
Generalizing Domain Theory

Michael Mislove*

Tulane University, New Orleans, LA 70118, USA
e-mail: mmn$math, t u l a n e , edu

VCVC-W home page: http://wwg, math. tulane, edu/mislove, html

A b s t r a c t . Domain theory began in an attempt to provide mathemat-
ical models for high-level programming languages, an area where it has
proved to be particularly useful. It is perhaps the most widely-used
method for devising semantic models for such languages. This paper is a
survey of some generalizations of domain theory that have arisen in ef-
forts to solve related problems. In each case, a description is given of the
problem and of the solution generalizing domain theory it inspired. The
problems range from the relation of domain theory to other approaches
for providing semantic models, particularly in process algebra, to issues
surrounding the notion of a computational model, an approach inspired
by the recent work of Abbas Edalat.

1 T h e B a s i c s - H o w D o m a i n T h e o r y Began

This section is a brief outline of some of the "basic ingredients" of domain theory
and the applications that inspired them.

1.1 In the beginning.. .

Domain theory began in an a t tempt by DANA SCOTT to find mathematical
models for high-level programming languages. Upon his arrival in Oxford in the
mid 1960s, Scott found CHRISTOPHER STRACHEY and his colleagues at the Pro-
gramming Research Group using the untyped lambda calculus of Church and
Curry as a model for programming, something Scott found disturbing because
he regarded it as a "formal and unmotivated" notat ion (cf. [11]). He thus set out
to find alternative models for Strachey and his colleagues to use. Because pro-
grams can call other programs, and indeed, can even call themselves, Scott was
led to consider objects X in some category or other which satisfy the property
that they contain a copy of their space of selfmaps in the category. Of course,
Cantor 's Lemma implies the only such objects in the category of sets and func-
tions are degenerate (i.e., they consist of a single point), and so no such objects
can be found there. But the reals have only as many continuous selfmaps as
there are real numbers (because of their having a dense, countable subset on
which all continuous selfmaps are completely determined), so it is potentially

* This work partially supported by the US Office of Naval Research

possible to find such objects X among topological spaces. While at tempting to
find appropriate models of partially defined maps, Scott realized there had to
be To spaces isomorphic to their space of continuous selfmaps, and he then con-
structed such an object in the category of algebraic lattices and so-called Scott
continuous maps.

In the years since Scott constructed the first model of the untyped lambda
calculus, the nature of the construction has become much bet ter understood,
and it now is realized that very little of the machinery that is available in the
category of algebraic lattices and Scott continuous maps actually is necessary
for the construction. In fact, it now is understood that only directed complete
partial orders are needed to carry out the construction. Remarkably, despite this
much bet ter understanding, the only known models of the calculus are within the
category of such partial orders and Scott continuous functions. We now describe
this setting.

1.2 Directed Complete Partial Orders

Let's switch gears for a moment, and consider what we need to model a recursive
process. If we are working within some language - let's not worry about typing
issues - and we are confronted with a term r e c x.f(x) , then the operational rule
which allows us to understand this process is given by

r e c x.f(x) ~ f [(r e c x.f(x))/x].

This unwinding of recursion allows us to deduce that the recursive process
r e c x. f (x) actually should be a fixed point for the body of the recursion. In
any case, if we are to model programs as functions, then the unwinding rule tells
us the functions we are interested in must have fixed points. In fact, it would
be nice if those fixed points were canonical in some sense, so that their choice is
not arbitrary. This is what domain theory offers us.

To begin, a partial order (or poset) is a non-empty set P equipped with a
reflexive, symmetric and transitive relation, usually denoted _. A simple example
is to take any non-empty set X and equip it with the discrete order, where
x E Y r x = y. A subset D C_ P of such a set is directed if every finite subset of
D has an upper bound in D. In our example, the only directed subsets are the
singleton sets. Finally, a partial order P is directed complete if every directed
subset has a least upper bound in P. These are called dcpos. Clearly, discrete
orders satisfy this condition, since the only directed subsets are singleton sets.
A directed complete partial order which has a least element _1_ (i.e., one which
is below all other elements) is sometimes called a cpo.

What is important about cpos is that monotone 1 selfmaps have least fixed
points:

T h e o r e m 1 (Ta r sk i) . A monotone mapping f: P --~ P of a cpo has a least
fixed point, namely,

FIX f = I Ic~EOrdf(~(-L). 17

I A m a p f : P ~ Q i s m o n o t o n e i f x E y ~ f(x) C_f(y).

(Here, Ord stands for the class of ordinals.) Thus, a good place to seek models
for recursion is within the category of cpos and monotone mappings. But, if we
require our functions to preserve sups of directed sets, we can do better.

D e f i n i t i o n 1. A mapping f: P -+ Q between dcpos is Scott continuous if f is
monotone 2 and f preserves sups of directed sets:

(VD _C P directed) f (UD) = Uf(D).

C o r o l l a r y 1 (S c o t t) , A Scott continuous selfmap f: P -+ P on a cpo has its
least fixed point given by

FIX f = Un~N fn(-l-). []

The category of directed complete partial orders and Scott continuous maps
has many desirable properties - it is Cartesian closed, for example. We denote
the family of continuous maps between (d)cpos P and Q by [P --+ Q]; this space
becomes a dcpo when endowed with the pointwise order, in which

f E g r f (x) E g(x) (Vx E P).

