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1. Introduction

Let G be a connected noncompact real form of a simply connected complex semisimple
Lie group. For many questions of Fourier Analysis on G it is useful to have a good knowledge
of the behaviour, at infinity on G, of the matrix coefficients of the irreducible unitary
representations of G. In this paper we restrict ourselves to the discrete series of
representations of ¢, and study the rapidity with which the corresponding matrix
coefficients decay at infinity on the group.

Let K be a maximal compact subgroup of &. Given any p, with 1<p <2, we denote
by &,(G) the set of all equivalence classes of irreducible unitary representations of &
whose K-finite matrix coefficients are in L?(G); &,(G) is then the discrete series of &, while
EAR S E,(G) for 1 <p’' <p<2. We assume that rk (G) =tk (K) so that £,(G) is nonempty.
Let E and ¢ be the spherical functions on G defined in {15]. Then it follows from the work
in [14] that, if w€Ey(F) and if f is a K-finite matrix coefficient of (a representation

belonging to) w, one can find constants ¢>0, >0, ¢=0 (depending on f) such that
| f(x)] < cE(x)*7(1 +o(2)? (€G). (1.1)

Given w € £,(G) and a number >0, we shall say that o is of fype y if the K-finite matrix
coefficients of w satisfy (1.1) for suitable ¢>0, ¢=0. For a fixed w € £,(G) it is then natural
to ask what is the largest » >0 for which w is of type y. In particular, it is natural to.ask for
necessary and sufficient conditions in order that w€ &,(G) (1<p<2).

Let g be the Lie algebra of &, and g.2 g the complexification of g. Let BS K be a Cartan
subgroup of G; b, the Lie algebra of B; and b,=C-b. Let Lp be the additive group of all
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integral elements in the dual b} of b, and Ly, the subset of all regular elements of L.
Let W(b,) be the Weyl group of (g,, b,), and W{(G/B) the subgroup of W(b,) that comes
from G. For A€L;, let w(l) be the equivalence class in &,(&) constructed by Harish-
Chandra ([14], Theorem 16). Let P be a positive system of roots of (g, b.), and let P,
(resp. P,) be the set of all noncompact (resp. compact) roots in P. For any «€P, let H,
be the image of « in b, under the canonical isomorphism of b¥ with b,; let H, be the

unique element of R-H, such that «(H,)=2; and let
P =13 |a(Hp| (BEPU(-P). (1.2)

One of our main results (Theorem 8.1) asserts that if >0 and A€ L are given, then, for
w(A) to be of type v it is necessary that

|A(H )| = yk(B) (YBEP,) (1.3)
and sufficient that

[(s2)(H 5)| = yk(B) (YBEP,, ¥VsEW(B,)); 1.4)

in particular, (1.4) is the necessary and sufficient condition that w(si) be of type v for all
sEW(b,).

Fix p, 1<p<2. Let € £,(¢). We then prove that o € £,(G) if and only if it is of type
y for some y>(2/p)—1 (Theorem 7.5). It follows from this and Theorem 8.1 that for
w{d) to be in £,(G) it is necessary that

|A(Hp)| > (%— 1) k(B) (VBEP,) (1.5)
and sufficient that
[(s2) (H )| > (%— 1) k() (VBEP,, VsEW(D,)); (1.6)

as before, (1.6) is necessary and sufficient that w(sA) € £,(G) for all s€ W(b,) (Theorem 8.2).

For any z€@, let D(x) be defined in the usual manner as the coefficient of ¢ in
det (Ad (x) —1+¢), where I=1k () and ¢ is an indeterminate. For any Cartan subalgebra
b of g let Dy and Gy be as in [13], p. 110. Fix w€ &,(G), and let @, be the character of w.
Then, for w to be of type v it is actually necessary (Theorem 8.1) that, for each Cartan
subalgebra [j, there should exist a constant c(f) >0, such that,

| D) [0, ()| < o(h)| Dy ()| (x€Gh). (1.7)

The condition (1.7) is stricter than (1.3); to deduce (1.3) from this it is enough to specialize
§) suitably. It appears likely that the validity of (1.7) for all Cartan subalgebras f) would

also be sufficient to ensure that w is of type y. We have not been able to prove this.
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The space &,(G) was first introduced by Harish-Chandra [5] (ef. also [2], [16], [17])
in which, among other things, he obtained sufficient conditions for w(4) to be in &,(&),
when G/K is Hermitian symmetric and w(4) belongs to the so-called holomorphic discrete
series; we verify in § 9 that these conditions are the same as (1.5) (with p=1). It follows
from this that if G/K is Hermitian symmetric and w(4) belongs to the holomorphic discrete
geries, the conditions (1.5) (with p=1) are necessary and sufficient for w(4) to be in
&.(G). At the same time, this leads to examples of A€ L for which w(d)€ & (@) but
w(sA) € £,(F) for some s€W(b,); in other words, the equivalence classes in &,(G) that
correspond to the same infinitesimal character may be of different types. In the general
case when (/K is not assumed to be Hermitian symmetric, Harish-Chandra had
obtained certain sufficient conditions in order that w(sA)€&(F) for all s€ W(b,) ([9],
[L07, [111); these are also discussed in § 9.

We are greatly indebted to Professors Harish-Chandra and Ranga Rao for many
stimulating conversations dealing with harmonic analysis on semi simple Lie groups. We
are also. grateful to Professor Harish-Chandra for giving us permission to discuss his
unpublished work [10], [11], and, more specifically, for suggesting the possibility of

obtaining estimates such as Lemma 8.4.

2. Notation and preliminaries

G, K will be as in § 1 with rk (¢)=rk (K). We will assume that G=G,, where G, is a
simply connected complex analytic group with Lie algebra g.. I is the Lie algebra of K
and B, b, b, will be asin § 1. 6 will denote the Cartan involution induced on G, as well as g,
by K; and g=f+8, the Cartan decomposition. For X€g, we put || X|>=—~(X, 0X),
{*, *> being the Killing form. g becomes a real Hilbert space under ||-||. g=ft+a-+u
(acs), and G=KAN, are Iwasawa decompositions, with 4=expa, N=exp u; if
X€gand x=exp X, we write X =log 2. A=A(qg, a) is the set of roots of (g, a); A+, the set of
positive roots; X ={ay, ..., o5}, the simple roots; and g, (A€A) the root subspaces. at
is the positive chamber in a, and A+=exp a*. p(H)=tr (ad H),(H €q), the suffix denoting
restriction to 1. [ denotes a fO-stable Cartan subalgebra with {ng=aqa. For any Cartan
subalgebra {) of g, we write §j, for €., W(¥§,) for the Weyl group of (g,, §j,), and Ly for the
additive group of all integral elements of §j. The spherical functions ¢ and Z on G are

defined as in [15]. It is known that for suitable constants ¢,>0, 7,>0,
eTNEN LB () < e P (14 g(h))*  (REAY) (2.1)

