u, va).

Proof. We write Qa as the integral of its derivative:

Q2
a =

(
∫ va

v1

∂vQ dv +Q1

)2

≤ 2

(
∫ va

v1

∂vQ dv

)2

+ 2Q2
1

≤ 2

(
∫ va

v1

4πe|φ||∂vφ|r
2dv

)2

+ 2Q2
1, by applying (2.12)

≤ 32π2
e
2

∫ va

v1

r2|φ|2dv ·

∫ va

v1

r2|∂vφ|
2dv + 2Q2

1. (3.7)

The second integral in the previous line can be bounded:
∫ va

v1

r2|∂vφ|
2dv =

∫ va

v1

−8πr2Ω−2∂ur|∂vφ|
2

−8πΩ−2∂ur
dv

≤
1

4π(1− ǫ)

∫ va

v1

∂vm−
Q2∂vr

2r2
dv ≤

ma −m1

4π(1− ǫ)
, (3.8)

where we applied Lemma 3.1 in the second last inequality to pull out the term
Ω−2∂ur in the denominator, and used the assumption that ∂vr ≥ 0 for the last
inequality. Next, we bound the first integral:

∫ va

v1

r2|φ|2dv =

∫ va

v1

(

r2
∣

∣

∣

∣

∫ v

v1

∂v′φ dv′ + φ1

∣

∣

∣

∣

2)

dv

≤ 2r2a

∫ va

v1

[(
∫ v

v1

∂v′φ dv′
)2

+ |φ1|
2

]

dv

≤ 2r2a

∫ va

v1

[

(v − v1)

∫ v

v1

|∂v′φ|
2dv′ + |φ1|

2

]

dv

≤ 2r2a

∫ va

v1

[

(v − v1)

∫ v

v1

(

−8πr2Ω−2∂ur|∂vφ|
2

−8πr2Ω−2∂ur

)

dv′ + |φ1|
2

]

dv

≤
2r2a(va − v1)

r21

1

8π

2

1− ǫ

∫ va

v1

∫ v

v1

∂v′m dv′dv + 2r2a

∫ va

v1

|φ1|
2dv,

by Lemma 3.1

≤
va − v1
2π(1− ǫ)

(

ra
r1

)2 ∫ va

v1

(ma −m1)dv + 2r2a(va − v1)|φ1|
2

≤
va − v1
2π(1− ǫ)

(

ra
r1

)2

(va − v1)(ma −m1) + 2r2a(va − v1)|φ1|
2.

(3.9)

Substituting (3.8) and (3.9) back into (3.7) and rearranging, we get

Q2
a ≤

4e2(va − v1)
2

(1− ǫ)2

(

ra
r1

)2

(ma −m1)
2 +

16πe2

1− ǫ
r2a(ma −m1)(va − v1)|φ1|

2 + 2Q2
1.
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Dividing both sides by r2a, we get

Q2
a

r2a
≤

e
2(va − v1)

2

(1− ǫ)2

(

ra
r1

)2

η2a +
8πe2(va − v1)

1− ǫ

(

ra
r1

)

(r1|φ1|
2)ηa + 2

Q2
1

r2a

≤

(

9e2

4(1− ǫ)2
(va − v1)

2ηa +
12πLe2

1− ǫ
(va − v1)

)

ηa + 2
Q2

1

r21
, since

ra
r1

≤
3

2

≤

(

9e2

4(1− ǫ)2
(va − v1)

2 +
12πLe2

1− ǫ
(va − v1)

)

ηa + 2
Q2

1

r21
,

where in the last inequality we have used the fact that ηa < 1. This is because
the no trapped surface or MOTS assumption gives:

ηa ≤
2(ma −m1)

ra
≤

2ma

ra
< 1.

Hence by the assumption (1.4) on v2 − v1, we have Q2
a

r2a
≤ ω

4
ηa + 2ǫ. �

We wish to get rid of the ǫ term in the upper bound given by the previous
proposition. This will be done in Lemma 3.4. For that, we will need the next
proposition which is the equivalent of Proposition 4.2 in the uncharged case.
This proposition is proven using a bootstrap argument.

Proposition 3.3. Assume the initial data along C is not super-charged, and
R is free of trapped surfaces. Then ∂u∂vr ≤ 0 in [u0, u∗]× [v1, v2] and δ(u) :=
r2
r1
− 1 ≤ 1

2
for u ∈ [u0, u∗], where u∗ is defined such that x(u∗) =

3δ0
1+δ0

.

Proof. Let x′ := inf
{

x ∈ [ 3δ0
1+δ0

, 1]
∣

∣δ(y) ≤ 1
2
holds for y ∈ [x, 1]

}

. We will aim

to show that x′ = 3δ0
1+δ0

. This proves the claim that δ(u) ≤ 1
2
for u ∈ [u0, u8],

as x is monotonically decreasing with respect to u.

Since we have δ(x′) ≤ 1
2
, it follows that r2(x′)

r1(x′)
≤ 3

2
and hence we can apply

Proposition 3.2. Thus, for every x ∈ [x′, 1], va ∈ [v1, v2], we have

Q2

r2
(x, va) ≤

ω

4
ηa +

2Q2
1

r2
≤ ηa +

2Q2
1

r2

=
2ma

r
−

2m1

r
+

2Q2
1

r2
=

2ma

r
−

2

r

(

m1 −
Q2

1

r

)

=
2ma

r
−

2

r

(

m1 −
Q2

1

r1

)

.

By the non-supercharged assumption, (1.8) from Remark 5 tells us that m1−
Q2

1

r1
≥ 0. Hence we have

Q2

r2
(x, va) ≤

2m

r
(x, va).

Now we rewrite (2.4) into the following equivalent form:

∂u∂vr = −
Ω2

4r

(

2m

r
−

Q2

r

)

. (3.10)
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Since we have just shown that 2m
r

≥ Q2

r
for x ∈ [x′, 1], it follows that ∂u∂vr ≤ 0

in the region [u0, u
′]× [v1, v2].

Integrating with respect to u, we get:

∂vr(u)− ∂vr(u0) ≤ 0 =⇒ ∂vr(u) ≤ ∂vr(u0).

