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1 Introduction

Recently, considerable attention has been paid to calculate and understand the entan-

glement entropy and its cousins which are important concepts to figure out a variety of

quantum features of a many-body system [1–3]. Despite their importance, it still remains

a difficult task to calculate exactly the entanglement entropy of an interacting quantum

field theory (QFT) we are interested in. In this situation, the AdS/CFT correspondence

proposed in the string theory becomes a new and fascinating tool [4–7], because it enables

us to calculate nonperturbatively the entanglement entropy of a strongly interacting quan-

tum system [8–12]. In this work, we investigate the renormalization group (RG) flow of

the entanglement entropy and the change of the central charge along the RG flow when a

two-dimensional conformal field theory (CFT) is deformed by a relevant operator [13–31].

The AdS/CFT correspondence proposed that the non-perturbative features of a confor-

mal field theory (CFT) can be understood from a one-dimensional higher AdS geometry.

Intriguingly, it was shown that the holographic techniques like a holographic renormal-

ization and holographic entanglement entropy exactly reproduce the known results of a

CFT [8, 9]. However, when a CFT is deformed by a relevant operator, the CFT descrip-

tion is not valid anymore because the relevant deformation breaks the conformal symmetry.

Another important point we should note is that a relevant deformation can lead to a new

CFT at an IR fixed point. In order to study holographically such a nontrivial RG flow, we

first need to find a geometry realizing the nontrivial RG flow from a UV to IR fixed point.

Due to the existence of the UV and IR fixed points, the dual geometry must interpolate
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two AdS spaces defined at the asymptotic boundary and at the center of a dual geometry.

A dual geometry connecting two fixed points can be achieved by introducing a scalar field

with an appropriate potential [32]. Even though an exact dual geometry interpolating two

fixed points is known, there exists an important problem to know how to qualitatively

relate the bulk radius to the energy scale of the dual QFT. There were many attempts

to clarify this issue by studying the Hamilton-Jacobi equation [33], the Wilsonian’s RG

flow [34], the RG flow of a c-function and a T T̄ deformation [35, 36]. However, finding

the precise relation between the bulk radius and the RG scale of the dual field theory still

remains an open issue.

The gravity theory, which allows the smooth interpolation between UV and IR has

been known not only in an N = 2 gauged supergravity theory on AdS3 but also other

higher dimensional theories [37–40], where the authors studied a connection between the c

function and the scale factor of the holographic renormalization group flow. Particularly, it

is well known that there was an analytic domain wall solution in three-dimensional gauged

supergravity which describes an N = (1, 1) supersymmetric RG flow between UV and IR

fixed points of a two-dimensional quantum field theory [41]. On deformed AdS3 geometry

interpolating UV and IR, in this work, we investigate how the dual field theory evolves along

the RG flow by using the holographic renormalization group and entanglement entropy.

Related to the RG flow, one of the important quantities we are interested in is the cen-

tral charge representing the degrees of freedom of the field theory. When the field theory is

deviated from a fixed point due to the deformation, in general, the central charge is not well

defined. Even in this case, we can define a c-function which reduces to the central charge at

a fixed point where the CFT naturally occurs. Interestingly, it has been claimed that the

c-function monotonically decreases along the RG flow, which is called the c-theorem [42].

More accurately, there are three distinguished versions of c-theorem conjecture [43]. The

weakest version only concerns the degrees of freedom at the endpoints of the RG flow such

that cuv > cir. A stronger version asserts that c is a monotonically decreasing function

along the entire RG flow. The strongest claim is that RG flow is a gradient flow of the

c-function. The first two versions have already been proven for two dimensions [42] and

four dimensions [44]. Unfortunately, the strongest version still remains to be proven. In

this work, we investigate the entanglement entropy and the c-function from the dual inter-

polating geometry. Through this, we can get some nonperturbative information about the

change of the degrees of freedom following the AdS/CFT prescription. In order to look

into the c-function analytically, we apply a thin-wall approximation together with a natural

junction condition requiring the continuity of the minimal surface at the wall. Instead of

the natural junction condition, ref. [45] utilized the reality of the entanglement entropy for-

mula. The junction condition we exploit automatically satisfies the reality condition in [45]

because the range of the variable determined by the junction condition is in the range de-

rived from the reality. In general, the thin-wall approximation contains an inevitable error

because the background geometry of the thin-wall approximation suddenly changes at the

wall. In spite of this fact, the analytic analysis with the natural junction condition shows

that the c-function continuously and monotonically decreases along the RG flow differently

from the result of ref. [45]. This implies the absence of a phase transition which results
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in breaking of the c-theorem. In order to check the thin-wall approximation we use, we

also investigate the exact c-function numerically and show that the monotonic decreasing

of the c-function in the thin-wall approximation is in agreement with the numerical result,

as we expected.

The rest of this paper is organized as follows: in section 2, we take into account an

N = 2 gauged supergravity theory and classify the possible geometric solutions. In a

specific parameter range, the theory allows a geometric solution interpolating two AdS

spaces which, on the dual field theory point of view, describes a nontrivial RG flow from a

UV to IR fixed point. On this interpolating geometry, in section 3, we study the RG flow

of the entanglement entropy analytically with a thin-wall approximation. In particular, we

concentrate on how the central charge representing the degrees of freedom is modified along

the RG flow. We further compare the analytic result obtained by a thin-wall approximation

with the exact and numeral result in section 4. Finally, we finish this work with some

concluding remarks in section 5.

