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A b s t r a c t .  Domain theory began in an attempt to provide mathemat- 
ical models for high-level programming languages, an area where it has 
proved to be particularly useful. It is perhaps the most widely-used 
method for devising semantic models for such languages. This paper is a 
survey of some generalizations of domain theory that have arisen in ef- 
forts to solve related problems. In each case, a description is given of the 
problem and of the solution generalizing domain theory it inspired. The 
problems range from the relation of domain theory to other approaches 
for providing semantic models, particularly in process algebra, to issues 
surrounding the notion of a computational model, an approach inspired 
by the recent work of Abbas Edalat. 

1 T h e  B a s i c s  - H o w  D o m a i n  T h e o r y  Began 

This section is a brief outline of some of the "basic ingredients" of domain theory 
and the applications that  inspired them. 

1.1 In  the beginning.. .  

Domain theory began in an a t tempt  by DANA SCOTT to find mathematical  
models for high-level programming languages. Upon his arrival in Oxford in the 
mid 1960s, Scott found CHRISTOPHER STRACHEY and his colleagues at the Pro- 
gramming Research Group using the untyped lambda calculus of Church and 
Curry as a model for programming, something Scott found disturbing because 
he regarded it as a "formal and unmotivated" notat ion (cf. [11]). He thus set out 
to find alternative models for Strachey and his colleagues to use. Because pro- 
grams can call other programs, and indeed, can even call themselves, Scott was 
led to consider objects X in some category or other which satisfy the property 
that  they contain a copy of their space of selfmaps in the category. Of course, 
Cantor 's Lemma implies the only such objects in the category of sets and func- 
tions are degenerate (i.e., they consist of a single point), and so no such objects 
can be found there. But the reals have only as many continuous selfmaps as 
there are real numbers (because of their having a dense, countable subset on 
which all continuous selfmaps are completely determined), so it is potentially 
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possible to find such objects X among topological spaces. While at tempting to 
find appropriate models of partially defined maps, Scott realized there had to 
be To spaces isomorphic to their space of continuous selfmaps, and he then con- 
structed such an object in the category of algebraic lattices and so-called Scott 
continuous maps. 

In the years since Scott constructed the first model of the untyped lambda 
calculus, the nature of the construction has become much bet ter  understood, 
and it now is realized that  very little of the machinery that  is available in the 
category of algebraic lattices and Scott continuous maps actually is necessary 
for the construction. In fact, it now is understood that  only directed complete 
partial orders are needed to carry out the construction. Remarkably, despite this 
much bet ter  understanding, the only known models of the calculus are within the 
category of such partial orders and Scott continuous functions. We now describe 
this setting. 

1.2 Directed Complete Partial Orders 

Let's switch gears for a moment,  and consider what we need to model a recursive 
process. If we are working within some language - let's not worry about  typing 
issues - and we are confronted with a term r e c  x.f(x) ,  then the operational rule 
which allows us to understand this process is given by 

r e c  x.f(x)  ~ f [ ( r e c  x.f(x))/x].  

This unwinding of recursion allows us to deduce that  the recursive process 
r e c  x. f (x)  actually should be a fixed point for the body of the recursion. In 
any case, if we are to model programs as functions, then the unwinding rule tells 
us the functions we are interested in must have fixed points. In fact, it would 
be nice if those fixed points were canonical in some sense, so that  their choice is 
not arbitrary. This is what domain theory offers us. 

To begin, a partial order (or poset) is a non-empty set P equipped with a 
reflexive, symmetric and transitive relation, usually denoted _.  A simple example 
is to take any non-empty set X and equip it with the discrete order, where 
x E Y r x = y. A subset D C_ P of such a set is directed if every finite subset of 
D has an upper bound in D. In our example, the only directed subsets are the 
singleton sets. Finally, a partial order P is directed complete if every directed 
subset has a least upper bound in P.  These are called dcpos. Clearly, discrete 
orders satisfy this condition, since the only directed subsets are singleton sets. 
A directed complete partial order which has a least element _1_ (i.e., one which 
is below all other elements) is sometimes called a cpo. 

What  is important  about  cpos is that  monotone 1 selfmaps have least fixed 
points: 

T h e o r e m  1 (Ta r sk i ) .  A monotone mapping f: P --~ P of a cpo has a least 
fixed point, namely, 

FIX f = I Ic~EOrdf(~(-L). 17 

I A m a p f : P ~ Q i s m o n o t o n e i f x E y  ~ f(x) C_f(y). 



(Here, Ord stands for the class of ordinals.) Thus, a good place to seek models 
for recursion is within the category of cpos and monotone mappings. But,  if we 
require our functions to preserve sups of directed sets, we can do better.  

D e f i n i t i o n  1. A mapping f: P -+ Q between dcpos is Scott continuous if f is 
monotone 2 and f preserves sups of directed sets: 

(VD _C P directed) f (UD) = Uf(D).  

C o r o l l a r y  1 ( S c o t t ) ,  A Scott continuous selfmap f: P -+ P on a cpo has its 
least fixed point given by 

FIX f = Un~N fn(-l-). [] 

The category of directed complete partial orders and Scott continuous maps 
has many desirable properties - it is Cartesian closed, for example. We denote 
the family of continuous maps between (d)cpos P and Q by [P --+ Q]; this space 
becomes a dcpo when endowed with the pointwise order, in which 

f E g r f ( x )  E g(x) (Vx E P). 