Integrating the last inequality above with respect to v, we obtain

r2(u)− r1(u) ≤ r2(u0)− r1(u0), for all u ∈ [u0, u
′].

Here u′ is defined so that x(u′) = x′. We can use this to derive a bound for
δ(u):

δ(u) =
r2
r1

− 1 =
r2 − r1

r2 − (r2 − r1)
≤

r2(u0)− r1(u0)

r2(u)− (r2(u0)− r1(u0))

≤
δ0

r2(u)
r1(u0)

− δ0
=

δ0
x(u)(1 + δ0)− δ0

, for all u ∈ [u0, u
′].

Hence, if x′ > 3δ0
1+δ0

, we have δ(x′) < δ0
3δ0−δ0

= 1
2
. By the continuity of the

function δ(x), there exist some x′′ < x′ such that δ(x) < 1
2
for all x ∈ [x′′, 1],

which is a contradiction to infimum property of x′. Therefore, we must have
x′ = 3δ0

1+δ0
. �

Remark 7. Since all subsequent Lemmas and Propositions depend on Propo-
sition 3.2, the non-supercharged hypothesis is necessary for all of them.

Recall that ǫ := supC
Q2

r2
< 1. Combining Proposition 3.2 and Proposition

3.3, we get the following lemma:

Lemma 3.4. Assume that the initial data along C is not super-charged and
that R is free of trapped surfaces. Then for every (u, va) ∈ [u0, u∗] × [v1, v2],
we have the following estimate for the charge:

Q2
a

r2a
≤

ω

4
ηa + 2ǫ.

Furthermore, if ηa ≥
8ǫ
ω
, then Q2

a

r2a
≤ ω

2
ηa.

Proof. The first part of the lemma is almost proven: Since the hypothesis of
this lemma satisfies that of Proposition 3.3, we have δ(u) ≤ 3

2
for all u ∈

[u0, u∗], which is the hypothesis of Proposition 3.2. This gives us the first part
of the Lemma. The second part follows from a computation. ηa ≥ 8ǫ

ω
implies

that 2ǫ ≤ ω
4
ηa. Hence,

Q2
a

r2a
≤

ω

4
ηa + 2ǫ ≤

ω

4
ηa +

ω

4
ηa =

ω

2
ηa.

�
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3.4. Estimates for Duφ, ∂vr. In this section, we will prove two lemmas which
hold in the region [u0, u∗] × [v1, v2] under the premise that the region is free
of trapped surfaces. These are the equivalents of Lemmas 4.3 and 4.4 in the
uncharged case.

Lemma 3.5. Define Θ := r2|Duφ2| − r1|Duφ1|. Suppose that the initial data
along C is not super-charged and D(0, v1) ∪ R is free of trapped surfaces. If
η ≥ 8ǫ

ω
, then

Θ(u)2 ≤

(

1 +
ω

2

)

−∂ur2

8πΩ−2
2 ∂vr2

(m2 −m1)

(

1

r1
−

1

r2

)

(u)

for all u ∈ [u0, u∗].

Proof. By integrating equation (2.13), we get

Θ2 =
(

r2|Duφ2| − r1|Duφ1|
)2

≤ |r2Duφ2 − r1Duφ1|
2 =

∣

∣

∣

∣

∫ v2

v1

−∂ur∂vφ− ie
QφΩ2

4r
dv

∣

∣

∣

∣

2

≤ (1 + κ)

∣

∣

∣

∣

∫ v2

v1

−∂ur|∂vφ|dv

∣

∣

∣

∣

2

+
(

1 +
1

κ

)

e
2

∣

∣

∣

∣

∫ v2

v1

QφΩ2

4r
dv

∣

∣

∣

∣

2

, for any κ > 0

≤
1 + κ

8π

∫ v2

v1

−8πr2∂urΩ
−2|∂vφ|

2dv

∫ v2

v1

−
∂ur

r2Ω−2
dv +

(

1 +
1

κ

)

e
2

∣

∣

∣

∣

∫ v2

v1

QφΩ2

4r
dv

∣

∣

∣

∣

2

,

(3.11)

where we used Holder’s inequality for the last inequality.

We bound the first summand like how we did in Lemma 4.3. We bound the
first integral of the first term:

∫ v2

v1

−8πr2∂urΩ
−2|∂vφ|

2dv =

∫ v2

v1

∂vm−
Q2∂vr

2r2
dv

≤

∫ v2

v1

∂vm dv, since ∂vr > 0

= m2 −m1. (3.12)

To bound the second integral of the first term, we apply Proposition 3.3 to
get ∂v∂ur ≤ 0, and hence ∂ur ≥ ∂ur2. Also, equation (2.7) implies that
Ω−2

2 ∂vr2 ≤ Ω−2∂vr. Combining these two pieces of information, we have



18 XINLIANG AN
∗1

AND ZHAN FENG LIM
2

∫ v2

v1

−
∂ur

r2Ω−2
dv =

∫ r2

r1

−
∂ur

r2Ω−2∂vr
dr

≤ −∂ur2

∫ r2

r1

1

r2Ω−2∂vr
dr

≤
−∂ur2

Ω−2
2 ∂vr2

∫ r2

r1

1

r2
dr

=
∂ur2

Ω−2
2 ∂vr2

( 1

r2
−

1

r1

)

. (3.13)

Substituting (3.12) and (3.13) back into (3.11) gives us:

Θ(u)2 ≤ (1 + κ)
∂ur2

8πΩ−2
2 ∂vr2

(m2 −m1)

(

1

r2
−

1

r1

)

+
(

1 +
1

κ

)

e
2

∣

∣

∣

∣

∫ v2

v1

QφΩ2

4r
dv

∣

∣

∣

∣

2

.

