
Algebraic independence of certain Mahler functions
Masaaki Amou and Keijo Väänänen

Abstract We prove algebraic independence of functions satisfying a simple form
of algebraic Mahler functional equations. The main result (Theorem 1) partly gen-
eralizes a result obtained by Kubota. This result is deduced from a quantitative
version of it (Theorem 3), which is proved by using an inductive method originated
by Duverney. As an application we can also generalize a recent result by Bundschuh
and the second named author (Theorem 2 and its corollary).
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1 Introduction

Throughout this paper let d ≥ 2 and t denote positive integers. Let K be an
arbitrary field of characteristic zero, and K[[z]] be the ring of formal power series in
z with coefficients from K. Set

F := 1 + zK[[z]] and R := F ∩K(z).

Note that F is a group under the usual multiplication on K[[z]] and R is a subgroup
of F . We are interested in an arbitrary element f(z) ∈ F of the form

(1) f(z) =
∞∏
ν=0

R(zd
ν
)t
ν
, R(z) ∈ R.

It is seen that f(z) satisfies the following Mahler functional equation

(2) f(z) = R(z)f(zd)t.

Conversely, the functional equation (2) has a unique solution in F which is given by
the infinite product (1).

There is a way to see when an element f(z) given by (1) belongs to R. That
is, if f(z) ∈ R, then R(z) = f(z)/f(zd)t. Conversely, if R(z) = h(z)/h(zd)t with
h(z) ∈ R, then f(z) = h(z) ∈ R. Thus, defining a subgroup Ht of R by

Ht := {h(z)/h(zd)t | h(z) ∈ R},

we have shown that f(z) given by (1) belongs to R if and only if R(z) belongs to
Ht. This together with a result by Keiji Nishioka [10] (see also [11, Theorem 1.3])
gives a transcendence criterion such as

(3) f(z) /∈ K(z) ⇐⇒ R(z) /∈ Ht.
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The purpose of this paper is, as an extension of this transcendence criterion, to
give an algebraic independence criterion for infinite products of the form (1). To
state the main result let us take, for j = 1, ...,m,

(4) fj(z) =

∞∏
ν=0

Rj(z
dν )t

ν
, Rj(z) ∈ R.

Then we have the following result, where the statement for t = 1 is contained in a
result proved by Kubota [9, Corollary 8] (see also [11, Theorem 3.5]).

Theorem 1. Let f1(z), ..., fm(z) be elements of F given by (4). Then they are
algebraically independent over K(z) if and only if R1(z), ..., Rm(z) are multiplica-
tively independent modulo Ht, that is, R1(z)i1 · · ·Rm(z)im /∈ Ht for any nonzero
tuple (i1, ..., im) ∈ Zm.

Let us take K = C, and denote by P the set of infinite products of the form
given by (1). Under this setting we next state Theorem 2 and its corollary, gener-
alizing [4, Theorem 1.11], which enable us to give explicit examples of algebraically
independent elements of P. To this end, for R(z) ∈ R, we denote by S(R) the set
of zeros or poles of R(z) whose absolute values are not equal to 1. Then we denote
by P0 the subset of P consisting f(z) given by (1) such that S(R) is empty.

Theorem 2. Let fj(z), j = 1, ...,m, be elements of P\P0 given by (4) such that
S(Rj) are disjoint. Assume that, for any α ∈ ∪S(Rj), there exist infinitely many
positive integers n for each of which not all solutions of zd

n
= α are zeros of the

polynomial ∏
β∈∪S(Rj)

n−1∏
ν=0

(zd
ν − β).

Let g`(z), ` = 1, ..., s, be elements of P0 which are algebraically independent over
C(z). Then the m+ s infinite products fj(z) and g`(z) are algebraically independent
over C(z).

To give a corollary to Theorem 2 we introduce infinite products of cyclotomic
polynomials, generalizing those given in [3, 4]. For any positive integer ` we denote by
Φ`(z) the ` th cyclotomic polynomial, where for ` = 1 we denote Φ1(z) := 1−z ∈ R.
Then we define, for any positive integers k and `,

(5) gk,`(z) =
∞∏
ν=0

Φ`(z
kdν )t

ν ∈ P0.

Corollary. Let fj(z), j = 1, ...,m, be elements of P\P0 given by (4) such that
S(Rj) are disjoint and subsets of R. In the case where d = 2, assume further that if
α ∈ ∪S(Rj), then −α /∈ ∪S(Rj). Let gk,`(z) with k ∈ K, ` ∈ L be elements of P0

given by (5), where K and L are finite sets of positive integers relatively prime to d
such that k` are all distinct for k ∈ K, ` ∈ L. Then the infinite products fj(z) and
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gk,`(z) are algebraically independent over C(z).