The full subcategory whose objects are cpos also is Cartesian closed, and it is 
within these categories where one can find ample support for constructing de- 
notational models of programming languages. We even can conclude more here. 
Since the least fixed point of a monotone or continuous selfmap always exists, 
assigning it as the meaning of a recursive process is in some sense canonical. In 
fact, 

T h e o r e m  2. The least fixed point operator Y: [P -+ P] ~ P by Y f = FIX f is 
continuous. [] 

The implication here is tha t  one has continuous fixed point operators of all 
orders, so modeling recursion at higher types can be done in the same way it is 
at the start.  There is even a transfer principle available; it tells us tha t  "fixed 
points are preserved" by certain operators: 

P r o p o s i t i o n  1. Let f: P --~ P and g: Q --r Q be continuous selfmaps of cpos P 
and Q, and let h: P --+ Q also be a continuous strict 3 map satisfying goh = ho f . 
Then FIX g = h(FIX f ) .  [] 

The categories DCP0 and CP0 of directed complete partial orders (with 
least element in the second case) and Scott continuous maps thus enjoy several 
appealing properties. In addition to Cartesian closure, they also axe closed un- 
der (arbitrary) products and direct sums. In addition, there is a closely-related 
adjunction. If CP0! denotes the category of cpos and strict Scott continuous 
maps, then the forgetful functor into DCPO has the lift functor as left adjoint; 
this functor adds a (new) least element to a dcpo P and extends a continuous 
mapping to the lifted domains to be strict. 

2 This hypothesis is simply to guarantee that the image of a directed set in P is 
directed in Q. 
By strict, we mean h takes the least element of P to the least element of Q. 



1.3 T h e  Myhill-Sheperdson Theorem 

The results described so far make an appealing, if somewhat abstract  case for 
using domain theory to build models for programming languages - well, at least 
for modeling recursion. We now describe a result which puts more substance to 
this claim. 

Perhaps the most natural  place to start  to model programs is over the natural  
numbers. In order to invoke a domain-theoretic setting, we can endow N with 
the discrete order, and clearly we have a dcpo. Our interest is in using domain 
theory to model computable functions. Functions on N are mappings f :  N -+ N, 
so we want to start with the cpo [N -~ l~. This is not quite right, either. Church's 
thesis says the partial recursives axe the computable functions, and so we should 
consider partial mappings f :  N ~ N. Now, the family of such mappings - IN ~ 
- is a cpo under the extensional ordering: 

f _ g r d o m f  C_ domg & g]dom f = f .  

Here, a directed family of partial mappings has for its supremum the union of the 
family. Two convenient facts are that  any function from N to itself is monotone - 
even continuous - with respect to the discrete order, and the extensional order on 
the space of mappings between two discretely ordered sets is in fact the pointwise 
order. Thus, the partial mappings on N with the extensional order are just  the 
partial  mappings endowed with the pointwise order from the discrete order on 
N. 

But how do we distinguish the partial recursives from arbi t rary partial Self- 
maps of N?. A simple and very well-worn example shows how. Consider the 
factorial function 

{ i  n if n = 0 ,  
Fac(n) = �9 Fac(n - 1) otherwise. 

This leads us to define a functional F: [N ~ l~ ~ [N ~ N] by 

1 if m = 0  
F ( f ) ( m )  = m .  f ( m - 1 )  i f m > 0 & f ( m - 1 )  defined. 

It is easy to show that  this functional is continuous (it only needs to preserve 
increasing unions of partial functions), and that  its least fixed point is the fac- 
torial. What  is harder is the fact tha t  the effective structure (in the sense of 
recursion theory) on N can be extended to one on IN -~ N] -~ IN ~ I~ (using 
ideas from the next section - see [26] for details), and F can be shown to be 
effective with respect to this structure. This means F ' s  restriction to the partial 
recursives leaves them invariant; i.e., F(g) is partial recursive if g is. If we let 
[N ~ N]k denote the computable mappings on the natural  numbers (i.e., the 
partial recursives), the following says every partial recursive arises exactly in 
this way: 

Theorem 3 ( M y h i l l - S h e p e r d s o n ) .  The effective operators on [N ---" ~ k  are 
exactly the restrictions of the the effective continuous functionals G: [N ~ N] --+ 
IN to IN r k. [] 



1.4 Algebraicity and Continuity 

A second component of domain theory - apart from the ease with which one can 
model recursion - is that of approximation. The idea is illustrated by the Myhill- 
Sheperdson Theorem. For any continuous functional G: [N ---" ~ -+ [N ---" N], 
the least fixed point FIX G = UneN Gn(@), since @ is the least partial function. 
In the case of G is effective, Gn(@) is a finite function. The finite functions play 
a special role in [N ---" N]: they are the compact elements. 

Definit ion 2. An element k E P in a dcpo is compact if k E UD implies 
(3d E D) k E d for all directed subsets D C_ P. The set of compact elements of 
P is denoted K(P) ,  and, for each x E P the set of compact elements below x is 
denoted K(x) .  

Lastly, P is algebraic if K(x)  is directed and x = UK(x) for every x �9 P. 