2 N = 2 gauged supergravity on AdS3

We take into account a dual field theory of an N = 2 gauged supergravity on AdS3 with

supergravity and scalar multiplets. The supergravity multiplet is composed of a graviton eaµ,

a complex gravitini ψµ and a gauge field Aµ, while the scalar multiplet contains complex

scalar fields Φa and fermions λr. Hereafter, we consider only one scalar multiplet for

simplicity. Denoting the modulus of the complex scalar field as φ = |Φ|, the vacuum

geometry of the gauged supergravity can be determined by this scalar field. The vacuum

geometry appears as a solution of the following action [39, 40]

S =
1

16πG

∫
d3x
√
−g
(
R− 1

a2
∂µφ∂

µφ− V (φ)

)
, (2.1)

with the scalar potential

V (φ) = 2Λuv cosh2 φ
[(

1− 2a2
)

cosh2 φ+ 2a2
]
, (2.2)

where Λuv = −1/R2
uv indicates a negative cosmological constant. Note that, if we take the

gravitational Newton constant to be G = 1/4π, the above action becomes identical to the

one studied in [40].

The vacuum structure of this model can be classified by the free parameter a of the

scalar potential. The scalar potential V (φ) always has a local extremum at φ = 0 with

V (0) = 2Λuv. At this point, the geometric solution satisfying the Einstein equation leads

to an AdS space with the AdS radius Ruv. Relying on the value of a, the local extremum

has a different physical meaning:

• For a2 ≥ 1, the local extremum at φ = 0 becomes stable because it is a global

minimum as shown in figure 1. Its dual QFT is mapped to a two-dimensional CFT

with a central charge c = 3Ruv/2G.

– 3 –



J
H
E
P
1
1
(
2
0
1
8
)
1
6
5

ϕir-ϕir

a
2=1

a
2=3/4

a
2=0

-1.5 -1.0 -0.5 0.5 1.0 1.5
ϕ

-4

-3

-2

-1

1

2

3
V(ϕ)

Figure 1. Potential with respect to several values of a2.

• For 1/2 < a2 < 1, the local extremum becomes a local maximum which is unstable.

In addition, the scalar potential V (φ) allows another local minima at ±φir,

φir = arccosh

(
a√

2a2 − 1

)
, (2.3)

with

V (φir) = − 2

R2
ir

, (2.4)

where V (φir) < V (0) and Rir = Ruv
√

2a2 − 1/a2. From now on, we focus on the

non-negative scalar field, φ ≥ 0. At the new local minimum, another AdS3 geometry

naturally appears as a new vacuum solution with a new AdS radius Rir (see figure 1).

Since the geometric solution at φ = 0 is unstable, we can expect a new solution

interpolating these two different AdS geometries. From the dual QFT point of view,

it corresponds to a deformation from a UV CFT with φ = 0 to another IR CFT

with φ = φir. In this case, the bulk scalar field is matched to a relevant deformation

operator generating a nontrivial RG flow.

• For 0 < a2 ≤ 1/2, the local extremum still remains as a local maximum but there is

no additional local minimum. Although the scalar field fluctuation is also dual to a

relevant deformation, it leads to a run-away potential and runs to φ = ∞. Because

of this fact, the IR geometry defined at φ = ∞ becomes singular. On the dual field

theory side, it indicates incompleteness of IR physics.

In order to figure out more details of the vacuum geometry, we introduce a normal

coordinate

ds2 = e2A(y)
(
−dt2 + dx2

)
+ dy2, (2.5)

where the equations of motion derived from (2.1) have relatively simple forms

φ′′ + 2A′φ′ =
a2

2

∂V

∂φ
,

2(A′)2 =
(φ′)2

a2
− V,

A′′ + 2(A′)2 = −V. (2.6)
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Here the prime means a derivative with respect to y. We could also redefine the energy

scale and the running of the coupling functions as first order equations by introducing an

appropriate set of scalar function of φ as

dA

dy
= −W, dφ

dy
= a2∂W

∂φ
, (2.7)

where the superpotential satisfies the following a non-linear equation

a2

4

(
∂W

∂φ

)2

− 1

2
W 2 = V. (2.8)

Notice that if there is no supersymmetry it is hard to find an analytic solution. So, one

needs to slove the non-linear equations (2.6) with appropriate boundary conditions. Before

studying the geometric solution satisfying these equations (2.6), there are several important

points we must remember. First, since combining first two equations reproduces the last

equation, only two of them are independent. In the normal coordinate, second, an AdS

geometry is represented by φ′ = 0 and A(y) = y/R with an AdS radius R. Lastly, the

range of y in the normal coordinate is extended to the entire region of y, −∞ < y < ∞.

In this case the UV limit corresponds to y →∞, whereas the IR limit occurs at y = −∞.