The result [4, Theorem 1.11] is a special case of a combination of Theorem
2 and its corollary. More precisely, it is Theorem 2 under the restrictions that
t = 1, Rj(z) ∈ F ∩ K[z], and g`(z) = g1,`(z) with ` ∈ L, a finite set of positive
integers relatively prime to d.

The plan of this paper is as follows. In Section 2 we will state and prove Theorem
3, a quantitative version of Theorem 1. The proof of Theorem 3 is carried out
by using an inductive method originated by Duverney [5], which has been further
developped by [6, 12, 1, 2]. In particular, it closely follows the argument used in the
proof of [2, Theorem 3]. In Section 3 we prove Theorem 2 and its corollary. Finally,
in Section 4, we briefly mention certain arithmetical results related to the values of
gk,`(z), which follow from Greuel’s result [7, Theorem 1].

2 A quantitative version of Theorem 1

In this section we prove Theorem 3 below, a quantitative version of Theorem 1, from
which Theorem 1 directly follows. In what follows, for g1(z), ..., gm(z) in F and for
I = (i1, ..., im) ∈ Zm, we denote

g(z) = (g1(z), ..., gm(z)) ∈ Fm and gI(z) = g1(z)i1 · · · gm(z)im ∈ F .

For g(z) ∈ K[[z]]\{0} we denote by ord g the zero order of g(z) at z = 0, and for
g(z) = 0 we denote ord g =∞.

Theorem 3. Let f1(z), ..., fm(z) be elements of F given by (4), and assume that
R1(z), ..., Rm(z) are multiplicatively independent modulo Ht. Then, for any finite
subset Λ of Zm \ {0}, there exist positive constants c(Λ) and M0 depending on f(z)
and Λ such that

ord

(
A0(z) +

∑
I∈Λ

AI(z)f
I(z)

)
≤ c(Λ)Mκ|Λ|−1

, κ = 1 +
log t

log d
,

holds for all AI(z) ∈ K[z], I ∈ Λ ∪ {0}, not all zero, of degrees not greater than M
provided that M ≥M0.

We shall prove the assertion by using induction on l = |Λ|. Under the assump-
tion on Rj(z), as is mentioned in the introduction, f I(z) is irrational. Hence the
assertion of the theorem for l = 1 is a consequence of the following result.

Lemma 2.1. Let f(z) be an infinite product given by (1) having R(z) = E(z)/F (z)
with E(z), F (z) ∈ F ∩K[z]. Assume that f(z) is irrational. Let Q(z) and P (z) be
polynomials in K[z], not both zero, of degrees at most N , and set

G(z) = Q(z)f(z)− P (z).
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Then, denoting by L the maximum of the degree of E(z) and that of F (z), we have

ordG(z) ≤ (dt+ 1)N + L.

Proof. We may assume that τ := ordG(z) > N. Then ordQ(z) = ordP (z), and we
may assume further that this quantity is zero because the assertion for the general
case follows from this particular case. Since (Q(zd)f(zd))t = (P (zd) + G(zd))t, we
have by the functional equation (2) that

F (z)Q(zd)tf(z) = E(z)(P (zd) +G(zd))t.

Hence we obtain
Ĝ(z) = Q̂(z)f(z)− P̂ (z),

where
Q̂(z) = F (z)Q(zd)t, P̂ (z) = E(z)P (zd)t,

Ĝ(z) = E(z)

t∑
i=1

(
t

i

)
P (zd)t−iG(zd)i.

Let us set

∆(z) =

∣∣∣∣ Q(z) −P (z)

Q̂(z) −P̂ (z)

∣∣∣∣ =

∣∣∣∣ Q(z) G(z)

Q̂(z) Ĝ(z)

∣∣∣∣ .
Since ordQ(z)Ĝ(z) = dτ and ord Q̂(z)G(z) = τ , we have ord ∆(z) = τ , and hence

ord ∆(z) ≤ deg ∆(z) ≤ (dt+ 1)N + L.

The lemma is proved.

For R(z) = (R1(z), ..., Rm(z)) and for I = (i1, ..., im) ∈ Zm, we denote

(6) RI(z) = R1(z)i1 · · ·Rm(z)im =
EI(z)

FI(z)
, EI(z), FI(z) ∈ F ∩K[z].