Since any partial mapping f: 5/---" bl satisfies 

f = II{ylx I X C_ dom f finite}, 

[N ~ N] is algebraic. 
The compact elements of an algebraic dcpo completely determine the dcpo, 

since each element of the dcpo is the directed supremum of the compact elements 
below it. This association can be made more precise. Indeed, if we call a subset 
I C_ Q of a partially ordered set an ideal if I = $ I is a lower set which also is 
directed, then we have the association x ~-~ K(x): P -+ IdlK(P) which sends each 
element of P to the ideal of compact elements below it. This association is an 
isomorphism, where the inverse mapping simply sends an ideal to its supremum 
(which exists because P is a dcpo). Hence, P ~ IdlK(P) for each algebraic 
dcpo P. This gives rise. to an adjunction between the category At.G of algebraic 
dcpos and Scott continuous maps and the category POS of posets and monotone 
mappings. The right adjoint is the forgetful functor from AI_G to PO$, and the 
left adjoint is the ideal functor, which sends a partially ordered set to its family 
of ideals ordered under inclusion. One of the important consequences of this 
adjunction is that each continuous mapping f:  P --+ Q between algebraic dcpos 
is completely determined by the restriction of f to the compact elements of 
P, and, conversely, each monotone mapping f:  K(P)  -+ Q from the compact 
elements of P to any dcpo Q extends to a unique continuous map from P to Q. 

All of this has an important extension. The motivating example is the unit 
interval, which has 0 as its only compact element. Yet there is a clear notion of 
approximation here: if x < y, then for a directed set to have its supremum above 
y, some element of the directed set must be above x. 

Definition 3. The elements x, y E P in a depo satisfy x << y (read "x is 
relatively compact in y ' )  if y E liD implies there is some d E D with x E d, 
for all directed subsets D of P. The set of elements relatively compact in y is 
denoted ~ y, and the depo P is called continuous if ~ y is directed and y = li ~ y 
or all y E P. 



An adjunction similar to the one between ALG and POS is available for 
continuous dcpos. It involves the notion of an abstract basis originally due to 
SMYTH [21]. 

Defini t ion 4. An abstract basis is a non-empty set X equipped with a transitive 
relation -~ which satisfies the interpolation property: 

(VyEX) (VMCXf in i t e )  M - ~ y  =~ ( 3 x e X )  M - ~ x - ~ y .  

A function f: X --~ Y between abstract bases is ideal if x -~ y in X implies that 
{z �9 Y Iz f(x)} c {z �9 Q I z f(y)}. 

For example, in any continuous dcpo P, the pair (P, <<) is an abstract basis. Any 
abstract basis satisfies the property that the family of ideals (defined just as in 
the partially ordered set case) is a continuous dcpo under the inclusion order. 
The notion of an ideal mapping is designed precisely to capture those functions 
between abstract bases which extend to continuous mappings between their ideal 
completions. The following result generalizes the situation for algebraic domains. 

T h e o r e m  4 ([17]). The functor which associates to a continuous dcpo P the 
abstract basis (P, (<) and to a continuous mapping f:  P -~ Q the ideal mapping 
f ( I )  = {y �9 Q [ (3z �9 I) y << f(z)} is right adjoint to the ideal functor which 
associates to an abstract basis its ideal completion and to an ideal mapping the 
associated continuous mapping on the space of ideals. [] 

Notes: This completes our rather cursory outline of domain theory. We have left 
out far more than we have included, but our intention is to provide only the 
barest of introductions to motivate the generalizations that we describe below. 

We have not made specific reference to any result. Except for the last results 
on continuous dcpos (which can be found in [2] for the most part), most of this is 
folklore now, and can be found in many places. Again, [2] is an excellent source 
for referencing most of these results. The last theorem, however, appears only in 
[17]. A survey of a number of the ideas presented here can be found in [18]. 

2 C o n t i n u o u s  P o s e t s  

A rather successful approach to modeling concurrent computation was devised 
by the members of the Programming Research Group at Oxford using the lan- 
guage CSP. We briefly outline this approach below, with an eye toward finding 
the relationship between the CSP models and more standard ones from domain 
theory. In endeavoring to understand this relationship, it became clear that one 
of the fundamental principles of domain theory had to be relaxed in order to 
describe the CSP models in purely domain-theoretic terms. That fundamental 
property of dcpos is that they are directed complete: all directed subsets have 
least upper bounds. This property is crucial in assuring that all continuous self- 
maps have (least) fixed points. But it turns out that describing the CSP models 
in domain-theoretic terms requires relaxing this condition in order to relate the 
models to the world of domains. The model we focus on for this discussion is the 
failures model for CSP, which we now describe. 



2.1 CSP and the Failures Mode l  

CSP is a process algebra for reasoning about concurrent processes. It was origi- 
nally devised by C. A. R. HOARE and the first, definitive model for the language 
was presented in [3]. This is the so-called failures model, which models a process 
in terms of the communication events it can participate in (the traces of the 
process) together with the events it may refuse to participate in after a given 
trace (the so-called refusals). A syntax for CSP suitable for our purposes is given 
by the following BNF-like production rules: 

P ::= S T O P  I SKIP I a ~ P I P \ a  [ P ; P  I PAHBP I P[:]P I P [ 3 P  I x I~tx.P 

In this syntax, S T O P  denotes immediate abnormal termination, while SKIP 
denotes immediate normal termination. The actions a range over a set ~ of 
atomic actions which denote communication events between processes; a -~ P 
is a process which first wishes to participate in the action a and then to act like 
process P.  P \ a is the process P with all occurrences of the action a hidden 
from the environment (but they still occur, and as soon as they are offered). 
P ;  P is the sequential composition of the two component processes; PAIIBP is 
the process which has the two components synchronize on all actions in A n B 
(A, B c_ ~) ,  but  either branch is free to perform actions not in the intersection 
whenever it wishes. P D P  is the external choice of the two processes, in which 
the environment is allowed to decide which branch will be chosen on the first 
action only, while P N P is the internal choice of the branches, in which the 
machine decides. The term x denotes a process variable, and the last term is 
recursion. 