The full subcategory whose objects are cpos also is Cartesian closed, and it is
within these categories where one can find ample support for constructing de-
notational models of programming languages. We even can conclude more here.
Since the least fixed point of a monotone or continuous selfmap always exists,
assigning it as the meaning of a recursive process is in some sense canonical. In
fact,

T h e o r e m 2. The least fixed point operator Y: [P -+ P] ~ P by Y f = FIX f is
continuous. []

The implication here is tha t one has continuous fixed point operators of all
orders, so modeling recursion at higher types can be done in the same way it is
at the start. There is even a transfer principle available; it tells us tha t "fixed
points are preserved" by certain operators:

P r o p o s i t i o n 1. Let f: P --~ P and g: Q --r Q be continuous selfmaps of cpos P
and Q, and let h: P --+ Q also be a continuous strict 3 map satisfying goh = ho f .
Then FIX g = h(FIX f) . []

The categories DCP0 and CP0 of directed complete partial orders (with
least element in the second case) and Scott continuous maps thus enjoy several
appealing properties. In addition to Cartesian closure, they also axe closed un-
der (arbitrary) products and direct sums. In addition, there is a closely-related
adjunction. If CP0! denotes the category of cpos and strict Scott continuous
maps, then the forgetful functor into DCPO has the lift functor as left adjoint;
this functor adds a (new) least element to a dcpo P and extends a continuous
mapping to the lifted domains to be strict.

2 This hypothesis is simply to guarantee that the image of a directed set in P is
directed in Q.
By strict, we mean h takes the least element of P to the least element of Q.

1.3 T h e Myhill-Sheperdson Theorem

The results described so far make an appealing, if somewhat abstract case for
using domain theory to build models for programming languages - well, at least
for modeling recursion. We now describe a result which puts more substance to
this claim.

Perhaps the most natural place to start to model programs is over the natural
numbers. In order to invoke a domain-theoretic setting, we can endow N with
the discrete order, and clearly we have a dcpo. Our interest is in using domain
theory to model computable functions. Functions on N are mappings f : N -+ N,
so we want to start with the cpo [N -~ l~. This is not quite right, either. Church's
thesis says the partial recursives axe the computable functions, and so we should
consider partial mappings f : N ~ N. Now, the family of such mappings - IN ~
- is a cpo under the extensional ordering:

f _ g r d o m f C_ domg & g]dom f = f .

Here, a directed family of partial mappings has for its supremum the union of the
family. Two convenient facts are that any function from N to itself is monotone -
even continuous - with respect to the discrete order, and the extensional order on
the space of mappings between two discretely ordered sets is in fact the pointwise
order. Thus, the partial mappings on N with the extensional order are just the
partial mappings endowed with the pointwise order from the discrete order on
N.

But how do we distinguish the partial recursives from arbi t rary partial Self-
maps of N?. A simple and very well-worn example shows how. Consider the
factorial function

{ i n if n = 0 ,
Fac(n) = �9 Fac(n - 1) otherwise.

This leads us to define a functional F: [N ~ l~ ~ [N ~ N] by

1 if m = 0
F (f) (m) = m . f (m - 1) i f m > 0 & f (m - 1) defined.

It is easy to show that this functional is continuous (it only needs to preserve
increasing unions of partial functions), and that its least fixed point is the fac-
torial. What is harder is the fact tha t the effective structure (in the sense of
recursion theory) on N can be extended to one on IN -~ N] -~ IN ~ I~ (using
ideas from the next section - see [26] for details), and F can be shown to be
effective with respect to this structure. This means F ' s restriction to the partial
recursives leaves them invariant; i.e., F(g) is partial recursive if g is. If we let
[N ~ N]k denote the computable mappings on the natural numbers (i.e., the
partial recursives), the following says every partial recursive arises exactly in
this way:

Theorem 3 (M y h i l l - S h e p e r d s o n) . The effective operators on [N ---" ~ k are
exactly the restrictions of the the effective continuous functionals G: [N ~ N] --+
IN to IN r k. []

1.4 Algebraicity and Continuity

A second component of domain theory - apart from the ease with which one can
model recursion - is that of approximation. The idea is illustrated by the Myhill-
Sheperdson Theorem. For any continuous functional G: [N ---" ~ -+ [N ---" N],
the least fixed point FIX G = UneN Gn(@), since @ is the least partial function.
In the case of G is effective, Gn(@) is a finite function. The finite functions play
a special role in [N ---" N]: they are the compact elements.

Definit ion 2. An element k E P in a dcpo is compact if k E UD implies
(3d E D) k E d for all directed subsets D C_ P. The set of compact elements of
P is denoted K(P) , and, for each x E P the set of compact elements below x is
denoted K(x) .

Lastly, P is algebraic if K(x) is directed and x = UK(x) for every x �9 P.

Since any partial mapping f: 5/---" bl satisfies

f = II{ylx I X C_ dom f finite},

[N ~ N] is algebraic.
The compact elements of an algebraic dcpo completely determine the dcpo,

since each element of the dcpo is the directed supremum of the compact elements
below it. This association can be made more precise. Indeed, if we call a subset
I C_ Q of a partially ordered set an ideal if I = $ I is a lower set which also is
directed, then we have the association x ~-~ K(x): P -+ IdlK(P) which sends each
element of P to the ideal of compact elements below it. This association is an
isomorphism, where the inverse mapping simply sends an ideal to its supremum
(which exists because P is a dcpo). Hence, P ~ IdlK(P) for each algebraic
dcpo P. This gives rise. to an adjunction between the category At.G of algebraic
dcpos and Scott continuous maps and the category POS of posets and monotone
mappings. The right adjoint is the forgetful functor from AI_G to PO$, and the
left adjoint is the ideal functor, which sends a partially ordered set to its family
of ideals ordered under inclusion. One of the important consequences of this
adjunction is that each continuous mapping f: P --+ Q between algebraic dcpos
is completely determined by the restriction of f to the compact elements of
P, and, conversely, each monotone mapping f: K(P) -+ Q from the compact
elements of P to any dcpo Q extends to a unique continuous map from P to Q.