Lemma 2.2. Let the notations and the assumptions be as given in Theorem 3.
Let l be the number of the elements of Λ, and L(Λ) be a positive integer such that
for all I ∈ Λ the degrees of EI(z) and FI(z) are at most L(Λ). Then, for every
positive integer n, there exist nonzero polynomials Q(n; z), PI(n; z), I ∈ Λ, in K[z]
of degrees at most l2L(Λ)tn such that, by denoting

(7) GI(n; z) = Q(n; z)f I(z)t
n − PI(n; z),

we have

(8) (l2 + l)L(Λ)tn + 1 ≤ ordGI(n; z) ≤ (dt+ 1)l2L(Λ)tn + L(Λ)tn.

Proof. We takeQ(n; z) such that, in the power series expansion ofQ(n; z)f I(z)t
n
, I ∈

Λ, the coefficients of zν with ν = l2L(Λ)tn + 1, ..., (l2 + l)L(Λ)tn vanish. To this
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end we consider a system of l2L(Λ)tn linear homogeneous equations with coefficients
from K having l2L(Λ)tn + 1 unknowns, which has a nontrivial solution in K. Then
we denote by PI(n; z), I ∈ Λ, the first l2L(Λ)tn + 1 terms of Q(n; z)f I(z)t

n
, which

clearly give the lower estimate in (8). The upper estimate in (8) is a consequence of
Lemma 2.1. The lemma is proved.

Under the setting given in (6), for every positive integer n, we denote

EI(n; z) =

n−1∏
k=0

EI(z
dk)t

k
, FI(n; z) =

n−1∏
k=0

FI(z
dk)t

k
.

Then, by the functional equation (2) for each f = fj with R = Rj , we obtain

(9) f I(z) = RI(n; z)f I(zd
n
)t
n
, RI(n; z) =

EI(n; z)

FI(n; z)
.

For the inductive procedure given below it is crucial that RI(n; z) approximates
f I(z) very well in the sense

(10) f I(z)−RI(n; z) ∈ zdnK[[z]].

Completion of the proof of Theorem 3. Assume that l ≥ 2. Then, under the induction
hypothesis that the assertion holds for any subset of Zm \ {0} with elements less
than l, we shall prove the assertion for an arbitrarily given subset Λ of Zm \{0} with
l elements. Let us denote

Ω(z) = A0(z) +
∑
I∈Λ

AI(z)f
I(z).

To estimate ord Ω(z) from above we take Q(n; z) and PI(n; z), GI(n; z), I ∈ Λ, given
in Lemma 2.2, where we will fix n later. Replacing z by zd

n
in (7) and multiplying

RI(n; z) in both sides, we deduce from (9) that

Q(n; zd
n
)f I(z)−RI(n; z)PI(n; zd

n
) = RI(n; z)GI(n; zd

n
).

We then obtain an equality

(11) Q(n; zd
n
)Ω(z)− P (n; z) = G(n; z),

where
P (n; z) = Q(n; zd

n
)A0(z) +

∑
I∈Λ

AI(z)RI(n; z)PI(n; zd
n
),

G(n; z) =
∑
I∈Λ

AI(z)RI(n; z)GI(n; zd
n
).

Let τ(n) be the minimum of ordGI(n; z) for I ∈ Λ, and take a J ∈ Λ such that
τ(n) = ordGJ(n; z). Denoting by gI(n), I ∈ Λ, the coefficient of zτ(n) in GI(n; z),
we deduce from (10) an important relation

(12) G(n; z)− zτ(n)dn
∑
I∈Λ

gI(n)AI(z)f
I(z) ∈ z(τ(n)+1)dnK[[z]].
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Let us set

Ω̂(z) = gJ(n)AJ(z) +
∑

I∈Λ\{J}

gI(n)AI(z)f
I−J(z),

for which we have ∑
I∈Λ

gI(n)AI(z)f
I(z) = fJ(z)Ω̂(z).

It follows from the induction hypothesis that

ord Ω̂(z) ≤ c(Λ̂)Mκl−2
, Λ̂ = {I − J : I ∈ Λ \ {J}},

where c(Λ̂) ≥ 1 is a constant depending on f(z) and Λ̂. We now fix n so that

(13) dn−1 ≤ c(Λ̂)Mκl−2
< dn,

which together with (12) allows us to have G(n; z) 6= 0, and hence

(14) ordG(n; z) ≤ (τ(n) + 1)dn.

Thus, if P (n; z) = 0, then ord Ω(z) ≤ ordG(n; z) by (11). Since dt = dκ by the
definition, combining (13), (14) and an upper bound of τ(n) given in (8), we obtain
the desired assertion. On the other hand, if P (n; z) 6= 0, then, on noting that

P (n; z)
∏
I∈Λ

FI(n; z)

is a polynomial in K[z] of degree at most (l2 + l)L(Λ)(dt)n +M , we obtain

ordP (n; z) ≤ (l2 + l)L(Λ)(dt)n +M.