The failures model for CSP as presented, e.g., in [3] gives a model for this 
language based of pairs (s, X) ,  where s E Z* U~*x/ i s  a finite sequence of actions, 
possibly ending in the normal termination event ~ / r  E ,  and X C_ E is a set of 
re]usals - events which the process may refuse to participate in after execution of 
s. The second component is needed in the model in order to distinguish internal 
and external choice. The failures model 9~M interprets each process as a set 
of such pairs, and the sets F that  qualify to represent a process in CSP must 
satisfy the following conditions: 

1. 0 ~ F .  
2. (s, X)  E F and t a prefix of s imply (t, 0) E F .  
3. ( s ,X)  E F and Y C_ X imply (s,Y) E F.  
4. ( s ,X)  E F and (s(c),O) ~ F for all c E Y C_ A finite imply (s, X U Y) E F.  

The sets satisfying these conditions are called the ]allures model for CSP; it is 
shown in [3] that  they form a complete inf-semilattice. This structure is used 
as the basis for showing this family of sets can be endowed with operations 
corresponding to each of the CSP operators. This allows an interpretation of 
CSP in the set of subsets of (~* U ~*v~ • • (Z)  satisfying 1) - 4) - i.e., it 
provides the ingredients to show the family 9rf14 is a denotational model for 
CSP. 



The order on the failures model is reverse containment on sets. So, the smaller 
the set, the higher it is in the order. Because the inf-operation is used to model 
nondeterminism, the order on the model is the order of nondeterminism - the 
higher a set, the more deterministic the process it represents. In fact, the maximal 
elements of the model are the deterministic processes. These have the property 
that  they cannot be refined by any other process. 

The order on the model also is used to model recursion, just  as in the case 
of cpos. All the operators from CSP are modeled by operations on the model 
tha t  are continuous with respect to reverse inclusion, and so Scott 's corollary to 
Tarski's Theorem implies that  each of the recursive processes can be modeled as 
the least fixed point of a continuous operator on the model. 

2.2 T h e  Failures M o d e l  as Closed Sets  

All of the above indicates tha t  the failures model is a cpo (the least element 
of the model is the set CHAOS = {(s ,X)  I s E E* U E 'x /&~ X C Z}).  But 
the construction is far from "standard", and it is unclear what relationship this 
model has to languages other than CSP. The work in [15] resulted from an effort 
to bet ter  understand this relationship. The analysis relies on a closer scrutiny of 
the properties tha t  define failures sets. 

The first three conditions imply that  the sets F that  qualify as process mean- 
ings are lower sets from some related partial order, and it was this idea that  led 
to a realization that  the conditions listed actually describe certain closed sets 
from a partial order. By closed, we mean closed with respect to the Scott topol- 
ogy, which we now define. But notice that  we relax the situation somewhat, 
and consider any partial order, not just ones that  are directed complete. This 
is because the partial order tha t  gives rise to the failures model is not directed 
complete. 

Def in i t i on  5. Let P be a partially ordered set. A subset U C_ P is Scott open if 

1. U = t  U = {Y e P i (3x E U) x E y} is an upper set in P,  and 
2. UD e U ~ D n U ~ 0 for all directed subsets D of P. 

It is routine to show that  the Scott open sets on any partial order are closed 
under finite intersections and arbitrary unions, so they do indeed form a topology. 
This topology is always To, which means distinct points can be separated by 
some open set (containing exactly one of them), but the topology is Hausdorff 
if and only if the partial order is the discrete order. What  is more, the functions 
we defined earlier as being Scott continuous are in fact exactly those that  are 
continuous with respect to this topology. 

The Scott closed sets are those whose complements are Scott open, and since 
we have a description of the latter, we can derive the following characterization 
of the former. 

P r o p o s i t i o n  2. X C_ P is Scott closed if and only if 

1. X =$ X is a lower set in P,  and 



2. D C X directed implies UD E X .  [] 

Notice that  a corollary of this result is that  the closure of a point x E P is $ x, the 
principal lower set x defines. This is what makes Scott-closed sets an appealing 
model for concurrent computation - in the traces setting, they naturally include 
the history of a process since they are lower sets. 

As with any topological space, the family of Scott closed sets forms a complete 
Brouwerian lattice under containment (cf. [11]). But in the case of an algebraic 
or continuous poset 4, we can say a lot more. Indeed, in this case, the family 
of Scott-closed sets forms a completely distributive, hence continuous lattice. 
If the underlying poset P is algebraic, then the family of Scott-closed sets is 
in fact completely distributive and algebraic, which in turn imply it forms a 
complete ring o/sets. Finally, the relation X << Y on the family of Scott-closed 
sets is completely determined by that  of P ,  and the compact elements in the 
Scott-closed sets are exactly the closed sets generated by finite sets of compact 
elements of P.  

In particular, the family of non-empty Scott-closed subsets of a continuous 
(resp., algebraic) dcpo is a continuous (resp., algebraic) dcpo semilattice (under 
union) whose relative compactness relation << is completely determined by that  
of the underlying poset. Moreover, in the case P is algebraic, this family is an 
algebraic dcpo under reverse containment as well, and the compact elements 
here are the sets of the form P \ (I"F) as F C_ K(P)  ranges over the non-empty 
finite sets of compact elements of P.  

