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1 Introduction

Five-dimensional, N = 1 supergravity is a theory described in components by a frame

em
a(x), a gravitino ψm(x), and a graviphoton Am(x) needed to match the bosonic degrees

of freedom to the four fermionic degrees of freedom on-shell [1, 2]. They are permuted by

local supersymmetry, but these transformations do not close onto translations and gauge

transformations unless the equations of motion are imposed (i.e. they close only on-shell).

We can attempt to remedy this by introducing additional fields (the auxiliary component

fields) and modifying the supersymmetry transformations in such a way that the algebra

closes on all these fields off-shell. In this particular case, this off-shell problem is solved in

a finite number of steps [3, 4].1 But this is not so in general and fails even for this case

when the theory is coupled to hypermultiplets.2

When all of the supersymmetry is kept manifest, this state of affairs may be under-

stood from the existence of off-shell superspaces with eight supercharges, of either the har-

monic [15, 16] or projective type [12, 17]. Both approaches employ an auxiliary SU(2)/U(1)

space. In the harmonic approach, superfields are globally defined on this space with an

infinite expansion in the 2-sphere harmonics with ordinary superfields as coefficients. In

the latter, superfields are instead holomorphic functions with infinite Laurent expansions

in the natural inhomogeneous coordinate ζ of CP 1. In both cases, all of these fields are nec-

essary to close the supersymmetry off-shell, but only a small finite number of them survive

when the equations of motion are imposed. To reduce to a more familiar set of variables,

one could, in principle, eliminate all but a finite number of fields (by solving auxiliary field

equations and imposing gauge symmetries), expand the superfields in half the θ variables,

and integrate over the auxiliary manifold. The result would be an equivalent description in

terms of a finite number of superfields depending only on the four remaining θ’s but on all

five bosonic coordinates. These fields behave as 4D, N = 1 superfields in almost every way.

This procedure is difficult to carry out explicitly in supergravity.3 Worse still, in di-

mensions higher than six and/or for more than eight Poincaré supercharges, there are no

appropriate off-shell superspaces over which we could even contemplate carrying out such

a procedure [22].4 Instead, one could start from a set of superfields and transformation

rules that would have resulted from the purported procedure and attempt to construct an

invariant action directly. Specifically, we first embed the component fields into a suitable

1-parameter family of 4D, N = 1 superfields with the parameter having the interpretation

1The first off-shell construction of 5D supergravity was carried out by Zucker [5, 6]. Tensor calculus

techniques for general 5D supergravity-matter actions were developed in [7–10]. The off-shell superspace

appropriate for 5D was constructed in [11, 12]. A comprehensive discussion can be found in [13].
2See [14] for the argument that generic hypermultiplets require an infinite number of auxiliary fields.
3A sense of what is involved may be gotten from [18]. There 4D, N = 2 supergravity in projective

superspace is linearized around flat space, then partially gauge-fixed, integrated over harmonics, and put

partially on-shell to relate it to the 4D, N = 1 old- and new-minimal supergravity theories. To incorporate

supergravity fully non-linearly, one would actually need to repeat the procedure of [19] in reducing 5D,

N = 1 to 4D, N = 2 (but keeping dependence on the fifth coordinate and in superspace) and then recast

4D, N = 2 derivatives into 4D, N = 1 language (see e.g. [20, 21]).
4“Appropriate” here means, roughly, that it is possible to separate the constraints defining linear, off-

shell, irreducible representations from the equations of motion that put them on-shell.
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of a coordinate for the 5th dimension. The embedding will be suitable if the component

spectrum and all gauge transformations are reproduced. One then attempts to construct

an action from the superfield ingredients that is invariant under the superfield gauge trans-

formations.

Such a “superfield Noether procedure” is guaranteed to be possible when the off-shell

superspace exists and, indeed, it was used to construct five- and six-dimensional matter-

coupled supergravity in various approximations in [23–32]. In the cases in which an off-shell

superspace does not exist, it is not obvious that the procedure will work. Nevertheless, it

was explicitly shown that it does work for 10D super-Yang-Mills in [33]. More recently,

the approach was extended to the far more subtle case of eleven-dimensional supergravity

in [34–39].

In this paper, we revisit the five-dimensional problem with the benefit of eleven-

dimensional hindsight. Our motivations for doing this are both five-dimensional and eleven-

dimensional. On the one hand, the existing five-dimensional results are only understood in

various approximate forms whereas the analytic structure of the eleven-dimensional action

is now known to much higher precision. On the other hand, the five-dimensional version is

far simpler than its eleven-dimensional counterpart while retaining many of the non-trivial

elements of the latter. Specifically, both are odd-dimensional and have an abelian p-form in

their on-shell spectra (p = 1 and 3, respectively) with a Chern-Simons-like self-interaction.

(In fact, it was noted already in [23] that the five-dimensional theory also has a component

3-form hiding in its scale compensator so that, in the end, the two theories employ almost

identical 4D, N = 1 superfield representations.) Finally, both theories get higher-derivative

corrections involving the Chern-Simons form and powers of the curvature 2-form. In 5D,

the supersymmetric completion is known [40, 41], whereas in 11D only parts of it have

been constructed.

In the next section, we will give the embedding of the component fields of five-

dimensional supergravity into a 1-parameter family of 4D, N = 1 superfields. The pa-

rameter is the 5th bosonic coordinate, so we are describing 5D, N = 1/2 superspace as a

fibration by 4D, N = 1 superspaces over the fifth dimension. Starting from the superfields

on this space and their gauge transformations, we construct their field strengths and the

Bianchi identities they obey. In section 3, we define a perturbation theory in the gravitino

and give the action to the first non-trivial order in this expansion. The result to lowest or-

der is the sum of a D-term integral representing the volume of our superspace and a mixed

F- and D-term Chern-Simons action for the graviphoton. In section 4.2, we explain the

structure of our result by deriving it from ordinary on-shell, five-dimensional superspace.

In section 5, we linearize our action to recover the previously known superspace action

for linearized supergravity [23]. In section 6 we apply the formalism to the gravitational

Chern-Simons term ∼
∫
A ∧ R ∧ R where A is the graviphoton and R is the curvature

2-form. In particular, we construct the minimal N = 1 sector containing the 4D R ∧ R,

which is non-trivial due to the competing requirements of chirality and gauge-invariance.

(The construction is in terms of linearized field strengths but is, at least in part, expected

to hold beyond this order.) We conclude in section 7 with a summary of our findings

and a discussion of implications for extensions and future work. In the main thread of
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our presentation, we have opted to suppress distracting calculations for the sake of clarity,

relegating them instead to appendix A.

Note added. In this revised version, we have added the clarifying sections 4.1 and 6.3,

expanded the discussion in section 4.2, and added a new section 5.3. In section 4.1 we

review the existing formulations of off-shell 5D, N = 1 Weyl and Poincaré supergravity

theories and explain the connection to the 5D, N = 1/2 superspace formulation. This

helps to elucidate the structure of the non-manifest and on-shell part of the supersym-

metry. With this understood, we can see that there is an alternative linearization of our

results, which we present in the new section 5.3. In the new section 6.3, we compare our

gravitational Chern-Simons action to results available in the literature. These and other

clarifying remarks were added in response to thoughtful questions from our JHEP referees.

2 Fields and symmetries

Component fields. In 4D, N = 1 supergravity, the component content is that of a frame

em
a and its superpartner gravitino ψm. This simple matching of bose and fermi degrees

of freedom is not a generic trait; counting the degrees of freedom of a five-dimensional

frame field em
a and gravitino ψm, we conclude that the 5D, N = 1 supergravity multiplet

is missing some bosonic fields. On shell, the bose and fermi degrees of freedom can be

matched by a five-dimensional “graviphoton” gauge vector Am: the 5D, N = 1 super-

gravity component multiplet is the set {ema, ψm, Am} transforming into each other under

linearized supersymmetry transformations.

2.1 Superfields

To embed these fields into representations of the 4D, N = 1 super-Poincaré algebra, we

split their polarizations along the 4D directions xm and the extra dimension y = x5. Using

four-dimensional language, this results in a graviton em
a, a KK-photon Am ∼ em5, a scalar

ϕ ∼ ey
5, a graviphoton Am, a pseudoscalar Ay, two gravitini, and two gaugini, but with

all these fields depending on all five bosonic coordinates xm and y. That these can be

properly accommodated in 4D, N = 1 superfields was originally demonstrated in [23, 25]

in a linearized approximation. Here, we will use a larger set of superfields from the outset

as this is more geometric and thus convenient when constructing the non-linear theory:

Conformal supergravity. We embed the 4D polarizations of the frame em
a and one

gravitino into the conformal 4D, N = 1 supergravity prepotential Ua(x, θ, θ̄, y) [42,

43]. This field has a large gauge freedom, the linearized part of which is5

δ0U
a = D̄

.
αLα −DαL̄

.
α . (2.1)

5Here and henceforth, we use the convention that a vector index, va say, that is contracted on a Pauli

matrix is denoted by an underline: va := vα
.
α := (σa)α

.
αva. (This is essentially the Feynman slash notation

but on the index instead of the vector, which proves to be more convenient in superspace calculations.) An

implication of this is that contracted underlined indices give traces of Pauli matrices so that, for example,

vaηa = −2vaηa.
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The arbitrary spinor Lα(x, θ, θ̄, y) allows a Wess-Zumino gauge in which the only

non-zero components are the frame, the gravitino, and a real pseudo-vector auxiliary

field. The remaining gauge parameters are those of linearized diffeomorphisms, local

supersymmetry, local Lorentz, local S-supersymmetry, and local scale. The latter

two can be used to remove the spin-1/2 and spin-0 parts of the supergraviton, so this

multiplet describes conformal supergravity instead of ordinary Poincaré supergravity.

We will make up for this presently by introducing a scale compensator superfield.

Conformal gravitino. The other gravitino is embedded into the conformal gravitino su-

perfield Ψα. Again this representation has a large gauge freedom transforming in the

linearized approximation as

δ0Ψα = Ξα +DαΩ (2.2)

for a chiral spinor Ξα and complex scalar superfield Ω [42]. These can be used to go

to a Wess-Zumino gauge where

Ψα ∼ · · ·+ iθσmθ̄ψm
α + θ2(σmθ̄)

αvm + θ̄2(θσmn)αtmn + θ2θ̄2ρα . (2.3)

In addition to linearized supersymmetry, the conformal gravitino ψm
α possesses a

shift symmetry in its spin-1/2 part corresponding to local S-supersymmetry. The

additional fields are auxiliary and consist of a complex vector vm, a complex self-

dual 2-form tmn, and a spinor ρα. Note that there is no physical boson remaining in

this set.6

Kaluza-Klein gauge field. The mixed component of the metric is described by a non-

abelian connection for diffeomorphisms in the extra y-direction. This is implemented

in superspace by covariantizing the flat superspace derivatives D → D. The non-

abelian field strength appears in the derivative algebra in the usual place [42–44]

[D̄ .
α,Db] = (σb)α .

