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Abstrac t  

We introduce Stochastic Process Algebras as a novel approach for the struc- 
tured design and analysis of both the functional behaviour and performance 
characteristics of parallel and distributed systems. This is achieved by integrat- 
ing performance modelling and analysis into the powerful and well investigated 
formal description technique of process algebras. 

After advocating the use of stochastic process algebras as a modelling tech- 
nique we recapitulate the foundations of classical process algebras. Then we 
present extensions of process algebras such that the requirements of perfor- 
mance analysis are taken into account. Examples illustrate the methodological 
advantages that are gained. 

1 The Challenge: Constructive Performance Mo- 
delling and System Design 

1.1 Motivation 

There are three fundamental categories of attributes indispensable for the viability of 
any technical system: functionality, performance and economicity [Fer86]. However, 
it is not unusual for a system to be fully designed and functionally tested before an 
attempt is made to determine its performance characteristics [Har86]: Redesign of 
both hardware and software is usually the consequence; this is costly and may cause 
late system delivery. This is particularly true for real-time systems and a dramatic 
misdesign of mobile communication ground stations has occurred only recently. 

*This research is supported in part by the German National Research Council Deutsche 
Forschungsgemeinschafl under Sonderforschungsbcreich 18~ and by the Commission of the Euro- 
pean Community as ESPRIT basic research action QMIPS, project no. 7269. 
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Figure 1: System Life Cycle and Quality Assurance 

Figure 1 sketches the phases of any system life cycle and the irresponsible lag be- 
tween functional and temporal quality specification and assurance. Usually, both func- 
tional specification and performance evaluation techniques are separated from each 
other. System designers use distinct hardware and software specification techniques, 
while performance assurance is the task of modelling specialists. Such a separation 
has several advantages, mainly simplicity and understandability. However, to prevent 
the problems discussed above, performance evaluation has to be intergrated fully into 
the design process from the very beginning: to eliminate competing approaches, to 
design and configure components properly, and, last not least, to convince manage- 
ment and customers in due time [Rei91]. Integration of performance analysis into 
the specification process allows a more accurate description, yields more information 
about the system behaviour and, again, assures efficient system design. 

The need for combined specification methods was already recognized in the sev- 
enties. The most successful examples are Stochastic Petri Nets (SPN) [ABC86] and 
Stochastic Graph Models [ST87, $6t90]. We propose and recommend Stochastic Pro- 
cess Algebras [Her90a, Her90b, Ret91, GHR92, Hi193, SH93] mainly for two important 
reasons: 

�9 Languages are the principal means of designing hardware and software com- 
ponents: Process algebras are abstract languages tailored to the description of 
parallel and distributed systems; they are well founded, allow a detailed formal 
specification and support the process of implementation and verification. 

�9 Structuring is the only way to deal with complex systems: Process algebras offer 
a design methodology, called constructivity, that allows to build systematically 
complex systems from smaller ones. There are operators available for compo- 
sition as well as mechanisms for abstraction. Finally, process algebras offer an 
algebraic characterization of equivalent system behaviour. 

We emphasize these two important aspects in the next two subsections. Then, in 
section 2, we give a brief introduction to the basic concepts of process algebras. In 
section 3 we extend these concepts to Stochastic Process Algebras and present our 
approach TIPP, a language for Timed Processes for Performance evaluation. 
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1.2 Precise and Modular Description of System Behaviour 

Classical queueing and loss models are the best known and most often used perfor- 
mance evaluation techniques. They mainly use a mixture of (almost) standardized box 
symbols, precisely defined stochastic parameters and colloquially formulated schedul- 
ing strategies. These semi-formal techniques have been most successfully applied to 
describe and analyse the behaviour of many dynamic systems. Modelling, however, 
the complex interdependencies within distributed and parallel processor systems we 
need a more precise, expressive and unambiguous description. Formal languages and 
particularly process algebras (two of them, CSP [Hoa85] and CCS [Mi189], are the 
basis of the quite remarkable programming languages OCCAM and LOTOS) are best 
suited and generally accepted as appropriate means. 

Stochastic Process Algebras are - -  as we will elaborate during this tutorial - -  an 
extension of these classical abstract languages including random time variables and 
operators for the description of probabilistic behaviour. Some examples are shown 
below to illustrate intuitively their expressive power. (Here we assume exponentially 
distributed time intervals, characterized by their rates; in general these rates just have 
to be replaced by an appropriate parameter set.) 

�9 The sequential arrival of three different jobs is specified by a process Jobstream 
describing explicitly each arrival point before halting: 

Jobstream := (job~, A~ ).(job2, A2).(job3, Xa).Stop 

�9 Consequently, a Poisson-arrival process is defined by an infinite sequence of 
incoming requests, (in, A).(in, A).(in, A).(in, A) . . . .  , which can be formulated 
recursively: 

Poisson := ( in, A ).Poisson 

�9 A service process consisting of an Erlangian distribution of order two is given 
by: 

Erl2 := ( endl,l~).( end2,l~).Stop 

�9 Using the probabilistic choice operator, hyperexponentially distributed arrivals 
are generated by the following process: 

Hyp2 := Expl [Tr] Exp~ where Ezp~ := (in~,A~).Hyp2 

�9 Both a precise and concise description of every service or arrival process is 
possible; this is illustrated by a so-called train-process, which is important for 
the modelling of file transfers in local area networks. Thereby the overlap and 
interleaving of different 'trains' is captured by the parallel operator (11): 

Train := (lok, A).{ ((wagl,#).(wag:,#) . . . .  (wag,,#).Stop) t1 Train} 

Passive actions allow the description of receptive behaviour, i.e. the behaviour of 
components waiting for activities of some partner, for example: 
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�9 The behaviour of a queue, with i jobs already queued, is described by a choice 
(operator +) between waiting for a further job or delivering a job on request to 
a server: 

queue o := ( in , - ) .Queue 1 

�9 An empty server is requesting the delivery of a job, then serves it, and requests 
again a new job: 

Server := (dt , #).Server 

The synchronous execution of activities by two components, i.e. joint work or commu- 
nication, is expressed, again, by the parallel operator, specifying now the synchronous 
actions explicitly (11{...}), for example: 

�9 A queueing system with polsson arrivals and one server is given by 

QSystem :--- Poiason 11{i.  @.~eo [l{dlvt Server 

where all component processes are specified as above. 

Having seen the expressive power of process algebras, this last example indicates 
already the second important property, outlined next. 

1.3 Constructivity: the Basis for Systematic Modelling and 

System Design 

From the very beginning a salient intention of process algebras has been to support 
a (functional) design methodology which systematically allows to build complex sys- 
tems from smaller ones. Building blocks for this constructive procedure are processes 
describing the behaviour of the individual system components. Communication activ- 
ities between these components are accomplished by (synchronous or asynchronous) 
message passing. There are three important features supporting constructivity: 

i. Composition operators 
We have already seen several examples for the sequential, parallel or alternative 
composition of single activities and entire processes. More complex examples 
will be shown later. The resulting building block is in each case again a process. 