What  all this has to do with CSP and the failures model is explained by the 
following: 

Example 1. Consider the set PF = {(s, X)  I s E S* LI S*~/  ~ X C_ S} .  We 
define a partial  order of PF by 

( s ,X )  U_(t,Y) r ( s < t & X = O )  V ( s = t & X C _ Y ) .  

It is routine to show this is a partial order, and it also is easy to see that  the 
pairs (s, X)  with X finite are compact in this order. Hence PF is an algebraic 
poset. 

Theor e m 5 ([15]).  The failures model consists of Scott-closed sets from the 
algebraic poset PF, and this family is closed in the family of all Scott-closed 
sets under filtered intersections. Each of the operators from CSP gives rise to 
an operation on all the Scott-closed sets that is continuous with respect to usual 
containment, and all but the hiding operator give rise to operations that are 
continuous with respect reverse containment. [3 

The point to note here is that  it is the hiding operator that  "causes all the 
problems" with the failures model. More to the point, the approach adopted with 

4 By a continuous poset we mean a partial order P in which ~ y is directed and 
y = t_l ~y  for all y E P; P is an algebraic poser if K(y) is directed and y = l_tK(y) 
for all y E P. The point is that we no longer require P to be directed complete. 
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the failures model was to use the order of nondeterminism to model a certain type 
of partial correctness - namely, that deadlock or divergence is catastrophic. That 
decision required a model in which all the operators are continuous with respect 
to reverse set containment, and since hiding is the only operation which doesn't 
satisfy this property on all Scott-closed sets, it is the reason for the condition 
4) in the definition of the sets that comprise the model. In other words, if one 
were to seek a model for CSP without hiding, then all the Scott closed sets of 
the poset PF could be used. 

3 L o c a l  C p o s  

From the outset, computation has viewed sequential composition as the "most 
primitive" operation. When the issue of modeling concurrent computation arose, 
the reaction was to devise models for nondeterminism using subset-like construc- 
tions, and then to model parallel composition in terms of sequential composition 
and nondeterministic choice. As described in [12], three distinct models for non- 
deterministic choice emerged in domain theory - the so-called power domains. 
These three constructs were first defined in terms of ideal completions of three 
distinct orders that can be defined on the finite subsets of the set K ( P )  of com- 
pact elements of the underlying domain P. This works for any algebraic dcpo, 
but more restrictive domains allow for alternative descriptions of these construc- 
tions. As described in [22], coherent domains (i.e., those algebraic cpos for which 
the intersection of any finite family of Scott compact upper sets is again com- 
pact in the Scott topology) allow the three power domains to be described in 
completely topological terms: 

- The lower power domain is the family of non-empty Scott-closed subsets of 
the underlying domain equipped with the usual order, and with union as 
the nondeterministic choice operation. This family is the free sup-semilatiice 
cpo over P. 

- the upper power domain is the family of non-empty Scott compact upper sets 
from P, again with union as the operation, but this time under the reverse 
containment order. This family is the free inf-semilattice cpo over P. 

- the convex power domain is the family of non-empty order-convex subsets 
X = $ X A  S X  of P whose lower set SX is Scott closed and whose upper set 
j~X is Scott compact. The operation is the convex hull of the union:, 

(X, Y) ~ $ (X U Y) O $ (X U Y), 

and the order is the Egli-Milner order: 

X G Y  r X c _ $ Y & Y C _ ' t X .  

This family is the free semilattice cpo over P. 

Each of these constructions produces a coherent domain from an underlying 
coherent domain; these are the more-or-less standard constructions for modeling 



1] 

nondeterministic choice within domain theory. Each construct allows operations 
(such as sequential composition) defined on the underlying domain P to be 
extended to the power domain. But,  these extended operations all distribute over 
the nondeterministic choice operation, and so modeling bisimulation requires the 
additional step of solving a domain equation defined in terms of the convex power 
domain (cf. [1]). 

All of the above applies to bounded nondeterminism, but  unbounded non- 
determinism also is useful, especially for specification. For example, consider a 
process-algebraic setting in which one wants to specify a process that  can par- 
ticipate in any finite number of a given action, say a, but which is not supposed 
to participate in infinitely many a's. This requires distinguishing the process 
nneN (a "~ -~ STOP) from the process (nneN (a n -~ STOP))  ~ a ~176 But, these 
two processes must be identified in any of the models described above, and so 
we have to generalize domain theory and power domains in order to allow these 
processes to be distinguished. 

In [24], an approach to modeling unbounded nondeterminism in CSP was 
presented. This approach added a new component to the meaning of each pro- 
cess - the infinite traces that  a process could execute. By actually listing these 
traces, it became possible to distinguish a process that  could execute an infinite 
trace from one which couldn't. But the resulting model was no longer a dcpo. 
Moreover, some selfmaps of the model no longer were continuous, and some of 
those that  were didn't  have any fixed points, let alone least ones. The point is 
tha t  the new model was not a dcpo. The question then became how to make 
sure all the processes that  could be meanings of recursive CSP processes in this 
setting actually had well-defined meanings. In other words, the question became 
one of how to assure that  the recursive terms from CSP had meanings given by 
least fixed points in this new model. 