At the local extremum with φ = 0, an AdS space with an AdS radius Ruv satisfies the

above equations and the unknown metric function is given by

A =
y

Ruv
. (2.9)

For a2 ≥ 1, since this solution represents the geometry of the global minimum, it is a stable

solution. For 0 < a2 < 1, however, the local extremum described by (2.9) corresponds to a

local maximum which is unstable under a small perturbation. Turning on small fluctuations

for φ and A near φ = 0

φ = 0 + δφ and A =
y

Ruv
+ δA, (2.10)

the linearized equation of the scalar field fluctuation yields

0 = R2
uvδφ

′′ + 2Ruvδφ
′ − 4a2

(
a2 − 1

)
δφ. (2.11)

The solution for a2 6= 1/2 is given by

δφ = c1e
−2(1−a2)y/Ruv (1 + · · ·) + c2e

−2a2y/Ruv (1 + · · ·) , (2.12)

where the ellipses indicate higher order corrections. Note that the first term in the above

solution gives rise to a leading contribution for 1/2 < a2 < 1, while the second term

becomes dominant for 0 < a2 < 1/2. Substituting this scalar fluctuation solution into

the second equation of (2.6), we obtain the gravitational backreaction of the scalar field

fluctuation

δA = − c2
1

4a2
e−4(1−a2)y/Ruv (1 + · · ·)− c2

2

4a2
e−4a2y/Ruv (1 + · · ·) . (2.13)
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For 1/2 < a2 < 1, the first term is dominant and, following the AdS/CFT correspondence,

c1 and c2 can be interpreted as the source and vev of a dual operator, respectively. For

0 < a2 < 1/2, on the other hand, c1 and c2 exchange their roles. In other words, c2 and c1

play the role of the source and vev. For a2 = 1/2, the two independent solutions in (2.12)

become degenerate. In this case, the solution of δφ leads to

δφ = c̄1e
−y/Ruv (1 + · · ·) + c̄2

y

Ruv
e−y/Ruv (1 + · · ·) . (2.14)

The corresponding gravitational backreaction of the scalar fluctuation reads

δA = − c̄
2
1

2
e−2y/Ruv (1 + · · ·)− c̄2

2

2

y2

R2
uv

e−2y/Ruv (1 + · · ·) . (2.15)

For 1/2 < a2 < 1, as mentioned before, there exists another local minimum with φ′ = 0

at φ = φir. This implies that another AdS geometry becomes a solution of the equations

of motion at φir. In this case, the unknown function A(y) is given by

A ∼ y

Rir
, (2.16)

where Rir = Ruv
√

2a2 − 1/a2 is determined from the scalar potential [46]. Near the new

local minimum, the scalar fluctuation satisfying the linearized equation of motion becomes

δφ = c3e
−∆′−y/Rir (1 + · · ·) + c4e

−∆′+y/Rir (1 + · · ·) , (2.17)

with

∆′± = 1±
√

9− 8a2. (2.18)

In addition, the gravitational backreaction of the scalar fluctuation reads

A ∼ y

Rir
+ d3e

−2∆′−y/Rir (1 + · · ·) + d4e
−2∆′+y/Rir (1 + · · ·) , (2.19)

where d3 and d4 are proportional to c2
3 and c2

4.

Above we showed that for 1/2 < a2 < 1, the gravity we considered allows two different

AdS geometries relying on the value of φ. The one defined at φ = 0 is unstable and

the other at the local minimum becomes stable. Can we find a new solution interpolating

smoothly those stable and unstable AdS geometries? In figure 2 , we show that there exists

a geometric solution interpolating the local maximum and minimum smoothly. According

to the AdS/CFT correspondence, such a geometry can be mapped to a deformation of a

UV CFT which allows a new IR fixed point. More precisely, the unstable asymptotic AdS

geometry with the AdS radius Ruv is identified with the UV CFT because the UV fixed

point becomes unstable under a relevant deformation. In this case, the relevant deformation

operator leads to a nontrivial RG flow and makes the UV CFT become a new theory at low

energy scale. If the deformation allows an IR fixed point, a new CFT appears at the IR

fixed point which is again dual of another AdS space. Such an RG flow is holographically

described by a geometry interpolating the two AdS geometries. The interpolating solutions

in figure 2 show such UV and IR features. The scalar field has φ = 0 at UV and φ = φir at
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Figure 2. (Colour online) (a) The solutions φ connecting the two conformal fixed points for several

different parameters a. (b) The domain wall behaviour of the metric function A(y) for the different

parameter a.

IR with φ′ = 0 and the corresponding metric A(y) is given by a function linear to y with

the AdS radii, Ruv and Rir at the UV and IR fixed points. In the intermediate scale, those

two CFT features are smoothly connected, as expected.

If a is given by a value in the range of 1/2 < a2 < 1, we showed that there exists

a geometric solution interpolating two different AdS geometries. At the fixed points of a

nontrivial RG flow, there is an important quantity characterizing a CFT. That is called a

central charge and represents the degrees of freedom of a CFT. According to the AdS/CFT

correspondence, the central charge of a two-dimensional CFT is related to the quantities

of the dual geometry

cCFT =
3RAdS

2G
, (2.20)

where RAdS means a AdS radius of a three-dimensional AdS space [46, 47]. For the inter-

polating solution we found above, the relation of the central charge gives rise to

cuv =
3Ruv
2G

, (2.21)

at the UV fixed point, while the central charge of the IR CFT becomes

cir =
3Rir
2G

. (2.22)

In order to describe the degrees of freedom at the intermediate energy scale where the

conformal symmetry is broken, we think of generalization of the central charge called a c-

function. The c-function must be reduced to the previous central charges at the fixed points.

Intriguingly, it has been argued that such a c-function monotonically decreases along the

RG flow. This was called the c-theorem. On the dual gravity side, the nontrivial c-function

of the dual field theory was realized in the holographic renormalization procedure [40, 48]

c =
3

2G

1

A′
, (2.23)
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which reproduces and smoothly connects the above results at the fixed points, (2.21)

and (2.22). Since Ruv > Rir for the interpolating solution we found, the ratio of the

central charges at the two fixed points is always smaller than 1

cir
cuv

=
Rir
Ruv

< 1. (2.24)

This indicates that the IR CFT always has a smaller central charge than that of the UV

CFT, which is consistent with the c-theorem [42, 43].