All of this has an important extension. The motivating example is the unit
interval, which has 0 as its only compact element. Yet there is a clear notion of
approximation here: if x < y, then for a directed set to have its supremum above
y, some element of the directed set must be above x.

Definition 3. The elements x, y E P in a depo satisfy x << y (read "x is
relatively compact in y ') if y E liD implies there is some d E D with x E d,
for all directed subsets D of P. The set of elements relatively compact in y is
denoted ~ y, and the depo P is called continuous if ~ y is directed and y = li ~ y
or all y E P.

An adjunction similar to the one between ALG and POS is available for
continuous dcpos. It involves the notion of an abstract basis originally due to
SMYTH [21].

Defini t ion 4. An abstract basis is a non-empty set X equipped with a transitive
relation -~ which satisfies the interpolation property:

(VyEX) (VMCXf in i t e) M - ~ y =~ (3 x e X) M - ~ x - ~ y .

A function f: X --~ Y between abstract bases is ideal if x -~ y in X implies that
{z �9 Y Iz f(x)} c {z �9 Q I z f(y)}.

For example, in any continuous dcpo P, the pair (P, <<) is an abstract basis. Any
abstract basis satisfies the property that the family of ideals (defined just as in
the partially ordered set case) is a continuous dcpo under the inclusion order.
The notion of an ideal mapping is designed precisely to capture those functions
between abstract bases which extend to continuous mappings between their ideal
completions. The following result generalizes the situation for algebraic domains.

T h e o r e m 4 ([17]). The functor which associates to a continuous dcpo P the
abstract basis (P, (<) and to a continuous mapping f: P -~ Q the ideal mapping
f (I) = {y �9 Q [(3z �9 I) y << f(z)} is right adjoint to the ideal functor which
associates to an abstract basis its ideal completion and to an ideal mapping the
associated continuous mapping on the space of ideals. []

Notes: This completes our rather cursory outline of domain theory. We have left
out far more than we have included, but our intention is to provide only the
barest of introductions to motivate the generalizations that we describe below.

We have not made specific reference to any result. Except for the last results
on continuous dcpos (which can be found in [2] for the most part), most of this is
folklore now, and can be found in many places. Again, [2] is an excellent source
for referencing most of these results. The last theorem, however, appears only in
[17]. A survey of a number of the ideas presented here can be found in [18].

2 C o n t i n u o u s P o s e t s

A rather successful approach to modeling concurrent computation was devised
by the members of the Programming Research Group at Oxford using the lan-
guage CSP. We briefly outline this approach below, with an eye toward finding
the relationship between the CSP models and more standard ones from domain
theory. In endeavoring to understand this relationship, it became clear that one
of the fundamental principles of domain theory had to be relaxed in order to
describe the CSP models in purely domain-theoretic terms. That fundamental
property of dcpos is that they are directed complete: all directed subsets have
least upper bounds. This property is crucial in assuring that all continuous self-
maps have (least) fixed points. But it turns out that describing the CSP models
in domain-theoretic terms requires relaxing this condition in order to relate the
models to the world of domains. The model we focus on for this discussion is the
failures model for CSP, which we now describe.

2.1 CSP and the Failures Mode l

CSP is a process algebra for reasoning about concurrent processes. It was origi-
nally devised by C. A. R. HOARE and the first, definitive model for the language
was presented in [3]. This is the so-called failures model, which models a process
in terms of the communication events it can participate in (the traces of the
process) together with the events it may refuse to participate in after a given
trace (the so-called refusals). A syntax for CSP suitable for our purposes is given
by the following BNF-like production rules:

P ::= S T O P I SKIP I a ~ P I P \ a [P ; P I PAHBP I P[:]P I P [3 P I x I~tx.P

In this syntax, S T O P denotes immediate abnormal termination, while SKIP
denotes immediate normal termination. The actions a range over a set ~ of
atomic actions which denote communication events between processes; a -~ P
is a process which first wishes to participate in the action a and then to act like
process P. P \ a is the process P with all occurrences of the action a hidden
from the environment (but they still occur, and as soon as they are offered).
P ; P is the sequential composition of the two component processes; PAIIBP is
the process which has the two components synchronize on all actions in A n B
(A, B c_ ~) , but either branch is free to perform actions not in the intersection
whenever it wishes. P D P is the external choice of the two processes, in which
the environment is allowed to decide which branch will be chosen on the first
action only, while P N P is the internal choice of the branches, in which the
machine decides. The term x denotes a process variable, and the last term is
recursion.

The failures model for CSP as presented, e.g., in [3] gives a model for this
language based of pairs (s, X) , where s E Z* U~*x/ i s a finite sequence of actions,
possibly ending in the normal termination event ~ / r E , and X C_ E is a set of
re]usals - events which the process may refuse to participate in after execution of
s. The second component is needed in the model in order to distinguish internal
and external choice. The failures model 9~M interprets each process as a set
of such pairs, and the sets F that qualify to represent a process in CSP must
satisfy the following conditions:

1. 0 ~ F .
2. (s, X) E F and t a prefix of s imply (t, 0) E F .
3. (s ,X) E F and Y C_ X imply (s,Y) E F.
4. (s ,X) E F and (s(c),O) ~ F for all c E Y C_ A finite imply (s, X U Y) E F.

The sets satisfying these conditions are called the]allures model for CSP; it is
shown in [3] that they form a complete inf-semilattice. This structure is used
as the basis for showing this family of sets can be endowed with operations
corresponding to each of the CSP operators. This allows an interpretation of
CSP in the set of subsets of (~* U ~*v~ • • (Z) satisfying 1) - 4) - i.e., it
provides the ingredients to show the family 9rf14 is a denotational model for
CSP.