2. Abs t r ac t i on  mechanisms  
In order to maintain the clearness and transparency of a system design there are 
operators hiding the internal behaviour of a component. Such a process then 
shows only its external communication activities to the outside world while 
internal actions are invisible. Therefore, hiding supports the systematic, clean- 
cut design and allows the hierarchical structuring of complex systems. 

3. Algebraic  cha rac te r i za t ion  of equivalent  behav iour  
Usually there are several possibilities to build a complex system with a specific, 
intended behaviour. Therefore, alternative designs have to be compared, and 
components may be interchanged or replaced by others. A major goal of process 
algebras is the algebraic treatment of system descriptions by means of a simple 
but powerful calculus. There is a set of transformation rules which allows to 
build and compare systems with the same behaviour. 
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Including temporal aspects into such a calculus raises our hope that there is a way 
to construct and evaluate complex performance models systematically from smaller 
ones. Nowadays, hierarchical modelling is still an art and only experienced specialists 
are successful. Stochastic process algebras can offer means for systematic, constructive 
modelling strategies. 

2 Introduct ion  to Process  Algebras  

Classical process algebras - -  e.g. CSP [I-Ioa851, CCS [Mi189], ACP [Bwg0I - -  have 
been developed as formal description techniques for systems of processes that run 
asynchronousty in parallel and communicate with each other by synchronously ex- 
changing messages. They showed to be well suited for the description and analysis of 
so-called 'reactive systems' like robot control systems, operating systems, communi- 
cation protocols, etc. 

The investigation of process algebras has led to comprehensive theories extending 
classical automata theory in several respects: They provide a compositional descrip- 
tion technique by defining composition operators for building large and complex de- 
scriptions of smaller and simpler ones. Most important are the parallel composition 
operator for describing synchronized execution of concurrent processes and an opera- 
tor for abstracting from actions that are considered irrelevant. Different descriptions 
of the same system can be compared by means of equivalence relations. Several notions 
of equivalence with different granularity have been formally defined and investigated. 
Algebraic characterizations of such equivalence relations yield equational laws that 
can be used for transforming system descriptions into equivalent ones. 

2.1 Describing Systems 

Modelling the behaviour of a real system means to find a representation of the sys- 
tem that covers the relevant aspects of the behaviour and is mechanically tractable. 
Usually such a representation is given in terms of states and transitions, where tran- 
sitions represent state changes that are caused by the execution of system activities. 
Instead of directly finding such a state-transition based model, process algebras use 
a clearly defined two-step procedure. First, the system behaviour is described by an 
abstract language. Second, there is a formally defined semantics, i.e. for each lan- 
guage expression there is a unique interpretation as a state-transition based semantic 
model. The advantage of such a two-step procedure is obvious: While the first step 
is design-oriented and user-friendly, the transformation into a state-transition model 
and its evaluation can be performed automatically. 

Within process algebras the basic elements of descriptions are actions and composi- 
tion operators. Actions describe relevant activities of the system. They are considered 
to be atomic at the level of abstraction that was chosen for modelling. Descriptions 
can be composed in order to yield descriptions of more complex systems. Formally, 
the ways descriptions can be built are defined by a grammar. We assume a fixed set 
of action names Act := Corn U {r}, where we use r as a distinguished symbol for 
internal, invisible activities and let Corn be the set of regular, visible activities (the 
communication actions). 
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Defini t ion 2.1 The se t / :  of terms of the language is given by the grammar 

I x  l I 
where a E Act, S, L C Cam, and X E Vat with Par being a set of process variables. 

D 

The intuitive meaning of the operators is as follows: 0 denotes a terminated process 
which cannot perform any actions. The process which performs the action a and then 
behaves like the process A is denoted by a.A. The process A + B can behave either 
like A or like B. The decision is taken as soon as either A or B performs any action. 
In A IIs B the component processes A and B proceed concurrently and independently, 
except for actions in S, which must be performed as joint actions. With A \ L  a 
set of actions L of the process A is hidden, i.e. these actions become internal and 
invisible from the outside. Transitions of A due to actions in L will be presented to 
the environment of A only as anonymous r-transitions, thus they cannot take part in 
joint transitions with the environment and can therfore be regarded as invisible. An 
infinite behaviour is described by a recursive term recX : A with X occurring freely 1 
in A. An alternative way of writing down a description of recursive behaviour is by 
using defining equations (cf. the examples of section 1.2). E.g. instead of the term 
recX : t ick .X we can name this process and use this name to indicate the recursion: 
Clock := tick.Clock. 

For example consider the task of modelling a send-and-wait protocol. We can 
describe the protocol by composing three processes: a sender, a receiver, and a com- 
munication medium for reliable message transfer. These processes run in parallel but 
sychronize on actions which describe the handing over of messages from and to the 
medium. 

- ~ I - V I - - -  . . . . . . . . .  ; ~  

The sender S repeatedly assembles messages that are to be sent (action send). These 
messages are handed over to the medium (action s m -  send message) and the sender 
waits for an acknowledge of successful transmission (action ack). The receiver R gets 
a message from the medium (action rm - receive message), processes it (action recv) 
and returns an acknowledge message (action ok). 

S = reeX : send.sm.ack .X R = recX : rm.recv.ok.X 

The medium is modelled as two independent one-place-buffers, one for each direction: 

M = ( recX:  s m . r m . X )  110 ( recY:  ok.ack.Y) 

1A variable X is called to occur freely in a term A if it occurs outside of all subprocesses of the 
form recX : B. 
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Finally, a desciption of the entire protocol is obtained by a parallel composition of the 
three processes with appropriate synchronizations: 2 

SaW-Prot = S tl{sm,aek} M II{,-,-,-,,ok} n 

2.2  O p e r a t i o n a l  S e m a n t i c s  

By giving a semantics to our language we define a formal way of creating a behavioural 
representation of a system from its description. Usually this i s  done by means of 
an operational semantics that  associates a labelled transition system with a process 
description. Formally, a transition system labelled over Lab (the set of labels) is a 
structure 

( S ,  so, - - , )  

where 5' is a set of states, so is the initial state and ,,, ,c_ S • Lab • S is a transition 
relation. (s, l, t) e - - -~  means that there is a transition from state s to t with label l; 

I 
this will be written s , t. 

For presenting a concrete semantics for our language we adopt the Structural Op- 
erational Semantics (SOS) style which was introduced by Plotkin [Plo81] and became 
the most  prominent style for process algebra semantics.  

With this style, process descriptions and their formal semantics,  i.e. their associ- 
ated labelled transition systems,  are formally interweaved by using the set s of terms 
of our language as (names of) the states of the transition systems.  With  a process 
P E s the semantics associates a transition system 

7-(P) = ( c ,  P,  ~,) 

where P itself represents the initial state and ~ C s x Act x s E.g. for a process that  
executes the action a, afterwards the action b, and then stops we will get T(a.b.O); if 
this process is alternatively able to execute c and then stop, we will get T(a.b.O + c.O). 