The solution that  was found was quite inventive. It amounted to using the fact 
tha t  the model U for unbounded nondeterminism naturally contained a model 
for CSP with bounded nondeterminism - i.e., a copy of the failures-divergences 
model 5rD [4]. This was obtained by sending each CSP process to its meaning 
in ~'D together with those infinite traces tha t  the process could execute, and 
this gave an embedding of 5rD within/~ "at the top": any element of U is the 
infimum of those elements in $ 'D that  are above it. This provided a cpo "at the 
top" of L/, which in turn proved crucial for deriving the results tha t  were needed 
to show that  L/actual ly could serve as a model for unbounded nondeterminism 
in CSP. 

The heart  of the proof presented in [24] amounts to showing tha t  each of the 
operations on /g  from CSP has a corresponding operation on Y D  from CSP with 
bounded nondeterminism that  "dominates" it in the pointwise order. In terms 
of selfmaps of the model, the dominating operation leaves Y D  invariant (as it 
sits in U). As a result, each term from CSP with bounded nondeterminism has 
a least fixed point on this submodel, and this fixed point is a pre-fixed point for 
any corresponding term on U that  is dominated by the original te rm from CSP. 
But  a pre-fixed point for a monotone mapping is all that  is necessary to assure 
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the mapping has a least fixed point provided each element of the model satisfies 
the property that its lower set is a cpo. This indeed is the case, and this is how 
it is shown that each term from CSP with unbounded nondeterminism actually 
has a least fixed point on/4. We now present a more general description of these 
results that also is more precise. 

Inspired by the work in [24] and by related work in [25] on unbounded non- 
determinism for Timed CSP, an effort was made to find an underlying math- 
ematical principle for the results that were obtained in these two papers. The 
resulting principle turned out to be remarkably simple. It hinged on two main 
ideas: 

- the notion of a local cpo, and 
- a dominated fixed point theorem. 

Defini t ion 6. A partial order P is a local cpo i f  J~x is a cpo for each x E P.  

Clearly any cpo is a local cpo, but there are local cpos which are not directed 
complete. For example, consider (N, <) the natural numbers in the usual order 
- the lower set of each point is finite, but N has no upper bound. This is not 
exactly the example we have in mind for modeling unbounded nondeterminism, 
however. 

The dominated fixed point theorem can then be stated as follows: 

T h e o r e m  6 (Domina ted  Fixed Point  T h e o r e m  [19]). Let P be a local cpo 
and E a space for which there is a mapping ~: E -+ P.  Suppose that f :  P --~ P is 
monotone and satisfies the property that there is some mapping F: E --+ E with 
f o L E_ ~ o F.  I f  F has a fixed point in E ,  then f has a least fixed point in P.  [] 

The proof of this result is straightforward. One only has to note that a fixed 
point x = F(x )  for F satisfies ~(x) is a pre-fixed point for f:  f (~(x))  E ~(F(x)) = 
L(x) by the hypothesis of the Theorem. Thus, f :  Sx --+$x, and this set is a cpo 
as P is a local cpo. Hence f has a least fixed point by Tarski's Theorem. 

In [19] it is shown how this result provides the common mathematical under- 
pinning for the models for unbounded nondeterminism in Timed and untimed 
CSP. In the former case, the space E is one of the metric space models for Timed 
CSP with bounded nondeterminism devised by REED and ROSCOE [23], and in 
the later, the space E is the failures-divergences model for untimed CSP with 
bounded nondeterminism. One result of [19] was the internalization of the fixed 
point theory for recursive process meanings in each model; in the first approach 
devised by Roscoe for untimed CSP, an operational model for unbounded non- 
determinism and a congruence theorem were used to justify the existence of 
meanings for each recursive process; of course, this still is needed to validate 
that the fixed point meanings defined in the model are the operationally correct 
ones. Another result of [19] was the realization that the work done in [24] to 
show that each process meaning in the model is the infimum of meanings in that 
lie in the subspace E (which is a cpo) is not needed. It is enough to know that 
each mapping for which a least fixed point is required has a dominating mapping 
on E in the sense of the Dominated Fixed Point Theorem. 
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As outlined above, for coherent domains, the three power domains are each 
describable in topological terms. But more generally, they can be defined for 
any algebraic dcpo in terms of the family of non-empty finite subsets of the 
set of compact elements of the underlying dcpo. For example, the lower power 
domain is the ideal completion of the family of non-empty subsets of K ( P )  
under the quasiorder F _ G r F C_$ G. Similarly, the upper power domain 
is the ideal completion of the same family, but endowed with the quasiorder 
F _ G r162 G C_tF. In both of these cases, union defines a monotone operation 
which extends to the ideal completions to define the meaning of nondeterministic 
choice. Finally, the convex power domain is the ideal completion of the same 
family, this time ordered by the common refinement of these two quasiorders. 

In [16], an attempt was made to develop a general theory for modeling un- 
bounded nondeterminism in a domain-theoretic setting based on the results just 
described. In fact, the goal of that work was to devise analogues for each of the 
power domains for unbounded nondeterminism. The point of departure was the 
assumption that the underlying model for sequential composition - P - embeds 
in the model for unbounded nondeterminism so that elements of P are "free" 
with respect to unbounded nondeterminism. More precisely, the underlying as- 
sumption is that a ~ RX if a r $ X for any subset X C P. This assumption is 
what is required if one wants to distinguish processes such as RneN (a n ~ S T O P )  
from (RneN (a n --+ S T O P ) )  n a ~176 We now describe the results obtained. 