αLWα (2.4)

where for any vector field vy∂y, Lv denotes the Lie derivative along v. (The Lie

derivative appears here because this field gauges the diffeomorphisms in the 5th di-

mension.) As usual, the derivative constraints can be solved in term of a non-abelian

prepotential Vy.7

Graviphoton hierarchy. The graviphoton has a part embedded into an abelian vector

prepotential V with the usual gauge transformation δV = 1
2i(Λ − Λ̄) allowing the

standard Wess-Zumino gauge. The other part Ay is carried by a chiral pseudo-scalar

Φy transforming into the same chiral gauge parameter δΦy = ∂yΛ. This is a short

abelian tensor hierarchy in which only a vector multiplet and a scalar multiplet are

linked. Below, we will “gauge it” by defining Φ (and, therefore, Λ) to be covariantly

chiral under the nonabelian connection D.
6This is not in direct conflict with supersymmetry, because there is no single-derivative Lagrangian for

this representation unless it is coupled to other fields. (There is a higher-derivative Lagrangian, but then

an otherwise-auxiliary vector becomes dynamical.)
7The sign convention for Vy and Wα

y differs from our recent papers in 11D.
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Gauge 3-form compensator. At this point it appears we have embedded all of the

component fields of 5D, N = 1 supergravity. We must recall, however, that the

gauge transformation (2.1) of the graviton superfield removes the spin-1/2 and spin-

0 component fields. To compensate for this gauging of (super)scale transformations,

one introduces a superfield representation that contains a scalar. The standard choice

is to introduce a chiral scalar superfield [45]. More appropriate to our case, however,

is a constrained chiral scalar G = −1
4D̄

2X with X̄ = X a real scalar prepotential

transforming under linearized superconformal transformations as δscX = DαLα +

D̄ .
αL̄

.
α [23, 36]. This rule is needed so that G transforms as the conformal compensator

δscG = −1
4D̄

2DαLα under linearized transformations. Note, however, that the chiral

part of Lα leaves G invariant, so there is a gauge-for-gauge symmetry under which

Lα → Lα + 1
2iΥ

α, where Υα is a chiral spinor parameter. Because of this symmetry,

the complex F-term auxiliary field survives in Wess-Zumino gauge and furthermore,

since X is real, the imaginary part of G’s auxiliary field is the dual of a 4-form field

strength [42, 46, 47]. Equivalently, the θσmθ̄ component of the X prepotential is the

Hodge dual of a gauge 3-form Cmnp. (That this is a gauge 3-form can be derived

from the gauge transformation δX = 1
2i(D

αΥα − D̄ .
αῩ

.
α).)

In the eleven-dimensional theory, this 3-form is the M-theory 3-form with all legs

in the four-dimensional directions [36]. In the five-dimensional case, the geometrical

origin of this form is less apparent, but we will see that there is a complete super-

3-form of compensating fields needed for consistency. In anticipation of this, we

introduce the gauge chiral spinor superfield Σα
y transforming under the abelian 1-

form symmetry as δΣα
y = −1

4D̄
2Dαuy + ∂yΥ

α. Together, X and Σα
y form a second

short tensor hierarchy describing a five-dimensional gauge 3-form Cmnp in a 4 + 1

split Cmnp and Cmny [34].

2.2 Non-abelian tensor hierarchy

Previously, we gauged the 1-form hierarchy by replacing D → D. In fact, this couples the

KK vector field correctly to all fields, since it builds the non-abelian correction directly into

the superspace geometry (2.4). This gives rise to corrections to the Bianchi identities for

closed p-forms, and, therefore, to the field strengths and gauge transformations. Explicitly,

the Bianchi identities for a closed 2-form are

−1

4
D̄2DFy + ∂yW = 0 (2.5a)

DαWα − D̄ .
αW̄

.
α = −2iω(Wy, Fy) (2.5b)

with ω(Wy, Fy) := WαyDαFy + 1
2D

αW
y
αFy + h.c., and

DαWy
α − D̄ .

αW̄
.
αy = 0 . (2.5c)

The 4-form satisfies

−1

4
D̄2Hy + ∂yG = 0 (2.5d)

D̄ .
αG = 0 (2.5e)

– 5 –
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with the proviso that G has a real prepotential (i.e. one of its auxiliary fields is the dual of

a 4-form field strength). This non-abelian tensor hierarchy of constraints is solved by the

field strengths

Fy :=
1

2i
(Φy − Φ̄y)− ∂yV (2.6a)

Wα := −1

4
D̄2DαV −WαyΦy (2.6b)

Hy :=
1

2i

(
DαΣαy − D̄ .

αΣ̄
.
α
y

)
− ∂yX (2.6c)

G := −1

4
D̄2X −WαyΣαy (2.6d)

in terms of unconstrained prepotentials. These expressions are the standard ones of the

abelian hierarchy with the minimal coupling prescription D → D and corrections by the

non-abelian field strength.

The prepotentials, in turn, suffer pre-gauge transformations

δ0Φy = LλΦy + ∂yΛ (2.7a)

δ0V = LλV +
1

2i
(Λ− Λ̄) (2.7b)

δ0Σα
y = LλΣα

y −
1

4
D̄2Dαuy + ∂yΥ

α (2.7c)

δ0X = LλX +
1

2i

[
DαΥα − D̄ .

αῩ
.
α
]
− ω(Wy, uy) . (2.7d)

The first term is the non-abelian part of the gauge transformation (corresponding to diffeo-

morphisms of the circle) which acts on matter fields by the Lie derivative. The remaining

terms are minimal covariantizations D → D of the abelian p-form transformations and, in

the case of X, a correction term needed to counter the appearance of a non-abelian field

strength in the commutator of four D’s. The field strengths (2.6) are invariant under the

abelian part of the transformations and are covariant under the non-abelian part [35].

In addition, all of the prepotentials transform under Lα transformations (see e.g. sec-

tion 5 of [39]). The relevant ones for our discussion will be the Lα transformations of Σα
y

and X, which take the form

∆Σα
y =

i

2
D̄2(LαHy) and ∆X = Dα(LαG)− iLαWα

yHy + h.c. (2.8)

for covariantized transformations ∆ defined in [39]. In the linearized background where

〈G〉 = 1, the Lα transformation of X does not vanish, which identifies it as the prepotential

for the conformal compensator.

2.3 Gravitational couplings

In order to include the full non-linear couplings to gravity, one should introduce a gravita-

tional covariant D→ D , whose connections include the supervielbein, Lorentz connection,

etc. in addition to the non-abelian gauge field. As discussed in [39], for this to be consis-

tent with y-dependence of the 4D supergraviton, we will be required to incorporate also

– 6 –
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Dα Ua Ψα G(X) H(Σ) Wα(V ) F (Φ) W(V) Lα Ξα Ω Υα u Λ ∂y

∆ 1
2 −1 −3

2 3(2) 2(3
2) 3

2(0) 0(0) 3
2(0) −3

2 −
3
2 0 3

2 0 0 0

w −1 0 −1 2(0) 0(1) 1(0) 0(0) 1(0) −1 −1 0 1 0 0 0

d 1
2 −1 −1

2 0(−1) 0(−1
2) 1

2(−1) 0(0) 1
2(−1) −3

2 −
1
2 −1 −3

2 −2 −1 1

q 0 0 1 0 1 0 1 −1 0 1 −1 0 1 0 1

Table 1. The various Z-gradings of the fields and gauge parameters: scaling dimension ∆, U(1)R
weight w, mass dimension d, and 5-charge q (with q = p for p-forms, q = −1 for vectors, etc.).

the gravitino superfield corrections to the supergeometry: the graviton transformation (2.1)

must be allowed to depend on y, so we expect terms ∼ ∂yL
α to appear that we need to

be able to cancel. This can be done provided we modify the gravitino superfield transfor-

mation (2.2) by a term ∼ ∂yLα [23, 38].8 This gravitino superfield, in turn, contributes its

torsions and curvatures to the covariant derivative algebra [42, 48], which would first need

to be constructed. This approach has been carried out for general superspaces arising in

Kaluza-Klein splittings of the type we are considering and will be reported separately.

Instead, we here take the far simpler approach of defining a gravitino expansion and

working order-by-order in Ψα. In this approach, we can still work in a non-linear 4D,

N = 1 conformal supergravity background provided that background is y-independent.

Even in this setting the dependence on the remaining fields is non-linear. Explicitly, we

treat only Ua and Ψα
y perturbatively in their y-dependence. This can be done around any

y-independent 4D, N = 1 conformal supergravity background, such as warped compactifi-

cations over 4D solutions. (For example, we can describe AdS5 in the Poincaré patch as a

warped Minkowski compactification.) For this reason, we will write the 4D, N = 1 confor-

mal supergravity measures explicitly in the rest of this section and in the next. Covariant

derivatives are understood to be background-covariant derivatives. Formally this amounts

to replacing D̄2 → D̄2 − 8R wherever they appeared previously. (No other torsions can

appear at this dimension.) We emphasize that this restriction applies only to the invari-

ants of 4D, N = 1 conformal supergravity part and that this restriction can be removed

by using the more complicated supergeometry alluded to above.

Local superconformal symmetry. Separating the components of 5D, N = 1 gravity

in a 4 + 1 split and embedding the 4D polarizations of the frame in a 4D, N = 1 conformal

supergraviton (2.1) has resulted in a description with a local 4D superconformal symmetry.

This symmetry is broken spontaneously to Poincaré by the compensators just as 4D, N =

1 Poincaré supergravity is usually described by conformal superframes coupled to scale

compensators [42, 45]. Similarly to that case, the matter fields can be assigned scaling

weights ∆ and U(1) charges w in addition to their engineering dimension d and degree q

as differential forms on Y . These are collected in table 1.

8A more covariant version of this statement can be made by studying the consistency of the Bianchi

identities of the commutator [Dα,Dy].
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2.4 Gravitino perturbation theory

Finally, we complete the description of the symmetries by formulating a perturbation theory

in the gravitino. To do this, we introduce a gravitino grading under which Ψ carries charge

+1 and the remaining prepotentials have charge 0. Then the superconformal parameters

under which the gravitino transforms (2.2) must carry charge 1 as well. We split up the

gauge transformations δ = δ−1 + δ0 + δ1 + . . . , and assign gravitino charges to all the fields

and gauge parameters. The δ0 transformations are taken to be those defined on all the

fields above. The δ−1 transformation acts only on the gravitino as

δ−1Ψα
y := 2i∂yL

α (2.9)

This is needed to covariantize the y-dependence of the superconformal graviton transfor-

mations under Lα, as described in the previous paragraph. The δ1 transformations can

act on the all the non-gravitino fields only by Ξ and Ω. The precise form of this action is

not easy to derive from first principles but can be guessed and checked. In the process of

bootstrapping, we are aided immensely by the huge amount of local symmetry represented

in table 1. We find for δ1 that it acts on the tensor hierarchy fields as

δ1Φy = ΞαyWα , δ1V = Ω̌yFy , δ1Σα
y = −GΞαy , δ1X = Ω̌yHy , δ1V

y = Ω̂y (2.10)

and by zero on all other fields. Here Ω̂y and Ω̌y correspond to the real and imaginary parts

of the Ω parameter.