(3.14)

To bound the remaining integral, we apply the Cauchy-Schwarz inequality and
Lemma 3.4:

∣

∣

∣

∣

∫ v2

v1

QφΩ2

4r
dv

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1

4

∫ v2

v1

Q

r
3
2Ω−2

r
1
2φ dv

∣

∣

∣

∣

2

≤
1

16

∫ v2

v1

Q2

r2
1

r

1

Ω−2

1

Ω−2
dv ·

∫ v2

v1

r|φ|2dv

≤
1

16

∫ r2

r1

ω

2
ηa

1

r

1

Ω−2∂vr

−∂ur

−Ω−2∂ur
dr

∫ v2

v1

r|φ|2dv. (3.15)

We bound the first integral: by Proposition 3.3 we have ∂u∂vr ≤ 0, which
implies ∂ur2 ≤ ∂ur. And with Ω−2

2 ∂vr2 ≤ Ω−2∂vr by (2.7), we derive

∫ r2

r1

ω

2
ηa

1

r

1

Ω−2∂vr

−∂ur

−Ω−2∂ur
dr ≤

−∂ur2

Ω−2
2 ∂vr2

∫ r2

r1

ω

2

2(ma −m1)

ra

1

r

1

−Ω−2∂ur
dr

≤
−2ω

1− ǫ

∂ur2

Ω−2
2 ∂vr2

∫ r2

r1

(m2 −m1)
1

r2
dr,

by Lemma 3.1, (Ω−2∂ur ≤ −
1− ǫ

2
)

=
−2ω

1− ǫ

∂ur2

Ω−2
2 ∂vr2

(m2 −m1)

(

1

r1
−

1

r2

)

= −
2ω

1 − ǫ

∂ur2

Ω−2
2 ∂vr2

(m2 −m1)

(

1

r1
−

1

r2

)

.

(3.16)
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Now we bound the second integral:
∫ v2

v1

r|φ|2dv =

∫ v2

v1

r

∣

∣

∣

∣

∫ v′

v1

∂vφ dv + φ1

∣

∣

∣

∣

2

dv′

≤2

∫ v2

v1

(

r

∣

∣

∣

∣

∫ v′

v1

∂vφ dv

∣

∣

∣

∣

2

+ r|φ1|
2

)

dv′

≤2

∫ v2

v1

(

r(v′ − v1)

∫ v′

v1

|∂vφ|
2 dv + r|φ1|

2

)

dv′

≤2r2

∫ v2

v1

(

(v2 − v1)

∫ v′

v1

−8πΩ−2r2∂ur|∂vφ|
2

−8πΩ−2∂urr2
dv + |φ1|

2

)

dv′

≤2r2

∫ v2

v1

(

2(v2 − v1)

(1− ǫ)8πr21

∫ v′

v1

∂vm dv + |φ1|
2

)

dv′

=2r2

∫ v2

v1

(

v2 − v1
(1− ǫ)4πr21

(m2 −m1) + |φ1|
2

)

dv′

≤
r22
r21

(v2 − v1)
2

4π(1− ǫ)

2(m2 −m1)

r2
+ 2r2(v2 − v1)|φ1|

2.

Using the no trapped surface or MOTS assumption, we have 2(m2−m1)
r2

= η < 1.

Using Lemma 3.3, r2
r1

≤ 3
2
. Hence we have:

∫ v2

v1

r|φ|2dv ≤
9(v2 − v1)

2

16π(1− ǫ)
+ 2r2(u0)(v2 − v1)|φ1|

2 ≤ ω
1− ǫ

320e2π
, (3.17)

where we use the assumption in (1.5).
Substituting (3.16) and (3.17) back into (3.15), we get

∣

∣

∣

∣

∫ v2

v1

QφΩ2

4r
dv

∣

∣

∣

∣

2

≤ −
ω2

160e2π

∂ur2

Ω−2
2 ∂vr2

(m2 −m1)

(

1

r1
−

1

r2

)

.

Now, set κ = ω
4
in (3.14) and utilize the inequality above:

Θ2 ≤
(

1 +
ω

4

) −∂ur2

8πΩ−2
2 ∂vr2

(m2 −m1)

(

1

r1
−

1

r2

)

+
(

1 +
4

ω

) ω2

160π

−∂ur2

Ω−2
2 ∂vr2

(m2 −m1)

(

1

r1
−

1

r2

)

=

(

1 +
ω

4
+

ω

20
(4 + ω)

)

−∂ur2

8πΩ−2
2 ∂vr2

(m2 −m1)

(

1

r1
−

1

r2

)

.

Using the assumption that ω < 2
3
, we have ω + 4 < 5, and therefore

Θ2 ≤
(

1 +
ω

4
+

5ω

20

) −∂ur2

8πΩ−2
2 ∂vr2

(m2 −m1)

(

1

r1
−

1

r2

)

=

(

1 +
ω

2

)

−∂ur2

8πΩ−2
2 ∂vr2

(m2 −m1)

(

1

r1
−

1

r2

)

.

�
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Lemma 3.6. Assume that η ≥ 8ǫ
ω
, the initial data along C is not super-

charged, and D(0, v1) ∪R is free of trapped surfaces. Then

Ω−2
2 ∂vr2

Ω−2
1 ∂vr1

(u) ≤ e−(1−ω

2
)η(u)

for all u ∈ [u0, u∗].

Proof. Dividing both sides of equation (2.6) by Ω−2∂vr and integrating from
v1 to v2, we get

ln |Ω−2
2 ∂vr2| − ln |Ω−2

1 ∂vr1| = ln

(

Ω−2
2 ∂vr2

Ω−2
1 ∂vr1

)

= −4π

∫ v2

v1

r|∂vφ|
2

∂vr
dv

By equation (2.15) and the definition of the Hawking mass, we have

1

r − 2m

(

∂vm−
Q2∂vr

2r2
)

=
−8πr2Ω−2∂ur

−4rΩ−2∂ur∂vr
=

2πr|∂vφ|
2

∂vr
.

Hence for any u ∈ [u0, u∗],

ln

(

Ω−2
2 ∂vr2

Ω−2
1 ∂vr1

)

= −2

∫ v2

v1

1

r − 2m

(

∂vm−
Q2∂vr

2r2
)

dv

≤ −2

∫ v2

v1

1

r

(

∂vm−
Q2∂vr

2r2
)

dv ≤
−2

r2

∫ v2

v1

(

∂vm−
Q2∂vr

2r2
)

dv

= −
2(m2 −m1)

r2
+

2

r2

∫ r2

r1

Q2

2r2
dr = −η +

2

r2

∫ r2

r1

Q2

2r2
dr.

By Lemma 3.4, we have

Q(u, v)2

r(u, v)2
≤

ω

2

2(m(u, v)−m(u, v1))

r(u, v)
.