~' (a .b .O)  = 

t a.b.O ] ] a.b.O+c.O 

T(a.b.O + c.O) = c 

The main part that  remains of the presentation of a semantics is the formal defi- 
nition of the transition relation. In the SOS-style this is done by means of deduction 
rules: Every operator of the language constitutes a syntactic form, e.g. A + B,  of 
building up descriptions. For every syntactic form we present operational rules defin- 
ing the transitions that are possible for a process of this form, by referring to the 
transitions possible for the components of this process. E.g. the rule "If  A ~ ~ A' 

21n this case we can omit brackets, but in general brackets are necessary to fix the order of 
applying the composition operators. 
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a . A  a 

A ~ 2 A' (+,) 
A + B  ~ A' 

A " , A' (11~) (a ~ S) 
A I I s B  " ' A ' I I s B  

, A  (') 

A ~ ) A I 
A \ L  " , A ' \ L  (\"~ (a q~ L) 

s " 2B_'. 
A + B , B '  ( + ' )  

B ~ .JB' 
A I I s B  " , A I I s B '  (ll,) ( a ~ S )  

A ~ , A '  YA  ~ , B '  
A IIs B " ' l ls B' (11) (a s) 

A " , A '  

A \ L  " , A ' \ L  

A { r e c X  : A / X }  ~ , A' 
recX : A ~ , A' (rec) 

(\y,.) (a E L) 

Figure 2: Operational Semantics Rules 

then A + B ~ ~ A' " defines that it is possible for a compound process A + B to 
perform an action a and thereby change into A' if its subprocess A can do so. (A 
symmetric rule will capture the possible transitions of subprocess B.) The general 
way of writing such rules is 

premise 1 . . .  premise,  (name) (condition) 
conclusion 

and they are read: 

If condition is satisfied, the rule (name} can be applied and it can 
be deduced that conclusion holds in case all of the assumptions 
premise1. . ,  premise,  hold. 

Now we can present a semantics for our language: 

Defini t ion 2.2 Let P E s be a process description. The semantics of P is defined 
to be the labelled transition system 

y ( P )  = P ,  

where ,C s x Act x s is the least relation that satisfies the rules of figure 2. [] 

The rule for sequential expressions (.) is the simplest one. A process of the form 
a.A can always perform the action a and then changes into A. This rule has no 
precondition and thus serves as an axiom of the deduction system. 
A process of the form A + B behaves either like A (according to rule (+t)) or like B 
(according to rule (+~)). 
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If we want to deduce a possible transition of the process A Hs B we can, according 
to rule (lit), try to deduce a possible transition for the left subprocess A. Let us 
assume that we can deduce e.g. A ~ ~ A'. In case a ~ S, i.e. a does not belong 
to the synchronization set S, the rule (Ill) is applicable and thus we can deduce for 
A Hs B an a-transition to the state A' IIs B where A has changed into A' and B 
remained unchanged. In case a E S, rule (11) states that it is not sufficient to have 
just A ~ ~ A' in order to deduce an a-transition for A [Is B. There must also be 
a proof (deduction) that there is an a-transition for B, say B ~ ~ B'. In this case 
A and B will move simultaneously to A' IIs B'  by executing a. 
Hiding does not affect transitions due to actions not in L (rule i\-o)), otherwise the 
label of the transition is changed to the anonymous action r denoting an invisible 
transition (rule (\y,,)). In both cases hiding remains in effect for the successor state. 
Finally rule (rec) states that a recursive term recX : A behaves exactly like its body 
A, where all the process variables X in A are substituted by the entire recursive term 
itself) 
Note that there js no rule for the terminated process 0, since it does not have any 
transition that could be deduced. 

To see how the operational rules work together and generate the labelled transition 
system, we deduce a possible transition for the medium of the send-and-wait protocol 

M = (recX : sm . rm .X)  I1$ (recY : ok.ack.Y) 

First we need to find applicable rules by following (top down) the structure of the 
process description, thereby reducing the term to a sequential form. When more than 
one rule is applicable we have to choose one of them (and can use the other(s) later 
for deducing other transitions). 

~, , . , 'm . ( re~X:sm. ,n .X)  ~ , ? (re~) 

r e c X : s , n . ~ . X  ? ' ? {Ib) 
? 

r e c X : s m . r m . X  lie recY:ok .ack .Y  , ? 

Here we chose to follow the left-hand term of the parallel composition (rule (HI)), 
unfolded the recursion (rule (rec}), and finally reached a term in sequential form. 
Now we apply axiom (.), the only rule without further premises, and complete the 
deduction (bottom up) by matching the single deduction steps with the patterns of 
the corresponding rules. 

{.) 
s m . , ' m . ( r e ~ X : s m . ~ . Z )  ' ' ,  ~ . ( ~ X : , m . , ' , n . X )  (rer 

recX : sm . rm . X  ,,n , rm.(recX : sm. rm.X)  (lit) 

r e ~ X : s m . ~ . X  IIo ~ c X : o k . a c t . X  "~ , r m . ( r e c X : s m . r m . X )  ]]O recY:ok .ack .Y  

This deduces a possible sm-transition for the medium (an ok-transition would also be 
possible and can be deduced starting with rule (][r) instead of (HI)). The transitions 
that are possible in the new state, reached by performing sin, can be deduced in 
the same way (there is still the ok-transition possible for the right-hand side, and a 
tin-transition for the left-hand side, leading again to the initial state). 

3The notation A { B / X }  denotes the simultaneous substitution of B for all free occurrences of X 
inside A. 
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This kind of reasoning by means of deduction rules, which are chosen according 
to the structure of the term, can be automated very easily. Furthermore, every state 
is represented by a process term containing all the necessary information about the 
possible transitions leaving this state. This allows to deduce transitions by need, and 
thus to avoid to create the whole state space in advance when it is not necessary. 

2 . 3  C o m p a r i n g  D e s c r i p t i o n s  

When we model the behaviour of real systems different representations can be found, 
all of them capturing the 'same ' behaviour. E.g. consider the three transition systems 
(where * indicates the initial state): 

,Q a a 

The first one executes a infinitely often, the second initially executes an a and then 
loops forever while executing a, and the third toggles between two states by executing 
a. All three transition systems (in fact we can find many more) represent the ability of 
a system to execute a infinitely often. An external observer watching the three systems 
and recording the actions they perform would not be able to tell the difference beween 
these systems from his observations. From the point of view of this observer these 
systems are considered equivalent. 