In particular, Z2(1 + o) T€LYG) if »>2r,+d. & denotes the universal enveloping algebra
of g.; &, A, B, L ete. are the subalgebras of & generated by (1, 1), (1, a), (1, 5), (1, ) ete.
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The elements of & act in the usual manner as differential operators from both left and
right. We shall use Harish-Chandra’s notation to denote differential operators; thus, if
f is a C= function on a C® manifold M, and E is a differential operator acting from the
left (resp. right), we write f(z; E) (resp. f(E; z)) to denote (Ef)(x) (resp. (fE)(x)) (x€M).
o denotes composition of differential operators. 3 is the center of &.
A subalgebra b of g is called parabolic if C-p contains a Borel subalgebra of g.. Let
D be parabolic, 1, its nilradical. Write t, =P N 0(p). Then m1, is reductive in g, rk ()=
rk (g), and p=1, +1 is a direct sum. Put a=center (in;) N 8. Then 11, is the centralizer of
ain g, and a is called the splif component of p. Let F < X and let a; be the set of common zeros
of members of F. Write 11,5 for the centralizer of a;in g, my for the orthogonal complement
of ap in My and A, for the roots of (1, a); we put Az =A+n A If nF=ZMA+\A;g1,
then b, =mg+ az+ 1 is parabolic, +g, and qy is its split component; and, given a parabolic
subalgebra p =g of g, there exists a unique FEZ sueh that for some €K, p¥=), We
write 7, M and A, for the subalgebras of & generated by (1, ntyz), (1,mz) and (1, ap)
respectively. By is the center of 3. We put, for H€a,
)=k tr @A Iy, o) =} tr (ad Hwyoms fr(H) = min () (2.2

Then ¢ =07+ 0%, op|0r=0, 0| a N m=0. Also let
ap ={H:HE oy, fz(H) >0}, Aj=expaj. (2.3)

Let M, denote the centralizer of ar in G; Ay=exp ay and Ny=exp 11;. Then P,=
M,z N is the normalizer of pp in G, and is called the parabolic subgroup corresponding to
pp. Let My denote the intersection of the kernels of all continuous homomorphisms of
M into the positive reals. Then M =M A and the map m, a, nr>man of Mpx Ap x Ny
into Py is an analytic diffeomorphism; moreover, ¢ =KM,, K. In general, the group M,
is neither semisimple nor connected. Under our assumption that ¢ is a matrix group, it is
however not difficult to show that (i) M,/ M? is finite, M3 being the connected component
of M containing the identity (ii) if M and C; are the analytic subgroups of My, defined
respectively by the derived algebra and center of mj, then they are both closed, Myis a
semisimple matrix group while C; is compact, and My =M, Cp. This circumstance makes
it possible to extend to M, most of the results valid for semisimple matrix groups. We
shall make use of such extensions without explicit comment. K,=KnN M,=KN M, is
a maximal compact subgroup of M. We denote by E; the fundamental spherical function
on My, and extend it to M, by setting Ep(ma) =Zp(m) (m € My, a € A;). Finally, we write dy

for the homomorphism of M, into the positive reals given by

dp(ma)=e2" 5D (me M, a€ Ay). (2.4)
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The parabolic subgroup Pj is called cuspidal if rk (My)=rk (Kz). Py is cuspidal if
and only if there is a f-stable Cartan subalgebra §) of g such that Hns=aqa ([15), §5;
cf. also [17).

Let W(l.); denote the subgroup of W(l,) generated by the reflexions corresponding
to the roots of (C-1myp, [). Let I(W (L)) (resp. I(W([.)7)) be the subalgebra of all elements
of & invariant under W(l,) (resp. W([.)s). We then have a canonical isomorphism pgy
(vesp. pm,,n) of 3 onto I(W(l)) (resp. 3r onto I(W(l,)z) ([12], § 12). Suppose z€ 3. Then
there is a unique element z, € ; such that z =z; (mod ®n;). It is known that z—2z, €
0(117) O1tz; and that, if we write pp(z) =dzoz;0dz", then uz is an algebra injection of 3 into
Br and prg(2) =pm, ,1(us(2)) for all z€ 3 )[13], § 10). It follows from this that 3 is a free
finite module over uz(3) of rank equal to the index of W(l.)z in W([;). We shall denote by
ry this index ([12], § 12).

Let {H,, ..., H;} be the basis of a dual to {e, ..., a;}. For 1<j<d, let F;=3{o,}.
‘We shall write P; for the parabolic subgroup Py, and in general (when this is not likely to
cause confusion), we shall replace the suffix F; by 7 in denoting the objects associated with
F; thus M,:MFi, d,»=dpi ete.

We shall now give a brief outline of the proofs of our main results. Let A€ Ly and
let Oy=W(l,)(Aoy) where y€G, is such that y-1,=0.. Let >0, let w€ &,(() be of type
7 —e¢ for every ¢>0, and let ¢ be a K-finite matrix coefficient of w. For any j=1, ..., d we
consider the parabolic subgroup P;=M,;N;, and transcribe the differential equations
2p=pgn(2)(A)p (2€3, A€O0)) to My; (§4). It turns out that these differential equations
are perturbations of the equations satisfied by suitable 3;-eigenfunctions on M,; (§ 5). This
fact enables us to prove that for any m€M,;, the limit

lim d;(m exp tH,)'*” g(m exp tH;) = g, 7 (m) (2.5)

t—>+ow

exists, and depends only on the component of m in M, and that the restriction of
@, to M, belongs to the linear span of the K-finite matrix coefficients of certain classes
Wy, ..., , from &,(M;), whose infinitesimal characters can be computed from a knowledge
of O; (§ 7). In particular, g, ;=0 if P, is not cuspidal. Moreover, by carefully following up

the various estimates, we obtain the following estimate
lp(h) — d,(B)~ V" @, 5(h)| < const, E(h) 7 +hx (2.6)

for all h€ A} (u); here 0< u <1, A (u) is the sectorial region defined by (7.2), and f,>0is a
constant independent of 4, u, ¢ (Theorem 7.3).

Suppose now that 4 satisfies (1.4). Then |A(H;)| =yo(H,) for all A€O and j for which
P, is cuspidal (Lemma 8.3). Let 9 be the supremum of all y’ >0 for which w is of type 3.
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If y <y, an examination of the differential equations satisfied by the ¢, ; shows that ¢, ;=0
for cuspidal P;, hence for all j=1, ..., d. (2.6) then implies that e is of type 9’ for some
y'>9, a contradiction. So >y, and a simple argument based on an induction on dim ()
completes the proof that w is of type y.

Suppose that w€&,(G) for some p(l1<p<2). Then w is of type p=(2/p)—1
(Corollary 3.4) and (2.6) is valid for any K-finite matrix coefficient ¢ of w. It follows from
this that @, ;=0, 1<j<d, and hence that ® is of type y'>$ (Theorem 7.5).

We then consider the converse problem. Let o € E,(G) be of type y >0, let ) be the
character of w, and let 7 be a unitary representation belonging to w. Denoting by £(K) the
set of all equivalence classes of irreducible unitary representations of K, we obtain the
following estimate from the work in §3 and elementary properties of the diserete series
(Lemma 5.6): there exist constants €' >0, »>0 such that for all z€G, b€ E(K), and unit

vectors e, ¢ in the space of sz that transform under z(K) according to D,
|(z(x)e, €')| < Ce(d) B (x) (2.7

(here ¢(b) is defined as in [14], §3). Using (2.7) as uniform initial estimates in the
differential equations for the functions x> (n{x)e, ¢’), and employing a method that is
essentially one of successive approximation, we improve (2.7) and obtain the following:

given any £>0, we can find constants C,>0, r,=0 such that
[(7(2) e, ¢')| < O c(D)e Bfar) 77 (2.8)

for all z€@, DEE(K), ¢, ¢’ as before (Theorem 7.3). From (2.8) we obtain the following
continuity property of ® (Lemma 8.4): for each £¢>0 we can find £, € such that for all

f€CE(G)
1O(f)| < sup EHre| g . (2.9)

We now imitate the arguments of § 19 of [14] to pass from (2.9) to estimates for the values
of ® on the various Cartan subgroups of G (Lemma 8.7); these lead to (1.7) in a direct

manner.