The order on the failures model is reverse containment on sets. So, the smaller
the set, the higher it is in the order. Because the inf-operation is used to model
nondeterminism, the order on the model is the order of nondeterminism - the
higher a set, the more deterministic the process it represents. In fact, the maximal
elements of the model are the deterministic processes. These have the property
that they cannot be refined by any other process.

The order on the model also is used to model recursion, just as in the case
of cpos. All the operators from CSP are modeled by operations on the model
tha t are continuous with respect to reverse inclusion, and so Scott 's corollary to
Tarski's Theorem implies that each of the recursive processes can be modeled as
the least fixed point of a continuous operator on the model.

2.2 T h e Failures M o d e l as Closed Sets

All of the above indicates tha t the failures model is a cpo (the least element
of the model is the set CHAOS = {(s ,X) I s E E* U E 'x /&~ X C Z}). But
the construction is far from "standard", and it is unclear what relationship this
model has to languages other than CSP. The work in [15] resulted from an effort
to bet ter understand this relationship. The analysis relies on a closer scrutiny of
the properties tha t define failures sets.

The first three conditions imply that the sets F that qualify as process mean-
ings are lower sets from some related partial order, and it was this idea that led
to a realization that the conditions listed actually describe certain closed sets
from a partial order. By closed, we mean closed with respect to the Scott topol-
ogy, which we now define. But notice that we relax the situation somewhat,
and consider any partial order, not just ones that are directed complete. This
is because the partial order tha t gives rise to the failures model is not directed
complete.

Def in i t i on 5. Let P be a partially ordered set. A subset U C_ P is Scott open if

1. U = t U = {Y e P i (3x E U) x E y} is an upper set in P, and
2. UD e U ~ D n U ~ 0 for all directed subsets D of P.

It is routine to show that the Scott open sets on any partial order are closed
under finite intersections and arbitrary unions, so they do indeed form a topology.
This topology is always To, which means distinct points can be separated by
some open set (containing exactly one of them), but the topology is Hausdorff
if and only if the partial order is the discrete order. What is more, the functions
we defined earlier as being Scott continuous are in fact exactly those that are
continuous with respect to this topology.

The Scott closed sets are those whose complements are Scott open, and since
we have a description of the latter, we can derive the following characterization
of the former.

P r o p o s i t i o n 2. X C_ P is Scott closed if and only if

1. X =$ X is a lower set in P, and

2. D C X directed implies UD E X . []

Notice that a corollary of this result is that the closure of a point x E P is $ x, the
principal lower set x defines. This is what makes Scott-closed sets an appealing
model for concurrent computation - in the traces setting, they naturally include
the history of a process since they are lower sets.

As with any topological space, the family of Scott closed sets forms a complete
Brouwerian lattice under containment (cf. [11]). But in the case of an algebraic
or continuous poset 4, we can say a lot more. Indeed, in this case, the family
of Scott-closed sets forms a completely distributive, hence continuous lattice.
If the underlying poset P is algebraic, then the family of Scott-closed sets is
in fact completely distributive and algebraic, which in turn imply it forms a
complete ring o/sets. Finally, the relation X << Y on the family of Scott-closed
sets is completely determined by that of P , and the compact elements in the
Scott-closed sets are exactly the closed sets generated by finite sets of compact
elements of P.

In particular, the family of non-empty Scott-closed subsets of a continuous
(resp., algebraic) dcpo is a continuous (resp., algebraic) dcpo semilattice (under
union) whose relative compactness relation << is completely determined by that
of the underlying poset. Moreover, in the case P is algebraic, this family is an
algebraic dcpo under reverse containment as well, and the compact elements
here are the sets of the form P \ (I"F) as F C_ K(P) ranges over the non-empty
finite sets of compact elements of P.

What all this has to do with CSP and the failures model is explained by the
following:

Example 1. Consider the set PF = {(s, X) I s E S* LI S*~/ ~ X C_ S} . We
define a partial order of PF by

(s ,X) U_(t,Y) r (s < t & X = O) V (s = t & X C _ Y) .

It is routine to show this is a partial order, and it also is easy to see that the
pairs (s, X) with X finite are compact in this order. Hence PF is an algebraic
poset.

Theor e m 5 ([15]). The failures model consists of Scott-closed sets from the
algebraic poset PF, and this family is closed in the family of all Scott-closed
sets under filtered intersections. Each of the operators from CSP gives rise to
an operation on all the Scott-closed sets that is continuous with respect to usual
containment, and all but the hiding operator give rise to operations that are
continuous with respect reverse containment. [3

The point to note here is that it is the hiding operator that "causes all the
problems" with the failures model. More to the point, the approach adopted with

4 By a continuous poset we mean a partial order P in which ~ y is directed and
y = t_l ~y for all y E P; P is an algebraic poser if K(y) is directed and y = l_tK(y)
for all y E P. The point is that we no longer require P to be directed complete.

10

the failures model was to use the order of nondeterminism to model a certain type
of partial correctness - namely, that deadlock or divergence is catastrophic. That
decision required a model in which all the operators are continuous with respect
to reverse set containment, and since hiding is the only operation which doesn't
satisfy this property on all Scott-closed sets, it is the reason for the condition
4) in the definition of the sets that comprise the model. In other words, if one
were to seek a model for CSP without hiding, then all the Scott closed sets of
the poset PF could be used.