This notion of equivalence of behavioural representations (transitition systems), 
which is expressed by the metaphor of an observer recording sequences of actions a 
system performs, can formally be captured as a relation between transition systems. 
All the possible sequences of actions a system T = (S, So, ,) can perform, starting 
from the initial state, are given by the set 4 

traces(T) = {w E Com" 13n e No. 311,.. . , l~ q Com, s l , . . . , s ,  e S. 
^ 

wheres  = ~  t := s - - L * . . .  ~* s '  ~ , t ' - s  "~ t i sdef ined  to disregard 
invisible transitions. We can now define 

Defini t ion 2.3 Two labelled transition sytems T = (S, s0,---~) and T '  
(S', s' o, ,') are trace equivalent (~tr) iff they have the same set of traces: 

T ~tr T '  :r traces(T) = traces(T') 

Q 

Having a means of comparing behavioural representations we can use it to compare 
descriptions of them. 

4Note tha t  the empty trace is contained in every trace set. 
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Definition 2.4 Two process terms P, P'  E s are trace equivalent (=tr) iff their asso- 
ciated transition systems are trace equivalent 

P =tr P' :~==> T(P) "~tr T(P')  

[] 

E.g. the three transition systems above can be described by the following equivalent 
terms 

recX : a.X =tr a.(recX : a.X) =tr recX : a.a.Z 

In general we will look for patterns of process terms which are equivalent, thus 
establishing equational laws: There are rather obvious equational laws which reflect 
certain properties of the language operators, e.g. commutativity and associativity of 
the operator +: 

P + Q  =tr Q + P  
P + ( Q + R )  =~r ( P + Q ) + R  

On the other hand there are special laws expressing the inability of an observer to 
distinguish between certain processes, e.g. 

~'-P =tr P 
a.( P + Q) =tr a.P + a.Q 
a.P H{} b.Q =t~ a.(P IIo b.Q) + b.(a.P I1~> Q) 

Such a collection of equational laws on processes turns our language into an algebra. 
Once a set of equational laws is presented, two properties of the algebra with respect 
to the given equivalence notion have to be shown. First, it must be proven that all of 
the laws are sound, i.e. only processes are equated which really have equal trace sets. 
Second, it must be proven that the set of laws is complete, i.e. whenever two processes 
have the same trace set, they can be shown to he equivalent by purely equational 
reasoning. 

Apart from trace equivalence there is a variety of equivalence notions which have 
been investigated. In fact, trace equivalence is one of the simplest and coarsest equiv- 
alence relations. When we want to compare process descriptions, we must carefully 
choose an equivalence notion, such that it captures exactly the extent to which we 
want two processes to be considered equal. 

2 .4  V a l i d a t i o n  o f  S y s t e m  D e s c r i p t i o n s  

A crucial step of modelling real systems is to convince oneself and others that the 
presented description of a system really captures the system's important properties 
and represents the relevant aspects of its behaviour properly. To this end several 
techniques for validating process algebra descriptions have been investigated and are 
supported by a number of tools. A comprehensive overview of existing tools, their 
capabilities, and implementation aspects is presented in lIP91]. 

Validation techniques can be classified into three categories: simulation, equiva- 
lence checking, and model checking. They depend strongly on the type of model that 
is used to represent systems. For this presentation we will only consider validation 
techniques for systems being represented by transition systems. 
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Validat ion by S imula t ion  Techniques in this category are based on examining 
the state space of the system. 

Conducting a 'reachability analysis', the state space is searched for states indi- 
cating certain mawanted situations. Since with an SOS-style semantics states are 
represented by process terms, these terms can be checked to support the identifica- 
tion of such situations. As e.g. deadlock states must be distinguished from states 
representing a regular termination, it is not sufficient just to find states without tran- 
sitions leaving them; by checking their names, deadlock states like 0 ]1{~} a.0 can be 
detected and separated from termination states like 0 II(*} 0. 

Furthermore, it is also possible just to list the action sequences the system can 
perform (certainly almost never exhaustively), or to navigate through the state space, 
thereby 'testing' the system's ability to react to stimuli from the environment. For 
performing these kinds of investigations it is not necessary to create the whole state 
space, but it is sufficient to deduce from the operational semantics rules just the part 
of the state space needed. 

Validat ion by  Equiva lence  Checking  Different descriptions of the same system 
can be proven equivalent. The chosen equivalence notion determines to what extent 
the behaviours coincide. Equivalence checking is useful in two common situations: 

Consider a system consisting of individual subsystems composed by operators of 
our language, e.g. A Ils B. If we want to replace one subsystem, say B, by a different, 
perhaps more efficient, implementation C, we expect the new system A IIsc to have 
the same behaviour as the former one. In case the used equivalence relation (=~q) 
respects the composition operators of the language, i.e. =~q is in fact a congruence 
relation, we can make use of the following property 

VA, B, CEs B=~qC ==~ A I I s B = ~ q A I I s C .  

Only the subsystem has to be proven equivalent to the new one replacing it, this is 
easier than comparing the whole system. 

Another situation, where equivalence checking is often used, is the task of verifying 
that a detailed description of a complex system satisfies an abstract specification. 
Consider the example of the send-and-walt protocol of section 2.1. If we think of 
the visible behaviour of the sender and receiver working together being described 
abstractly by the 'service specification' 

SaW-Serv = recX : send.recv.X 

then we can prove that this is equivalent to the behaviour of the protocol if we disre- 
gard (hide) the internal communication of the sender and receiver with the medium 

Sa W-Serv =,r ( Sa W-Prot ) \ { sm, ack, ok, rm } 

Validat ion by Mode l  Checking A different approach is to use a logical formalism 
for the specification of a system. Relevant properties, which we expect the system 
to have, are stated one by one as logical expressions and specify conjunctively the 
system's behaviour. For this purpose temporal logics formalisms can usefully be 
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applied. The task of proving that a behavioural representation (transition system) of a 
system satisfies its specification is called model checking and can be done mechanically. 

In contrast to the approach with equivalence checking, where we start with a 
specification given in form of a process description, which already shows the entire 
expected behaviour of the final implementation abstractly, the logical approach is more 
appropriate when such a prototype description is difficult to find and not available 
from the beginning. 

3 T I P P  a L a n g u a g e  for T i m e d  P r o c e s s e s  a n d  
P e r f o r m a n c e  E v a l u a t i o n  

3.1  P r o c e s s  A l g e b r a s  a n d  T i m e  

In classical process algebras, only the relative ordering of events is modelled. In 
order to describe the temporal behaviour of systems, all standard process algebras 
have been recently extended to real time process algebras, which allow to model the 
exact timing of events, and thereby are able to represent time dependent behaviour 
properly (see [NSgl] for an overview). These approaches differ in detail, but have in 
common the objective to model and analyse the influence of fixed time durations on the 
functional behaviour rather than to investigate quantitative aspects. Being interested 
in the analysis of performance characteristics, the concept of random variables and 
stochastic processes is still the only feasible way to capture the particulars of a complex 
system: In many situations there is no exact timing behaviour available because of the 
complexity of the problem, because of a randomly changing environment, or because 
of the indeterminacy inherent in any transmission system. Therefore we propose to 
develop stochastic process algebras by incorporating random variables into classical 
approaches. By doing this we are able to combine the potentials of performance 
modelling and analysis with the modelling power of standard process algebras. 