3. Some estimates of the Sobolev type

In this section we obtain estimates for certain supremum norms of a function
fEC®(F) in terms of the LP-norms of f and its derivatives (Theorem 3.3). These are
analogous to the classical Sobolev estimates. Our proofs make no use of the assumption
that rk (G)=rk (K). We put

J(h)y= [] (e*Io8W —g-Aosm)limay) (e A7), (3.1)
sea’
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Then we can normalize the Haar measures on @ and A so that dx = J (k) dk,dhdk,, i.e.,
for all f€ L}(G),

f fda = f f(key hkey) J(R) dley b dke,. (3.2)
G ExAtxk

In Lemmas 3.1 and 3.2 V will denote a real Hilbert space of finite dimension d,
with norm denoted by ||-||. dx is a Lebesgue measure on V. For €V and r>0, B(x, r)
denotes the closed ball with center z and radius r. We fix p with 1 <p< oo, a nonempty
open set U< V and a w€C®(U) such that w(z) >0 for allz€ U. ||- ||, denotes the usual norm
on LP(V, dz). § is the symmetric algebra over the complexification of V; elements of § act
in the usual manner as differential operators on C®(U), and for £€ S, jr>&f denotes the

corresponding differential operator. For £€§ and feC®(U), let

wet = ([ a1 dx) (33)

H, is the space of all f€C°(U) with u.(f) <o for all £€§. Each u; is a seminorm on H .
We write } for the collection of all finite sums of the p;. Since w is bounded away from
0 on compact subsets of U, the usual form of Sobolev’s lemma implies that for any
compact set W< U and any £€S, frosup,ew|f(z; £)| is a seminorm on H, that is con-
tinuous in the topology induced by M. It follows easily from this that H,,, equipped with
the topology induced by 1, is a Frechet space. Let H, be the space of all f€C®(U) with
supIeU|f(x; 5)[ < oo for each £€§. H, is also a Frechet space under the collection of

seminorms fi>sup,ep|f(x; §)| (£€S).

LeMMmaA 3.1. Let notation be as above. Fix a real function ¢ on U such that 0 <g(x) <1,
and Bz, e(x))= U, for all x€U. Let

w(x) =1inf {w(y): y € B(z, &(x))}. (3.4)
Then, there exists an integer k>0, and seminorm v€ N, such that for all f€EH,, and all 2€U,
|1@)] < el@)*wl2) (). (3.5)

Proof. For any a>0 let u, €07 (V) be the function

ca~?exp (—d*(a®— llz||?) if ||z]|<a
0 if |z =a

ua(x) = {

where ¢ is such that §,u,dz=1 for all a>0. For 2€ V and r>0 let ¢, , =15, 3% Uy, (here

¢ is the characteristic function of E, and % denotes convolution). Then ¢, ,€CZ(V),
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0<¢,.<1, ¢,,=1 on B(z, r/4) and supp ¢, ,< B(z, 3r/4); moreover, it is easy to see that,
for any homogeneous element € § of degree m, there is a constant ¢({) >0, such that, for

all z, y€V and all r>0,
| @z (g5 O <e(Q)r . (3.6)

By the classical Sobolev’s lemma, we can find {y, ..., {,€ § such that, for allp €02 (V)

and all y€V,
lvol< 2 eyl
1<i<g

Replacing v by f@;, e« we find, for f€ H,, and z€ U,

@< 3 leilfpeaoll (3.7)

By Liebniz’s formula, we can find homogeneous elements &;;,%,,€ § (1 <i<gq, 1 <j<r) such
that, for all u, v€O®(U), £ (uv) =2 <<, (&15u) (v} for 1<i<q. We use this in (3.7) with
f=u, @s.cry =v. Setting

c=max c(n), k=max deg(n;)
1,7 1,7

and observing that w(y)>w(z) for all y€supp 7,@: ) We get, from (3.6) and (3.7),
[f@)|<ce@) ™ @)™ > 3 pe(f)

1gixg I<ier Y
Lemma 3.1 follows at once from this.
Lemma 3.2. Let notation be as above. Suppose there are nonzero real linear functions

A o, Ay on V, and constants ¢ >0, =0, such that, U={z: x€V, A)(x)>0 for 1 <i< N}, and

w(x) 2z c(1+ (min A(z))" )" (z€T). (3.8)

1<iKN
Then H,< H,, and the natural inclusion is continuous. This is in particular the case, if,

w(x)=T,c,cn(l —e 59 (2€D).

Proof. We begin the proof with the following remark. Suppose ¢ is a C® function on
(0, ), «>1, and that, for suitable constants L, >0 (m=0,1, ...) and an integer =0, ¢

satisfies the inequalities
g™ @) <Lnt=? (0<t<1,m=0,1,..);
we may then conclude that

]<p<m>(t)]<2“0 > Ly (0<t<l,m=0,1,...). (3.9)

<igg+1

This is trivial if ¢=0. Now, for 0<it<1,
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1
w01 [ g lds g™ ] @10
i

If ¢g=1, (3.10) gives |¢"™ ()| <L, +L,|logt|, 0<t<1, m=0,1,..; applying (3.10)
again with these estimates, we get (3.9). If ¢>1, (3.10) gives |¢'™ (t)| < (L -+ Lypyy) ¢4,
0<t<1, m=0,1, ..; induction on ¢ now proves (3.9).

This said, we come to the proof of the lemma. Write ¢, =2 max,;<y(1 +||4;]|) and
define

s(x)=c—11min (1, 4, (), ..., Ay (®)) (€ U). (3.11)

Then, for z€U and y € B(z, &(z)), |4;(y —2)| <34 (x) for 1 <i<N, so that A,(y) > }4, () for
1<¢<N. It follows from this that B(x, ¢(®))< U for x€U and that, with ¢,=¢-277,

RO

o(x) = celx) (x€U). (3.12)

We now apply Lemma 3.1. Let & and » be as in that lemma. Put v, =c;"?» and let b any
integer >k +r/p. Then (3.12) and (3.5) imply that |f(x)]| <e(x) °»(f) forall f€H,, x€ U. For
E€S, let ve() =», (&) (f€H,). Then y,€ N, and we have, for all f€EH,, €U,

|5 &) < e(@)wglf) (3.13)

Choose and fix u,€U. Let f€H,, £€S, z€U, and let ¢ be the function defined by
Pty =flet+tug &) for t=0 (note that x+tu,€U for all £>0). Clearly ¢€C>(0, o) and
@™ (8) =@ +Ftug; ulE) (¢>0, m=0, 1, ...). On the other hand it is easy to see from (3.11)
that g(x +tuy) >te(u,) for all £ with 0 <¢t<1. Hence, by (3.13),

lg'™ (t)] < s(uo)""vug.s(f) t0 (0<t<1l,m=0,1,...).

Let Pe = g(u,) " 2° Y mg .
¢ (o) 0<m§b+1 uyé

Then the remark made at the beginning of the proof implies
|f(; )| <#e(f) (f€H,, x€T). (3.14)

(3.14) gives the first assertion of the lemma. If w=1I1,<,cy (1 —e~%), w satisfies (3.8) with
c¢=1, r=N. This proves the lemma.

Fix p, 1<p<oo, Let H?=?(G) be the space of all fEC®(G) such that bfa €L*(G)
for all a, b€@®. Exactly as in the case of the space H, considered above, we use the
classical Sobolev lemma to conclude that P is a Frechet space under the seminorms
fe>||bfal|, (@, BE®). Hy ,=Ho,(G) is the space of all f€C®(G) with supg Z-27|bfa| < oo
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for all a, bE®; it is a Frechet space with respect to the seminorms fi>supg E-27|bfa|

(a, bE®).

TarorEM 3.3. Let WP and H, , be as above. Then W < W, ,, and the natural inclusion s

CONLINUOUS.