3 L o c a l C p o s

From the outset, computation has viewed sequential composition as the "most
primitive" operation. When the issue of modeling concurrent computation arose,
the reaction was to devise models for nondeterminism using subset-like construc-
tions, and then to model parallel composition in terms of sequential composition
and nondeterministic choice. As described in [12], three distinct models for non-
deterministic choice emerged in domain theory - the so-called power domains.
These three constructs were first defined in terms of ideal completions of three
distinct orders that can be defined on the finite subsets of the set K (P) of com-
pact elements of the underlying domain P. This works for any algebraic dcpo,
but more restrictive domains allow for alternative descriptions of these construc-
tions. As described in [22], coherent domains (i.e., those algebraic cpos for which
the intersection of any finite family of Scott compact upper sets is again com-
pact in the Scott topology) allow the three power domains to be described in
completely topological terms:

- The lower power domain is the family of non-empty Scott-closed subsets of
the underlying domain equipped with the usual order, and with union as
the nondeterministic choice operation. This family is the free sup-semilatiice
cpo over P.

- the upper power domain is the family of non-empty Scott compact upper sets
from P, again with union as the operation, but this time under the reverse
containment order. This family is the free inf-semilattice cpo over P.

- the convex power domain is the family of non-empty order-convex subsets
X = $ X A S X of P whose lower set SX is Scott closed and whose upper set
j~X is Scott compact. The operation is the convex hull of the union:,

(X, Y) ~ $ (X U Y) O $ (X U Y),

and the order is the Egli-Milner order:

X G Y r X c _ $ Y & Y C _ ' t X .

This family is the free semilattice cpo over P.

Each of these constructions produces a coherent domain from an underlying
coherent domain; these are the more-or-less standard constructions for modeling

1]

nondeterministic choice within domain theory. Each construct allows operations
(such as sequential composition) defined on the underlying domain P to be
extended to the power domain. But, these extended operations all distribute over
the nondeterministic choice operation, and so modeling bisimulation requires the
additional step of solving a domain equation defined in terms of the convex power
domain (cf. [1]).

All of the above applies to bounded nondeterminism, but unbounded non-
determinism also is useful, especially for specification. For example, consider a
process-algebraic setting in which one wants to specify a process that can par-
ticipate in any finite number of a given action, say a, but which is not supposed
to participate in infinitely many a's. This requires distinguishing the process
nneN (a "~ -~ STOP) from the process (nneN (a n -~ STOP)) ~ a ~176 But, these
two processes must be identified in any of the models described above, and so
we have to generalize domain theory and power domains in order to allow these
processes to be distinguished.

In [24], an approach to modeling unbounded nondeterminism in CSP was
presented. This approach added a new component to the meaning of each pro-
cess - the infinite traces that a process could execute. By actually listing these
traces, it became possible to distinguish a process that could execute an infinite
trace from one which couldn't. But the resulting model was no longer a dcpo.
Moreover, some selfmaps of the model no longer were continuous, and some of
those that were didn't have any fixed points, let alone least ones. The point is
tha t the new model was not a dcpo. The question then became how to make
sure all the processes that could be meanings of recursive CSP processes in this
setting actually had well-defined meanings. In other words, the question became
one of how to assure that the recursive terms from CSP had meanings given by
least fixed points in this new model.

The solution that was found was quite inventive. It amounted to using the fact
tha t the model U for unbounded nondeterminism naturally contained a model
for CSP with bounded nondeterminism - i.e., a copy of the failures-divergences
model 5rD [4]. This was obtained by sending each CSP process to its meaning
in ~'D together with those infinite traces tha t the process could execute, and
this gave an embedding of 5rD within/~ "at the top": any element of U is the
infimum of those elements in $ 'D that are above it. This provided a cpo "at the
top" of L/, which in turn proved crucial for deriving the results tha t were needed
to show that L/actual ly could serve as a model for unbounded nondeterminism
in CSP.

The heart of the proof presented in [24] amounts to showing tha t each of the
operations on /g from CSP has a corresponding operation on Y D from CSP with
bounded nondeterminism that "dominates" it in the pointwise order. In terms
of selfmaps of the model, the dominating operation leaves Y D invariant (as it
sits in U). As a result, each term from CSP with bounded nondeterminism has
a least fixed point on this submodel, and this fixed point is a pre-fixed point for
any corresponding term on U that is dominated by the original te rm from CSP.
But a pre-fixed point for a monotone mapping is all that is necessary to assure

12

the mapping has a least fixed point provided each element of the model satisfies
the property that its lower set is a cpo. This indeed is the case, and this is how
it is shown that each term from CSP with unbounded nondeterminism actually
has a least fixed point on/4. We now present a more general description of these
results that also is more precise.

Inspired by the work in [24] and by related work in [25] on unbounded non-
determinism for Timed CSP, an effort was made to find an underlying math-
ematical principle for the results that were obtained in these two papers. The
resulting principle turned out to be remarkably simple. It hinged on two main
ideas:

- the notion of a local cpo, and
- a dominated fixed point theorem.

Defini t ion 6. A partial order P is a local cpo i f J~x is a cpo for each x E P.

Clearly any cpo is a local cpo, but there are local cpos which are not directed
complete. For example, consider (N, <) the natural numbers in the usual order
- the lower set of each point is finite, but N has no upper bound. This is not
exactly the example we have in mind for modeling unbounded nondeterminism,
however.

The dominated fixed point theorem can then be stated as follows:

T h e o r e m 6 (Domina ted Fixed Point T h e o r e m [19]). Let P be a local cpo
and E a space for which there is a mapping ~: E -+ P. Suppose that f : P --~ P is
monotone and satisfies the property that there is some mapping F: E --+ E with
f o L E_ ~ o F. I f F has a fixed point in E , then f has a least fixed point in P. []

The proof of this result is straightforward. One only has to note that a fixed
point x = F(x) for F satisfies ~(x) is a pre-fixed point for f: f (~(x)) E ~(F(x)) =
L(x) by the hypothesis of the Theorem. Thus, f : Sx --+$x, and this set is a cpo
as P is a local cpo. Hence f has a least fixed point by Tarski's Theorem.