Note that these transformations are rather large, implying that many component fields

can be removed by a choice of superscale gauge. Most apparently, the linearized non-abelian

gauge field suffers a Stückelberg shift by an unconstrained real superfield, indicating that

it can be gauged away entirely! Similarly, since G is the scale compensator superfield, the

lowest bosonic component must be non-zero (i.e. we can gauge G| → 1). It follows that the

2-form superfield Σα
y can also be gauged away completely. Finally, we will see in the next

section that the lowest component of Fy is the volume density on Y , so it must be non-

vanishing and therefore invertible. Thus, V is also a Stückelberg superfield shifting under

the imaginary part of Ω. Where are all these fields going? On its face, it strains credulity

that we are able to remove them all, but this is, in fact, consistent with the description

of linearized 5D, N = 1 supergravity given in [23]: as we will see in detail in section 5,

the Stückelberg components are being eaten by the gravitino superfield in a supergravity

Higgs-like mechanism. Fully “massing up” the gravitino superfield results in the superfield

spectrum used in the aforementioned reference.

3 Action

Having defined the fields and symmetries in low orders of the gravitino expansion, we

are finally in a position to construct the action. To this end, we expand the action

S = S0 + S1 + S2 + . . . so that δS = 0 splits up into a set of conditions with definite

gravitino grading:

δ0S0 + δ−1S1 = 0 , δ1S0 + δ0S1 + δ−1S2 = 0 , . . . (3.1)
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κ2
∫
dy

∫
d4x

∫
d4θE

∫
d2θE ∂a ∂y W K

∆ 0 0 −4 2 1 1 0 3 2

w 0 0 0 0 −2 0 0 2 0

d −3 −1 −4 2 1 1 1 1 0

q 0 −1 0 0 0 0 1 1 1

Table 2. Weyl (∆) and U(1)R (w) weights of various measures and actions. W and K stand for

the integrands of F- and D-term superspace integrals.

Note that, while this is an expansion in the gravitino superfield Ψ, each term is non-linear

in all the remaining fields. In the next two subsections, we will give the explicit exact

results for S0 and S1 that satisfy these relations.

3.1 Chern-Simons action

The lowest-order action

S0 = Svol + SCS (3.2)

is a sum of terms separately invariant under δ0. The simplest of these is the Chern-Simons

action SCS =
∫
d4x

∫
dyLCS y. We write the Lagrangian in the slightly clumsy way (because

this will be the form that we can generalize appropriately below):

2κ2LCS y = i

∫
d2θEΦyG +

∫
d4θE VHy + h.c. (3.3)

with

G =
1

2
WαWα and Hy = ω(W,Fy)− iDαFyW

y
αFy + iD̄ .

αFyW̄
.
αyFy (3.4)

where, as before, ω(W,F ) := WDF + 1
2FDW + h.c. is the Chern-Simons superfield. This

Lagrangian is a 1-form on Y that can be understood as a superfield [4, 1]-form onX×Y [37].

It is constructed in terms of a composite 4-form with [4, 0] part G and [3, 1] part H = Hy dy.

As the notation is intended to suggest, they satisfy the same Bianchi identities (2.5d), (2.5e)

as G and Hy. Specifically, the action is invariant under the Λ transformation (2.7a), (2.7b)

because D̄2H = 4∂yG.

3.2 Volume term and Chern-Simons action

The second invariant is the superspace volume

Svol := − 3

κ2

∫
d4x

∫
dy

∫
d4θE (ḠG)1/3Fy F (3.5)

determined by the weights in tables 1 and 2 up to some completely weightless function

F of the field strengths (2.6). The integrand of (3.5) is again a 1-form on Y that can

be understood as the superspace volume density dressed up for conformal invariance: the

– 9 –
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explicit factor of Fy may be interpreted as an ein-bein superfield on Y so that the integrand

is of the form (Ed4x)(Fydy)∼E√gyyd4xdy, and the (4, 0)-form field strength G enters in

just such a way that we may interpret it as the conformal compensator for (modified)

old-minimal supergravity [36].

This interpretation is correct only in the Hy = 0 gauge. In general, there is a modifi-

cation by an a priori unknown function F reducing to 1 when Hy → 0 [39]. This function

must be completely weightless, gauge-invariant, and Lorentz invariant and must therefore

be a function of scalar combinations of the field strengths with (∆, w, d, q) = (0, 0, 0, 0).

From table 1 and some experimentation, we conclude that the only such invariant is

h :=
Hy

(ḠG)1/3Fy
. (3.6)

Requiring the Chern-Simons term to be even under parity fixes Fy to be even and Hy to

be odd. Therefore, F(h) = F(x) is actually a function of the square

x :=
h2

α
with α = 12 . (3.7)

(The normalization will prove convenient later.) This function is fixed by invariance under

extended supersymmetry. The variation of the volume action (3.5) depends on F and its

derivative in the combination

F̂ := F − hF′ . (3.8)

In particular, component results will depend on this combination rather than F itself.

3.3 Gravitino supercurrent

At the next order, we have the gravitino current coupling

S1 =
1

κ2

∫
d4x

∫
dy

∫
d4θEΨα

yJα + h.c. (3.9)

where the (∆, w, d, q) = (7
2 , 1,

1
2 , 0) current J is constructed from all the fields except the

gravitino. The fields in S0 transform under δ1, and this needs to be canceled by the gravitino

transformation. The linearized version of this transformation was given as (2.2), but we

can give the complete non-linear version of it as follows: the Ξαy parts of the transformation

already have the correct charges as we can see in table 1, but the Ωy part does not. Firstly,

Ωy is a vector instead of a 1-form, so we will introduce a dimension-0 complex bilinear form

Gyy to lower the index. Secondly, we match the conformal and U(1) weights using G to find

δ0Ψα
y = Ξαy + (ḠG)−1/3GyyDαΩy. (3.10)

In appendix A.1, we use the Ξ part of this invariance to fix the gravitino current to the form

Jα = −(ḠG)1/3F̂

[
3i

2
Wα + Wy

αFy −
3i

2
G
Fy
Hy

Dα log F̂

]
. (3.11)
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Figure 1. The function F̂(x) has two branches interpolating between the zero function and a

parabola. On the left we plot F̂ and y2 = 3x. On the right we give a detail of F̂ and the vanishing

locus x = 2−2/3 ≈ 0.63 of the discriminant.

We then impose invariance under Ω in appendix A.2 which results in two conditions: firstly,

it fixes the bilinear form to

Gyy =
FyFy

F̂
. (3.12)

In particular, it is both real and symmetric.9 Secondly, we obtain a differential equation

for F which can be put in the form

F̂(F̂ − 2xF̂′) = F̂′ . (3.13)

We show that this, together with the boundary condition F(0) = 1, is equivalent to the

cubic equation

F̂3 − 3xF̂ − 1 = 0 . (3.14)

This equation can be solved in terms of radicals and integrated, although we will not need

a closed-form expression. At large values of F̂ we find that F̂ ≈
√

3x. The discriminant

∆ = −16(4a3 +27b2) = (4 ·3)3(x3− 1
4), so for large x, this has three real roots, two of which

merge at x = 2−2/3 ≈ 0.63 and go off into the complex plane as x decreases. We plot F̂ as a

function of x in figure 1. Expanding around the remaining solution, we find (for x < 2−2/3)

F̂ = 1 + x− x3

3
+
x4

3
+O(x6) ⇒ F = 1 + c1

√
x− x+

x3

15
− x4

21
+O(x6) . (3.15)

The integration constant c1 corresponds to a symmetry of the superspace action, as shift-

ing c1 changes the action by a total derivative. We will return to this expansion when

we discuss the quadratic gravitino terms in section 5.1. For reference, we also give the

subleading large x behavior (for x > 2−2/3):

F̂ =
√

3x

(
1 +

1

6
√

3

1

x3/2
+O(x−3) + · · ·

)
⇒

F =
√

3x

(
− log

√
x+ c2 +

1

18
√

3x3/2
+O(x−3)

)
, (3.16)

9Compare with 11D in which it has an imaginary anti-symmetric part.
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in terms of a second integration constant c2. Numerically matching the two solutions at

x = 2−2/3 can determine c2 in terms of c1 but we won’t need the explicit relation.

3.4 Summary

Supersymmetry has fixed that exact analytic form of the action in the first two orders of the

gravitino expansion S = S0 +S1 + . . . . First, manifest supersymmetry, superscale symme-

try, and abelian gauge invariance were used to construct three invariants: the volume term

Svol (3.5), the Chern-Simons term SCS from section 3.1, and the coupling to the gravitino

current S1 (3.9). Of these, only the Chern-Simons action is polynomial in the fields of the

non-abelian tensor hierarchy. The volume term is a generalization of what is usually called

the Kähler term, and it depends on a function Ky =
√
gyyF(x) = FyF(x) we can loosely

refer to as the Kähler function.10 The second, non-manifest supersymmetry (2.10), (3.10)

was then used to fix the dependence (3.11) of the supercurrent on this function and to

simultaneously determine F to be a non-polynomial function (3.15) of x (3.7).

This is familiar from extended supersymmetric theories written in N = 1 superspace.11

We note, though, that the non-polynomial nature of F(x) does not imply that the com-

ponent action is non-polynomial in the tensor multiplets: the variable x is not a tensor

under the transformations (2.10); therefore, there is a Wess-Zumino gauge in which it is

nilpotent, and, in such a gauge, only the first few terms of the expansion (3.15) survive.

On the other hand, the non-polynomial nature of Svol can have important implications for

higher-derivative corrections in effective actions, and we will comment on this in section 6.

First however, we take an illuminating detour into the five-dimensional superspace origins

of the N = 1/2 formulation to both explain the field content we have uncovered and to

identify the origin of the function F(x).

4 Connecting with 5D supergravity and 5D, N = 1 superspace

In this section, we will identify the off-shell 5D supergravity that is most closely related to

the N = 1/2 formulation and describe two complementary perspectives on the origin of the

scalar fields lying at the bottom components of G and Hy. Such a comparison is somewhat

at odds with the general philosophy of the paper, as the point of our approach is to not

assume that the (partially) off-shell tensor calculus is known a priori or is even possible.

Nevertheless, understanding the connection is rather illuminating in explaining the presence

of the various N = 1 superfields, the roles that they are playing, and the structure of

their extended supersymmetry transformations. The presentation of this section will be

schematic since the details of the reduction of the component calculus is quite subtle [19]

and would be even more involved in superspace.