Proof. Let J be as in (3.1). For any continuous function ¢ on 4+, let ||g{,, denote the
LPnorm of g with respect to the measure Jdh. Let H,; denote the space of all g€C®(4+)
for which |lag|,,<cc for all a€9(. Let w be the function IT,_ ,+(1—e ?)3ms2 on a+,

Then, for any ¢ €0%(a*) and « €N, with o' =% ogoe~ P2

LW(H sa)[P J(exp H) dH = f N (€®™2) (H; o) P w(H) dH.

Lemma 3.2 (with V=a, U=a", w as above) and the above formula then give us the
following: there exist a,, ..., a,€ U such that

lg(h)| < e @mets® 5 Nagll;, (9EH, hEAT).
I<igr

From (2.1) we then obtain

g <E®*? 3 gl (GEH,REAT). (3.15)
For any geC™((G), ky, k€K, let g, 1, (h)=glkyhks) (REAY). Given o€, we can
find ¢y, ..., ¢, €@ and analytic functions f§,, ..., 8, on K such that

A Grs e ™ > Bi(ka) (¢ D)y, ke (3.16)

1<i<m

for all g€C®(R), ky, k€K. (3.16) and (3.2) show that if f€W?, f,, ,, €H, for almost all
(ky, ko) €K x K. Applying (3.15) to the f, ,, and using (3.16) with a=a,; we get the
following result: we can find a constant ¢>0, and b,, ..., b,€®, such that for any f€ P,

the inequality

(3.17)

I

sup (k)izlp 'f(k1 hk,) I < 01 <]Z<q ”(b]'f)kl,kz|

neat

is satisfied for almost all (k,, k,) €K x K. Replacing f by &fn (£, n€ER) in (3.17), we get,
after an integration over K x K, the following result: for any &, 7n€®, feH* and
heEA™,

lip
(IL K|f(77; ke, hiey; §)|”dk1dk2) <cE(h)2“"1 > [16;&fmll,- (3.18)

YA

On the other hand, from the harmonic analysis on K xK we have the following
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familiar result: there are &, 17, € R (1 <¢<r) such that for all p €C®(K x K), (uy, ) EK x K,

1/p
|(p(u1:u2)|< Z ((f |(P(7]i; k13k23§i)|pdk1dkz) .
JIExE

I<igr

Combining this and (3.18) we then have
1k ) | < cER™ 5 > 1Bt
1<igr 1<i<q
for all fEW?, k), k, €K, hEA*. So, for fEWP and u,vE®,

sup B27 |ufy| < ¢ >3 q”bjfiufmyi“p. (3.19)

Sixr 1<7%

Theorem 3.3 follows at once from (3.19).

CorROLLARY 34. If 1<p <2, then any w€ E,(G) is of type (2/p) —1. If 1 <p’' <p, then
En(G)S E(G) < E(F).

Proof. Let 1 <p <2, w€ £,(G), and f, a K-finite matrix coefficient of w. By Theorem 1
of [14] we can find «, f€CT(G) such that f=a%fxg. Consequently, given a, b€, there
exist o, ' €CT(G) such that bfa=ca' % f*p". So fEN® and hence sup; E~*?|f| < oo. This
proves that o is of type (2/p) —1. The second statement follows now on noting that for
1<q¢' < ¢<2, B¥ e LY(G).

Remark. Let C? = C?(G) be the space of all € C(() for which sup; E?(1 4 0)" |bfa| < oo
for all a, b€ and r =0, topologized in the obvious way. It is then not difficult to deduce
from Theorem 3.3 the following result: C” is precisely the space of all f€C®(G) for
which (1 +0)"(bfa) ELP(G) for all @, be®, >0, and its topology is exactly the one induced
by the seminorms fi||(14- )" (bfa)|, (@, b€®, r>0). We do not prove this here since we
make no use of it in what follows.

4. Differential operators on C*(G: Vi)

Let ¢ be a K-finite eigenfunction (for 8), and Pr=M,,N, (F < X), a parabolic sub-
group. For studying the behavior of ¢(ma), when e €A} and tendz to infinity, while m
varies in M, we use Harish-Chandra’s idea, of replacing the differential equations on @,
by differential equations on M. We shall find it convenient to work with vector valued
functions.

Let V be a complex finite dimensional Hilbert space, the scalar product and norm of

which are denoted by (-, ) and || - ||. By a unitary double representation of K in V we mean
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a pair 7={(7y, 7,) such that (i) 7, (resp. 7,) is a representation (resp. antirepresentation)
of K in V, and 7,(k) is unitary for all k€K, j=1, 2 (ii) 7,(k,) and 74(k,) commute for all
ky, k€ K. We allow the 7,(k) to act on vectors of V from the left, and the 7,(k) to act from
the right. We write 7, (resp. 7,) for the corresponding representation (resp. antirepresenta-
tion) of ®. A map f: GV is called t-spherical if f(k,xk,) =7,(k,) f(x)Ts(k,) for all xEG,
by, k€K, C®(G: V:7) denotes the space of all 7-spherical f of class O®. Note that
C®(G: V: 1) is invariant under 3.

Recall that g is a Hilbert space. If we write z' for §(z—") (z€(), then Ad (z) and Ad («")
are adjoints of each other.

Fix F < X. For m€ My, let yz(m)= (| Ad (m1)n||. Then yg(m) = |[Ad (B(m)), || also. Put

{M{F ={m: m€M,z, (Ad(m™") — Ad(m")),, is invertible} @1
Mir={m:mEMp, yp(m)<1}.
Define bz(m) and cz(m) for m€Mir by
bp(m) = (Ad(m™") — Ad(m"));,, cp(m) = Ad(m ™)y, by (m). (4.2)
It is easily verified that M{z S M1z, and that for m€ My,
cp(m)=— 2 (Ad(m'm)y,) ™", bp(m) = — AdB(m)y, 2 (Ad(m*m)n,)~", (4.3)

rzl r=0

the series converging since [|Ad (m'm) || < yr(m)*<1 (cf. [8] §2). Note that yz(exp H)=
e BE®  (HEO1(a")).

LeMMA 4.1. Let E be the projection of g on t modulo 3. Then for all X €1y, m€ My,
we have
6X = —2Ad (m) Eby(m) X +2Ecz(m) X.
Proof. Let h€MixnN A, 2EA*\ A}, X€q,. Write X=Y +Z, Y€}, Z€3. A simple

calculation shows that
(e/l(log hy _ e—l(log h)) 86X =9 Yh‘l —9 e—/l(log ny.

This gives the result we want when m =h. The general case follows from the above
special case, since M1p=Kz(4N Miz) Kz, while cp(u; muy) =Ad (ug' )y cp(m) Ad (p)y, and
bp(uymug) =Ad (uy)n, bp(m) Ad (uy)n,, for uy, u;€ Ky, m€Myp.

N
Lemma 4.2. Let {Y,,.., Y,} be a basis for (ny+0(nz))N¥{. Let S, r be the algebra
generated (without 1) by the matriz coefficients of cp and by. Then, given X €niy, we can find

fir Bi€So.r (1<i<p) such that X =X, ;c,(f(m) Y;"_IWLhi(m) Y, (meM{F)'
D
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Proof. Let {X, ..., X} be a basis for 1z, and (c,z(m)), (b,s(m)) the matrices of cs(m)
and bgp(m) respectively, with respect to it. Let EX,=3% ¢,c,0,: Y, X =2 c,c % X, We
obtain Lemma 4.2 from Lemma 4.1 by routine calculation with f;= —2X,, s<,%s@y:b,p
and h; =23, p< %pBgiCap (1 <I<p).