In [19] it is shown how this result provides the common mathematical under-
pinning for the models for unbounded nondeterminism in Timed and untimed
CSP. In the former case, the space E is one of the metric space models for Timed
CSP with bounded nondeterminism devised by REED and ROSCOE [23], and in
the later, the space E is the failures-divergences model for untimed CSP with
bounded nondeterminism. One result of [19] was the internalization of the fixed
point theory for recursive process meanings in each model; in the first approach
devised by Roscoe for untimed CSP, an operational model for unbounded non-
determinism and a congruence theorem were used to justify the existence of
meanings for each recursive process; of course, this still is needed to validate
that the fixed point meanings defined in the model are the operationally correct
ones. Another result of [19] was the realization that the work done in [24] to
show that each process meaning in the model is the infimum of meanings in that
lie in the subspace E (which is a cpo) is not needed. It is enough to know that
each mapping for which a least fixed point is required has a dominating mapping
on E in the sense of the Dominated Fixed Point Theorem.

13

As outlined above, for coherent domains, the three power domains are each
describable in topological terms. But more generally, they can be defined for
any algebraic dcpo in terms of the family of non-empty finite subsets of the
set of compact elements of the underlying dcpo. For example, the lower power
domain is the ideal completion of the family of non-empty subsets of K (P)
under the quasiorder F _ G r F C_$ G. Similarly, the upper power domain
is the ideal completion of the same family, but endowed with the quasiorder
F _ G r162 G C_tF. In both of these cases, union defines a monotone operation
which extends to the ideal completions to define the meaning of nondeterministic
choice. Finally, the convex power domain is the ideal completion of the same
family, this time ordered by the common refinement of these two quasiorders.

In [16], an attempt was made to develop a general theory for modeling un-
bounded nondeterminism in a domain-theoretic setting based on the results just
described. In fact, the goal of that work was to devise analogues for each of the
power domains for unbounded nondeterminism. The point of departure was the
assumption that the underlying model for sequential composition - P - embeds
in the model for unbounded nondeterminism so that elements of P are "free"
with respect to unbounded nondeterminism. More precisely, the underlying as-
sumption is that a ~ RX if a r $ X for any subset X C P. This assumption is
what is required if one wants to distinguish processes such as RneN (a n ~ S T O P)
from (RneN (a n --+ S T O P)) n a ~176 We now describe the results obtained.

First, it was found that there is no analogue to the lower power domain. The
reason is that the order of nondeterminism (x _ y r x N y = x) corresponds
to the order used to model recursion as least fixed points in any analogue to the
lower power domain, so any element that dominates all of the terms a n ~ S T O P
also must dominate a cr

On the other hand, it was shown that there is an analogue to the upper power
domain. This is possible because, in the setting of the upper power domain, the
order of nondeterminism is opposite to the order of recursion. The model in
question is defined simply as the family of all non-empty upper sets {X] 0
X = t X C_ P} of the underlying domain P with union as the operation. It was
shown in [16] that one could construct a Cartesian closed category of local cpos
and monotone mappings having least fixed points (via the Dominated Fixed
Point Theorem) which is closed under this construction of an unbounded upper
power space. By the way, this is the abstract analogue of the model devised to
model unbounded nondeterminism for untimed and Timed CSP.

Finally, an open question is whether there is an analogue for the convex
power domain in this setting. In [16] an example is provided which shows that
the analogue for the upper power space just described will not work: it is shown
there that t he family of all non-empty order-convex subsets of the underlying
domain P is not a local cpo in general. (Unfortunately, more is claimed there
- that there is no such model - but that claim remains unsettled.) It would be
nice to know if this family can be completed into a local cpo which then could
serve as the desired model for unbounded nondeterminism.

14

Readers familiar with PLOTKIN's work on countable nondeterminism [20]
may wonder about the relationship between that work and what has been de-
scribed here from [16]. Plotkin's approach was to weaken the continuity prop-
erties of the maps under consideration - instead of being continuous, they are
only Rl-continuous (so that they preserve sups of directed sets of less than R1-
cardinality). Plotkin shows there is a free object supporting countable sums
within the category of Rl-complete objects and Rl-continuous maps. This is not
at odds with our results, since we studied objects which are not assumed to
be directed complete for any cardinality of directed subsets, and the maps we
consider are only monotone, and do not satisfy any stronger continuity prop-
erties. Our approach is justified by the work in [24, 25] which shows that these
hypotheses are as strong as can be invoked, at least in the CSP setting.

4 C o m p u t a t i o n a l M o d e l s

So far the generalizations we have described have been inspired by work in
process algebra. In this section, we focus on another area of application of domain
theory - models of computation. In the early and mid1990s, ABBAS EDALAT
began producing a number of striking applications of domain theory to areas
of mathematics and computation. These began with an application showing
how domain theory could provide a simpler approach to modeling fractals and
iterated functions systems [5], even providing new algorithms for computing
these objects. There followed applications to neural networks [6], and then to
integration [7]. This last was notable because it showed how domain theory
could be used to devise a new approach to Riemann integration in which the
focus shifted from varying the function being integrated to varying measures
which approximate Riemann measure, thus allowing domain theory to define
the integral. Most recently, Edalat has continued his work by developing real
PCF, which contains a real numbers datatype, along with efficient algorithms
for exact computations in this datatype using continued fractions [10].