Since we deduce from a lower bound of τ(n) given in (8) that

ordG(n; z) ≥ (l2 + l)L(Λ)(dt)n + dn,

comparing these bounds, we have ordP (n; z) < ordG(n; z) under (13), and there-
fore again ord Ω(z) ≤ ordG(n; z). Thus the assertion holds also in the case where
P (n; z) 6= 0. This completes the proof of the theorem.

3 Proof of Theorem 2 and its corollary

We first prove Theorem 2. To this end we need the following lemma, which is essen-
tially [4, Lemma 3.2] when t = 1 and gives a sufficient condition by which R(z) ∈ R
does not belong to Ht.

Lemma 3.1. Let R(z) be an element of R such that S(R) is nonempty , where
we denote by ω (resp. Ω), if there exists, an element of S(R) of minimal (resp.
maximal) absolute value less than 1 (resp. greater than 1). Assume that there exist
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infinitely many positive integers n for each of which not all solutions of zd
n

= ω (or
of zd

n
= Ω) are zeros or poles of the product

R〈n〉(z) := R(z)R(zd)t · · ·R(zd
n−1

)t
n−1

.

Then R(z) does not belong to Ht.

Proof. We prove the assertion for the case where ω exists and satisfies the condition
given in the lemma. The proof of the other case is similar. Assume, on the contrary,
that R(z) = h(z)/h(zd)t with some h(z) ∈ R. Note first that h(z) does not have
any zero or pole whose absolute value is less than |ω|. In fact, if ω̂ is such a zero
or a pole of minimal absolute value, then ω̂ ∈ S(R) because ω̂d /∈ S(h), which is a
contradiction. Hence ω ∈ S(h) because ω ∈ S(R) and ωd /∈ S(h).

Let n be a positive integer for which a dn th root w1/dn of ω does not belong
to S(R〈n〉). Since we have R〈n〉(z) = h(z)/h(zd

n
)t
n
, and since ω ∈ S(h), we should

have ω1/dn ∈ S(h). Hence, under the assumption of the lemma, h(z) has infinitely
many zeros or poles, contradicting the rationality of h(z). Thus the lemma is proved.

Proof of Theorem 2. Assume on the contrary that fj(z) and g`(z) are algebraically
dependent over C(z). Denoting

g`(z) =
∞∏
ν=0

S`(z
dν )t

ν
, S`(z) ∈ R,

we deduce from Theorem 1 that there exists a nontrivial monomial of Rj(z) and
S`(z) which belongs to Ht. If some Rj(z) appears in the monomial, then under the
assumptions of Theorem 1, it follows from Lemma 3.1 that this monomial does not
belong to Ht, which is a contradiction. Therefore, none of Rj(z) appears in this
monomial. However, this is again a contradiction by Theorem 1 because g`(z) are
assumed to be algebraically independent over C(z). Thus the theorem is proved.

We next prove the corollary to Theorem 2 by using the following two results.
The statement of the first one with its proof is contained in the proof of [4, Corollary
1.3]. For the convenience of the reader we recall a short proof below.

Lemma 3.2. Let {α1, ..., αs} be a set of real numbers, and α be its element. For
any positive integer n we define Tn := {β ∈ C |βdµ = αν (0 ≤ µ < n, 1 ≤ ν ≤ s)}. If
d ≥ 3, or, if d = 2 and −αν /∈ {α1, ..., αs} for each ν, there exists a dn th root of α
which does not belong to Tn.

Proof. Asume first that d ≥ 3. Then a dn th root of α with an argument 2π/dn or
π/dn corressponding to α > 0 or α < 0, respectively, does not belong to Tn.

Assume next that d = 2 and −αν /∈ {α1, ..., αs} for each ν. By the latter as-
sumption the absolute values of αν are all distinct. Since all 2n th roots of α have
the same absolute values, for each µ with 1 ≤ µ < n there exists at most one ν
with 1 ≤ ν ≤ s such that the equation z2µ = αν have 2n th roots of α as solu-
tions. Therefore, there exist at most 1 + 2 + 22 + · · ·+ 2n−1 (= 2n − 1) elements of
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Tn which are 2n th roots of α. Thus the assertion of the lemma also holds in this case.

Lemma 3.3. Let K and L be finite sets of positive integers relatively prime to d
such that k` are all distinct for k ∈ K, ` ∈ L. Then the polynomials Φ`(z

k) for
k ∈ K, ` ∈ L are multiplicatively independent modulo Ht.