Write f,=myzNE, 8,=myzN3. Then g=f+3;+0(ns) is a direct sum. Let A be the
symmetrizer map of S(g,) onto & and let Sz=2A(S(37)). Then & =0(n;)& + S REf+S;
is also a direct sum. For b€, let v,(b) (=0, 1, 2) be the respective components of b in
O(np) G, S Rf and S;. Define vz (b) =9, (b) +74(b). It follows easily from the Poincaré-
Birkhoff-Witt theorem that deg »,(b)<deg (b) (=0, 1, 2), and that we can write vz(b) =
Z1<s<r ;L Where 7,€ Sy, £,ER, deg () +deg (£;) <deg (b) (1<j<r).

LemmA 4.3. Let b€ES and deg (b)=r. Define $, 5 as in Lemma 4.2. Then we can select
8, LiER, mEMyp, 9,€80.r (1<i<s) such that (i) deg(n)<r—1, deg (§,)-+deg (n,)+
deg (£)<r (1<i<s) (i) for all me My,

b=v:(b)+ 2. g:(m) 7 mds (4.4)

Proof. We use induction on r. The case r=0 is trivial. Let r=1,b=Y€g. If
Y €f+ 85, then v,(Y)=Y and we have (4.4) with ¢,=0; if ¥ =6X for some X €n,, then
ve(Y)=0, and Lemma 4.2 implies what we want. Let » >2 and assume that the lemma has
been proved for elements of degree <r—1.If b€S, R, then v;(b) =b and we have (4.4) with
g,=0. So it is enough to consider the case b€6(1n;)®. We may obviously assume that
b=0X-b where X €n; and deg (b) <r—1. Note that yz(b) =0. By the induction hypothesis,
we can find £, {,€R, 7,€Myr, §,€S,,5 such that the appropriate conditions on degrees
are satisfied, and for all m €My,

b=vs(®)+ 3 g(m) & 7,
1<i<s
Write v5(8) =X <rcquxt% Where u,€S;, v,ER, deg (u,)+deg (v)<r—1 for 1<k<q.
Substituting for 6X from Lemma 4.2 we find, after a simple calculation, the following result,
valid for m €M
b= 3 h(m)[Y, 5]+ (F(m)PT ™ w03+ by (m) 0, 7)

1<i<y I1<i<p ISk

+ G;(m) {fi(m) (¥, Ej)m_lﬁj; + hy(m) 5?417’ &Y.}

Si<p 1</<s

-
[y

Applying the induction hypothesis to [Y,, 5] (which is permissible as deg ([Y,, b]) <r—1),
and substituting in the above expression for b, we obtain (4.4) without much difficulty.
17— 722902 Acta mathematica 129, Imprimé le 5 Octobre 1972
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LeMMA 4.4. For 2€ 8, v;(z)=d5 ous(2)ody.

Proof. vp(z) is the unique element of &, such that 2 —y,(z) €0(1z)®. On the other
hand, dz'ous(z)od, €M< SR, while z—dz ouzp(z)odr€0(1;) &1y, for z€J. This proves
the lemma.

We choose and fix elements v, =1, v,, ..., v,FEBF such that

Br= > wp(8)v; (direct sum). (4.5)

1€i<rp
Let §,.7 be as in Lemma 4.2. We denote by S, the algebra generated (without 1) by
functions of the form %9 (7 €MMyz, g€ Sa.7). The following is then the main ‘result of this

section.

TrEoREM 4.5. (i) Let b€ and let g;, &, 1, £, be as in Lemma 4.3.- Write vz(b) =
S ily .€Mp, EER). Then for arbitrary V, v and ¢€0®G: V: v) we have, for

mEM{F,
@(m; b) = Z @lm;m,) rz(C,)+ Z gi(m) T2 (£ @(m; my) 7 (8)-

({i) Fexv€ 3y, and let z; (1 <i<ry) be the unique elements of 3 such that v =2icicrp¥i br(2s)
Then, there exist &;, L, €R, 1,€ Mz, g;€ Sr (1 <j<q) with the following property: for arbitrary
V, 7, p€EC®(G: V: 1), and mE€Miz,

plmivodn)= 5 g(mivedzoz)+ 3 g/(m)7i(E) plmi n,0de) Ta(()):
<isrp

Proof. I g€C=(G: V:7), & L€LER, n€B, z€G, then g(x; & L) =7,(E) plas n)7a(l).
(4.4) then leads at once to (i). We shall now prove (ii). By Lemmas 4.3 and 4.4 we. can
select &,;,C; €R, 17,€Myr, 9,,€ S, 7 such that for all mE€Miy, 1<i<rp,

=dz! our(z)odp— Z gz/ VER 77:'7'5:7 (4.6)
so that, for arbitrary V,, p € O (G:V: 1), and m, ¢ as above,
Pl dpoz) = g(m; pp(z)0dp) = dp(m) 2. gy (m) T (&) plm; 1) T ().
From this we calculate @(m; vody) to be
pim;vodpor)+ 2 > 7(&) plm; v09,07,0dz) 75 (L) (4.7)

Igisry Iisryp 1</<s

where 7);;=dzon;;0dz". By the. definition of §y, we can find w,€M;p, b €Sy (L<k<E)
such that v,09,; =2, cicihipow, for all 4, 5. Substituting in (4.7) we get the required result:
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Remarks 1. We note that, in (ii), g,, &;, 5, {; do not depend on V and 7. This enables us
to keep track of the way in which our subsequent estimates for ¢ vary with ¥ and 7.

2. The results of this section do not need the assumption rk (G)=rk (K) for their
validity.

5. The differential equations for ¥ and certain initial estimates

We fix F < 2. We select a complex Hilbert space 7' of dimension 7, an orthonormal
basis {e,, ..., e, of it, and identify endomorphisms of 7' with their matrices in this basis.
Given V and t=(r;,7,) as in §4, we define V=VRT, 1,(k)=7,(k) ®1, 7,(k) =7,(k) D1
(k€ K). ¥ is a Hilbert space in the usual way, and t=(z,, 7,) is a unitary double representa-
tion of K in V. 75 and 75 are the double representations of K obtained by restricting v and
7 respectively to Kp.

Given v€ 3y, there are unique z,.,,€ § such that

wi=_ 2 pp(eey); (L<j<ry). (5.1)

1igryp

For A€} let T'(A: v) be the endomorphism of 7' with matrix (ug(2y:5) (A<, s<rps then
T{sA: ) =T'(A: v) (s€W(l,)) and v+>T(A: v) is a representation of 3y in 7. It is known
that ['(A:v) has the numbers py 1(v)(sA) (SEW(L)) as its eigenvalues, and that it is
semisimple if A is regular. Let [ be the set of all regular A€[}. Since ay< B, it is
then clear that for A€[}” and H€q,, I'(A: H) is semisimple with eigenvalues (sA)(H)
(s€EW(L,). In fact, the following lemma is valid (cf. [7] § 3, [8] Lemma 19).

Leuma 5.1. Let P be a positive system of roots of (g, ,) and Py the subset of P
vanishing on ap. Write @ =115 H,, wp=T,e5,Hy. Let s,=1, 8,, ..., 5, be a complete system of
representatives of W(L)/W(l)r. Let w;=pum 1(v;), 1<j<rp and let eA) be the element
Zi<sar Uik A)e; of T. Then, if A€LY, the e;(A) form a basis of T, and T(A: v)e,(A)=
P87 A)e;(A) (V€ Bp, 1<j<ry). Moreover, there is an rp x 1y matriz B with entries in
the quotient field of I(W(L)y) having the following properties: (i) (w|wyp) E has entries in
I(W(l,)p) (ii) for A€T¥, E(sz'A) are the projections T—C-e,(A) corresponding to the direct
sum T'=%¢<,,C e A).