In all of this work, an emerging theme has been modeling topological spaces
in domain theory, thus allowing the approximation theory of domains to be
applied to problems in this setting. A focal point then becomes the question of
which topological spaces admit computational (i.e., domain-theoretic) models.
The precise statement is:

Which topological spaces can be embedded as the set o] maximal elements
in a domain?

An initial answer was provided by LAWSON [13] who showed that any Polish
space (complete, separable metric space) can be so represented. Shortly there-
after, EDALAT and HECKMANN [9] produced the formal ball model which shows
that any metric space can be embedded as the space of maximal elements in a
continuous poset. The model is the family of all pairs {(x,r) I x E X & r _> 0}
under the order (x, r) U (y, s) ~ d(x, y) <_ r - s. Moreover, they show that
the model is a continuous poset whose completion (as described in Section 2)

~5

has the completion of the metric space as its space of maximal elements. Both of
these results focus on domains which satisfy the property that the Scott topology
is weak at the top [8], and indeed under this assumption, the maximal elements
of the underlying domain form a separable metric space.

We now outline some results that are due to KEYE MARTIN, a PhD student
at Tulane, which provide an alternative approach to these and related results.
They all will be contained in [14].

To begin, Martin begins with the notion of a measurement on a domain.

Definition 7. Let P be a continuous poser. A measurement on P is a Scott-
continuous mapping #: P --+ ([0, co), >) satisfying

1. #-1(0) = MAX(P), and
2. /~ induces the Scott topology near the top of P:

(Vx e MAX(P))(VU C P open) x E U =} (Se > 0) Sx n# - l ([0 , e)) C U.

Numerous examples are available here, including:

1. The space 1JR of compact intervals of real numbers, ordered by reverse inclu-
sion, and with length as the measurement.

2. The family LIST(A) of lists over a set A, again with length of the list as the
measurement.

In both of these cases - and in most others - the measurement actually induces
the Scott topology on the whole domain, not just near the top.

T h e o r e m 7 (M a r t i n [14]). Let (P,#) be a continuous poset with a measure-
ment, and suppose that # satisfies:

(Vx, y E P) x t y ~ (3z E P) z U_ x , y & p(z) < 2. m a x (# (x) , # (y) } .

Then MAX(P) is metrizable. []

Notice that the result makes no mention of the weak topology - it holds for any
continuous poset with measurement.

The converse of this result follows from Edalat 's and Heckmann's result about
the formal ball model [9], since that model has a measurement, the function
(x, r) r.

4.1 Modeling Algorithms

The inspiration for Martin's results was the intuition that two of the most com-
mon algorithms had something domain-theoretic in common. Those algorithms
are:

1. The bisection algorithm which seeks a root for a continuous selfmap f : R -+]~
on an interval In, b] _C ~ It proceeds by testing whether the function changes
sign, first on the left half of the interval and then on the right, and recursively
subdivides the interval. The algorithm can be viewed as a partial mapping
split f: Jill(~]I~ Note that split I is not monotone, let alone continuous.

16

2. Any of the searching algorithms on LIST(A), the domain of lists over a set
A. Here again, these algorithms give rise to partial selfmaps of LIST(A) that
are not generally monotone.

These examples inspired the following:

Definition 8. Let P be a continuous poset. A partial mapping f: P ~ P is a
splitting if x E f (x) (Vx e dom(f)).

Theorem 8 (Martin [14]). Let f: P --+ P be a partial selfmap on a continuous
dcpo P with measurement #. I f # o f: P - - [0, cr is continuous, and if f is a
splitting, then UneN fn(X) is a fixed point for f (Vx E dora(f)). [:]

A corollary of this result is that any continuous selfmap f: R -~ I~ has a root on
any interval [a, b] for which split! ([a, b]) C_ [a, b]. Similarly, many of the familiar
searching algorithms can be built up from splittings on the domain of lists to
which the same result can be applied to do correctness proofs. Thus, the the-
ory of continuous posets with measurements and splittings provides a common
environment to model both the "discrete" algorithms from searching and the
continuous algorithms such as the bisection algorithm.

4.2 Derivatives and Rates of Convergence

Since the setting of continuous posets with measurements includes the interval
domain El(, we can use this setting to generalize some results from numerical
analysis.

Definition 9. Let f: P --~ P be a partial mapping on a continuous poset P with
measurement p. I f p E MAX(P) \ K (P) , then we define the derivative of f at p
by

~-~f (p) lim p (f (x)) - # (f (p))

For example, for a continuous selfmap f: R ~ ~ if f changes sign on the in-
terval [a,b], then the above definition says that splitf has derivative �89 at [a, b],
in keeping with the fact that the mapping splits the interval in half on each
iteration.

The following shows this definition is sensible.

Theorem 9 (Martin [14]). I f f : I~ --+ I~ is differentiable at x, then

--~({P}) = If'(P)l,

where F: mI~ --, imr is F([a, b]) = f([a, hi) and #([a, hi) = b - a. Conversely, if f
is locally monotone and F has a derivative at (p}, then so does f and the above
equation holds. []

This result shows that the following theorem generalizes results from numer-
ical analysis.

17

P r o p o s i t i o n 3 (Mar t in [14]). Let f: P ~ P be a partial mapping on a contin-
uous poset P with measurement #. Suppose that lima>0 fn (x) = r E MAX(P)

is a fixed point for f . Then lim #(fn+X(x)) d f . > 0 = dr(r)" o

df (r) We also can use ~ to give an estimate of how fast f n (x) converges to a fixed

point r E MAX(P). If limn # (fn (x)) = 0, then for any given ~ > 0 there is some
1 / "

for which #(fro(r)) < e, for m _> n. Now ~J.(r) can be used to give an estimate n

for the number of iterations of f for which this inequality actually holds - i.e., it
provides an estimate for the number of iterations required to obtain the answer
to within "e accuracy."