10Strictly, a Kähler function depends only on chiral scalar fields and is defined only up to Kähler trans-

formations. In our case, it depends also on 2-form superfields through the function F(x). (See e.g. [49] for

background on such modifications in 4D, N = 1 supergravity models.)
11For example, in [50] Lindström and Roček construct (among other things) 4D, N = 2 tensor multiplet

models by coupling N = 1 tensor multiplets and chiral multiplets and imposing the second supersymmetry

by hand as we are doing here.
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4.1 5D, N = 1 supergravity and its 5D, N = 1/2 decomposition

All formulations of 5D, N = 1 Poincaré supergravity may be formulated as the standard

Weyl multiplet of 5D conformal supergravity coupled to compensating multiplets. The

standard Weyl multiplet is an off-shell multiplet with 32 + 32 components

sW5 = {ema, ψmαi, Vmij , Tab, χ
αi, D} . (4.1)

Its gauge sector {ema, ψmαi, Vmij} consists of a graviton, gravitino, and an (auxiliary)

SU(2)R gauge field. In addition, it contains auxiliary covariant fields {Tab, χαi, D} con-

sisting of a real anti-symmetric tensor, a spinor, and a real scalar. The gravitino and

the auxiliary spinor are symplectic-Majorana, with spinor index α = 1, · · · , 8 and SU(2)R
index i = 1, 2.

As in 4D, N = 2 [51], the standard Weyl multiplet must be coupled to two different

types of compensators to generate a physically sensible on-shell two-derivative Poincaré

supergravity, which in 5D will possess 48+48 degrees of freedom. One of these compen-

sators is always a vector multiplet, while the other may be a hypermultiplet, a non-linear

multiplet, or a linear multiplet (also known as a 3-form multiplet). The hypermultiplet

requires a central charge in order to be off-shell.12 The non-linear multiplet leads to the

off-shell formulation of Zucker [5]. The third option, a linear multiplet, turns out to be

almost precisely the field content of our 5D, N = 1/2 superspace. In particular, the 5D

linear multiplet contains a 3-form Cmnp, which explains the component fields Cmnp and

Cmny present in G and Hy respectively.

Other possible off-shell Poincaré supergravities may be found using the dilaton-Weyl

multiplet [53] as a starting point, but let us postpone discussion of for now.

The vector and linear multiplets have the respective field content

VM5 = {σ,Am, ψαi, Y ij} , LM5 = {`ij , Cmnp, λαi, N} . (4.2)

Am and Cmnp are abelian gauge fields and Y ij and N are (pseudo-)real auxiliaries. σ is a

real scalar and `ij is a pseudoreal scalar triplet.

Since we’re just interested in understanding our superfield content, let us sketch the

reduction of the 5D multiplets to 4D, N = 2 and then to 4D, N = 1, discarding depen-

dence on the fifth coordinate. The reduction of these multiplets to 4D, N = 2 (except for

the linear multiplet) was worked out explicitly in [19]. Schematically, the 5D Weyl multi-

plet decomposes into the 4D, N = 2 Weyl multiplet (24+24) plus a Kaluza-Klein vector

multiplet (8+8). These involve the fields

sW4 = {ema, ψmαi, Vmij , Vm, T−ab, χ
αi, D} , V MKK = {X0, A0m, ψ

αi
0 , Y

ij
0 } (4.3)

where Vm
ij and Vm are the (auxiliary) gauge fields of the SU(2)×U(1) R-symmetry group

in 4D. The U(1) R-symmetry is a Stückelberg symmetry from the point of view of 5D, as

12One may use an off-shell hypermultiplet without a central charge in harmonic [52] or projective super-

space [12]. This requires an infinite number of auxiliary fields.
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it can be eliminated using the newly-introduced phase of X0 ∼ e5
yeiϕ. The decomposition

of the vector and linear multiplets is straightforward:13

VM4 = {X,Am, ψαi, Y ij} , LM4 = {`ij , Bmn, Cmnp, λαi, N} . (4.4)

The complex scalar X arises from σ and Ay. Note the linear multiplet LM4 is a variant

of the conventional 4D linear multiplet, in which one of the two real scalar auxiliaries has

been replaced with the dual of a 4-form field strength εmnpq∂[mCnpq]. For further details

of the dictionary, we refer to [19].

These multiplets must now be decomposed to N = 1. For simplicity, we will denote

N = 1 multiplets by their corresponding superfields. Both vector multiplets reduce to a

vector multiplet plus a chiral multiplet, while the linear multiplet decomposes into a linear

multiplet plus a constrained chiral multiplet; so we write

VMKK → {φ0, φ̄0,V} , V M4 → {φy, φ̄y, V } , LM4 → {Σyα, Σ̄y
.
α, X} . (4.5)

The 4D, N = 2 Weyl multiplet is subtler. As shown e.g. in [18], it decomposes into the

N = 1 Weyl multiplet Uα .
α, a conformal gravitino multiplet Ψα, and a vector multiplet

superfield U :

sW4 → {Uα .
α,Ψα, Ψ̄ .

α, U} . (4.6)

The superfield U is purely auxiliary because it contains only auxiliary fields of the N = 2

Weyl multiplet.

In comparing the above field content to 5D, N = 1/2 superspace, we immediately

identify the difference: the additional auxiliary superfield U and the chiral multiplet φ0.

Schematically, what occurs is that U eats the chiral multiplet to become an unconstrained

(non-gauge) real superfield, which can be integrated out algebraically.14 This was exhibited

explicitly at the linearized level in the simpler model of pure 4D, N = 2 supergravity in [18].

The full non-linear description of this mechanism would presumably be quite complicated,

but the underlying degrees of freedom cannot change. Therefore, we can conclude that the

5D, N = 1/2 superspace corresponds to a partially on-shell conventional 5D supergravity

with a vector and linear multiplet compensator.

We emphasize that because we have collectively integrated out U and φ0, we have

explicitly broken two of the N = 2 multiplets, so the algebra of the second supersymmetry

will not close off-shell.

13There are subtleties in this decomposition that we are glossing over. For example, the `ij in LM4

should have Weyl weight two, but in 5D `ij has Weyl weight three, so the two are actually related by a

factor of |X0|. As we are only interested in organizing the component fields into superfield representations,

these details can be ignored.
14More precisely, U eats a linear combination of φ0 and φy, leaving behind another linear combination,

which becomes the φy of 5D, N = 1/2 superspace. This is how ey
5 ends up paired with Ay in a complex

scalar when, from an N = 2 perspective, these lie in different multiplets.
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4.2 Spinor geometry and embedding of 5D, N = 1/2 superspace

An alternative approach to understanding the spectrum of superfields we have is to consider

the embedding of 5D, N = 1/2 superspace into 5D, N = 1 superspace. This will give us

some insight into some of the structure of the Ω transformations of the extended supersym-

metry. We will only be concerned with the lowest component fields in these frames and the

lowest component fields in the compensators, so all expressions should be understood to

hold only on these components. Throughout this section (and only here), we will suppress

the |-notation indicating projection to θ, θ̄ → 0.

We work in the 5D superspace conventions of [16], except we use α to denote an 8-

component spinor index. In particular, we take εij and εij to obey ε12 = ε21 = 1. Our

presentation will be brief, as the analysis follows step-by-step that of reference [39], to

which we refer for a more leisurely exposition.

Consider reducing the 5D, N = 1 superspace frames to those of 4D, N = 1 super-

space. First breaking the Lorentz group to SO(3, 1), with Eαi = (Eαi,−εijE .
α
j) and

Ea = (Ea, E5), we then exhibit the leading parts of the embedding:

Eαi →
√
φ ηi e

iπ/4Eα + . . . , E
.
αi →

√
φ η̄i e−iπ/4E

.
α + . . . ,

Ea → φEa + · · · , E5 → dy Fy + · · · . (4.7)

The spinor ηi and its complex conjugate η̄i are valued in SU(2), and they parametrize the

embedding of the half of supersymmetry being kept manifest. The phase factors e±iπ/4 are

for convenience later on. We have factored out a field
√
φ so that ηi can be normalized

to ηiη̄
i = 1. To preserve the canonical dimension-zero torsion tensor, φ must appear in

the leading term of Ea as well. We have denoted the leading term of Ey
5 by Fy for later

convenience; we must still establish that this is the correct identification.

In the 11D setting, we identified φ as the conformal compensator, which was sensible

because 11D superspace has no Weyl symmetry of its own, so we had to insert that sym-

metry à la Stückelberg. But as we have just reviewed, 5D supergravity can be formulated

already with a Weyl symmetry when coupled to vector multiplet and a linear multiplet

compensator. To avoid overcounting symmetries and to keep the situation as close to 11D

as possible, let us suppose that we have put 5D supergravity on-shell and gauge-fixed as

much as possible. We fix its SU(2)R symmetry to some SO(2)R subgroup by choosing a

background value for the isotriplet in the linear multiplet, e.g. `ij = δij , and fix the Weyl

symmetry by normalizing `ij`jk = δik where `ij = (`ij)* = εikεjl`
kl.

How should we then understand our 4D, N = 1 superconformal symmetry? The U(1)

R-symmetry group is just the residual SO(2) R-symmetry of 5D. The Weyl symmetry

corresponds to the Stückelberg symmetry of φ, which we now identify as the conformal

compensator. The fields ηi, which contain three degrees of freedom, are describing a hidden

Stückelberg SU(2) symmetry.

Let us now identify G and Hy. Remember that a linear multiplet is encoded in a

4-form field strength with leading term

G4 = i Eαi E
β
j E

aEb(Σab)αβ `
ij + · · · (4.8)
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Upon decomposing this to 4D using the conventions of [16], we recover

G4 = φ3 ηiηj`
ij EαEβEaEb(σab)αβ + c.c. + · · · ,

H3 = G3y = −2φ2 Fy ηiη̄
j εjk`

kiEαE .
β E

c (σc)α
.
β + · · · (4.9)

which implies that

G = φ3 η̄iη̄j`ij , Hy = 2i φ2ηiη̄
jεjk`

ki Fy . (4.10)

The components G, Ḡ, and Hy can be interpreted as dressed versions of the three

components of the underlying linear multiplet `ij . This is transparent if we had embedded

4D superspace trivially by taking φ = 1 and ηi = (1, 0). Then we would instead have

left the underlying 5D Weyl and SU(2)R symmetries unfixed, so `ij would have been a

dynamical field, and G and Hy would have been its components.

One now easily checks that G and Hy satisfy

ḠG+
1

4

(
φHy

Fy

)2

= φ6 ⇒ α

4
x = (η̄2η2)−2/3 − (η̄2η2)1/3 , η2 ≡ ηiηj`ij . (4.11)

We think of the conformal compensator φ now as being defined by this equation. Note

that the first equation can be interpreted as a dressed version of the gauge-fixing condition
1
2`
ij`ij = 1.

Remember that the spinor ηi describes three independent degrees of freedom. Its

normalization condition is invariant under

δηi = −iω ηi − iwFy εij η̄j and δη̄i = iω η̄i − iw̄ Fy εij ηj , (4.12)

where ω is real and w is complex. We are separating out a factor of Fy for convenience.