In order to prove the c-theorem, we further need to check whether the c-function

monotonically decreases along the RG flow even at the intermediate energy scale. To do

so, it is worth noting that we see from the recombination of (2.6) that A′′ is always negative.

Using this fact, the derivative of c with respect to y is always given by a positive value.

This can be written in the following way with an additional minus sign

− dc

dy
=

3A′′

2GA′2
= − 3φ′2

2Ga2A′2
< 0, (2.25)

where −dy indicates the direction of the RG flow. This result proves that the proposed

c-function in the dual gravity satisfies the c-theorem even at the intermediate energy scale.

Near the UV fixed point (y � Ruv), the c-function changes as

c =
3Ruv
2G

(
1−

(
1− a2

)
c2

1

a2
e−4(1−a2)y/Ruv + · · ·

)
, (2.26)

while in the IR regime (y � −Rir) it behaves as

c =
3Rir
2G

(
1 + 2d3∆′− e

−2∆′−y/Rir + · · ·
)
, (2.27)

where d3 < 0 because ∆′− < 0 and dc/dy > 0.

3 Holographic entanglement entropy

In the previous section, we have studied the holographic RG flow of a UV CFT deformed

by a relevant scalar operator which is dual to the geometry interpolating two different AdS

spaces. In this section, we investigate how the entanglement entropy deforms along the

RG flow [49–51]. The RG flow of the entanglement entropy is related to the real space RG

flow. Except several specific cases, in general, it is not easy to calculate the entanglement

entropy of an interacting quantum field theory. However, the AdS/CFT correspondence

can provide a new technique to look into the entanglement entropy of an interacting theory

and its RG flow. In this section, we will investigate the RG flow of the entanglement entropy

on the previous interpolating geometry holographically.

3.1 Entanglement entropy and c-function near the UV fixed point

According to the Ryu-Takayangi formula, the entanglement entropy of the dual field the-

ory can be evaluated by calculating the area of the minimal surface whose boundary is

– 8 –
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coincident with the entangling surface distinguishing two subsystems of the boundary field

theory. For the dual field theory of the previous interpolating geometry, the entangling

surface is given by two points which divide the space of the dual field theory into two

systems. Now, we assume that the entangling points are located at x = ±l/2. In this case,

the dual field theory is divided into a subsystem defined at −l/2 ≤ x ≤ l/2 and its com-

plement. Then, the entanglement entropy is represented by the minimal surface extended

to the dual interpolating geometry with connecting two entangling points. From (2.5), the

corresponding entanglement entropy is governed by

SE =
1

4G

∫ l/2

−l/2
dx

√
e2A(y) + y′2, (3.1)

where y is given by a function of x. Denoting the turning point of the minimal surface as

y∗ at which y′ vanishes, the conserved quantity of the above entanglement entropy allows

us to represent the subsystem size and entanglement entropy as functions of the turning

point. After some calculations, the size of the subsystem can be expressed in terms of the

turning point

l = 2

∫ ∞
y∗

dy
eA∗

eA
√
e2A − e2A∗

, (3.2)

where A∗ indicates the value of A at y = y∗. In addition, the entanglement entropy is

determined by the following integral relation

SE =
1

2G

∫ yuv

y∗

dy
eA√

e2A − e2A∗
. (3.3)

Here we introduced an appropriate UV cutoff yuv because the entanglement entropy di-

verges as yuv →∞.

Let us first take into account a small subsystem size which describes the UV entangle-

ment entropy. In this UV limit, the turning point has a large value satisfying y∗/Ruv � 1

and the geometric solution except for a2 = 1/2 can be well approximated by

A =
y

Ruv
− c2

1

4a2
e−4(1−a2)y/Ruv (1 + · · ·)− c2

2

4a2
e−4a2y/Ruv (1 + · · ·) . (3.4)

Substituting this perturbative geometric solution into (3.2) and (3.3) and performing the

integrals, we can finally obtain the perturbative entanglement entropy in terms of the

subsystems size

SE = S
(0)
E + S

(1)
E + · · · . (3.5)

Here S
(0)
E indicates the leading contribution from the AdS space with the AdS radius Ruv,

while S
(1)
E means the first correction from the scalar deformation. The leading contribu-

tion reads

S
(0)
E =

cuv
3

log
l

εuv
, (3.6)

with

cuv =
3Ruv
2G

and εuv = Ruve
−yuv/Ruv . (3.7)
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In this case, the central charge of the dual UV CFT is derived by varying the entanglement

entropy with respect log l [45]

cuv =
3 dS

(0)
E

d log l
. (3.8)

Note that this leading contribution is independent of the value of a which characterizes the

scalar deformation.

Now, let us consider the first correction caused by the scalar deformation. Relying

on the value of a, the corresponding contribution to the entanglement entropy can show

different behaviors. For 1/2 < a2 < 1, c1 corresponding to the source becomes dominant.