First, it was found that there is no analogue to the lower power  domain. The 
reason is that the order of nondeterminism (x _ y r x N y = x) corresponds 
to the order used to model recursion as least fixed points in any analogue to the 
lower power domain, so any element that dominates all of the terms a n ~ S T O P  
also must dominate a cr 

On the other hand, it was shown that there is an analogue to the upper power 
domain. This is possible because, in the setting of the upper power domain, the 
order of nondeterminism is opposite to the order of recursion. The model in 
question is defined simply as the family of all non-empty upper sets {X ] 0 
X = t X C_ P} of the underlying domain P with union as the operation. It was 
shown in [16] that one could construct a Cartesian closed category of local cpos 
and monotone mappings having least fixed points (via the Dominated Fixed 
Point Theorem) which is closed under this construction of an unbounded upper 
power  space. By the way, this is the abstract analogue of the model devised to 
model unbounded nondeterminism for untimed and Timed CSP. 

Finally, an open question is whether there is an analogue for the convex 
power domain in this setting. In [16] an example is provided which shows that 
the analogue for the upper power space just described will not work: it is shown 
there that t he  family of all non-empty order-convex subsets of the underlying 
domain P is not a local cpo in general. (Unfortunately, more is claimed there 
- that there is no such model - but that claim remains unsettled.) It would be 
nice to know if this family can be completed into a local cpo which then could 
serve as the desired model for unbounded nondeterminism. 
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Readers familiar with PLOTKIN's work on countable nondeterminism [20] 
may wonder about the relationship between that work and what has been de- 
scribed here from [16]. Plotkin's approach was to weaken the continuity prop- 
erties of the maps under consideration - instead of being continuous, they are 
only Rl-continuous (so that they preserve sups of directed sets of less than R1- 
cardinality). Plotkin shows there is a free object supporting countable sums 
within the category of Rl-complete objects and Rl-continuous maps. This is not 
at odds with our results, since we studied objects which are not assumed to 
be directed complete for any cardinality of directed subsets, and the maps we 
consider are only monotone, and do not satisfy any stronger continuity prop- 
erties. Our approach is justified by the work in [24, 25] which shows that these 
hypotheses are as strong as can be invoked, at least in the CSP setting. 

4 C o m p u t a t i o n a l  M o d e l s  

So far the generalizations we have described have been inspired by work in 
process algebra. In this section, we focus on another area of application of domain 
theory - models of computation. In the early and mid1990s, ABBAS EDALAT 
began producing a number of striking applications of domain theory to areas 
of mathematics and computation. These began with an application showing 
how domain theory could provide a simpler approach to modeling fractals and 
iterated functions systems [5], even providing new algorithms for computing 
these objects. There followed applications to neural networks [6], and then to 
integration [7]. This last was notable because it showed how domain theory 
could be used to devise a new approach to Riemann integration in which the 
focus shifted from varying the function being integrated to varying measures 
which approximate Riemann measure, thus allowing domain theory to define 
the integral. Most recently, Edalat has continued his work by developing real 
PCF, which contains a real numbers datatype, along with efficient algorithms 
for exact computations in this datatype using continued fractions [10]. 

In all of this work, an emerging theme has been modeling topological spaces 
in domain theory, thus allowing the approximation theory of domains to be 
applied to problems in this setting. A focal point then becomes the question of 
which topological spaces admit computational (i.e., domain-theoretic) models. 
The precise statement is: 

Which topological spaces can be embedded as the set o] maximal  elements 
in a domain? 

An initial answer was provided by LAWSON [13] who showed that any Polish 
space (complete, separable metric space) can be so represented. Shortly there- 
after, EDALAT and HECKMANN [9] produced the formal  ball model which shows 
that any metric space can be embedded as the space of maximal elements in a 
continuous poset. The model is the family of all pairs {(x,r) I x E X & r _> 0} 
under the order (x, r) U (y, s) ~ d(x,  y) <_ r - s. Moreover, they show that 
the model is a continuous poset whose completion (as described in Section 2) 
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has the completion of the metric space as its space of maximal elements. Both of 
these results focus on domains which satisfy the property that  the Scott topology 
is weak at the top [8], and indeed under this assumption, the maximal elements 
of the underlying domain form a separable metric space. 

We now outline some results that  are due to KEYE MARTIN, a PhD student 
at Tulane, which provide an alternative approach to these and related results. 
They all will be contained in [14]. 

To begin, Martin begins with the notion of a measurement on a domain. 

Definition 7. Let P be a continuous poser. A measurement on P is a Scott- 
continuous mapping #: P --+ ([0, co), >) satisfying 

1. #-1(0) = MAX(P),  and 
2. /~ induces the Scott topology near the top of P:  

(Vx e MAX(P))(VU C P open) x E U =} (Se > 0) Sx n# - l ( [0 , e ) )  C U. 

Numerous examples are available here, including: 

1. The space 1JR of compact intervals of real numbers, ordered by reverse inclu- 
sion, and with length as the measurement. 

2. The family LIST(A) of lists over a set A, again with length of the list as the 
measurement. 

In both of these cases - and in most others - the measurement actually induces 
the Scott topology on the whole domain, not just near the top. 

T h e o r e m  7 ( M a r t i n  [14]). Let (P,#) be a continuous poset with a measure- 
ment, and suppose that # satisfies: 

(Vx, y E P )  x t y ~ (3z E P)  z U_ x , y  & p(z) < 2.  m a x ( # ( x ) , # ( y ) } .  