Focusing on the complex w parameter, we find induced transformations on G and Hy:

δG = φw̄Hy and δHy = −2φ−1F 2
y (wG+ w̄Ḡ) . (4.13)

These transformations can be identified, as in eleven dimensions [39], with a piece of the

Ω transformations. Letting z := i
4(ḠG)1/3Ḡ−1D2Ωy|, we find that

δG = G(ḠG)−1/3Hy z̄ and δHy = −2(ḠG)1/3Gyyz + h.c. (4.14)

Matching the δG transformations suggests the identification w = φ−1Ḡ(ḠG)−1/3z, and

matching δHy requires (using (3.12))

F̂ = (η̄2η2)−1/3 . (4.15)

Substituting this into (4.11), we find the cubic equation (3.14) in the form 3x = F̂2− F̂−1,

provided α = 12 in (4.11).

One important feature that we glossed over was why we should identify Fy as Ey
5.

The key point is that the Ω transformation of Fy has no z piece at lowest component, and

so Fy cannot be associated with the embedding. Since in this subsection, we stated our
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starting point was on-shell gauge-fixed 5D supergravity, there is no dynamical scalar field

to identify with Fy. The only possibility is that it should be identified with the radion Ey
5.

Now we have provided two complementary interpretations of the compensating multi-

plets. From the component perspective, they may be identified as descending from a partly

on-shell conventional 5D supergravity. From a superspace perspective, they correspond to

Stückelberg fields associated with the precise embedding of 5D, N = 1/2 superspace into

5D, N = 1 superspace.

5 Linearized action

At this point we have constructed S0 and S1 in the gravitino expansion (3.1) to all orders

in the remaining fields. Although it is essentially guaranteed by the component spectrum

and symmetries, we would like to verify that our procedure has given the correct action

by checking it explicitly. We could, for example, project the result to components and

compare to the known component action (e.g. [19]). Alternatively, we could compare

the linearization of our action to a linearized superspace action known to produce the

correct component result [23]. Since it is separately of interest to work out the linearized

superspace action (e.g. for quantization) and to understand how the Higgsed superfield

spectrum is reproduced correctly, we will make this comparison presently (cf. section 5.2).

But to do so, we first need the quadratic-in-gravitini action S2. For the comparison we

will be making, and to show the consistency of the extended superconformal symmetries,

a linearized approximation of this part of the action suffices, and we will construct it next.

We emphasize that up until now, we have kept the superspace measures for the y-

independent 4D, N = 1 conformal supergravity background geometry. In the remaining

sections, we will work to first order in fluctuations around this background. To reduce

cumbersome notation, we henceforth simply take the background to be five-dimensional

Minkowski space, but one could in principle consider any background satisfying the equa-

tions of motion.

5.1 Gravitino kinetic terms

As the volume action is a function of x ∼ H2
y (3.7), the “mass” term (∂yX)2 appearing

throughout transforms under superconformal transformations Lα (2.7d). The form of this

transformation is such that it can be canceled only by the δ−1 transformation (2.9) of the

combination 2iBy := Dα(GΨyα)−D̄ .
α(ḠΨ̄

.
α
y ) of the gravitino superfield. As such, we define

the combination

Ty := Hy +
1

2i

[
Dα(GΨyα)− D̄ .

α(ḠΨ̄
.
α
y )
]

(5.1)

and replace Hy → Ty in all actions constructed heretofore. To get the quadratic term of

the gravitino, we make this replacement in the volume term and expand in B:

(ḠG)1/3FyF(h)→ (ḠG)1/3FyF(h) +ByF
′(h) +

F′′(h)B2
y

2(ḠG)1/3Fy
+ . . . . (5.2)
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The first term gives back Svol, the second reproduces the GDF′ contribution of (3.11) to

S1 (3.9), and the third term gives our gravitino kinetic terms.

Similarly, expanding explicitly in the y-dependence of the conformal graviton, we en-

counter the “mass” term (∂yU
a)2, which, again, can only be covariantized, provided it

appears everywhere exclusively in the (∆, w, d, q) = (−1, 0, 0, 1) combination

2iXa
y := D̄

.
αΨα

y + DαΨ̄
.
α
y − ∂yUa . (5.3)

(Note that argument can be reversed to imply that the action can only depend on this

particular combination of D̄Ψ and its conjugate.) As with Hy, this term can only enter the

action as a square, which, by the charges of table 1, must be the charge-less combination

y := (ḠG)1/3
Xa
y ηabX

b
y

FyFy
(5.4)

where ηab is the 4D Minkowski metric. We can fix the coefficient of this term from 5D

Lorentz invariance [36]. In the superspace Lorentz gauge DαU
a = 0, the old-minimal

supergravity Lagrangian reduces to −Ua�Ua − 1
3ḠG, and we simply pick the coefficient

of X2 to match this [24, 36]. (The ḠG term is irrelevant to this argument.) In the

next section, we will linearize and combine the results to obtain a new formulation of the

quadratic superspace action for 5D, N = 1 supergravity.

5.2 Higgsed gravitino action

We will now linearize this formulation of 5D, N = 1 supergravity around a Minkowski

background. Specifically, we take X × Y and replace X → R4|4 with flat 4D, N = 1

superspace and Y → R.15

DA → eU 〈DA〉e−U with U = iUa∂a
X → 〈X〉+X with 〈X〉 = θ2

Φy → 〈Φ〉+ Φ with 〈Φ〉 = i

(5.5)

(We use the same symbols to avoid further complicating the notation.) The remaining

fields are taken to have vanishing background values. Note that this background breaks

q-charge (form degree on Y ) corresponding to fixing the internal frame 〈ey5〉 = 1.

In the quadratic approximation, the action S(2) =
∫
d5xL(2) is given in terms of the

Lagrangian that is the sum of the terms

κ2L
(2)
vol = κ2Lomsg[G,Ua]− 2

∫
d4θ [SFy + LVP ]

κ2L
(2)
CS = −1

4

∫
d2θ [3WαWα −WαWα] + h.c.

κ2L
(2)
ΨJ = − i

2

∫
d4θΨα [3Wα − iWα] + h.c.

κ2L
(2)
ΨΨ =

∫
d4θ

[
XyaX

a
y +

1

4
T 2
y

]
. (5.6)

15We choose this for clarity of exposition but more generally we could replace X with any y-independent

background that solves the curved 4D, N = 1 torsion constraints.
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The ingredients in the first line are as follows: Lomsg[G,Ua] is the linearized action of

old-minimal supergravity. It can be written in various forms, one of which is [38]

Lomsg =

∫
d4θ

{
− Ua�Ua +

1

8
D̄2UaD

2Ua +
1

48
([Dα, D̄ .

α]Ua)2 − (∂aU
a)2

+
2i

3
(G− Ḡ)∂aU

a − 1

3
ḠG

}
. (5.7)

(Note that it reduces as claimed in superspace Lorentz gauge DαU
a = 0⇒ D2Ua = 0.) The

remaining couplings are of the radion and KK field to scalar and pseudo-scalar combinations

S :=
1

2
(G+ Ḡ)− 1

4
[Dα, D̄ .

α]Ha ⇒ δS =
3

8

(
DαD̄2Lα + D̄ .

αD
2L̄

.
α
)

P :=
1

2i
(G− Ḡ)− 1

2
∂aH

a ⇒ δP =
i

8

(
DαD̄2Lα − D̄ .

αD
2L̄

.
α
) (5.8)

respectively. These are the real and imaginary parts of the linearized superframe determi-

nant G+ 1
2D̄

.
αDαH

a → 1
4DD̄

2L+ 1
2D̄D

2L̄.16

To understand the physics contained in the action S(2), we could project to compo-

nents, at least for the quadratic action. For the eleven-dimensional action, this was done

for the linearized action in [38] and for the complete bosonic scalar potential in [36]. In-

stead, we will relate S(2) to the known linearized supergravity action that was formulated

and projected to components in reference [23]. In that formulation, the extended super-

conformal symmetries Ξ and Ω are absent. The associated vectors (V and V ) and 2-form

(Σ) have Higgsed the gravitino to

Ψα := Ψα
y + Σα

y −Dα (Vy + iV ) . (5.9)

This Higgsed gravitino is invariant under Ξ and Ω but transforms under the (linearized)

non-abelian hierarchy symmetries (2.7) as

δΨα = 2i∂yL
α +DαΩ +

i

8
D̄2Dαu (5.10)

with Lα = Lα − i
2Υα and Ω = −1

2Λ. This is the transformation rule of [23, 25]; in

particular, the new Ω is chiral and Ξ has been replaced by D̄2Du. Indeed, rewriting S(2)

in terms of the Higgsed gravitino, we find after many cancellations that the Lagrangian

collapses to

κ2L(2) = κ2L(2)
omsg −

1

2

∫
d4θ

[
X2
a −

1

2
T 2 − 2iS(Φ− Φ̄)

]
, (5.11)

where now X and T are defined in terms of the Higgsed gravitino (5.9). This is the form

of the Lagrangian density found in [23]. Although the cancellations needed to recover this

form are non-trivial, the result was guaranteed since the gauge transformation (5.10) of

that reference was reproduced by the combination (5.9).

16These combinations of the compensator of old-minimal supergravity (n = −1/3) transform as the

compensators of new-minimal supergravity (n = 0) and virial supergravity [54–56], respectively.
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5.3 An alternative linearization

While we have successfully recovered the Lagrangian of [23], there is a curious point. The

construction of [23] was built around 4D old minimal supergravity as a starting point. It is

well-known that there is an alternative — 4D new minimal supergravity — and one might

have expected to be able to find a linearization of 5D, N = 1 supergravity built upon that.

This is all the more pressing, because linearized 4D, N = 2 supergravity (to which 5D,

N = 1 supergravity can be dimensionally reduced and then truncated) leads to a continuum

of actions when rewritten in N = 1 language [18]. This continuum is related to the vacuum

expectation value for the linear multiplet `ij with one particular limit corresponding to old

minimal supergravity and the other to new minimal. Equivalently, the two versions are

related to different ways of embedding 4D, N = 1 into 4D, N = 2. Based on the discussion

in section 4.1, the same should hold here.

Implicit in the analysis in sections 5.1 and 5.2 was the idea that G takes a VEV,

but Hy does not. This corresponds exactly to the choice for `ij that led to old minimal

supergravity in [18]. Instead, we shall now require the reverse: we let Hy take a VEV and

G not. For the original superspace action involving F(x), this corresponds to expanding

around x =∞. From the series expansion (3.16), one can show that

κ2Lvol = −3

∫
d4θ (GḠ)1/3FyF(x)

=

∫
d4θ

(
3

2
Hy log(Hy/Fy)− 2GḠ

F 3
y

H2
y

+ · · ·

)
(5.12)

where the infinite series of suppressed terms are higher order in G. The leading term

resembles the Lagrangian for new minimal supergravity where Hy is the tensor multiplet

compensator. This is apparent from the Lα transformation (2.8), which identifies Σα
y as

the tensor multiplet compensator in this case.