Thus, the first correction to the entanglement entropy leads to

S
(1)
E = −

{√
πΓ
(
3− 2a2

)
− 2Γ

(
7
2 − 2a2

)}
Ruvc

2
1

24(2−a2)a2GΓ
(

7
2 − 2a2

) l4(1−a2)

R
4(1−a2)
uv

+ · · · . (3.9)

Since S
(1)
E is negative for 1/2 < a2 < 1, this result implies that the entanglement entropy

in the UV limit monotonically decreases along the RG flow. More precisely, the UV central

charge depending on the small subsystem size is given by

c = cuv

(
1−

(
1− a2

) {√
πΓ
(
3− 2a2

)
− 2Γ

(
7
2 − 2a2

)}
c2

1

25−4a2a2Γ
(

7
2 − 2a2

) l4(1−a2)

R
4(1−a2)
uv

+ · · ·

)
. (3.10)

If dc/dl = 0 at the UV fixed point, the c-function is called stationary [42, 52–58]. Above,

the resulting c-function is stationary for 1/2 < a2 < 3/4, while it is not for 3/4 ≤ a2 < 1.

In the other range of a2, similarly, we can summarize the UV entanglement entropy

and its central charge as follows.

• For a2 > 1, as mentioned before, the vacuum solution allows a stable AdS geometry.

In this case, the stability of the AdS geometry implies that c1 vanishes. If not, the

graviational backreacton of the c1 term can modify the background AdS geometry

because its asymptotic value diverges exponentially. Despite this fact, if we take a

nonvanishing c1, its contribution gives rise to the entanglement entropy proportional

to S
(1)
E ∼ 1/l4(a2−1). For a2 > 1 the first correction in the UV limit leads to a

power-law divergence which is more severe than the logarithmic divergence of a two-

dimensional CFT. As a consequence, c1 must be taken to be zero for a2 > 1 in order

to obtain a stable AdS geometry. Anyway, the c2 term is rapidly suppressed at the

boundary, so that this term with a vanishing source term (c1 = 0) does not ruin the

background AdS geometry. Its contribution to the entanglement entropy becomes

S
(1)
E = −

{
2Γ
(
2a2 + 3

2

)
−
√
πΓ
(
2a2 + 1

)}
Ruvc

2
2

24(1+a2)a2GΓ
(
2a2 + 3

2

) l4a
2

R4a2
uv

+ · · · , (3.11)

which for a2 > 1 is rapidly suppressed in the UV limit. The corresponding c-function

reduces to

c = cuv

(
1−

{
2Γ
(
2a2 + 3

2

)
−
√
πΓ
(
2a2 + 1

)}
c2

2

21+4a2Γ
(
2a2 + 3

2

) l4a
2

R4a2
uv

+ · · ·

)
. (3.12)
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This result shows that the c-function is stationary for a2 > 1 because of the absence

of the contribution from the source term, c1.

• For a2 = 1, the c1 term becomes a constant and c2 corresponds to the vev of a

marginal operator. In this case, the constant c1 term does not give any contribution

to the entanglement entropy. As a result, the marginal scalar deformation yields

S
(1)
E = −7Ruvc

2
2

1920G

l4

R4
uv

+ · · · , (3.13)

and the c-function reads

c = cuv

(
1− 7c2

2

240

l4

R4
uv

+ · · ·
)
, (3.14)

which is stationary.

• For 1/2 < a2 < 1, as explained before, the c-function is stationary for 1/2 < a2 < 3/4

but not for 3/4 ≤ a2 < 1.

• When a2 = 1/2, the role of c̄1 and c̄2 in (2.15) becomes ambiguous because they

are degenerate. In this case, the first correction comes from the c̄2 term. After

some calculation, the resulting entanglement entropy deformed by a double trace

operator reads

SE =
Ruv
2G

log
l

εuv
−
{

36 log2 (l/Ruv)− 60 log (l/Ruv) + 56− 3π2
}
Ruvc

2
2

864G

l2

R2
uv

+ · · · ,

(3.15)

and the corresponding c-function becomes

c = cuv

(
1−

{
36 log2 (l/Ruv)− 24 log (l/Ruv) + 26− 3π2

}
c2

2

216

l2

R2
uv

+ · · ·

)
. (3.16)

This results shows that the UV fixed point for a2 = 1/2 is not stationary.

• For 0 < a2 < 1/2, c1 and c2 exchange their role and the c2 term becomes dominant.

In this case, the first correction to the entanglement entropy and c-function are given

by (3.11) and (3.12). From (3.12), we can see that the c-function is stationary at the

UV fixed point for 0 < a2 < 1/4 but not for 1/4 ≤ a2 < 1/2.

3.2 Central charge of the dual IR CFT

Now, let us discuss the entanglement entropy in the IR regime. For a pure AdS3 in (2.5)

with A(y) = y/R which is dual to a two-dimensional CFT, it has been well known that

the entanglement entropy of a two-dimensional CFT can exactly be reproduced by the

holographic calculation of the minimal surface area [8]. From the dual field theory point of

view, the turning point of the minimal surface corresponds to the lowest energy scale we can

observe by using the holography. Therefore, if we want to figure out the IR entanglement

entropy and its RG flow, we take a very small turning point satisfying y∗ � −Rir where
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the IR geometry is characterized by Rir. This is equivalent to take a large subsystem

with l � Rir. In general, the holographic entanglement entropy is a non-local quantity.

On the dual geometry side, this is because the minimal surface is extended from the IR

energy described by y∗ to the UV energy denoted by yuv. Due to this fact, it is not easy

to evaluate an exact and analytic result of the IR entanglement entropy. In this section,

we derive the approximated IR entanglement entropy near the IR fixed point. Because

of the restoration of the conformal symmetry near the IR fixed point, we can expect that

the known entanglement entropy of CFT again appears with a different central charge

representing the IR degrees of freedom.

As mentioned before, let us assume that the turning point is located at the IR fixed

point with y∗ � −Rir. Then, eA(y∗) can be well approximated by ey∗/Rir in the IR regime.