Hence,

2

r2

∫ r2

r1

Q2

2r2
dr ≤

ω

2r2

∫ r2

r1

2(m(u, v)−m(u, v1))

r(u, v)
dr

≤ ω·
m2 −m1

r2
ln
(r2
r1

)

≤
ω

2
ln
(3

2

)

η ≤
ω

2
η.

Combining the above estimates, we get:

ln

(

Ω−2
2 ∂vr2

Ω−2
1 ∂vr1

)

≤ −

(

1−
ω

2

)

η.

Exponentiating both sides of the above inequality gives us the desired result.
�
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x

η

x = 1

η = η0

η = 12ǫ
ω

x = x∗

η ≥ 1

Figure 3. Idea of proof of Lemma 3.7 and Theorem 1.3

3.5. The proof of Theorem 1.3. We are finally ready to prove a lower bound
on dη

du
. The presence of charge case poses some difficulties not present in the

uncharged case. This is because in order to apply Lemma 3.4, 3.5 and 3.6, we
need to ensure that the η > 8ǫ

ω
assumption always hold to get a lower bound

on dη

du
. On the other hand, we exactly need this lower bound on dη

du
to prove the

assumption that η > 8ǫ
ω
. Hence we need to do this using a bootstrap argument

again.

We will in fact prove something a little stronger: we show that η(u) ≥ 12ǫ
ω

for u ∈ [u0, u∗]. We use a bootstrap argument to prove this in Lemma 3.7: As-
suming that the differential inequality holds for all u ∈ [u0, u

′], where u′ < u∗,
then η(u) ≥ 12ǫ

ω
holds in a slightly larger region as well.

Lemma 3.7. Assume that the region D(0, v1) ∪ R is free of trapped surfaces
and the initial data along C is not super-charged. Then if η0 ≥ 13ǫ

ω
+ gω(δ0),

we have η(x) ≥ 12ǫ
ω

for all x(u) ∈
[

3δ0
1+δ0

, 1
]

. Over here, gω(x) is defined as:

gω(x) :=
1 + ω

2

1− ω
2

1

(1 + x)2

((

21−
ω

2

ω
+

1

21+
ω

2 (1 + ω
2
)

)

x1−ω

2 −
2

ω
x−

1

1 + ω
2

x2

)

.

(3.18)

Proof. We define u′ := sup{u ∈ [u0, u∗]
∣

∣η(s) ≥ 12ǫ
ω

for all s ∈ [u0, u]}. We are

going to show that u′ = u∗, where x(u∗) =
3δ0
1+δ0

. A sketch of this is provided
in figure 3.
We calculate dη

dx
. The following computations holds for all u ∈ [u0, u∗]:
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dη

dx
=

dη

du

/

dx

du
=

r2(u0)

∂ur2

(

−
2∂ur2
r22

(m2 −m1) +
2

r2
∂u(m2 −m1)

)

=−
η

x
+

2

x∂ur2
(−8πr22Ω

−2
2 ∂vr2|Duφ2|

2 + 8πr21Ω
−2
1 ∂vr1|Duφ1|

2 +
Q2

2∂ur2
2r22

−
Q2

1∂ur1
2r21

)

≤−
η

x
−

16π∂vr2Ω
−2
2

x∂ur2

(

r22|Duφ2|
2 −

Ω−2
1 ∂vr1

Ω−2
2 ∂vr2

r21|Duφ1|
2

)

+
Q2

2

xr22
,

where we used that
Q2

1∂ur1
xr21∂ur2

≥ 0. (3.19)

Now we focus our attention on the region [u0, u
′]. Since η ≥ 12ǫ

ω
≥ 8ǫ

ω
in

[x′, 1], we can use Lemma (3.6) to bound the factor in the second term:

r22|Duφ2|
2 −

Ω−2
1 ∂vr1

Ω−2
2 ∂vr2

r21|Duφ1|
2 ≤ r22|Duφ2|

2 − eη(1−
ω

2
)r21|Duφ1|

2

= Θ2 + 2Θ|Duφ1|r1 + (1− eη(1−
ω

2
))r21|Duφ1|

2.

The last expression, being a quadratic in Θ, can be bounded by a monic
quadratic polynomial in Θ:

Θ2 + 2Θ|Duφ1|r1 + (1− eη(1−
ω

2
))r21|Duφ1|

2 ≤

(

1 +
1

eη(1−
ω

2
) − 1

)

Θ2

≤

(

1 +
1

η(1− ω
2
)

)

Θ2, (3.20)

where we used the fact that η(1− ω
2
) ≥ 0 in the second inequality. Then (3.20)

combined with (3.19) gives:

dη

dx
≤ −

η

x
−

16π∂vr2Ω
−2
2

x∂ur2

(

1 +
1

η(1− ω
2
)

)

Θ2 +
Q2

2

xr22
.

Applying Lemma 3.5, we have

dη

dx
≤ −

η

x
+

η

x

(

1 +
ω

2

)(

1 +
1

η(1− ω
2
)

)(

r2
r1

− 1

)

+
Q2

2

xr22
. (3.21)

Using Proposition 3.3, we get

δ(u) =
r2(u)− r1(u)

r2(u)− (r2(u)− r1(u))
≤

r2(u0)− r1(u0)

r2(u)− (r2(u0)− r1(u0))
=

δ0
x(u)(1 + δ0)− δ0

.
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Combining with (3.21), and using Lemma (3.4) to bound the term involving
Q, we obtain

dη

dx
≤ η

(

(

1 +
ω

2

) δ0
x2(1 + δ0)− xδ0

−
1

x

)

+
1 + ω

2

1− ω
2

1

x

δ0
x(1 + δ0)− δ0

+
Q2

2

xr22

≤ η

(

(

1 +
ω

2

) δ0
x2(1 + δ0)− xδ0

−
1

x

)

+
1 + ω

2

1− ω
2

1

x

δ0
x(1 + δ0)− δ0

+
η

x

ω

2

= −
η

x

(

1−
ω

2
−
(

1 +
ω

2

) δ0
x(1 + δ0)− δ0

)

+
1 + ω

2

1− ω
2

1

x

δ0
x(1 + δ0)− δ0

.