Let us now linearize. In section 5.2, we assumed 〈X〉 = θ2 and 〈Φ〉 = i, so it followed

that 〈G〉 = 1 and 〈Fy〉 = 1. From (4.11), the equivalent choice here, related to the prior

one by an SU(2)R rotation, should be 〈Hy〉 = 2 and 〈Fy〉 = 1. Linearizing about this

background, we find

κ2Lvol =
3

2

(
F − 1

2
H

)2

− 1

2
Ĝ ̂̄G . (5.13)

The linearized curvatures F and H are given simply by (2.6a) and (2.6c), but the linearized

chiral curvature Ĝ is slightly more complicated:

Ĝ := −1

4
D̄2(X + 2iV) = G− i

2
D̄2V . (5.14)

The Chern-Simons term is unchanged, but the gravitino supercurrent is a bit more involved,

as one must consistently work in the x→∞ limit.
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Including also the gravitational prepotential Ua, one finds the quadratic action S(2) =∫
d5xL(2) has a Lagrangian given as the sum of terms

κ2L
(2)
vol =

∫
d4θ

[
− Ua�Ua +

1

8
D̄2UaD

2Ua +
1

16
([Dα, D̄ .

α]Ua)2 − (∂aU
a)2

+
1

4
Hy[Dα, D̄α̇]Ua + 2V ∂y∂aU

a +
3

2

(
Fy −

1

2
Hy

)2

− 1

2
Ĝ ̂̄G] ,

κ2L
(2)
CS = −1

4

∫
d2θ

(
3WαWα −WαWα

)
+ h.c. ,

κ2L
(2)
ΨJ = − i

2

∫
d4θΨα

(
3Wα + iWα +

1

2
DαĜ

)
+ h.c. ,

κ2L
(2)
Ψ2 =

∫
d4θXyaXy

a . (5.15)

The first term L
(2)
vol includes the Lagrangian for new minimal supergravity involving

the supergravity prepotential Ua and tensor multiplet Hy, albeit with a slightly unusual

normalization of the tensor multiplet due to the non-standard background value 〈Hy〉 = 2.

The additional pieces, including V and the cross-terms between Fy and Hy are required for

gauge-invariance.

As before, we Higgs the gravitino, but this time only to remove the Ω transformation

Ψα := Ψα
y −Dα (Vy + iV ) . (5.16)

We cannot remove the Ξαy transformation as before, because Σα
y no longer transforms

under this symmetry (since 〈G〉 = 0). We similarly eliminate the Ω transformation of X

by defining

X := X − 2V , Hy :=
1

2i
(DαΣyα − D̄ .

αΣ̄
.
α
y )− ∂yX , G := −1

4
D̄2X . (5.17)

In terms of these quantities, the action reduces to

κ2L(2) = κ2L(2)
nmsg +

∫
d4θ

[
− 1

2
X2
a −

1

2
GḠ+

3

4
ΦyΦ̄y +

3i

4
X∂y(Φy − Φ̄y)

− 1

4
(iΨαDαG+ h.c.)

]
(5.18)

where L
(2)
nmsg is the new minimal supergravity action built from Ua and Hy. This action is

invariant under the gauge transformations

δΨα = Ξyα −
1

2
DαΛ + 2i∂yLα ,

δX =
1

2i
(DαΥα − D̄ .

αῩ
.
α) + i(Λ− Λ̄) ,

δΦy = ∂yΛ ,

δΣyα = −1

4
D̄2Dαu+ ∂yΥα + iD̄2Lα ,

δUα .
α = D̄ .

αLα −DαL̄ .
α . (5.19)
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6 Application: gravitational Chern-Simons term

At this point we have recast 5D, N = 1 supergravity in terms of superfields on what could

be described as 5D, N = 1/2 superspace. We then verified that it reduces correctly in the

linearized limit. This essentially un-gauge-fixes the formalism of [23] and non-linearizes it.

In this section, we will demonstrate how it can be used to study higher-derivative correc-

tions to the supergravity action by deriving the major part of the superspace expression for

the gravitational Chern-Simons term ∼
∫
A ∧ tr(R ∧ R). Here A stands for the gravipho-

ton and R for the curvature 2-form, so this is a purely gravitational version of the mixed

gauge/gravitational Chern-Simons term. We will be working with linearized invariants,

but the output of the procedure is in terms of field strengths, curvatures, and torsions. As

such, we expect the formal result to be valid beyond this order. (The understanding of

such terms—should they be present—will have to await the completion of the Kaluza-Klein

super-geometry alluded to in section 2.3.)

The supersymmetric completion of
∫
A ∧ tr(R ∧ R) was worked out in components

in [40], and embedded into conformal superspace in [13]. (Strictly speaking, what was

constructed there is the mixed gauge/gravitational Chern-Simons Lagrangian in which the

field A is part of a generic matter vector multiplet. In section 6.3, we will comment more

extensively on this point.) In principle, it should be possible to reduce the latter to N = 1/2

superspace by gauge fixing to a finite number of non-auxiliary superfields and performing

the harmonic integrals. In practice, however, it seems much easier to construct the required

composite field strengths directly, as even at the component level, the reduction from 5D

to 4D is non-trivial [19].

To demonstrate this approach, we will construct a specific class of terms that contribute

to the Chern-Simons term. Under the decomposition of SO(4, 1)→ SO(3, 1),

A ∧ tr(R ∧R)→ A ∧Rab ∧Rab + 2A ∧Ra 5 ∧Ra 5 . (6.1)

From the 4D point of view, these correspond to two different classes of terms, as each is

separately invariant under SO(3, 1) and the gauge transformation of A. In this section,

we consider the N = 1 supersymmetrization of the first term, since this is the most non-

trivial part to covariantize. (The second term can be integrated by parts (in the linearized

approximation) to F ∧ ωa 5 ∧Ra 5 and there seems to be no obstruction to realizing this as

a full superspace integral involving covariant 4D quantities.)

To this end, we start with the superspace form of the gravitational Chern-Simons action

SgCS =
∫
d4x

∫
Y LgCS . By gauge invariance, supersymmetry, and so forth, this action must

be identical in structure to that of the 2-derivative Chern-Simons Lagrangian (3.3), but

now with the composite 4-form {G,Hy} constructed in terms of the 4D, N = 1 curvature

tensor superfields and their analogs with one leg along Y . The reduced field strength of

the 4D, N = 1 Weyl tensor is the chiral field Wαβγ , so we expect G = WαβγWαβγ + · · · .
To be gauge invariant, the five-dimensional 4-form represented by {G,Hy} must be gauge

invariant and closed. That is, we seek a reduced 3-form field strength Hy quadratic in 5D

supergravity invariants that satisfies (2.5d).
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6.1 Linearized field strengths

The linearized invariants of 5D supergravity in N = 1/2 superspace were studied in [25].

A generating set is given as follows:17

Wαβγ =
i

8
D̄2D(α∂β

.
γUγ)

.
γ (6.2a)

Ga =
1

8
DβD̄2DβUa −

1

24
[D, D̄]a[D, D̄]bUb −

1

2
∂a∂

bUb −
i

3
∂a(G− Ḡ) (6.2b)

R = − 1

12
D̄2
(
Ḡ+ i∂aU

a
)

(6.2c)

F ′αβ y = 2D̄
.
βD(αXβ)

.
β y (6.2d)

λαy = 2D̄ .
αX

a
y −DαTy . (6.2e)

The first three invariants are the irreducible parts of the linearized super-Riemann ten-

sor [42–44]: Wαβγ contains the Weyl tensor, Ga contains the traceless part of the Ricci

tensor, and R contains the curvature scalar. In this linearized form, it is easy to check that

they satisfy the Bianchi identities

DγWαβγ = −1

2
D̄

.
βD(αGβ)

.
β (6.3a)

D̄
.
αGa = DαR ⇒ D̄2Ga = −4i∂aR . (6.3b)

In four dimensions, the equation of motion of the prepotential Ua is Ga = 0 and that of the

scale compensator is (R+ R̄) = 0, so on shell the only surviving components are the θ → 0

projections of Wαβγ and D(δWαβγ) corresponding to the field strengths of the helicity- 3
2

gravitino and the helicity-2 graviton, respectively. When lifted to five dimensions, both

equations of motion receive corrections so this conclusion is modified.

The remaining invariants are the gravitino multiplet’s field strength F ′αβ y and its equa-

tion of motion λαy . Other forms for the gravitino field strength are related to linear combina-

tions of this one and D(αλ
β)
y . The advantage of this combination is that it is complex-linear

D̄2F ′αβ y = 0. It is not difficult to verify that these satisfy18

D̄2F ′αβ y = 0 (6.4a)

DβD̄ .
αF
′
αβy = −8∂yGa +

1

6

(
DαD̄ .

α + 2D̄ .
αDα

) [
2Dαλαy − D̄ .

αλ̄
.
α
y

]
(6.4b)

D̄2D(αF
′
βγ)y = 32∂yWαβγ (6.4c)

D̄2Dαλαy = 48∂yR . (6.4d)

We note for use below that the complicated identity (6.4b) can also be written as

DβD̄ .
αF
′
αβy +

1

4
DαD̄

2λ̄ .
αy = −8∂yGa +

1

3
DαD̄ .

α

[
Dβλβy − 2D̄ .

βλ̄
.
β
y

]
− 1

3
D̄ .
αDα

[
D̄ .
βλ̄

.
β
y − 2Dβλβy

]
. (6.5)

17The normalizations of the first three superfields differ from [44], with Ga and R here equal to twice the

same quantities in [44], whereas Wαβγ differs by a factor of −2.
18This corrects some unfortunate typographical errors in [25]. (We also use weighted index symmetriza-

tions T((αβ··· )) = T(αβ··· ) instead of the unweighted ones of that reference.)
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In this form, the right-hand side is manifestly real. Explicitly,

DβD̄ .
αF
′
αβy + D̄

.
βDαF̄

′.
α

.
βy = −1

4
DαD̄

2λ̄ .
αy +

1

4
D̄ .
αD

2λαy . (6.6)

6.2 Curvature 4-form

Returning to the Chern-Simons form, we seek Hy such that D̄2Hy = 4∂yG where G contains

the term W 2
αβγ . Then, taking Hy = −1

4D
γF ′αβy Wαβγ + · · · would give the relation we want

by (6.4c), were it not for the fact that Hy is required to be real. Since this term is not, we

get additional terms from its conjugate that cannot be written as ∂yG for any chiral G. To

cancel these terms, we need to add a bilinear, specifically −1
8 F̄
′ .α

.
β

y DαD̄ .
βGa. But again this

is not real so we must add more terms to cancel those coming from the conjugate. The

process terminates because of the structure of the invariant: Hy is of the form ΘL ⊗ ΘR

where ΘL is one of F ′αβy or λαy or derivatives thereof and ΘR is one of Wαβγ , Ga, or R

and derivatives thereof. The terms can be organized in order of non-increasing helicity of

the reduced field strengths. At each step of the process of the computation of D̄2Hy, the

helicity decreases. The process terminates at the term 1
32D

2λαyDαR, because the complex

conjugate of this is linear (i.e. annihilated by D̄2). To carry this out, we repeatedly use

the Bianchi identities (6.3) and (6.4). In doing so, we find

G = WαβγWαβγ −
1

4
D̄2(GaGa) (6.7a)

Hy = −1

4
DγF ′αβy Wαβγ +

1

8
F ′αβy D̄

.
αDβGa +

1

8
D̄

.
αF ′αβy DβGa

+
1

24

(
DαD̄ .