Fix v€J,. By Theorem 4.5 we can choose &%, (% €K, 7 €Myp. g5 €8 (1 <F< 1,
1< k<g) such that for arbitrary V, v, € C%(G:V: 1), and m€ M},

<P(msvv,°dp)=l, > @(m; v,0d02,.4) + Z g})k("n)rl(g}’k)<p(7n;7ﬁk°d17) T3 (C5k)- (5.2)

<i<rp 1<r<q

We now define the differential operator D} on C®(Mip:¥) by setting, for all f=
ZlS/SrFfj®e] (f €C* (M1 V),
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Dif= 2> Di.h®e (6.3)

Iisry
where, for f€ 0®(Mip:V) and m€ M1z,

(D31 (m)= Z gik ) Ty (E%) f(m; 7]11:)"72(5:1:)

The following lemma is then immediate.
Lemma 5.2. Let notation be as above. For ¢€C®(G: V: 1) let
O(m) =2 <j<r, Plm; v,0d5) Qe
Assume that for some A€, 2p=pg1(2)(A)p for all 2€3. Then, for v€Jr and mEMip,
O(m; v) = (1QL(A: v) @(m) +D(m; Dj). (54)

Moreover, let y=>0 and let V' =d;®. For n€Myr and vE B, let 'p=dz"onod}, 'Dj ,=
d}o('nD%)odz?. Then, for m€ My,

W(m; vm) = AQT(A: "0)¥(m; ) +¥(m; “Di,). (5.5)

If meMyy, HEaf, then m exp tH €My for £20; also 'H=H +yp(H)1. So Lemma
5.2 gives

LeMMma 5.3. Let notation be as above. Fix H€aj, n€WMyp. For mEM{y let F,,=Fp y,
and G, = Gy, y , be the functions on [0, o) defined by

F,t)=W(mexptH;n), (G.0)=Y(mexptH; 'Dy,). (5.6)
Then, on (0, <) dj; ={19[(A: H)+yo(H) 1)} F,, + G,. (5.7)

Choose an orthonormal basis {X;, ..., X,} of f, Put
Q=1—(X}+...+X2), |v|=0+ra( Q] @+ |lz(D])- (5.8)

Leuma 54. Fix v€Zp, n€Wyy. Then there ewist r=ry,, 20, 0=k 0,€Mp
(1<k<q=q,, ) such that for arbitrary V, v, and fEC®(M3y; V), and all m €My,

£ om; o DOl < pe(m) (1 =ye(m) ™" [zl 2l ftm; (m;

Proof. Tt is clear from the definition of Dj; and Dj that for f, m as above,

Ifmsmo Dl < 3 3 [lea (Gl Iz Rl | o (ms pogioni)]-

1isrp 1<k<q

Now we can select 5%;€ My, gls€ 8 such that noghonh = 21<j<, 9hsOniks for all i, k. So
we get
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||f(m;'qu£)“ < UEklg?u(m)l “"71( flc)" “"72( 1t’lc)" "f('m,"??kj)" )

Observe now that given any g€ Sz, there are constants ¢(g) >0, g(g) >0 such that for

all meMy
|g(m)| < e(g)yp(m) (1 —yp(m))=42. (6.9)

Indeed, this is immediate from Lemma 7 of [8] if g =vh for some v €N, and some matrix
coefficient % of ¢;. On the other hand, we see from (4.3) that by(m) = — Ad (6(m))n, (1 —cp(m)),
5o that our claim is true for derivatives of matrix coefficients of br also. The estimate (5.9)
now follows from the definition of §z. Furthermore, we have the following elementary result
from the representation theory of K: given £€& of degree s, there is a constant a(£)>0
such that, for any finite dimensional unitary representation # of K, ||8(&)| <a(&)||B(2)]|*2.
Using this and (5.9) in (*) we get the lemma.
Let ||-|| be a norm on Ig. Given A€} and 7, put

Iz Al =Q +[lr(@)) A+ |z L+ [ Al

5.10
E(A: G 1) = {p: p€C®(G: V:7), 2p=pgn(2)(A)p for all z€ 3}. (5.10)

As usual, L2(G: V) is the Hilbert space of functions f: @V with |[f[|3= f¢||f()]|2dz < oo.
Note that E(A:G:7)NLAG: V)=+{0} if and only if A€L; [14]. Also it follows from
Theorem 1 of [14] that if 1€ E(A: G: 1) N LAG: V), then bfa€L¥G: V) for all a, bEG.

LeMma 5.5. Let r>20; a, b€S such that deg (a)+deg (b)<r. Then I a constant
C=0C, ,>0 such that for arbitrary v, A€L(, and fEE(A: G:1)NLA(G: V),

bfa]ls < Clz, Alr||f|ls (56.11)

Proof. Extend {X,, ..., X,} to an orthonormal basis {X,, ..., X,} for g, and let
g=—(X2+..+X}), o=—(X:+...+XB+(X2,3+...+X2%). Then o is the Casimir of
G, g=—w+2Q—2, and pg(w)(A)=<H,, Hp>—c for all AEL], ¢ being a constant. So
we can select a ¢,>1 such that 2+ |ugi(w) (A)| < c3(1+]|Al])2 for all A€ L[. Now, if 7 is
any unitary representation of G in a Hilbert space ) and y is a differentiable vector for
7, =X Py, p)=||n(X)p||2=>0 (1<i<n), so that |n(X,)p|2<(nlg)y,y). We apply
this to the case when §=L?(G: V), x is the right regular representation of G in §, and
p=fEEA: G:T)NY; as f=axfxf for suitable «, fECT (G) by Theorem 1 of [14], f is
surely differentiable for z. Thus, for 1<i<n, [|X,f[i< —(of, /H—2(f, H +2(Qf, H<(@+
|i(@) W) IF13+2] @, Al But [(©F )] =] fo(H2) 7o), fla))da] < [ra @ 1] So we
got the estimate |Xfll,<col, Al[fls from which we get |Efls<n)Xleol. ALl
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for all X€g. A similar estimate holds for ||fX||,. We have thus proved the lemma when
deg (a) +deg (b)<1.

Assume the lemma for r=m. Let a’, b’€@ with deg (a’)+deg B')<m. Let ©&,
(resp. &) be the subspace of & of all elements of degree <deg (a’) (resp. deg (b)), and
let (2,),<i<r (resp. (b;)y<;<s) be a basis of @ (resp. @,) such that the matrices {cey (k) (resp.
Bii(k)) (k€K) of the adjoint representation of K in &, (resp. &,) are unitary. Let U be
a Hilbert space with an orthonormal basis (%;)1<i<r,1</<s 80d define the unitary double
representation »=(vy,%,) of K in U by setting v,(k)u,=21ci<r%ilk™ ) U;g Upg¥o(k) =
BicicsBak)uy; (REK, 1<p<R, 1<g<S8). Given V, 7, f as above, let V=V QU,
F=7®,and F(z) = Zycicp 1<sesf @5 @ by) @ Uy, (@EG). Tt is easily seen that F€ £(A: G: 7)n
L¥G: V). So by the earlier result, |[XF|,+||FX|[;<cx|t, A|[|F|, for X€g, cx>0
depending only on X. Thus, for 1<i<R, 1<§<8, X€g,

[1X; faills + (1B, fa X |s < cx |7, A IKDSR_ZKKs”baf%”r
We estimate the right side of this inequality by the induction hypothesis applied to
[|6¢fa,||2» and by the (easily proved) fact that for a suitable constant ¢’ >0, |7, A| <¢'|z, A|
for all A, . This gives the lemma for r=m+1.