To the best of our knowledge only two attempts have been made in the past in this 
direction [NY85, Zic87]. However, the fascinating properties of process algebras are 
attracting more people now [Hi193, SH93]. In the following sections we report on our 
research and experiences during the past [Her90b, Ret91, GHR92, GHR93] as well as 
on ongoing activities. 

3.2 Stochastic Process Algebras 

The Concept The basic ideas of our concept are summarized in figure 3. We strictly 
follow the concept of classical process algebras describing the system behaviour by an 
abstract language (system description) with an underlying state-transition graph rep- 
resenting the exact meaning of the process (semantic model). Rather than considering 
only the functional behaviour we also add temporal information: each activity is de- 
scribed as a pair consisting of its type and time. This additional information in the 
semantic model allows to evaluate various system aspects: 

�9 functional behaviour (e.g. liveness or deadlocks) 

�9 temporal behaviour (e.g. throughput or waiting times) 
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P:=...(=,:,).--I1{} . . .(b,~,)... 

/ 1 

temporal combined 

System Description 

Formal Semantics 

Semantic Model 

Evaluation 

functional 

Results 

Figure 3: Modelling Procedure 

�9 combined properties (such as the duration of certain event sequences, the prob- 
ability of deadlocks or timeouts, etc.) 

Dependent on the stochastic assumptions (e.g. Markovian, semi-Markovian, general) 
different timing parameters are necessary and the expenditure for evaluations may 
vary significantly; this is true also for the algebraic characterization of equivalent 
systems behaviour. 

There is not a unique way of solution and there are many possiblities to specify 
operators, semantic models and equivalences. In principle, however, stochastic process 
algebras offer the same exciting possiblities as their purely functional forefathers. 

System Descript ion To incorporate a stochastic time description into process alge- 
bras and to guarantee compositional properties, we have chosen the standard concept 
of stochastic modelling and performance evaluation, a specification by (random) in- 
terarrival times: the execution instant of each event is specified by the time interval 
between the event and its immediate predecessor event; for an illustration cf. figure 4. 
The events, represented by pairs (ai,pi), describe both the functional and tempo- 
ral behaviour of the process: ai denotes the type of activities and Pl is a parameter 
(or parameter set) specifying uniquely the distribution function of the related time 
intervals: 
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state 
$(al,pl) 

- r : :  - x  . . . . . . . . . . .  
:" time 

Figure 4: Time Model 

From 

In case of exponentially distributed time intervals the corresponding parameter 
is the rate hl. (Several examples for such a process description have been shown 
already in section 1.2.) 

In case of Erlangian distributed intervals two parameters are necessary: the 
number of phases and the corresponding rate. 

For discrete time distribution functions the random behaviour is given by the 
appropriate step probabilities. 

a syntactic description we derive a behavioural representation of the system. 

Semant ic  Mode l  By means of a formal semantics a system description is translated 
unambiguously into a transition system representing both the functional and temporal 
behaviour of the system. For that the semantic must be carefully designed in order to 
represent properly (either explicitly or implicitly) all of the behavioural information 
contained in the syntactic description. 

For generally distributed time intervals we preserve this information by so-called 
'start-reference'; they allow to solve the problem of residual time intervals in the 
case of parallel and competing process execution [Ret91, GHR93]. 

In case of exponentially distributed time intervals the Markovian property allows 
a drastic simplification. The structure of the semantic model corresponds to that 
of the standard Markov chain representation. 

Note, however, that the system designer does not see this more or less complicated 
semantic model; he just formulates the problem to be investigated using the language 
elements. 

In the following two sections we will restrict ourselves to exponentially distributed 
time intervals and present a stochastic process algebra called Markovian TIPP. Several 
examples will demonstrate the applicability of our constructive approach to system 
modelling. Finally, we will show that stochastic process algebras are not limited to 
the presented version. We briefly sketch how additional language elements like the 
probabilistic choice operator can be included, and how we can deal with residual 
execution times when allowing generally distributed time intervalls. 
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3.3 Formal Semantics of Markovian TIPP 

In a stochastic process algebra we are dealing with activities which have (random) 
time duration (described by random variables with a certain time distribution func- 
tion). Since we will be dealing only with exponential distributions, timed actions 
can be described by their name and the rate of the exponential distribution function, 
(a, A). It is often useful to have not only timed actions but also timeless, immediate 
actions, denoted by (a, co). Similar to immediate transitions in Generalized Stochastic 
Petri Nets [ABC86] they are suitable for the proper modelling of a specific functional 
behaviour. From a temporal point of view they can be neglectdd and, by doing so, 
the number of states of the associated Markov chain model is reduced. Both kinds of 
actions are called active. A third kind of ~tions, the passive actions are introduced 
to describe subsystems, whose temporal behavlour is not completely determined by 
their own but by activities of other subsystems communicating with them; e.g. the 
interarrival time of customers in a queue is determined not by the queue but by the 
environment (which can be a complex system or be modelled simply by an arrival 
process) (cf. section 3.4.1). Passive actions, denoted by (a,-), will prove to be very 
helpful for combining systems by means of synchronized parallel composition. 

The formal definition of the language and its operational semantics is completely 
analogous to the basic process algebra presentation in section 2.2. We assume a fixed 
set of action names Act := Corn U {~'} with Corn being the set of visible actions and 
~" a distinguished symbol denoting invisible, internal activities. An action a can either 
be passive (a, -), immediate (a, ~), or timed (a, A) with an exponentially distributed 
duration represented by the parameter A. 

Definition 3.1 The set s of terms of our language is given by the grammar 

IX l I 'lls ' I '\LI 

where a E Act x Rate with Rate := { - }  U R + tO {or}, ,9, L C_ Corn, and X E Vat 
with Vat being a set of process variables. O 

Definition 3.2 Let P E ~ be a process description. The semantics of P is defined 
to be the labelled transition system 

7(P) = ( c , P ,  ,)  

where ~C_ ~ x (Act x Rate x {l, r}*) x ~ is the least relation that satisfies the rules 
of figure 5. [] 

The difference between the semantics presented here aJad that  of the basic process 
algebra (figure 2) is twofold. 