α + 2D̄ .
αDα

)
Dβλβy G

a +
1

32
D2λαyDαR+ h.c. (6.7b)

We have presented the result in the form in which we originally found it, but there are

alternatives. For example, using (6.5), we can put H in the form

Hy = −1

4
DγF ′αβy Wαβγ +

1

8
F ′αβy D̄

.
αDβGa +

1

8
D̄

.
αF ′αβy DβGa +

1

32
D2λαyDαR+ h.c.

− ∂y(G2
a) +

1

8

(
DβD̄ .

αF
′
αβy +

1

4
DαD̄

2λ̄ .
αy

)
Ga . (6.8)

The coefficient of the ∂y(G
2
a) term is just so that it forms a cocycle with the D̄2(G2

a) term

in (6.7a). This implies that if we subtract the former from Hy, the latter will be removed

from G. Recalling (6.6), the remaining term is real, so we may redefine our form to

G′ = WαβγWαβγ (6.9a)

H′y = −1

4
DγF ′αβy Wαβγ +

1

8
F ′αβy D̄

.
αDβGa +

1

8
D̄

.
αF ′αβy DβGa

+
1

16

(
DβD̄ .

αF
′
αβy +

1

4
DαD̄

2λ̄ .
αy

)
Ga +

1

32
D2λαyDαR+ h.c. (6.9b)

In this form, H′y is manifestly real again. Another form in which it manifestly satisfies the

descent relation (2.5d) is

H′y = −1

4
DγF ′αβy Wαβγ + D̄ .

αZ̄
.
α
y with (6.10)

Z̄
.
α
y = −1

4
F̄ ′.β .

γyW̄
.
α

.
β
.
γ − 1

8
F ′αβyD

βGa +
1

8
DβF̄ ′

.
α

.
β

y Gb −
1

32
D2λαyG

a +
1

32
D̄2λ̄

.
α
y R̄ .
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The appearance of a trivial cocycle in (6.7) is characteristic of dimensional reduction

in superspace [16]. This suggests that the term we moved is necessary for five-dimensional

Lorentz invariance. (A perhaps related observation is that moving this term violates the

ΘL ⊗ ΘR rule as it requires ΘL ∼ ∂yG, which is not one of F ′y or λy.) Reintroducing the

Ricci-squared and scalar curvature-squared terms, there is a priori a 2-parameter family

of invariants (G(a,b),H(a,b)) with

G(a,b) = G′ − 1

4
D̄2(aGaGa + 2bR̄R)

H(a,b)
y = H′y − ∂y(aGaGa + 2bR̄R) . (6.11)

The difference between an action constructed from the primed invariants and the (a, b)

invariants can be rewritten as a covariant term (i.e. not Chern-Simons), as a superspace

integral of Fy(aG
aGa + 2bR̄R).

One cannot fix a and b by a purely N = 1 argument. One choice, involving a = b = 1

reproduces the 4D Gauss-Bonnet invariant (cf. e.g. section 5.6.5 of [43]) multiplying Fy,

but this is not the right answer in our case. Instead one can fix a and b by matching to 4D

truncation of [40], which suggests that the combination above must be chosen to reproduce

RabcdRabcd − 4
3RabR

ab + 1
6R

2. This corresponds to setting a = −1/3 and b = −1/12.

We emphasize that this is only that part of the full gravitational Chern-Simons invari-

ant that is the most non-trivial to construct in this partially on-shell superspace. Additional

covariant D-terms including, for example, FyF
′
αβyF

′αβy should be included to recover the

complete 5D, N = 1 invariant. Finding this would require either matching the most gen-

eral superspace expression to components or analyzing 5D Lorentz invariance at the 4D

superfield level.

6.3 Elaboration on the relation to previous work

We now pause to discuss the relation of our gravitational Chern-Simons invariant to known

invariants. To do so, we recall from section 4.1, that there are two formulations of con-

formal supergravity in five dimensions referred to as “standard Weyl” (4.1) and “dilaton-

Weyl” (6.12). What they have in common is the graviton, gravitino, and SU(2) gauge

field {ema, ψmαi, Vmij}. The standard Weyl multiplet further includes a real 2-form, a

spin-1/2 field, and a real scalar field {Tab, χαi, D} which are all auxiliary. By contrast,

the dilaton-Weyl multiplet [8, 53] (see also [57]) further includes a scalar, a gauge 1-form,

a gauge 2-form, and a spin-1/2 field {ϕ,Am, Bmn, λαi}. In other words, for the standard

Weyl multiplet (4.1), one may substitute the dilaton-Weyl multiplet

dW5 = {ema, ψmαi, Vmij , ϕ,Am, Bmn, λ
αi} . (6.12)

It can be obtained from the standard Weyl multiplet by coupling conformally to a vector

multiplet, computing the equations of motion of the latter, and defining the auxiliary fields

{Tab, χαi, D} in terms of the physical fields of the vector multiplet. (In the process, we solve

a Maxwell equation of the form ∂m(Tmn−∂[mAn])+· · · ∼ 0, so that a 2-form Bmn appears

as Tmn ∼ ∂[mAn] + εmn
pqr∂pBqr.) While this adds the 8 + 8 components of a vector mul-

tiplet, the equations of motion remove the same number of degrees of freedom, returning
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us to a (32 + 32)-component formulation. Any action involving the standard Weyl mul-

tiplet can be replaced with the dilaton-Weyl multiplet by substituting the auxiliary fields

{Tab, χαi, D} with appropriate combinations of field strengths of {ϕ,Am, Bmn, λαi} [53].

The converse is not true.

The invariant constructed in [40] is the mixed gauge/gravitational Chern-Simons action

∼
∫
A ∧ tr(R ∧ R) in which the field A is part of a generic matter vector multiplet. It

was constructed in the Poincaré supergravity in the standard Weyl formulation analogous

to ours. On the other hand, a purely gravitational Chern-Simons action in which A is

the graviphoton was constructed in the dilaton-Weyl formulation in [41]. (Details on the

difference and further developments can be found in [58, 59]). What we are sketching

in superspace in this paper is the purely gravitational invariant of the latter [41] in the

supergravity formulation of the former [40].

Two natural questions arise. The first is whether we can construct the mixed

gauge/gravitational invariant of [40]. We expect this to be trivial, provided we intro-

duce additional matter vector multiplets as in [26]. A more interesting question is whether

there is an analog of the purely gravitational Chern-Simons invariant of [53]. This would

appear to require the construction of a second 5D, N = 1/2 superspace that would be the

analog of the dilaton-Weyl formulation of Poincaré supergravity.

One might expect that the two different formulations could lead to different 5D, N =

1/2 formulations based upon either old minimal or new minimal supergravity. However,

this is not actually correct. As we have showed, the non-linear 5D, N = 1/2 formulation

we have introduced could be interpreted as either old minimal or new minimal, depending

on whether we choose G or Hy to possess non-vanishing vacuum values. This is because

the underlying full supergravity involves an isotriplet `ij , whose vacuum value is unfixed by

equations of motion. This suggests a more complicated mechanism is needed to describe

the dilaton-Weyl formulation, which in the linearized limit resembles neither old minimal

nor new minimal supergravity.

7 Conclusions and prospects

We have given a description of pure five-dimensional, N = 1 supergravity in terms of

four-dimensional, N = 1 superfields. More precisely, we are describing a 5D, N = 1/2

superspace in which half of the supersymmetry is manifest and, in particular, off-shell.

The remaining half of the five-dimensional supersymmetry is realized linearly but not

manifestly. The gravitino associated to this second half sits in its own unconstrained

superfield Ψα
i transforming as (3.10). To lowest order in this gravitino superfield (and

for y-independent conformal supergravity backgrounds — cf. section 2.3), the complete,

non-linear action is the sum of Chern-Simons term (3.3) and manifestly gauge-invariant

superspace volume term (3.5). Besides the expected 4D, N = 1 superspace volume density,

the latter has contributions from a Kähler function
√
g(F ) with Fy the field strength (2.6a),

and a non-linear function F of the tensor multiplets. This tensor potential function was

fixed exactly by the extended, non-manifest supersymmetries. We checked this action by

linearizing around flat space and recovering the known result [23]. Finally, we used the
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linearized supergeometry [25] to construct part of the gravitational Chern-Simons action

∼
∫
A ∧R ∧R in section 6 to cubic order in the fields of minimal 5D supergravity.

Let us highlight some noteworthy features of this construction:

1. There is a local conformal symmetry because of the splitting of the superspace into

X and Y parts. In particular, the physical superfields are superconformal primary

fields of the 4D, N = 1 conformal algebra.

2. The 4D, N = 1 supergravity theory our construction extends can be viewed alter-

natively as old minimal or new minimal supergravity depending on which of two

compensator fields takes a vacuum value. Viewed as old minimal supergravity, it is

actually a modified variant (a.k.a. 3-form supergravity) where the 3-form multiplet

plays the role of the conformal compensator [23, 25].19

3. It requires the full tensor hierarchy of differential p-forms with p = 0, . . . , 3 even

though only p = 0, 1 are physical.

4. In the linearized old minimal form, the gravitino superfield can eat all its compen-

sators in a Higgs-like mechanism collapsing the non-OMSG part to a sum of two

squares and a radion coupling [23].

There are many directions in which this work can be extended. Of course we could

now couple to matter multiplets in this superspace to study phenomena in which the

gravitational effects of such couplings are important (e.g. M-theory on Calabi-Yau 3-folds

and F-theory on elliptically-fibered G2 manifolds [61]). These matter fields could be either

5D or localized on lower-dimensional defects, as in [24] (or the 5D lift of the membrane [62]).

In the former case, one would like to understand the structure of the hyper-Kähler potential

and the gauge kinetic function in this superspace.

The discussion of the gravitational Chern-Simons form in section 6 can be extended

to D > 5 dimensions. (In fact, much of the analysis of this paper was motivated by

the desire to construct the supersymmetrization of the R4 terms in eleven-dimensional

supergravity.) This amounts to extending the derivative and all Y tensors ∂y → ∂i,

Hy→Hi, etc. for i = 1, · · · , D − 4 and continuing the construction of the closed 4-form

(G,Hy)→ (G,Hi,Wαij ,Fijk, · · · ). This requires a higher-dimensional analog of refer-

ence [25]. (The requisite analysis has been carried out and will be reported elsewhere.)

The second gravitino could be incorporated into the supergeometry. In such a de-

scription, it cannot appear explicitly so neither can the gravitino current (3.9). The only

additional explicit terms in the action would then be those involving the Xa
y invariant that

linearizes to (5.3). Such a construction can be carried out for any supergravity theory with

a 4D, N = 1 graviton and gravitino superfield, so we have chosen to present that formalism

in a separate publication.

19The linearization of this action has a hidden Sp(4;R) U-duality symmetry [60]. It would be interesting

to know whether this can be extended to the five-dimensional theory.
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A related line of inquiry concerns a better understanding of the tensor function F.20

It is the integral of a function that is the single-valued branch of a cubic equation (3.14).