Defining g(x) := 1− ω
2
−
(

1+ ω
2

)

δ0
x(1+δ0)−δ0

and f(x) :=
1+ω

2

1−ω

2

δ0
x(1+δ0)−δ0

, we obtain

the following differential inequality which holds for all x ∈ [x′, 1]:

dη

dx
+ η

g(x)

x
−

f(x)

x
≤ 0.

To solve this differential inequality, we multiply by an integrating factor to
get:

d

dx

(

e−
∫ 1
x

g(s)
s

dsη(x)

)

− e−
∫ 1
x

g(s)
s

dsf(x)

x
≤ 0

=⇒

[

e−
∫ 1
t

g(s)
s

dsη(t)

]t=1

t=x

≤

∫ 1

x

e−
∫ 1
t

g(s)
s

dsf

t
dt+ C,

where C can be chosen to be any value which makes the inequality hold at the

initial point x = 1. Also denote G(x) :=
∫ 1

x

g(s)
s
ds and F (x) :=

∫ 1

x
e−G(s) f

s
ds.

In this notation, we get

η0 − e−G(x)η(x) ≤ F (x) + C.

Since η0 = η(x)|x=1 by definition, and F (1) = G(1) = 0, setting C = 0
makes the inequality tight. Hence, in the interval [x′, 1], we conclude that the
following inequality holds:

η0 − e−G(x)η(x) ≤ F (x) (3.22)

Now we compute explicit expressions for G(x) and F (x):

G(x) =

∫ 1

x

1− ω
2

s
−

1 + ω
2

s

δ0
s(1 + δ0)− δ0

ds

=

∫ 1

x

1− ω
2

s
+

1 + ω
2

s
−

(1 + ω
2
)(1 + δ0)

s(1 + δ0)− δ0
ds

= ln

(

s2
(

s(1 + δ0)− δ0
)1+ω

2

)
∣

∣

∣

∣

1

x

= ln

(

(

x(1 + δ0)− δ0
)1+ω

2

x2

)

.
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F (x) =

∫ 1

x

s2
(

s(1 + δ0)− δ0
)1+ω

2

f

s
ds =

∫ 1

x

1 + ω
2

1− ω
2

δ0s

(s(1 + δ0)− δ0)
2+ω

2

ds

=
1 + ω

2

1− ω
2

δ0
1 + δ0

∫ 1

x

s(1 + δ0)− δ0

(s(1 + δ0)− δ0)
2+ω

2

+
δ0

(s(1 + δ0)− δ0)
2+ω

2

ds

=
1 + ω

2

1− ω
2

δ0
1 + δ0

∫ 1

x

1

(s(1 + δ0)− δ0)
1+ω

2

+
δ0

(s(1 + δ0)− δ0)
2+ω

2

ds

=
1 + ω

2

1− ω
2

δ0
(1 + δ0)2

[

−
2

ω

1
(

s(1 + δ0)− δ0
)

ω

2

−
1

1 + ω
2

δ0
(

s(1 + δ0)− δ0
)1+ω

2

]
∣

∣

∣

∣

1

x

=
1 + ω

2

1− ω
2

δ0
(1 + δ0)2

(

2

ω

1
(

x(1 + δ0)− δ0
)

ω

2

−
2

ω
+

1

1 + ω
2

δ0
(

x(1 + δ0)− δ0
)1+ω

2

−
δ0

1 + ω
2

)

.

Observe that F (x) is monotonically decreasing and hence obtains its maximum
at x = 3δ0

1+δ0
on the interval [ 3δ0

1+δ0
, 1]. Therefore,

F (x) ≤ F

(

3δ0
1 + δ0

)

=
1 + ω

2

1− ω
2

δ0
(1 + δ0)2

(

21−
ω

2

ω
δ
−ω

2
0 −

2

ω
+

1

21+
ω

2 (1 + ω
2
)
δ
−ω

2
0 −

δ0
1 + ω

2

)

=
1 + ω

2

1− ω
2

1

(1 + δ0)2

((

21−
ω

2

ω
+

1

21+
ω

2 (1 + ω
2
)

)

δ
1−ω

2
0 −

2

ω
δ0 −

1

1 + ω
2

δ20

)

= gω(δ0).

Substituting the expressions for F (x) and G(x) into (3.22), for all x ∈ [x′, 1],
we get

η(x) ≥ eG(x)
(

η0 − F (x)
)

≥

(

x(1 + δ0)− δ0
)1+ω

2

x2

·

(

η0 −
1 + ω

2

1− ω
2

1

(1 + δ0)2

((

21−
ω

2

ω
+

1

21+
ω

2 (1 + ω
2
)

)

δ
1−ω

2
0 −

2

ω
δ0 −

1

1 + ω
2

δ20

))

=

(

x(1 + δ0)− δ0
)1+ω

2

x2
·
(

η0 − gω(δ0)
)

. (3.23)

For the last identity, we use the definition of gω(x) in (3.18).

Since ω < 2
3
implies that x2

(x(1+δ0)−δ0)
1+ω

2
is monotonically increasing, we get:

sup
x∈[x∗,1]

x2

(

x(1 + δ0)− δ0
)1+ω

2

= 1.

Combining this with the hypothesis that

η0 >
13ǫ

ω
+ gω(δ0),
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we obtain the inequality:

η0 >
13ǫ

ω
+ gω(δ0) ≥

13ǫ

ω

x2

(

x(1 + δ0)− δ0
)1+ω

2

+ gω(δ0)

for x ∈ [x′, 1]. Substituting the above into (3.23) gives us:

η(x) ≥
13ǫ

ω
, for all x ∈ [x′, 1].

However, by the continuity of η(x), we can find x′′ < x′ such that η(x) ≥ 12ǫ
ω

for

all x ∈ [x′′, 1], i.e. η(u) ≥ 12ǫ
ω

for all u ∈ [u0, u
′′], contradicting the supremum

property of u′. �

We are now ready to prove the main theorem of this paper.