First, auxiliary labels (E {/, r}*) are introduced as a technical means to distinguish 
identical transitions. This is necessary to represent the temporal  behaviour correctly. 
E.g. consider in the basic process algebra the process description A = b.0 + c.0. It  
will yield (according to the rules of fig. 2) two transitions (A, b, 0), (A, c, 0) E ,. If 
we want to change the description to A ~ = a.0 + a.0 where we no longer want to 
distinguish the activities b and c and call them identically a, these two transitions will 
coincide such that  we have only the single transition (A', a, 0) E ~. This is all right 
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(.) 
(a,X).A "'~" , A 

A a,~,~ A ~ , (+,) 
A + B  ~'~'~ ~ A' 

B a,,Lw ) Bt  

A + B  =,;t,,~, ~ B '  ( + ' )  

A "'~'~ A' <11,) (~ ~ s) 
A ]Is B . ,,~,t~ A' IIs B 

B "'~'~' , B' (11,) (,, ~ s)  
A IIs B "'a"~' , A tls B' 

A ~,,~,o A' ,,t,.,o B'  , B ' (11) ( a E S )  
A IIs B " ' ' ( a " ) " ' ~  A' IIs B' 

A "'~'~ A' (\~o) (a ~ L) 
A \ L  ~ '~ '~  A ' \L  

A ~,~,,o , A' (\~,o) (a E L) 
A \ L  ~'~"0 , A ' \ L  

A{recX : A / X }  ~"~'~' , A' 

recX : A ~,x,~ ) A' 

Figure 5: Operational Semantics Rules 

for the representation of the functional behaviour. For a stochastic process algebra, 
however, this coincidence in case of A' = (a, A).0 + (a, X).0 would lead to a wrong 
representation of the system's  temporal  behaviour since the transition rate changes 
from 2A to X. Among different possibilities to avoid this coincidence or to adapt  the 
transition rate, we have chosen in T I P P  the most  t ractable solution and use auxiliary 
labels, l (left) and r (right), to distinguish identical transitions, s 

Second, and most important  from a methodological point of view, the t rea tment  
of synchronization fits in the conception of the three kinds of actions we have. If two 
actions, (a, z) and (a, y), are to be synchronized, it must  be considered whether they 
are active or passive. In order to treat  different combinations uniformly, we choose, 
according to rule (11), for the t ime parameter  of the joint action the rate maz(x , y ) ,  
where we extend the function rnaz by defining for passive and immediate  actions 

w e  ( - } u R + u ( o o } .  m,,=(-,~)=z ^ ~,,=(oo,~)=oo 

Sin general, in order to distinguish more than two transitions, we concatenate words w E {1, r}*, 
starting with the empty word r in rule (.). 
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This facilitates two important ways of using sychronization while composing descrip- 
tions (see also the examples in the next section): either a passive action is synchronized 
with an active one, ( a , - )  [1{~} (a, A) or ( a , - )  I1{~} (a, c~), or two identical actions are 
synchronized, (a, z)11{~} (a, x). 6 

By synchronizing active and passive actions, waiting situations can be described. 
E.g. a processor waiting for a task to execute can be written. 

Proc  :=  ( t a s k , - )  . . . .  Workload  : . . . .  ( task ,  A) . . . .  

System := Proc ll{t,,~} Workload 

By synchronizing identical actions, system descriptions can be written in an ele- 
gant style, the so-called constraint-oriented specification style [V+91]. E.g. consider 
a workload consisting of three tasks (t~, ,~1), (t2,,~) and (ts,~a) with the execution 
constraints 21 has to be completed before t: can start 'and 't2 has to be completed 
before ts can start'. We can describe this workload by following the structure of its 
informal specification, combining two constraints on the execution sequence of the 
three tasks: 

Workload :-- (tl, ax).(t~, A~).0 IIc~} (t~, A~).(t3, A3).0 

In this description both subterms (constraints) refer to the same task t2. Obviously 
this description is equivalent to Workload := (tx,&~).(tz, A2).(ta, Aa).0 but  the first 
one explicitly represents the way it was composed from simpler descriptions. This 
specification style can usefully be applied not only to timed actions, but also to passive 
and immediate ones. 

3 . 4  E x a m p l e s  

TIPP can be used for the specification and analysis of systems of various kinds. E.g. 
in [GHR93] we have modelled a multiple send-and-wait protocol (cL section 2.1) using 
deterministic and exponential t ime d i s t r ibu t ions /Here  we want to demonstrate how 
to construct systematically queueing models from basic elements (queues, servers, 
jobs, etc.) and how the internal structure of the complex jobs can be taken into 
account. 

3.4.1 Queueing Systems 

We model a simple M / M / n  queueing system (see figure 6). A formal description 
of this system, following the structure of its semi-formal graphical presentation, will 
be developed from a composition of three parts: an arrival process, a queue, and a 
number of servers. 

The arrival process is modelled as a Poisson stream, creating jobs a (arrivals) with 
rate )~. 

A ~  := ( a , ~ ) . A ~  

6Synchronizing timed actions with the same name but different rates, say (a, A) and (a, p), is not 
explicitly precluded, but we cannot think of any special use for this case; nevertheless the semantics 
for this case is uniquely defined. 

rThis was carried out with a version of TIPP capable of dealing with general distribution functions 
(see also section 3.5.2). 
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@ 

| 

Figure 6: M/M/n queueing system 

The queue waits for the arrival of a job, action ( a , - ) ,  or alternatively delivers a job 
to a server, if it is requested to do so and it is not empty, action (d , - ) .  In order to 
get finite models, the queue is bounded to a maximum number of jobs, maxQ. 

Q ~ 0  := ( a , - ) . Q ~ ,  
Queue i := (a,-).queue~+ 1 + (d,-).Queuei_ 1 0 < i < mazq 

The multiserver consists of n independent processing elements. Each processor re- 
peatedly requests a job, being delivered from the queue, action (d, oo), and processes 
it with rate #, action (p, #). 

Proc := 

MultiS := 

(d, cc).(p, ~).Proc 

Proe I1{} P~oc i lo  . - .  I1{} P,'o~ 

n-times 

The complete queueing system is then the synchronized parellel composition 

M/M/n := (Art [[{~} Queueo) [[{a} MultiS 

The underlying semantic model of this compact description is determined unambigu- 
ously by the semantics of TIPP. For n = 2 the model is depicted in figure 7, where 
the horizontal position of the nodes indicates the number of tasks in the system (0 
- mazQ+2) and the vertical position represents the number of processors busy (0 - 
n). This model can be transformed quite easily into a Markov chain by eliminating 

a,~ 

~ d ,  . . . OO 

a ,  ,~ a ,  

Figure 7: Semantic model of the system M/M/n 

immediate transitions, dropping the action names, and joining multiple transitions by 
adding their rates. 
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3.4.2 Task Graphs 

Jobs consisting of a number of interdependent tasks can be represented graphically 
by task graphs. E.g. consider a Job with tasks t1 , . . . , t6  and a precedence relation 
depicted in figure 8. The task graph can be assumed to be developed from the 

Figure 8: Task graph 

combination of several precedence constraints, e.g. 

6'1 : =  (tl,A1).(t~,~z).(t4,.~4).(ts, M).O 
6"2 := (t~,A1).(tz, Aa).(ts,)~s).(ts, As).O 
ca := (t~,~).(ts ,~s) .0 

Job : =  (Cx I1{,,,,,} C=)I1{,=,,,} Ca 

3.4.3 Mapp ing  Work load  onto  a Mul t i se rve r  

Now we want to present a more advanced example combining the two previous ex- 
arnples and describe the treatment of complex jobs with several tasks in a queueing 
network. 