From Lemma 5.5 and Theorem 3.3 we get

LeMMA 5.6. Given a, bEY, there are constants C=C, , >0 and r=r,,>0 such that for
arbitrary V, 7, A, fEE(A: G: )N L G: V),

[f(a: = B)|| <Clz, AFE@)|fll. (=€&). (5.12)

Lemma 5.7. Given n€Myy, there are constants C=Cy>0, r=r,>0 such that for
arbitrary V, v, A, m€M{r, p€ EA: G:1)NL¥G: V) and © as in Lemma 5.2,

|®(m; )|} <Oz, Alrdp(m)E(m) ||@]|2. (6.13)
Proof. Let (yw;)’ =dz"o{(nv,)od. The lemma follows from Lemma 5.6 and the inequality

Pem; pll <dp(m) = llgtm: (o)l (5.14)

LeMMA 5.8. (i) There are constants ¢, >0, v, >0 such that for all m € Miz, dg(m)E(m)<
¢, Ex(m) (1 +o(m)"; (i) given HEq}, there is a constant co(H)>0 such that m exp tH € M+
for any mE€M,, and t=c,(H)o(m); (iii) given HEa%, y =0, 0<s<l, there are constants

a=ay,, 0<a<l, and c(e)=cy,,(c) >0, such that, for mE€ My, and =0,
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dp(m-exp tHY Y E (m exp tH)Y < ele)dp (m) T E (m) 7% ¢, (5.15)

Proof. (i) and (iii) follow quickly from (2.1) and the relation M= K Cl(A+) K5. For (ii)
see [14], p. 69.

LemMA 59. Let He€ay, n€Myy. Then we can select r=1y4,>0, ¢=q5,>1 and
o €Myr (1<s<q) such that for arbitrary V, v, A, p€E(A: G:7), the functions F,, and
G,, defined by (5.6) satisfy the following inequalities, for all mEMTy and t=0:

1Zn Ol < dpim exptH)™ 3 |lptm exptH; o)

|6 6 < yotm) (L= yem exp tH)) " [z =% dy(m exp tH)™* 3, [[glm oxp tH; o).

(516)
Proof. Write e;=exp tH. Then (5.14) gives, for m, t as above,

[17n @)l < de (met)”ymzw llp(me,; (no))ll-

Further, G,,(t) = dg(me,)” ®(me;; 'nDF) can be estimated by Lemma 5.4. Write, in the no-

tation of that lemma, §= gy », 7= g 4, { = Wy m,»; then |G, (f)|| is majorized by

ve(mey) (L—yp(me)) ™" | o[ de(me) 3 [[®(mey; &|l5

1<k<q

a8 yp(me) < e #rM oy (m), we find from (5.14) that ||@,,(t)] is majorized by

yr(m) (L —yr(me,)) ™" |z[ e rt dF(met)Hijk llp(mes; (i) )-

Our lemma follows at once from these estimates.

Remark. Except Lemmas 5.5 and 5.6, the results of this section do not need the
assumption rk (G)=rk (K) for their validity.

6. A lemma on ordinary differential equations

In this §, X is a finite dimensional Banach space with norm || -||; I" is a semisimple
endomorphism of X with only real eigenvalues; §=8(T") is the set of eigenvalues of I',
and [8] is the number of elements of S; for c€8, X, is the eigensubspace and E, is the
spectral projection, corresponding to ¢. We define

C=max |[E| o=min(}, min |c|). (6.1)
ceS ceS,c+0
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Lemma 6.1. Let f and g be functions of class C defined on an interval of the form
(—h, ) (h>0), with values in X. Suppose that df/dt=If+g on (0, =), and that, for each
e with 0<e <1, there ts a constant C.>0 for which

Il < Cae®, Jgte)]l < Ceett ¢>0). (6.2)
Then foo=lim;., ... f(t) exists, lies in X, and for all t20,0<e<}
[Ifeell <BCCs, [[£8) = foul] < BLST CC et (6.3)
Proof. For c€S put f,(¢)=E. f1),9g.(¢)=E,g¢). Then df[dt=cf +g, on (0, ), and
we have, for £>0 and 0<e<1,
[If. @)l < CC.e, ||g. )| < OCye*t. (6.4)
We consider three cases.

Case 1: ¢>0. Then, for 0<i<?, we have

-t
e fo(t) e o (t) = e_ctJ‘ e~ g, (t+ u) du.
0
Taking & < min (¢, 1) in (6.4) we find that e~¢'f,(t') > 0 as ¢’ > + oo while

J.we“" llgc(t + ) du< oo,

0

So f.(ty= — fre“g.(t+ u) du, from which we get, on using (6.4),
IOl <Q+a—e 100 (¢>0,t20). (6.5)

Case 2: ¢<0. We have, for >0,

t

fo(8)=e*f.(0) + f et g, (t —u) du.

1]

From (64) we find that the integrand is majorized by CC,e*'~'e“**~¢* which is
< CC, e 8e1~9% ag ¢< — . We then find

Ol<(1+1/(—a)CC.e (c<0,t>0). (6.6)

Case 3: ¢=0. Since dfy/dt=g, and {7 |lgo(u)|| du< oo, we see that fe=1lm, e fo(f)
exists, lies in X, and, for £>0,

0

foo=f0(t)+f 9o (¢ + u) du. (6.7)

0

Taking $=0 in (6.7) and using (6.4) we find easily that
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el < +1/(1-€) COL; (6.8)

moreover, for >0, (6.7) and (6.4) give
fo®—fl <1 —g)1CCet (0<e<]l). (6.9)

On the other hand, we have

o =t <M=t + 30l (610)

From (6.5), (6.6), (6.8)~(6.10), we see that f(t)—>f, as t—> + oo, and that (6.3) is true for
120, 0<e<i.

7. The functions ¢p;,, associated with a ¢ of type (A, 7, Y)

Let y>0 and V, 7 as in §§ 4, 5. A function ¢: G-V is said to be of type (A, 7, y) if
@€ E(A: G: 7) and if, given b€, £>0, we can choose a constant B, = B,(b: ) >0 such that

lp(; )| < B.E(=)**"* (z€ Q). (7.1)

Such ¢ lie in L*(G: ¥); conversely, it follows from the work of [14] that any ¢ € E(A: G- )N
L¥(G: V) is of type (A, 7, B) for some §>0. In this § we shall make a close study of functions
of type (A, 7,p).

We recall the sets F, and the parabolic subgroups P,=M;A4;N; defined in §2
(1<j<d). For any u>0 we put

7(p) = {h: RE A+, a,(log h) > up(log h)} (7.2)

for 1<j<d. Then Af(u)=Aj(u') if 0<u' <u, and A+ < U,<adi (@) for sufficiently
small u. To see the latter, let Q be the compact set {h: hECIA*, |llog hl] =1}, and let
¢, =inf,.qpo(log k), c,=supseqo(logh), and c¢;=2%, 0(H); if hEA*, then logh=
Zi<i<a®s(log h)H;, so that for hEQN A* one has ¢, <c¢; max, ., (log k), proving that
os(log k) > (c,/2¢,¢5)p(log k) for some j. In other words,

47s U 4f () 0<p<al2e0) (7.3)

As mentioned in § 2, we write dy=dg, r,=7p, ete.

TueEOREM 7.1. Let A€L{, y>0, V, 7 as usual, and let @ be of type (A, 7, y). Let 1 <j <d.
Then, for any meM,;

1+y

@;.p(m)= t]im d,(m exp tH;)'*" p(m exp tH))
-+ 00
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exists. Moreover, we can write (p].7=21<i<ri¢j'y’i where. @; .  (ma) =@, , ;(m) for m€ M,

a€4;, and @, ., | M, is of type (s;A|L N my, 75,9) (1) (1< E<7y);5 in particular,

1r, (@) @A77 @;.0) = pan () (M) (d7 7 @s.)  (2€8)
@;y=01f P;is not cuspidal. If @, , 0, we can find s€V(l,) such that (sA) (H;) = — yo(H,).