Now, we divide the integral range of l in (3.2) and SE in (3.3) into two parts

l = 2

(∫ yuv

y∗+ε
dy +

∫ y∗+ε

y∗

dy

)
ey∗/Rir

e2A
√

1− e2(y∗/Rir−A)
, (3.17)

SE =
1

2G

(∫ yuv

y∗+ε
dy +

∫ y∗+ε

y∗

dy

)
1√

1− e2(y∗/Rir−A)
, (3.18)

Assuming that ε is in the range of Rir � ε� |y∗|, the inside of the square root above can

be approximated by 1 for y∗ + ε ≤ y ≤ yuv because A(y)− y∗/Rir � 1 in this region. On

the other hand, A(y) for y∗ ≤ y ≤ y∗+ ε� −Rir is approximated by A(y) ≈ y/Rir. Using

these facts, the subsystem size becomes approximately

l ≈ 2

∫ yuv

y∗+ε
dy ey∗/Rir−2A(y) + 2

∫ y∗+ε

y∗

dy
ey∗/Rir

e2y/Rir

√
1− e−2(y−y∗)/Rir

. (3.19)

In this case, most of the contribution to the subsystem size comes from the second integral

because the integrand of the first integral is suppressed exponentially (ey∗/Rir−2A(y) � 1)

for y∗ + ε ≤ y ≤ yuv. The integration of the second term leads to

l ≈ Rire−y∗/Rir , (3.20)

where ε/Rir � 1 was used. Similarly, the entanglement entropy can also be rewritten as

SE ≈
1

2G

∫ yuv

y∗+ε
dy +

1

2G

∫ y∗+ε

y∗

dy
1√

1− e−2(y−y∗)/Rir

. (3.21)

Performing the integral and rewriting the result in terms of l, we finally obtain

SE ≈
yuv
2G
− y∗

2G
=
yuv
2G

+
Rir
2G

log
l

Rir
, (3.22)

where the first term indicates the UV divergent term. The second term corresponding to

the leading IR entanglement entropy shows that the IR entanglement entropy near the IR

fixed point has the exact same form as the one derived from the UV fixed point. This is

because of the restoration of the conformal symmetry at the IR fixed point. Furthermore,

the degrees of freedom of the IR CFT can be represented by the IR central charge given by

cir =
3dSE
d log l

=
3Rir
2G

, (3.23)

which is exactly the expected form.

– 12 –



J
H
E
P
1
1
(
2
0
1
8
)
1
6
5

4 RG flow of the entanglement entropy

In the previous section, we have studied the entanglement entropy at the UV and IR fixed

points and showed that the central charges derived from the holographic entanglement

entropy at the two fixed points lead to the consistent results expected from the dual CFT.

In this section, we will further investigate how the central charge evolves at the intermediate

energy scale along the RG flow analytically and numerically.

4.1 Thin-wall approximation

In the model we considered, the scalar field has a kink-type profile as shown in figure 2(a).

Thus, we can apply the thin-wall approximation in order to understand analytically the

RG flow of the central charge. In [15, 45], the similar thin-wall approximation has been

taken into account. It has been argued that there can exist a region where the c-theorem

may be broken. Due to this fact, a phase transition occurs and connects the two UV and

IR CFTs without breaking of the c-theorem [45, 59]. In this section, we apply the similar

thin-wall approximation with a different prescription from the one used in [45]. We impose

a junction condition requiring that the minimal surface extended to the dual geometry

must be continuous. The thin-wall approximation with this condition looks more natural

and shows that there is no phase transition. In other words, the c-theorem is not broken

in the entire range of the RG flow. In order to check whether the thin-wall approximation

with the junction condition is valid, we further calculate the exact RG flow of the central

charge numerically and then compare those two results in the next section.

4.1.1 In the UV region with a small subsystem size

In order to apply the thin-wall approximation, let us first consider the junction of two

AdS spaces with different AdS radii, Ruv and Rir, which is a simple approximation of the

previous interpolating geometry. Then, two AdS metrics can be represented as

A(y) =
y

Ruv
for y > yw, (4.1)

=
y − yw
Rir

+
yw
Ruv

for y < yw, (4.2)

where yw indicates the position of the thin-wall. Notice that the first term in the second

IR metric factor was introduced for continuity of the metric at the wall.

We first consider the case with a small subsystem size in which the corresponding

minimal surface does not touch the wall. In other words, the turning point of the minimal

surface is always larger than the wall’s position, y∗ > yw. Since the holographic entangle-

ment entropy cannot measure IR physics below y∗, it is sufficient to take into account only

the region with y∗ < y <∞ where the dual geometry is the AdS space with the AdS radius

Ruv. Physically, this clarifies the UV feature of the entanglement entropy. Denoting the

trajectory of the minimal surface by {x̄, ȳ}, it can be determined by solving the following

integral equation derived from (3.2)∫ l/2

x̄
dx =

∫ ∞
ȳ

dy
ey∗/Ruv

ey/Ruv

√
e2y/Ruv − e2y∗/Ruv

. (4.3)

– 13 –



J
H
E
P
1
1
(
2
0
1
8
)
1
6
5

In particular, the turning point corresponds to {x̄, ȳ} = {0, y∗} and y∗ can be expressed in

terms of the subsystem size, y∗ = Ruv log (2Ruv/l). Performing this integral exactly, ȳ can

be determined as a function of x̄

ȳ =
Ruv

2
log

4R2
uv

l2 − 4x̄2
, (4.4)

which reproduces the turning point at {x̄, ȳ} = {0, y∗}. Rewriting x̄ in terms of ȳ leads to

x̄ =
1

2

√
l2 − 4R2

uve
−2ȳ/Ruv . (4.5)

After substituting the trajectory in (4.4) into the entanglement entropy formula in (3.1),

performing the integral gives rise to the following entanglement entropy

SE =
yuv
2G

+
Ruv
2G

log
l

Ruv
, (4.6)

where yuv means the UV cutoff in the y-coordinate. This UV result is consistent with the

previous result of the UV CFT, as it should do.