First we need to consider the effects of synchronization in some more detail. In 
general synchronization of system activities, modelled by timed actions, and system 
resources, modelled by passive actions, requires some care. Consider e.g. a system 
with a workload consisting of two independent tasks and a single processor, which, 
for the sake of this example, serves just one of the tasks and then stops. 

Workload := (task,)q).O IIo (task,),2).O Proc := (task,-).O 

System := Workload II<,,,k} Prac 

Unfortunately, describing the system in this way is incorrect, since the assigned be- 
havioural representation contradicts our intuition about the system behaviour. 

f System l 

I (~176 I I ((t'~'}ll{}~176 I 

Here the overall transition rate from the initial state to a terminal state is A1 + A2. 
The reason is, that the potential parallelism of the workload is represented as actual 
parallelism rather than being eliminated. 
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A correct description would be to eliminate the parallelism of the workload by 
making first a decision, which of the tasks is to be started. 

Workload := (start_t,-).(task, A,).O Ih~ (start_t,-).(task, Az).O 
Proc := (start_t,c~).(task,-).O 

System := (Workload I1~o,.~,, ,,o~ Proc)\{start_t} 

I  stem I 

I II I 

I II  I 

This leads to a branching structure in the transition system with two immediate tran- 
sitions, representing a choice between the two alternative tasks with equal probability. 

Now we can adapt the description of the task graph of the previous section for 
being included in the queueing network example (additionally, an immediate action 
job_end indicates the termination of the job). s 

cl  := (start_t, ,-).(task:, A1). (start_t2,-).(task2, A~). 
(start_t,, -).(task,, A,). ( start_ts, - ).( tasks, As). 

(job_end, oo ). 0 
C2 := (start_tl,-).(taskl,A1). (start_ts,-).(tasks, A3). 

( ~ta~t_ts, -).(tasks, As). (start_is, -) . ( task, ,  A, ). 0 
C3 := (task2, A2). (start_ts,-). 0 

Job := (C, Ih,,...,,,,.,~,,,,..~,,,,..k.> C~) II<,.,k2,o,..-,~> C~ 

The queueing network is composed of the same parts as before: arrival process, queue 
and server. The arriving jobs are all of the same kind. As jobs consist of individual 
tasks, the processors of the server must be able to process any of these different tasks. 9 

Proc := ~'~=l(start_ti, cx~).(taski,-).Proc 

MultiS := Proc I1<) P~oc II<} . . -  I io P~oc 

The complex structure of a job delivered from the queue makes it necessary to sup- 
plement the multiserver with a scheduler which mediates between the queue and the 
processors. 

Scheduler := ( (d, c~).Job II~job.,,,} (job_end, -).Scheduler )\ {job_end} 

After requesting a job from the queue the scheduler activates it, so that the individual 
tasks of the job can be executed on the processors according to the precedence relation 

SThe description given in the previous section is all right if we want to analyse the task graph for 
its own, exploiting the full inherent parallelism. 

9We will write ~in__t Pi abbreviating the n-fold alternative composition PI + ' "  + P~. 
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specified in the description of Job. At the end of the job an internal (hidden) signal 
(job_end) (see description of 6'1 above) reactivates the scheduler. 

The complete system is then described by 

(Art 11{~} Queueo) [[{d} (Scheduler ]Is MultiS) 

with S = {start_ti, taski ] i = 1 , . . . ,  6}. 

This description can easily be modified such that certain tasks are only executed 
on certain processors. E.g. a server with two processors Procl; Proc~, where Procl 
executes only task1 and tasks and Proc2 the others, is described by 

Procl := ~'],~r,(start-t,,~).(taskl,-).Procl T1 = {1,2} 
Proc2 := Y']4eT~(start-ti, c~).(taski,--).Proc2 T2 = {3,4,5,6} 

MultiS := Procl II{} Proc~ 

3.5 Extensions  

3.5.1 Probabi l i s t ic  Choice 
For describing alternative behaviour with fixed branching probabilities we need to 
extend our language by a new operator, the probabilistic choice operator A[~r]B. We 
will present here a rather staightforward way of incorporating it into the semantics. 

A probabilistic choice A[~r]B is considered to be resolved instantaneously and 
completely internal. The decision is taken in favour of A with probability a" and 
in favour of B with 1 - a'. This is represented in a transition system by branching 
off two immediate transitions which are labelled additionally with the corresponding 
probability. 

I A[r]B I 

Semantically, this requires to introduce new rules and to extend the labels of transi- 
tions. Labels are now quadrupels Act • Rate • •{o,1] • {l, r}" with R[0,1] being the 
closed interval of real numbers from 0 to 1. There are two new rules: 

A[~r lB . . . .  " "  , A A [ r l  B ,,,oo,, . . . .  , B 

These rules have no preconditions, since the behaviour of a probabilistic choice does 
not depend on the behaviour of its constituent parts. 

This treatment of probabilistic choice, however, interferes with the intuition of the 
competitive choice. E.g. in the system A[~r]B + (a, A).C 

I A[~r]B+ (a,~).C } 
r, oo, rr , l l J I ""N. a, )~, l, r 
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the a-transition competes with two immediate transitions and will therefore never be 
executed. Such situations can be ruled out in advance by syntactically demanding that 
a probabilistic choice must be 'guarded', i.e. a subterm A[Tr]B can only occur inside a 
term if it is sequentially preceeded by an action. This can be expressed formally by 
distinguishing syntactic categories in the grammar of the syntax definition. 

~' ::= Q I ~'[~']~' I r ecX:~ '  
Q ::= o I X  I,~.Pl  Q+Q I QIIsQI Q\L 

3.5.2 Genera l  D i s t r i bu t ion  ~'kmctions 

Dealing with time distribution functions other than exponential ones requires a careful 
semantic treatment of residual execution times. Consider a process P = (a,p~).0 1[{} 
(b, pb).0, where p~, Pb are suitable parameters describing the time distributions of the 
associated random variables T~, Tb (cf. figure 4). With the semantics of Markovian 
TIPP we would get the following transition system: 

I P I 

1o tl{} (b, pb).O[ I(a,p,).O I1{} O] 

b, pb I ~a,p. 
[ o11r I [ oll{}O l 

This representation would be incorrect, since the time distribution for the transition 

0 II{} (b, pb).O b,pb , 0 ]1{} 0 is different from the one denoted by the parameter Pb: 
Action b was already enabled in state P, but action a, an action of a parallel and 
totally independent process, happened to be executed first. Thus the correct time 
distribution is P(Tb <_ t + T, I Tb > T,), with T,, Tb being random variables recording 
the (total) execution time of a and b, respectively. 