Proof. (Theorem 1.3) We prove the theorem by contradiction. Suppose that R
contains no trapped surfaces or MOTS, in particular ∂vr2 > 0 for u ∈ [u0, u∗].
Then Lemma 3.5 applies and (3.22) holds for x ∈ [x∗, 1]. Rearranging (3.22)
gives us

η0 ≤ e−G(x)η(x) + F (x) < e−G(x) + F (x), for all x ∈ [x∗, 1]

where we used the assumption that η(x) = 2(m2−m1)
r2

≤ 2m2

r2
< 1 in the second

inequality. In particular, by letting x = x∗ =
3δ0
1+δ0

, we get:

e−G(x∗) + F (x∗) ≤
x2
∗

(

x∗(1 + δ0)− δ0
)1+ω

2

+ gω(δ0)

=
9

21+
ω

2 (1 + δ0)2
δ
1−ω

2
0 + gω(δ0),

and hence η0 < 9

21+
ω
2 (1+δ0)2

δ
1−ω

2
0 + gω(δ0), giving us the desired contradiction.

�

4. Appendix

4.1. Trapped Surface Formation for the Einstein Scalar Field. Here
we provide a proof of Christodolou’s sharp trapped surface formation criterion
as in [9]. In the case for the real scalar field, the system of equations (2.4) to
(2.12) is reduced to

r∂v∂ur + ∂vr∂ur = −
Ω2

4
, (4.1)

∂u(Ω
−2∂ur) = −4πrΩ−2|∂uφ|

2, (4.2)

∂v(Ω
−2∂vr) = −4πrΩ−2|∂vφ|

2, (4.3)

r∂u∂vφ+ ∂ur∂vφ+ ∂vr∂uφ = 0. (4.4)

Also, the derivatives of the Hawking mass become:

∂um == −8πr2Ω−2∂vr|∂uφ|
2, (4.5)

∂vm = −8πr2Ω−2∂ur|∂vφ|
2. (4.6)
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For convenience, we restate theorem 1.1 here.

Theorem 1.1. Define the function

E(x) :=
x

(1 + x)2

[

ln

(

1

2x

)

+ 5− x

]

.

Consider the system (1.1) with characteristic initial data along u = u0 and
v = v1. For initial mass input η0 along u = u0, if the following lower bound
holds:

η0 > E(δ0),

then a trapped surface Su,v, with properties ∂vr(u, v) < 0 and ∂ur(u, v) < 0,
forms in the region [u0, u∗]× [v1, v2] ⊂ R.

In this section, we will first give a few technical estimates to the dynamical
quantities in the strip [u0, 0] × [v1, v2]. These will be used in the proof for
Theorem 1.1. We start off by showing that ∂ur is negative and bounded away
from 0.

Lemma 4.1. ∂ur ≤ −1
2
Ω2 everywhere in D(0, v1) ∪

(

[u0, 0]× [v1,∞)
)

Proof. Rewrite (4.1) as

∂v
(

r∂ur
)

= −
Ω2

4
.

Note that Ω2 = 1 along C. Integrating both sides from 0 to v and dividing by
r:

−
v

4r(u0, v)
= ∂ur(u0, v). (4.7)

Setting v = 0 in the above gives us

−
1

4∂vr(u0, 0)
= ∂ur(u0, 0) = −∂vr(u0, 0) =⇒ ∂vr(u0, 0) =

1

2
. (4.8)

Since Ω2 = 1 on C as well, (4.3) gives us that ∂v∂vr ≤ 0, i.e. r is concave with
respect to v. Combining this with the fact that r(u0, 0) = v(u0, 0) = 0, we
have:

r

v
(u0, v) ≤ ∂vr(u0, 0).

Hence,

r

v
(u0, v) ≤

1

2
.

Substitute this into (4.7), we get

∂ur(u0, v) ≤ −
1

2
.

By (4.3), Ω−2∂ur is decreasing along incoming null geodesics. Hence for a
general point in D(0, v1) ∪

(

[u0, 0]× [v1,∞)
)

, we have Ω−2∂ur ≤ −1
2
. �

Remark 8. m(u, v) ≥ 0 for all (u, v) ∈ D(0, v1) ∪
(

[u0, 0]× [v1,∞)
)
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Proof. Given any point (u, v) ∈ R, we can extend the outgoing null geodesic
backwards until it intersects Γ at some coordinate (u, vc), so that r(u, vc) = 0.
Using (4.6), we have

∂vm = −8πr2Ω−2∂ur|∂vφ|
2,

and since ∂ur ≤ 0 by Lemma 4.1, we get that ∂vm ≥ 0. Combining with the
fact that m(u, vc) = 0, we obtain the desired result. �

Next, we show that the mixed derivative of r is always negative. This places
a upper bound on the growth on the ratio r2

r1
.

Proposition 4.2. Assume that D(0, v1)∪R is free of trapped surfaces. Then
i) ∂u∂vr ≤ 0 in R and ii) δ(x) := r2

r1
− 1 ≤ 1

2
for u ∈ [u0, u∗].

Proof. We rewrite (4.1) into the following equivalent form:

∂u∂vr = −
Ω2

2

m

r2
. (4.9)

Since m ≥ 0, the right side of the above equation is non-positive. This proves
the first part of the lemma.

Integrating with respect to u, we get:

∂vr(u)− ∂vr(u0)≤ 0 =⇒ ∂vr(u) ≤ ∂vr(u0).

Integrating the above inequality with respect to v,

r2(u)− r1(u) ≤ r2(u0)− r1(u0), for all u ∈ [u0, u∗].

Hence, we can use the above inequality to compute a bound for δ(u):

δ(u) =
r2
r1

− 1 =
r2 − r1

r2 − (r2 − r1)
≤

r2(u0)− r1(u0)

r2(u)− (r2(u0)− r1(u0))

≤
δ0

r2(u)
r1(u0)

− δ0
=

δ0
x(u)(1 + δ0)− δ0

, for all u ∈ [u0, u∗],

(4.10)

where x(u) := r2(u)/r2(u0). Recall r2(u∗) := 3δ0
1+δ0

· r2(u0) and since x(u) is
monotonically decreasing, we have

x(u) ≥ x(u∗) =
3δ0

1 + δ0
for u ∈ [u0, u∗],

and hence

δ(u) ≤
δ0
2δ0

=
1

2
for all u ∈ [u0, u∗].