4.1.2 In the IR limit with a large subsystem size

Now, let us take into account the IR entanglement entropy. When the subsystem size is

sufficiently large, the minimal surface is extended to the IR regime (y∗ < yw) as well as

the UV regime (y∗ > yw). In the UV region, the minimal surface’s trajectory is described

by (4.4) or (4.5). Since the UV part covers only the range of yw < y∗ < ∞, the minimal

surface meets the thin-wall at {xw, yw} with

xw =
1

2

√
l2 − 4R2

uve
−2yw/Ruv . (4.7)

In the IR region, on the other hand, the trajectory of the minimal surface is deter-

mined by

x̄ =
1

2

√
l2w − 4R2

ire
−2ȳ/Rire2yw(Ruv−Rir)/RuvRir , (4.8)

where ȳ lies in the range of y∗ < y < yw. Above lw indicates the subsystem size on the

wall located at y = yw. In order to obtain a continuous trajectory of the minimal surface,

we need to require two constraints. First, the turning point is located at {x̄, ȳ} = {0, y∗}
in (4.8). This fixes the undetermined lw in terms of y∗

lw = 2Rire
−ȳ∗/Rireyw(Ruv−Rir)/RuvRir . (4.9)

Second, the continuity of the minimal surface on the wall requires that both (4.7) and (4.8)

lead to the same value at ȳ = yw. This requirement together with (4.9) gives rise to

l = 2
√
R2
uve
−2yw/Ruv +R2

ire
−2y∗/Rire2yw(Ruv−Rir)/RuvRir −R2

ire
−2yw/Ruv . (4.10)

This relation shows that the subsystem size can be determined in terms of y∗ and yw.

When l and yw are given, in other words, the position of the turning point is given by

y∗ =
Ruv −Rir

Ruv
yw −

Rir
2

log

(
l2

4R2
ir

+ e−2yw/Ruv − R2
uv

R2
ir

e−2yw/Ruv

)
. (4.11)
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The entanglement entropy described by the trajectory of the minimal surface is repre-

sented as

SE =
1

2G

∫ ∞
yw

dy
1√

1− e−2(y−y∗∗)/Ruv

+
1

2G

∫ yw

y∗

dy
1√

1− e−2(y−y∗)/Rir

, (4.12)

where y∗∗ corresponds to the turning point when the minimal surface extends only to the

UV geometry with Ruv

y∗∗ = Ruv log
2Ruv
l

. (4.13)

Then, the resulting entanglement entropy after performing the integral reads

SE =
1

2G

[
Λ +Ruv log 2− y∗ −Ruv log

(
1 +

√
1− e2(y∗∗−yw)/Ruv

)
(4.14)

+Rir log
(

1 +
√

1− e2(y∗−yw)/Rir

)]
(4.15)

In the large l limit, this entanglement entropy is expanded into

SE =
1

2G

[
Λ +Rir log l − Ruv −Rir

Ruv
yw −Rir logRir

+

(
R3
uve
−2yw/Ruv −R3

ire
−2(2Ruv−Rir)yw/RuvRir − 2Rir

(
R2
uv −R2

ir

)
e−yw/Ruv

l2

)]

+O
(

1

l3

)
. (4.16)

From this result, we can see that the c-function near the IR fixed point behaves like

c = cir

(
1 +

2Rir(R
2
uv −R2

ir)e
−yw/Ruv −R3

uve
−2yw/Ruv +R3

ire
−2(2Ruv−Rir)yw/RuvRir

Rir

2

l2

)
(4.17)

+O
(

1

l3

)
, (4.18)

which reproduces the IR central charge (3.23) in the limit of l→∞.

4.2 Comparison with the exact numerical result

Now, let us take into account an exact numerical c-function and compare it with the

previous thin-wall approximation. The exact c-function for a deformed AdS3 space can be

formally written as [45]

c =
3dSE
d log l

=
3

4G

l

γ(l)
, (4.19)

where γ(l) indicates a constant of motion relying on the subsystem size l. The constant of

motion is generally given by a function of the turning point y∗

γ(y∗) = e−A∗ . (4.20)
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log l

�Sfin.

(a)

y⇤

log l

(b)

Figure 3. (color online). (a) This plot illustrates different values between thin and thick-wall

domain solutions, ∆Sfin. = Sthin−Sthick. We present two regions separated by a position of thick-

wall. For the ranges, which denoted by circle lines, y < yDW, the thin-wall entropy are the same as

the entanglement entropy of the pure AdS: Sthin = SAdS. For y > yDW, ∆S converges to specific

finite values for large l� 1. (b) This plot illustrates the position of turning point for each different

domain-wall solutions with a2 = 51/100.