In order to represent residual execution times properly in the semantic model, 
there are two principal possiblities, it can be done either explicitly or implicitly. An 
explicit representation would adjust the time parameter of the transition, such that 
it denotes the correct residual time distribution. This treatment has several disad- 
vantages; therefore we have chosen an implicit representation [GHR93]. We attach to 
every transition a so-called start reference that points to that state in the transition 
system where the corresponding action was enabled. Start references are represented 
by natural numbers, counting the number of actions that have happened since the 
considered action was ready to be performed. Thus it indicates the actual starting 
point of the time interval associated with the action. 

t P I 

I II I 
b, pb, ll ~a,p~,l 
[ II I 
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When it comes to analysing the performance of a system, the start references provide 
sufficient information to determine the actual time distribution. Thus it is avoided to 
determine residual time distributions unnecessarily. 

4 Conclusions and Prospects  

Usually both functional specification and performance modelling are separated from 
each other. Simplicity and understandability are strong arguments. However, in 
many situations an integrated approach is necessary and advantageous: to capture 
the particulars of parallel and distributed systems, to support hierarchical modelling, 
and to improve design productivity. 

We introduced Stochastic Process Algebras as a novel approach for structured 
design and analysis, taking into consideration both the fuctional and temporal be- 
haviour: The designer specifies the components of a system and their interactions by 
means of the language TIPP. Then this syntactic representation is (automatically) 
transformed into a semantic model which may be analysed in various directions: (1) 
functional characteristics, (2) performance characteristics, and (3) quality aspects in- 
fluenced by both functional and temporal behaviour. 

Combining performance modelling and analysis with the well investigated formal 
description technique of process algebras provides a rich source of further develop- 
ments. A lot can be gained by exploiting the comprehensive theories of process alge- 
bras, which have been developed mainly during the last decade, and make their results 
and techniques available for performance modelling. Just to indicate a few ideas we 
are thinking of: The mapping of a workload onto a multiprocessor (cf. section 3.4.3) 
could be described more generally by parametrizing the parallel composition by a 
synchronization function [BW90]. Comparison of process descriptions can be done 
not only by equivalence relations; an order relation [Hen88] comparing e.g. the per- 
formance of processes would be very much desirable. Abstraction mechanisms, like 
the hiding operator, must be extended to include also the temporal behaviour; this 
could yield an approach to treat the problem of hierarchical modelling. 

Our work is going on in three main directions: We are investigating the theoretical 
foundations ([Do93],[Her93]), we are searching for efficient evaluation algorithms, and, 
last not least, modelling the behaviour of real systems has a strong influence on the 
first two directions. 

References 

[ABC86] M. Ajmone Marsan, G. Balbo, and G. Conte. Performance Models of Mul- 
tiprocessor Systems. MIT Press; 1986. 

[BW90] Jos Baeten and Peter Weijland. Process Algebra. Cambridge University 
Press, 1990. 

[Do93] Hu Trung Do. Entwurf yon Prozeflsprachen zur Leistungsbewertung. 
Diplomarbeit, Universits Erlangen, 1993. 

[Fer86] D. Ferrarl. Considerations on the Insularity of Performance Evaluation. 
IEEE Transactions on Software Engineering, SE-12(6):678-683, June 1986. 



[GHR92] 

[GHR931 

[HatS6] 

[Hen88] 

[Her90a] 

[Her90b] 

[Her93] 

[Hi193] 

[Hoa85] 

[IP91] 

[MilS9] 

[NS91] 

[NY85] 

[Plo81] 

[Rei91] 

[Itet91] 

145 

Norbert G5tz, Ulrich Herzog, and Michael Rettelbach. TIPP - -  a language 
for timed processes and performance evaluation. Interner Bericht IMMD7- 
4/92, Universit$t Erlangen, March 1992. 

Norbert G5tz, Ulrich Herzog, and Michael Rettelbach. TIPP - -  introduc- 
tion and application to protocol performance analysis. In Formale Beschrei- 
bungstechniken fiir verteiIte Systeme, Munich, to appear 1993. FOKUS se- 
ries, Saur publishers. 

C. Harvey. Performance engineering as an integral part of system design. 
British Telecom Technology Journal, 4(3):143-147, July 1986. 

Matthew Hennessy. Algebraic Theory of Processes. MIT Press, 1988. 

Ulrich Herzog. EXL: Syntax, semantics and examples. Interact Bericht 
IMMD7-16/90, Universit$t Erlangen, November 1990. 

Ulrich Herzog. Formal description, time and performance analysis - -  a 
framework. In Entwurf und Betrieb verteilter Systeme. Springer, 1990. In- 
formatik Fachberichte 264. 

Holger Hermanns. Seraantik fiir Prozeflsprachen zur Leistungsbewertung. 
Diplomarbeit, Universit~t Erlangen, to appear 1993. 

J. Hillston. PEPA: Performance Enhanced Process Algebra. Technical Re- 
port CSR-24-93, University of Edinburgh, March 1993. 

Charles Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. 

Paola Inverardi and Corrado Priami. Evaluation of tools for the analysis of 
communicating systems. EATCS Bulletin, 45:158-185, 1991. 

Robin Milner. Communication and Concurrency. Prentice Hall, 1989. 

X. Nicollin and J. Sifakis. An overview and synthesis on timed process 
algebras. In Real-Time: Theory in Practice, pages 526-548. Springer LNCS 
600, 1991. 

N. Nounou and Y. Yemini. Algebraic specification-based performance anal- 
ysis of communication protocols. In Protocol Specification, Testing and Ver- 
ification, pages 541-560. Elsevier Publishers, 1985. 

Gordon Plotkin. A structural approach to operational semantics. Report 
DAIMI FN-19, Computer Science Department, Aarhus University, Septem- 
ber 1981. 

M. Reiser. A quarter century of performance evaluation - -  impact on science 
and engineering. In Proceedings of the IEEE CompEuro '91, pages 885-887. 
IEEE, May 1991. 

Michael Rettelbach. Leistungsbewertung mit Prozeflalgebren. Diplomarbeit, 
Universits Erlangen, 1991. 



[SH931 

[sat90] 

[ST871 

[v+91] 

[Zic87] 

146 

Ben Strulo and Peter Harrison. Process algebra for discrete event simulation. 
Technical report, Imperial College, March 1993. 

F. S6tz. A method for performance prediction of parallel programs. In 
Burkhart, editor, CONPAR 90-VAPP IV, Joint International Conference 
on Vector and Parallel Processing. Proceedings, pages 98-107. Springer 
LNCS 457, 1990. 

R. A. Sahner and K. S. Trivedi. Performance and reliability analysis using 
directed acyclic graphs. IEEE Transactions on Software Engeneering, SE- 
13(10):1105-1114, 1987. 

Chris Vissers et at. Specification styles in distributed system design and 
verification. Theoretical Computer Science, 89:179-206, 1991. 

J. J. Zic. Extensions to communicating sequential processes to allow pro- 
tocol performance specification. ACM Computer Communication Review, 
Special Issue: SIGCOMM '87 Workshop on Frontiers in Computer Com- 
munications Technology, 17(5):217-227, 1987. 