�

Next we prove two key lemmas. In the first one we bound the difference in
r∂uφ between v = v1 and v = v2. Then in the second we bound the ratio of
∂vr between v = v1 and v = v2.
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Lemma 4.3. Define Θ := r2∂uφ2 − r1∂uφ1. Suppose that D(0, v1) ∪ R is free
of trapped surfaces. Then

Θ(u)2 ≤
∂ur2

8πΩ−2
2 ∂vr2

(m2 −m1)

(

1

r2
−

1

r1

)

(u)

for all u ∈ [u0, u∗].

Proof. We can write the wave equation (4.4) as

∂v(r∂uφ) = −∂ur∂vφ.

By integrating the above equation, we get

Θ2 =
(

r2∂uφ2 − r1∂uφ1

)2

=

∣

∣

∣

∣

∫ v2

v1

−∂ur∂vφdv

∣

∣

∣

∣

2

≤

(
∫ v2

v1

−∂ur|∂vφ|dv

)2

≤
1

8π

∫ v2

v1

−8πr2∂urΩ
−2|∂vφ|

2dv ·

∫ v2

v1

−
∂ur

r2Ω−2
dv (4.11)

where we have applied Holder’s inequality for the last inequality.
The first integral can be written in terms of the hawking mass:

∫ v2

v1

−8πr2∂urΩ
−2|∂vφ|

2dv =

∫ v2

v1

∂vm dv

= m2 −m1. (4.12)

To bound the second integral, we apply Proposition 4.2 to get ∂v∂ur ≤ 0,
and hence ∂ur ≥ ∂ur2. Also, equation (4.3) implies that Ω−2

2 ∂vr2 ≤ Ω−2∂vr.
Combining these two pieces of information, we have

∫ v2

v1

−
∂ur

r2Ω−2
dv =

∫ r2

r1

−
∂ur

r2Ω−2∂vr
dr ≤ −∂ur2

∫ r2

r1

1

r2Ω−2∂vr
dr

≤
−∂ur2

Ω−2
2 ∂vr2

∫ r2

r1

1

r2
dr =

∂ur2

Ω−2
2 ∂vr2

( 1

r2
−

1

r1

)

(4.13)

Substituting (4.12) and (4.13) back into (4.11) gives us the desired result. �

Lemma 4.4. Assume that D(0, v1) ∪ R is free of trapped surfaces. Then

Ω−2
2 ∂vr2

Ω−2
1 ∂vr1

(u) ≤ e−η(u)

for all u ∈ [u0, u∗].

Proof. Dividing both sides of equation (4.3) by Ω−2∂vr and integrating from
v1 to v2, we get

ln |Ω−2
2 ∂vr2| − ln |Ω−2

1 ∂vr1| = ln

(

Ω−2
2 ∂vr2

Ω−2
1 ∂vr1

)

= −4π

∫ v2

v1

r|∂vφ|
2

∂vr
dv.

By equation (4.6) and the definition of the Hawking mass, we have

∂vm

r − 2m
=

−8πr2Ω−2∂ur|∂vφ|
2

−4rΩ−2∂ur∂vr
=

2πr|∂vφ|
2

∂vr
.
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x

η

x = 1

η = η0

x = x∗

η ≥ 1

Figure 4. Idea of Proof of Theorem 1.1

Hence for any u ∈ [u0, u∗]

ln

(

Ω−2
2 ∂vr2

Ω−2
1 ∂vr1

)

= −2

∫ v2

v1

∂vm

r − 2m
dv ≤ −2

∫ v2

v1

1

r
∂vm dv

≤
−2

r2

∫ v2

v1

∂vm dv = −
2(m2 −m1)

r2
= −η

Exponentiating both sides of the above inequality gives us the desired result.
�

Now we are ready to prove Theorem 1.1.

Proof. (Theorem 1.1) We consider the dimensionless length scale x(u) := r2(u)
r2(u0)

.

Note that x decreases as u increases and x(u0) = 1. We will show that dη

dx
is

bounded from above, i.e. dη

du
is bounded from below, and hence obtain a lower

bound for η(u∗). If this lower bound is greater than 1, this implies S(u∗, v2) is
a trapped surface, for

η(u∗) =
2(m2 −m1)

r2
(u∗) > 1 =⇒

2m2

r2
(u∗) > 1

=⇒ S(u∗, v) is a trapped surface.

See Figure 4 for an illustration.

To be precise, we prove a Gronwall-like inequality under the assumption
that there is no trapped surface formed before u∗. In particular, we assume
that ∂vr2(u) > 0 for all u ∈ [u0, u∗]. We show that this assumption will lead
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to a contradiction.

Assuming that ∂vr2(u) > 0 for all u ∈ [u0, u∗], the following chain of identi-
ties hold in the region [u0, u∗]× [v1, v2]:

dη

dx
=

dη

du

/

dx

du
=

r2(u0)

∂ur2

(

−
2∂ur2
r22

(m2 −m1) +
2

r2
∂u(m2 −m1)

)

= −
η

x
+

2

x∂ur2
(−8πr22Ω

−2
2 ∂vr2|∂uφ2|

2 + 8πr21Ω
−2
1 ∂vr1|∂uφ1|

2)

= −
η

x
−

16π∂vr2Ω
−2
2

x∂ur2

(

r22|∂uφ2|
2 −

Ω−2
1 ∂vr1

Ω−2
2 ∂vr2

r21|∂uφ1|
2

)

. (4.14)

Using Lemma 4.4, we can bound the factor in the second term:

r22|∂uφ2|
2 −

Ω−2
1 ∂vr1

Ω−2
2 ∂vr2

r21|∂uφ1|
2 ≤ r22|∂uφ2|

2 − eηr21|∂uφ1|
2

= Θ2 + 2Θ∂uφ1r1 + (1− eη)r21|∂uφ1|
2.

The last expression, being a quadratic in Θ, can be bounded by a monic
quadratic polynomial in Θ:

Θ2 + 2Θ∂uφ1r1 + (1− eη)r21|∂uφ1|
2 ≤

(

1 +
1

eη − 1

)

Θ2 ≤

(

1 +
1

η

)

Θ2,

since η ≥ 0. This last inequality combines with (4.14) to give:

dη

dx
≤ −

η

x
−

16π∂vr2Ω
−2
2

x∂ur2

(

1 +
1

η

)

Θ2.