Proof. Assume, on the contrary, that there exists a tuple I = (i(k, `))k∈K,`∈L of
integers i(k, `), not all zero, such that

R(z) :=
∏
k∈K

∏
`∈L

Φ`(z
k)i(k,`) =

h(z)

h(zd)t
∈ Ht, h(z) ∈ R.

Denoting h(z) = a(z)/b(z) with relatively prime polynomials a(z) and b(z), we have∏
k∈K

∏
`∈L

Φ`(z
k)i(k,`) =

a(z)

b(z)

b(zd)t

a(zd)t
.

To reach a contradiction we compare the left-hand side and the right-hand side each
of which expresses R(z). Let i(k, `) be the component of I such that k` is maximal
among the all nonzero components of I. We see from the left-hand side that a
primitive k` th root ζ of unity is a zero or a pole of R(z), where we may assume that
it is a zero. Then we see from the right-hand side that a(ζ) = 0 or b(ζd) = 0.

Assume first that a(ζ) = 0. Then ζ1/d is a zero of a(zd). Since ζ1/d is a primitive
dk` th root of unity, and since the left-hand side does not have any primitive dk` th
root of unit as a pole, we have a(ζ1/d) = 0. Inductively, we have a(ζ1/dn) = 0 for all
n ≥ 0, which is impossible.

Assume next that b(ζd) = 0. Then, for a primitive d th root of unity η, ηζ is a
zero of b(zd). Note that ηζ is a primitive dk` th root of unity because k` is relatively
prime to d. Since the right-hand side does not have any primitive dk` th root of
unity as a zero, we have b(ηζ) = 0. Hence a primitive d2k` th root of unity (ηζ)1/d

is a zero of b(zd), which implies that it is also a zero of b(z) by the same reason as is
given above. Inductively, we have b((ηζ)1/dn) = 0 for all n ≥ 0, which is impossible.
Thus the lemma is proved.

Remark. Assume that d = 2. Then the assumption given in Lemma 3.3 does not
hold for K = {1} and L = {1, 2}. In this case, for any positive integer t, we have

Φ1(z)t−1Φ2(z)t =
h(z)

h(z2)t
∈ Ht, h(z) =

1

1− z
,

and g1,1(z)t−1g1,2(z)t = h(z). It would be an interestinf question to know a neces-
sary and sufficient condition on K and L such that Φ`(z

k) with k ∈ K, ` ∈ L are
multiplicatively independent modulo Ht.

Proof of the corollary. Under the assumption on ∪S(Rj) given in the corollary it
follows from Lemma 3.2 that the assumption on ∪S(Rj) given in Theorem 2 is
fulfilled. Also it follows from Lemma 3.3 that gk,`(z) are algebraically independent
over C(z). Hence the corollary is deduced from Theorem 2.
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4 Remarks on arithmetical results

In [7] Greuel proved a general result on algebraic independence of values of Mahler
functions satisfying certain implicit functional equations. We here briefly mention
arithmetical results on the functions gk,`(z) given by (5), which follow from Greuel’s
general result. For the purpose we denote gk,`(z) by gk,`,t(z) to show the parameter
t explicitly.

We first state Greuel’s result [7, Corollary 3]) : Let us take g1,1,tj (z), j = 1, ...,m,
where tj are distinct positive integers. Then these functions are algebraically inde-
pendent over C(z) (see also [8] for more general result on algebraic independence
of Mahler functions), and hence it follows from [7, Theorem 1] that, for any alge-
braic number α with 0 < |α| < 1, the values g1,1,t1(α), ..., g1,1,tm(α) are algebraically
independent over the rationals provided that

(15) log d > (2m2 − 1 + (4m4 − 2m2 +m)1/2) log(t1 · · · tm).

We next state our result : Let us take gk,`,t(z) with k ∈ K, ` ∈ L, where K
and L are those given in the corollary to Theorem 2. Then these functions are
algebraically independent over C(z) (by the corollary to Theorem 2), and hence it
follows from [7, Theorem 1] that, for any algebraic number α with 0 < |α| < 1, the
values gk,`,t(α) with k ∈ K, ` ∈ L are algebraically independent over the rationals
provided that (15) holds with |K||L| and |K||L| log t on the right-hand side instead
of m and log(t1 · · · tm), respectively.

Note that the arithmetical part of this result for t = 1, where the condition on
d does not appear, follows also from Kubota’s result [9, Theorem 3] (see also [11,
Theorem 3.6.1]. It would be interesting to consider common generalization of the
above results under a weaker condition than the condition like (15).
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