However, the integral relation in (3.2), in principle, allows us to rewrite y∗ as a function

of l. Above, γ(l) means the constant of motion expressed in terms of the subsystem size l

instead of y∗. In ref. [45], the similar thin-wall approximation with imposing the reality of

the entanglement entropy has been taken into account. Under this prescription, the config-

uration of the minimal surface becomes folded and allows a region where the c-theorem is

broken down. Because of this, it was argued that there exists a phase transition when the

thickness of the wall is sufficiently thin. In the previous section, we applied the thin-wall

approximation with a different prescription which looks more natural. Instead of the real-

ity of the entanglement entropy, we imposed a natural junction condition, the continuity

of the minimal surface on the wall, which guarantees the reality of the entanglement en-

tropy. With the natural junction condition, we depict the entanglement entropy difference

between the exact result and the thin-wall approximation in figure 3(a). The result shows

that the difference suddenly becomes large at the intermediate energy scale corresponding

to the position of the wall, and that the difference remains a constant in the IR limit. This

is because the background geometries used in the thin-wall approximation do not contain

proper information about the deformation of the background geometry. Despite this er-

ror, the configuration of the minimal surface in figure 3(b) shows that the position of the

turning point monotonically decreases when the subsystem size increases. In other words,

the minimal surface is not folded as the exact result shows in figure 3(b). The present

thin-wall approximation with the natural junction condition shows the consistent result

with the exact one in that there is no folding of the minimal surface. Therefore, there is

no phase transition in the dual field theory of the interpolating geometry.

In figure 4(a), we investigate the change of the c-functions with the thin-wall approxi-

mation and exact numerical calculation. The results show that the thin-wall approximation
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log l

c

(a) For a2 = 0.51

c

log l

(b) For a2 = 0.98

Figure 4. (color online) The entropic c-function evaluated in the AdSuv
3 → AdSir

3 domain wall

flows with different values of a. The reference central charge of AdSuv
4 , cuv = 1. The vertical

dotted orange line is the position of the thin-wall, yDW = log(2/`DW), where we assumed that yDW

satisfies the conditions, A′(yDW) < 0 and A′′(yDW) = 0. The AdSir
3 results agree excellently with

the numerically computed values for large values of l.

studied before gives rise to the consistent result with the exact numerical result except the

near of the wall. In figure 3(a), we showed that the entanglement entropy derived from

the thin-wall approximation has a constant difference from that of the exact numerical

calculation in the IR limit. In this case, the constant difference implies the different which

is independent fo the subsystem size. In spite of this constant difference, the c-functions

derived by two different methods are well matched because the constant difference does not

give any effect on the c-function. Therefore, the thin-wall approximation with the natural

junction condition is a good approximation representing the correct c-function only with

some error near the wall. Anyway, if we take a2 ≈ 1, the deformation of the background

geometry becomes negligible. Thus, the thin-wall approximation is well matched to the

exact numerical result (see figure 4(b)).

In figure 5, we plot several exact c-functions relying on the intrinsic parameter a. The

result shows that the c-function always decreases monotonically regardless of the value of

a. We checked that the c-function of the exact numerical result are well described by the

thin-wall approximation only with some error near the wall.

5 Discussion

In this work, we have studied the RG flow of the entanglement entropy from a two-

dimensional UV CFT to another two-dimensional IR CFT. On the dual gravity side,

such a renormalization group flow of a quantum field theory was realized as a dual geome-

try interpolating two AdS geometries: one is an unstable AdS geometry at the asymptotic

boundary, which corresponds to the UV CFT, and the other is an AdS space in the in-

terior which describes a stable IR CFT. Following the holographic renormalization group

procedure, it was well known that the central charge of the dual CFT can be represented
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log l

c

Figure 5. (color online) The entropic c-function evaluated in the AdSuv
3 → AdSir

3 domain wall

flows with different values of a. The reference central charge of AdSuv
4 , cuv = 1, are shown as

orange circle line. The AdSir
3 results agree excellently with the numerically computed values for

large values of l.

by the combination of the Newton constant and the AdS radius of the dual AdS space.

In this work, we constructed a dual space interpolating two AdS spaces and showed that

the holographic renormalization group prescription exactly reproduces the known central

charges of the dual CFT at two fixed points. Although the central charge is well defined

in CFT, it is not easy work to define the c-function when the theory is deviated from CFT

except the fixed point described by CFT. Applying the holographic renormalization group

prescription in this work, we defined the c-function reproducing the known central charges

of UV and IR CFTs and also showed that such a c-function monotonically decreases along

the renormalization group flow.

We further studied how the entanglement entropy flows along the renormalization

group flow. The entanglement entropy was known as an important quantity which may

play a central role in investigating a variety of quantum phases transitions. For an even-

dimensional dual CFT, intriguingly, it was known that the logarithmic term of the en-

tanglement entropy is associated with the central charge. In this work, we calculated

the holographic entanglement entropy on a three-dimensional space interpolating two AdS

spaces, which is dual to the relevant deformation of the UV CFT, and showed that the re-

sulting entanglement entropy of the dual two-dimensional field theory exactly reproduces

the expected entanglement entropy of a two-dimensional CFT at two UV and IR fixed

points. In addition, we further showed that the c-function derived from the entanglement

entropy reproduces the expected central charges of UV and IR CFTs and that it satisfies

the c-theorem. This result indicates that, when we perturb a two-dimensional CFT with a

relevant deformation operator, the UV CFT smoothly flows to another CFT at IR without

any phase transition. To see this feature analytically, we investigated a new thin-wall ap-

proximation in which we utilized a natural prescription different from the one used in [45].
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The thin-wall approximation used in this work well approximates the qualitative features

of the exact numerical calculation and showed that there is no phase transition breaking

the c-theorem, which is consistent with the exact result.
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