Applying Lemma 4.3, we have

dη

dx
≤ −

η

x
−

2

x

(

1 +
1

η

)(

1

r2
−

1

r1

)

(m2 −m1)

= −
η

x
+

η

x

(

1 +
1

η

)(

r2
r1

− 1

)

. (4.15)

Using (4.10) we get

δ =
r2 − r1

r2 − (r2 − r1)
≤

r2(u0)− r1(u0)

r2(u)− (r2(u0)− r1(u0))
=

δ0
x(1 + δ0)− δ0

.

Combining the above with (4.15), we obtain

dη

dx
≤ η

(

δ0
x2(1 + δ0)− xδ0

−
1

x

)

+
δ0

x2(1 + δ0)− xδ0
.

Defining g(x) := 1− δ0
x(1+δ0)−δ0

and f(x) := δ0
x(1+δ0)−δ0

, we obtain the following

differential inequality:

dη

dx
+ η

g(x)

x
−

f(x)

x
≤ 0.
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To solve this differential inequality, we multiply by an integrating factor then
integrate with respect to x:

d

dx

(

e−
∫ 1
x

g(s)
s

dsη(x)

)

− e−
∫ 1
x

g(s)
s

dsf(x)

x
≤ 0

=⇒

[

e−
∫ 1
x′

g(s)
s

dsη(x′)

]x′=1

x′=x

≤

∫ 1

x

e−
∫ 1
x′

g(s)
s

ds f

x′
dx′.

We denote G(x) :=
∫ 1

x

g(s)
s
ds and F (x) :=

∫ 1

x
e−G(x′) f

x′
dx′. In this notation, we

get

η0 − e−G(x)η(x) ≤ F (x) =⇒ η(x) ≥ eG(x)
(

− F (x) + η0
)

.

Hence, in the region [u0, u∗]× [v1, v2] free of trapped surfaces, we conclude that
the following inequality holds:

η(x) ≥ eG(x)(−F (x) + η0). (4.16)

Now, we compute explicit expressions for G(x) and F (x):

G(x) =

∫ 1

x

1

s
−

1

s

δ0
s(1 + δ0)− δ0

ds

=

∫ 1

x

1

s
+

1

s
−

1 + δ0
s(1 + δ0)− δ0

ds

= ln

(

s2

s(1 + δ0)− δ0

)
∣

∣

∣

∣

1

x

= ln

(

x(1 + δ0)− δ0
x2

)

F (x) =

∫ 1

x

s2

s(1 + δ0)− δ0

f

s
ds =

∫ 1

x

δ0s

(s(1 + δ0)− δ0)2
ds

=
δ0

1 + δ0

∫ 1

x

1

s(1 + δ0)− δ0
+

δ0
(s(1 + δ0)− δ0)2

ds

=
δ0

(1 + δ0)2
ln

(

s(1 + δ0)− δ0

)
∣

∣

∣

∣

1

x

−
δ20

(1 + δ0)2
1

s(1 + δ0)− δ0

∣

∣

∣

∣

1

x

=
δ0

(1 + δ0)2

(

ln
( 1

x(1 + δ0)− δ0

)

+ δ0
( 1

x(1 + δ0)− δ0
− 1

)

)

.

Using the assumption that there is no trapped surface or MOTS, we have

η(x) = 2(m2−m1)
r2

≤ 2m2

r2
< 1 for x ∈ [ 3δ0

1+δ0
, 1]. Rearranging (4.16) results in

η0 ≤ e−G(x)η(x) + F (x) < e−G(x) + F (x), for all x ∈

[

3δ0
1 + δ0

, 1

]

.

In particular, we can substitute x = 3δ0
1+δ0

into the above equation and get

η0 < E(δ0) =
δ0

(1 + δ0)2

[

log
( 1

2δ0

)

+ 5− δ0

]

.

This gives us the desired contradiction. �
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4.2. A Special Case of Minkowskian incoming characteristic initial

data. Prescribe Minkowskian data along v = v1, we can improve the lower
bound required on η0 in Theorem 1.1.

Theorem 1.2. Assume that Minkowskian data are prescribed along v = v1
and require φ(u, v1) = 0. Suppose that the following lower bound on η0 holds:

η0 >
9

2
δ0,

then there exist a MOTS or a trapped surface in [u0, u∗] × [v1, v2] ⊂ R, i.e.
∂vr ≤ 0 at some point in [u0, u∗]× [v1, v2].

Proof. (Theorem 1.2) In this special case, we have φ1 ≡ 0 and m1 ≡ 0. Equa-
tion (4.14) now reads:

dη

dx
= −

η

x
−

16π∂vr2Ω
−2
2

x∂ur2
r22|∂uφ2|

2,

and we also have

Θ2 = r22|∂uφ2|
2.

Combining the above equations, followed by applying Lemma 4.3, we get:

dη

dx
= −

η

x
−

16π∂vr2Ω
−2
2

x∂ur2
Θ2 ≤ −

η

x
−

2

x

(

1

r2
−

1

r1

)

(m2 −m1)

= −
η

x
+

η

x

(

r2
r1

− 1

)

≤ −
η

x
+

η

x

δ0
x(1 + δ0)− δ0

.

Integrating the above inequality:
∫ 1

x

1

η
dη ≤

∫ 1

x

−
1

s
+

1

s

δ0
s(1 + δ0)− δ0

ds =

∫ 1

x

−
2

s
+

1 + δ0
s(1 + δ0)− δ0

ds

=⇒ ln

(

η0
η(x)

)

≤ ln

(

x2

x(1 + δ0)− δ0

)

=⇒ η0 ≤ η(x)
x2

x(1 + δ0)− δ0
.

Under the assumption of no trapped surfaces or MOTS, we have η(x) < 1 for
all x ∈ [ 3δ0

1+δ0
, 1], hence

η0 ≤
x2

x(1 + δ0)− δ0
, for all x ∈

[

3δ0
1 + δ0

, 1

]

.

In particular, choosing x = 3δ0
1+δ0

we have

η0 ≤
9

2
δ0.

This gives us the desired contradiction to the hypothesis. �
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