Then MAX(P) is metrizable. [] 

Notice that  the result makes no mention of the weak topology - it holds for any 
continuous poset with measurement. 

The converse of this result follows from Edalat 's and Heckmann's result about 
the formal ball model [9], since that  model has a measurement, the function 
(x, r) r. 

4.1 Modeling Algorithms 

The inspiration for Martin's results was the intuition that  two of the most com- 
mon algorithms had something domain-theoretic in common. Those algorithms 
are: 

1. The bisection algorithm which seeks a root for a continuous selfmap f :  R -+ ]~ 
on an interval In, b] _C ~ It proceeds by testing whether the function changes 
sign, first on the left half of the interval and then on the right, and recursively 
subdivides the interval. The algorithm can be viewed as a partial mapping 
split f: Jill( ~ ]I~ Note that  split I is not monotone, let alone continuous. 
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2. Any of the searching algorithms on LIST(A), the domain of lists over a set 
A. Here again, these algorithms give rise to partial selfmaps of LIST(A) that 
are not generally monotone. 

These examples inspired the following: 

Definition 8. Let P be a continuous poset. A partial mapping f:  P ~ P is a 
splitting if x E f ( x )  (Vx e dom(f)). 

Theorem 8 (Martin [14]). Let f:  P --+ P be a partial selfmap on a continuous 
dcpo P with measurement #. I f  # o f:  P - -  [0, cr is continuous, and if  f is a 
splitting, then UneN fn(X) is a fixed point for f (Vx E dora(f)). [:] 

A corollary of this result is that any continuous selfmap f:  R -~ I~ has a root on 
any interval [a, b] for which split! ([a, b]) C_ [a, b]. Similarly, many of the familiar 
searching algorithms can be built up from splittings on the domain of lists to 
which the same result can be applied to do correctness proofs. Thus, the the- 
ory of continuous posets with measurements and splittings provides a common 
environment to model both the "discrete" algorithms from searching and the 
continuous algorithms such as the bisection algorithm. 

4.2 Derivatives and Rates of  Convergence 

Since the setting of continuous posets with measurements includes the interval 
domain El(, we can use this setting to generalize some results from numerical 
analysis. 

Definition 9. Let f:  P --~ P be a partial mapping on a continuous poset P with 
measurement p. I f  p E MAX(P) \ K ( P ) ,  then we define the derivative of f at p 
by 

~-~f (p) lim p ( f ( x ) )  - # ( f (p) )  

For example, for a continuous selfmap f:  R ~ ~ if f changes sign on the in- 
terval [a,b], then the above definition says that splitf has derivative �89 at [a, b], 
in keeping with the fact that the mapping splits the interval in half on each 
iteration. 

The following shows this definition is sensible. 

Theorem 9 (Martin [14]). I f  f :  I~ --+ I~ is differentiable at x, then 

--~({P}) = If'(P)l, 

where F: mI~ --, imr is F([a, b]) = f([a, hi) and #([a, hi) = b - a. Conversely, if f 
is locally monotone and F has a derivative at (p}, then so does f and the above 
equation holds. [] 

This result shows that the following theorem generalizes results from numer- 
ical analysis. 



17 

P r o p o s i t i o n  3 (Mar t in  [14]). Let f:  P ~ P be a partial mapping on a contin- 
uous poset P with measurement #. Suppose that lima>0 fn (x )  = r E MAX(P) 

is a fixed point for f .  Then lim #(fn+X(x)) d f  . > 0  = dr(r )"  o 

df ( r )  We also can use ~ to give an estimate of how fast f n ( x )  converges to a fixed 

point r E MAX(P). If limn # ( fn ( x ) )  = 0, then for any given ~ > 0 there is some 
1 / "  

for which #(fro(r))  < e, for m _> n. Now ~J.(r) can be used to give an estimate n 

for the number of iterations of f for which this inequality actually holds - i.e., it 
provides an estimate for the number of iterations required to obtain the answer 
to within "e accuracy." 

5 S u m m a r y  

We have given three generalizations of domain theory along with outlines of 
the problems that inspired those generalizations. The applications range from 
process algebra to models of computation, and include novel ideas that generalize 
some of the basic tenets of the original theory. Namely, they include 

- Relaxing the assumption that the objects under study are directed com- 
plete, but retain the structure of continuity. The result is a theory that helps 
explain how the models for CSP relate to standard domain-theoretic con- 
structions, and also makes clear that the hiding operator from CSP is the one 
operation that requires using a subfamily of the poset of non-empty Scott 
closed sets. 

- Relaxing the condition of directed completeness and continuity to consider 
local cpos and monotone maps. The theory developed provides a general 
setting for modeling unbounded nondeterminism, and includes using cpos 
"at the top" of such objects to generate (least) fixed point theorems to 
assure that process meanings are well-defined. 

- Considering continuous posets and mapping which are not monotone in order 
to model examples from computation, but which include the notion of a 
measurement. The theory provides a rich setting for devising computational 
models that encompass both the continuous approach =and the discrete 
approach represented by list searching algorithms. In this setting, it also is 
possible to generalize standard results from numerical analysis. 

We believe these applications only serve to scratch the surface in terms of the po- 
tential applications for domain theory, and indeed many existing results are not 
mentioned here. This rather cursory survey is meant only to pique the reader's 
interest, and to provide some examples which we believe make a convincing case 
that domain theory is a rich theory whose potential applications range far from 
the setting that inspired it. 
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