5 S u m m a r y

We have given three generalizations of domain theory along with outlines of
the problems that inspired those generalizations. The applications range from
process algebra to models of computation, and include novel ideas that generalize
some of the basic tenets of the original theory. Namely, they include

- Relaxing the assumption that the objects under study are directed com-
plete, but retain the structure of continuity. The result is a theory that helps
explain how the models for CSP relate to standard domain-theoretic con-
structions, and also makes clear that the hiding operator from CSP is the one
operation that requires using a subfamily of the poset of non-empty Scott
closed sets.

- Relaxing the condition of directed completeness and continuity to consider
local cpos and monotone maps. The theory developed provides a general
setting for modeling unbounded nondeterminism, and includes using cpos
"at the top" of such objects to generate (least) fixed point theorems to
assure that process meanings are well-defined.

- Considering continuous posets and mapping which are not monotone in order
to model examples from computation, but which include the notion of a
measurement. The theory provides a rich setting for devising computational
models that encompass both the continuous approach =and the discrete
approach represented by list searching algorithms. In this setting, it also is
possible to generalize standard results from numerical analysis.

We believe these applications only serve to scratch the surface in terms of the po-
tential applications for domain theory, and indeed many existing results are not
mentioned here. This rather cursory survey is meant only to pique the reader's
interest, and to provide some examples which we believe make a convincing case
that domain theory is a rich theory whose potential applications range far from
the setting that inspired it.

18

References

1. Abra.msky, S. A domain equation for bisimulation. Information and Computation
92 (1991), 161-218.

2. Abramsky, S., Jung, A. Domain Theory. in: Handbook of Computer Science and
Logic, Volume 3 (1994), Clarendon Press

3. Brookes, S. D., Hoare, C. A. R., Roscoe, A. W. A theory of communicating
sequential processes. Journal ACM 31 (1984), 560-599.

4. Brookes, S. D., Roscoe, A. W. An improved failures model for communicating
processes. Lecture Notes in Computer Science 197 (1985) 281-305.

5. Edalat, A. Dynamical systems, measures and fractais via domain theory. Infor-
mation and Computation 120 (1995), 32-48.

6. Edalat, A. Domain theory in learning processes. Electronic Notes in Theo-
retical Computer Science 1 (1995), URL: h t t p : / / w ~ . e l s e v i e r . c o m / l o c a t e /
entcs/volumel, html.

7. Edalat, A. Domain theory and integration. Theoretical Computer Science 151
(1995), 163-193.

8. Edalat, A. When Scott is weak at the top. Mathematical Structures in Computer
Science, to appear.

9. Edalat, A., Heckmann, R. A computational model for metric spaces. Theoretical
Computer Science, to appear.

10. Edaiat, A., Potts, P. A new representation for exact real numbers. Elec-
tronic Notes in Theoretical Computer Science 6 (1997), URL: h t t p : / / ~ .
elsevier, com/lo cate/ent cs/volume6, html.

II. Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J., Mislove, M., Scott, D. "A
Compendium of Continuous Lattices." Springer-Verlag, Berlin, Heidelberg, New
York (1980) 326pp.

12. Hennessy, M., Plotkin. G. Full abstraction for a simple parallel programming
language. Lecture Notes in Computer Science 74 (1979) Springer-Verlag.

13. Lawson, J. Spaces of maximal points, Mathematical Structures in Computer Sci-
ence, to appear.

14. Martin, K. Ph.D. thesis, Tulane University, in preparation.
15. Mislove, M. Algebraic posets, algebraic cpo's and models of concurrency, in:

Topology and Category Theory in Computer Science. G. M. Reed, A. W. Roscoe
and R. Wachter, editors, Clarendon Press (1991), 75-111.

16. Mislove. M. Denotational models for unbounded nondeterminism. Elec-
tronic Notes in Theoretical Computer Science 1 (1995), URL: h t t p : / /
www. e l s ev i e r , com/locate/ent cs/volumel, html

17. Mislove, M. Using duality to solve domain equations. Electronic Notes
in Theoretical Computer Science 6 (1997), URL: h t t p : / / w ~ . e l s e v i e r . n l /
locate /ent cs/volume6, html.

18. Mislove, M. Topology, domain theory and theoretical computer science. Topology
and Its Applications, to appear.

19. Mislove. M., Roscoe, A. W., Schneider, S. A. Fixed points without completeness.
Theoretical Computer Science 138 (1995), 273-314.

20. Plotkin, G. D. A powerdomain for countable nondeterminism. Lecture Notes in
Computer Science 140 (1982).

21. Smyth, M. Effectively given domains. Theoretical Computer Science 5 (1977)
257-274.

~9

22. Smyth, M. Power domains and predicate transformers: a topological view. Lecture
Notes in Computer Science 154 (1983) Springer-Verlag, 662-675.

23. Reed, G. M., Roscoe, A. W. Metric spaces as models for real-time concurrency.
Lecture Notes in Mathematics 298 (1988), 331-343.

24. Roscoe, A. W., Barrett, G. Unbounded nondeterminism in CSP. Lecture Notes
in Computer Science 442 (1990).

25. Schneider, S. A. An operational semantics for timed CSP. Information and Com-
putation 116 (1995).

26. Stoltenberg-Hansen, A., Lindstr5m, I., Griffor, E. B. "Mathematical Theory of
Domains." Cambridge Tracts in Theoretical Computer Science 22 (1994), Cam-
bridge University Press, 349pp.