The origin of this cubic equation was elucidated by considering how 5D, N = 1 superframe

reduces to N = 1/2 (4.7), but the analysis is also reminiscent of a non-linear supersym-

metry realization along the lines of [63]. Perhaps the equation (4.11) can be interpreted

as the lowest component of a non-linear constraint on a compensator superfield. Such an

interpretation may have far-reaching consequences for the construction of effective actions

similarly to those leading to Born-Infeld theory in superspace [63–66].

These last three points are related by the observation that the gravitational Chern-

Simons action is not invariant under the extended linearized supergravity transformations

because the graviphoton field shifts under (2.10). This is expected since higher-derivative

corrections to the supersymmetry transformations are known to be required, even in com-

pletely off-shell formulations (see [67] for an example already in higher-derivative Yang-Mills

theory). In the aforementioned covariant supergeometrical formulation, the 2-derivative

action must transform under the corrections so as to cancel the shift of the gravitational

Chern-Simons term. Assuming this can be done, the Chern-Simons term is still not ex-

pected to be invariant under the higher-derivative correction to the supersymmetry trans-

formations. This line of reasoning leads to ever-higher corrections to the supersymmetry

transformations and the action, just as it does in the familiar component analysis. However

as mentioned above, the form of the action is fixed by the off-shell part of the supersym-

metry to be an Xa
y -corrected version of that found in section 3. We do not currently have

an adequate understanding of how this tension is resolved, but (by analogy to the Witten

anomaly in 11D [68]) we expect that part of the solution involves a shift of the tensor hier-

archy field strengths by terms quadratic in the curvature tensor. A primary motivation for

constructing this 5D, N = 1/2 formalism is to use it to study this question in a simplified

(relative to 11D) framework.
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A Derivations

In this appendix, we provide some details of the derivation of the results in section 3. These

derivations follow those of reference [39] rather closely, so we will be schematic in places

where more rigor obscures the presentation. Specifically, we specialize to trivial 4D, N = 1

20It is somewhat remarkable that the “only” difference between this and eleven dimensions is that there

we find the reciprocal relation F̂5D ↔ 1/F̂11D. Explicitly, the eleven-dimensional version of (4.15) is

F̂11D = (η̄2η2)1/3.
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conformal supergravity backgrounds, and, throughout this calculation, we suppress the y

indices as well as spinor indices. Juxtaposed spinors are contracted with the suppressed

chiral indices up-to-down (DΨ = DαΨα) and down-to-up for antichiral (D̄Ψ̄ = D̄ .
αΨ̄

.
α).

The non-linear gravitino transformation (3.10) can be rewritten as21

δ0Ψα = Ξα + (ḠG)−1/3GDα(Ω̂ + iΩ̌) . (A.1)

There is a gauge-for-gauge symmetry

δΩ = φ̄ with D̄ .
αφ = 0 (A.2)

which played an important role in the eleven-dimensional theory. In this case it is less

powerful but it suffices to rule out a transformation of the form δΦ ∼ D̄2(Ω̄U) for some

U [39]. The transformation of the gravitino-current coupling that we will cancel is

δ0S1 =
1

κ2

∫
d5x

∫
d4θ

[
ΞJ + iDΩ̌(ḠG)−1/3GJ

]
+ h.c. (A.3)

(In particular, we will ignore the Ω̂ part; we can imagine that we are gauging away the KK

field (cf. section 5.2).)

To compute the transformations of the volume functional (3.5), it is convenient to first

rewrite it as

Svol = − 3

κ2

∫
d5x

∫
d4θ HH(h) with H(h) := h−1F(h)

⇒ δSvol = − 3

κ2

∫
d5x

∫
d4θ

[
δHH +HhH′δ log h

]
. (A.4)

For the Chern-Simons action, the variation is

κ2δLCS =
3i

4

∫
d2θ δΦWαWα + h.c. + 3

∫
d4θ δV ω(W,F ) . (A.5)

(That the “abelian” part just gives a factor of 3 follows from the fact that this action is

the superspace analog of
∫
AdAdA; we ignore the non-abelian correction.)

Next we compute the actual transformations of these terms. The field strengths (2.6)

satisfy δ0(anything) = 0 by definition, and transform under the extended supersymmetry

parameters

δ1F =
1

2i
(ΞW − Ξ̄W̄ )− ∂y(Ω̌F ) (A.6a)

δ1W = −1

4
D̄2D(Ω̌F )− (ΞW)W (A.6b)

δ1H = − 1

2i

[
D(GΞ)− D̄(ḠΞ̄)

]
− ∂y(Ω̌H) (A.6c)

δ1G = −1

4
D̄2(Ω̌H)−GΞW (A.6d)

δ1W = −1

4
D̄2DΩ̂ . (A.6e)

In the following two subsections, we will split up the calculation into the Ξ part and the

Ω part.

21The eleven-dimensional theory had a quadratic term WαΩ̄ but that is ruled out here by 5-charge.
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A.1 Invariance under Ξ: supercurrent

We compute for Ξ

δΞ log h =
i

2
F−1ΞW − 1

3
ΞW +

i

2
H−1D(GΞ) (A.7)

so that under Ξ the volume functional changes by

δΞSvol = − 3

κ2

∫
d5x

∫
d4θ

[
δΞHH +HhH′δΞ log h

]
(A.8)

= κ2

∫
d5x

∫
d4θΞ

[
−3i

2
WF−1HhH′ + WHhH′ +

3i

2
D(H + hH′)

]
= κ2

∫
d5x

∫
d4θΞ

[
(ḠG)1/3F̂

(
3i

2
W − FW

)
+

3i

2
GDF′

]
,

where we used that h2H′ = −F̂. The Chern-Simons action is Ξ-invariant since it is in-

dependent of Σ and the ΦW 2 term transforms into W 3 ≡ 0 (cf. (A.5)). Therefore, the

variation above must be canceled by the variation (A.3) of the gravitino-current coupling.

This fixes the current to

J =
3i

2
WF−1HhH′ −WHhH′ − 3i

2
D(H + hH′)

= −(ḠG)1/3

[
3i

2
W −WF

]
F̂ − 3i

2
GDF′

=

[
i

2
W

∂

∂F
−W

∂

∂ log(ḠG)
+
i

2
GD

∂

∂H

](
−3(ḠG)1/3FF

)
(A.9)

up to terms that are D̄ of some 4-vector with (∆, w, d, q) = (3, 0, 0, 0), as these are in the

kernel of the Ξ transformation. Studying currents made only from the tensor hierarchy

field strengths (for gauge invariance) and their covariant derivatives, one concludes that

there are no such correction terms.

A.2 Invariance under Ω

Now that we have the gravitino current, we can determine the unknown function G in the

Ω part of the gravitino transformation (3.10). We use the observation that under (A.6)

δΩ̌h = −Ω̌∂yh+

[
1

12G
D̄2Ω̌H +

1

6G
D̄Ω̌D̄H + h.c.

]
, (A.10)

where we have used (2.5d). From this, we obtain

δΩ̌Svol = − 3

κ2

∫
d5x

∫
d4θ

[
δΩ̌HH +HH′δΩ̌h

]
= − 3

κ2

∫
d5x

∫
d4θ

[
δΩ̌HH − Ω̌H∂yhH

′

+HH′
(

1

12G
D̄2Ω̌H +

1

6G
D̄Ω̌D̄H + h.c.

)]

= − 3

κ2

∫
d5x

∫
d4θ

1

12G
D̄(D̄Ω̌H2)hH′ + h.c.

=
1

4κ2

∫
d5x

∫
d4θ Ḡ−1H2DΩ̌D(hH′) + h.c. (A.11)
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In particular, the Ω̌ part (i.e. without derivatives) cancels, consistent with the observation

that such a term would not be invariant under the gauge-for-gauge symmetry (A.2). The

Chern-Simons term contributes

κ2δΩLCS = 3

∫
d4θ Ω̌F

[
WDF +

1

2
FDW + h.c.

]
=

3

2

∫
d4θ Ω̌D(F 2W ) + h.c. (A.12)

for a total of

δΩ̌S0 =
1

κ2

∫
d5x

∫
d4θDΩ̌

[
−3

2
F 2W +

1

4
Ḡ−1H2D(hH′) +O(W)

]
+ h.c. (A.13)

Comparing to the gravitino transformation (A.3) with the current given by (A.9), we find

−3

2
F 2W +

1

4
Ḡ−1H2D(hH′) +O(W) = −i(ḠG)−1/3GJ (A.14)

=

[
−3

2
W − iWF

]
GF̂ − 3

2
G(ḠG)−1/3GDF′ ,

whence we read off G = F̂−1F 2 and h2D(hH′) = −6F̂−1DF′.22 The coefficient of Dh of

this equation implies h3(hH′)′ = 6 log′ F̂. Note that the left-hand side scales like h while

the right-hand side scales like h−1. Using F = hH, F′ = H + hH′, F̂ = F − hF′ = −h2H′,

and F′′ = −h−1F̂′, we find that

hF̂(F̂ − hF̂′) =
α

2
F̂′ with α = 12 . (A.15)

Since F is really a function of h2, this is equivalent to (3.13) considered as a function of x.

The latter can be integrated to the form23(
1 + 3xF̂

)
F̂−3 − 1 = 0 , (A.16)

as is easily checked by differentiating and clearing negative powers. Thus, we obtain (3.14).

The principal branch is given by

F̂ =
22/3x+

(
1 +
√

1− 4x3
)2/3

21/3
(

1 +
√

1− 4x3
)1/3

= 1 + x− x3

3
+
x4

3
− 4x6

9
+

5x7

9
− 77x9

81
+

104x10

81
+O(x12) (A.17)

To find F from this, we must solve the defining equation (3.8). Had F̂ been convex, this

would just be the Legendre transform. Instead, we find the complicated solution plotted

in figure 2.

22This agrees with the result from 11D in which G is a Hermitian bi-linear form. Here the imaginary

anti-symmetric part is absent since there cannot be such a form in co-dimension 1. This also has the correct

limit 〈G〉 = 1.
23In eleven dimensions, the analogous equation is

(
1 + 3xF̂

)
F̂3 − 1 = 0. (Our x differs from that of [39]

by a factor of 12.)
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Figure 2. The single-valued branch of the function F̂(x) = F−2xF′ and F (choosing the integration

constant c1 = 0). The former is the positive definite one. The latter vanishes at x ≈ 1.06 before

running off to −∞ as −
√

3x log
√
x (cf. (3.16)).

We emphasize that the function F̂ and its integrated form F must be real for x ≥ 0,

as all non-negative values of x are physically permissible. The form given above is only

manifestly real for 4x3 ≤ 1. F̂ may equivalently be written

F̂ =
1

21/3

((
1− i

√
4x3 − 1

)1/3
+
(

1 + i
√

4x3 − 1
)1/3

)
(A.18)

which is manifestly real for 4x3 ≥ 1.
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