Proof. Define ¥ as in Lemma 5.2. For any 5 €I, and m€M{;, let F, and G, be as
in Lemma 5.3, with F=F,; and H=H; Then dF,/dt=A4,F, +G, on (0, ) where
A;=1R(I'(A: H))+vo(H;)1). We obtain easily from (5.15), (5.16) and (7.1) the following
result (note that g (H))=1): if Q=M 1718 a compact set and 0 < g< 1, there is a constant

Cgy..>0 such that
[F, 0| <Coee, |G <Cq et (7.4)

for m €@, t>0. Further, as A € £, 4,is a semisimple endomorphism of ¥ whose eigenvalues are
the real numbers (sA) (H;) +yo(H;) (s€ W(L,)). Let Ty= {u: u€T, I'(A: H;)u+yp(H,)u=0}.
Then, by Lemma 6.1, we can find 0, (m) € V QT such that F,(¢) =¥ (m exp tH;n) >0, (m)
as t— + oo, for each m€M7;, 7 €M,;. Moreover, using (7.4), we infer from that lemma the
existence of a constant & >0 such that, for any compact set @< M;; and any ¢ (0<e<}),
we have

[W(m exp tH,; ) — O, (m)| < Dy, e (¢=0,m€ Q) (7.5)

for suitable constants Dg .. Let W', (m) =W (m exp tH,). Then the estimates (7.5) show that
for any 7€My, n¥,~ O, uniformly on compact subsets of M7;. Thus @, is of class 0%
and ©,=70, for n €M, ,.

Now @,(m exp tH,;) = ©,{m) for m€ M}, t>0. On the other hand, given any compact
set Q< M, ;, there is £,>0 such that m exp tH,€ M for m€Q, t >4, (Lemma 5.8). It follows
easily from this that we can extend ®, uniquely to a function @€C®(M,;: VRT,)
such that @(ma)=0(m) for all m€M,,, a€4, Obviously

O(m;n) = tE?lw‘P'(m expiH;;n) (m€ My, n€My,). (7.6)

From (7.6) we see that @ is z -spherical. Suppose © =+0. Since the values of © are in
V@7, we have T {0}. So, for some s€ W(l.), (sA)(H,)+yo(H,;)=0. Let v€Z,, mE€M,,.
Then we get from (5.5) (with n=1), for all sufficiently large ¢,

W(m exp tH; v) = (1 QT'(A: "))V (m exp tH,) +¥(m exp tHj; djo D% 0d;?).  (1.7)

(") The s; are as in Lemma 5.1 with F=F;. Also M, is in general neither connected nor semi-
simple, and we should remember the remarks made in § 2.
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A simple argument based on Lemma 5.4 shows that the second term on the right of (7.7)
tends to 0 as ¢{— + oo. Changing v to djovod;?, we get from (7.6) and (7.7),

v(d;i70)= (1@I'(A: ) (d;"0) (veB)) (7.8)

Observe that, if » = ir, (2) (€ 3), then z,,,,=0,,2 in (5.1), so that I'(A: e, (2)) = phort (2) (A)-1.
(7.8) then gives
ur,(2) (477 O) = ug(2) (477 @) (2€3). (7.9)

Let E(sz'A) be as in Lemma 5.1, and let O, =(1® E(sz'A)) ©. Then ®=zl<k<,f®k;

moreover, from (7.8) we have
v(d;? 0,) = [ (@) (sz'A) (d770©,) (€T, 1<k<m). (7.10)

We shall now estimate @. Fix €I, ;. Let E, be the spectral projection V=V @T:
Then from (5.6), (5.7), and (6.7) (with ¢{=1) we have, for all m€M{,

@(m;n)=EoFm(1)+waon(u) du. (7.11)

Estimating the right side of (7.11) using (5,16), we easily obtain the following result: let
wr (1 <k<gq) be as in Lemma 5.9; then there is a constant ¢ >0 such that for all m €M7,

|®(m; 9)|| < Cd;(m exp H)** 3 |lo(m exp H,; wy)|l

I<k<q

o

+C 3 e~*d;(m exp uH,)"*" ||p(m exp uH,; w,)| du.

I<k<qg J1

If we now use (5.15) and (7.1) to estimate the right side of this inequality, we get the
following result: given ¢ with 0 <d<1, there is a constant A, ;>0 such that

1®@m*; pll < Apsd;(m*) 7 E(m )0 (m* e MF). (7.12)

On the other hand, if ¢, and ¢,=c¢,(H,) are as in (i) and (ii) of Lemma 5.8, then, for any
mEM,, m*=m exp c,o(m)H,€ M{;and O(m;n)=0(m+;n); so, from (7.12) we get, for all
m€DM,, writing A, 5=A4, sc1*” and ry=r(1+y),

[@m; )| < Ar o Bym 72 (14 o(m)ydy (m* ). *)

But B, (m*)=E,(m), d;(m*) =e°™ (ci=c,p(H;)), and there are constants c,>0,c,>0,
such that E;(m)<c,e ™, (1+o(m*))<cs(l+o(m))? (mEM,). Let 0<eg<l. Then,
writing d,,.6=¢§*"" 4, 5, we get from (*), for all m€M; and 0<d< ¢/2,
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O ; | < Ag, .0 By (m)'+7-2 o=@ (1 4 g(m))27s 20,7}

It is clear that there is a 6 =d(¢) with 0 <4 <¢/2, such that the supremum of the expression
within {...}, as m varies in M, is finite. Choosing d =d(¢), we find the following: given
&, 0<e<l, there is B, ,>0 such that

1O6m; 7)) < B, Eyfm)' 7~ (meM,). (7.13)

Let ®(m)=21<s<rjes(m)®es’ ®i(m)=z1<s<r,61.s(m)®es (m€M,,;), and put g, ,=0,,
®5,9,1=0,1 (L<i<r;). Then it is obvious that d,(m exptH,)"*”p(m exp tHj)— @, ,(m)
as > + oo, for each m€M,;. From the properties of ® and ©, it is moreover immediate
that g, ., (ma)=g, , (m) for me€M,; a€d, that ¢, = Zi<i<r,Psy.i» and that the
®5,y.1 are Tp-spherical. If we remember that d,=1 on M;, we may conclude from (7.10)
and (7.13) that @, , ;| M, is of type (s, A[m,N [, 75, ) (1<i<r,). Finally (7.9) leads to the
required differential equations for d;”g; .

Now, if P;is not cuspidal, M, cannot admit any nonzero eigenfunction (for the center
of M;) in LAM,). So, in this case, we must have @, , ;=0 for 1<i<r,, proving that
®15,,=0. If @; , %0, then © =0 and so, as we saw earlier, (s(A)(H;)+yo(H,)=0 for some
s€W(l,). This completes the proof of the theorem.

We now turn to the problem of obtaining estimates for ¢ —¢, ,. With later applications
in mind we shall formulate the estimates so as to take into account the variation of
v and A.

Lemma 7.2 Fix § (1 <j<d). Then (i) {A(H,): A€ L} ="D;1s ¢ discreie additive subgroup
of B (ii) there are constants Cy>0, q,>0 with the following property: if E(s;*A) are as

n Lemma 5.1,
e, VEEM < Co(L+ flAIN ™ (VAELD. (7.14)
Proof. If A€, A is a linear combination with rational coefficients of the roots of
{8 I). Hence AJa is a linear combination with rational coefficients of «, ..., &, proving
that A(H,) is rational. As £ is finitely generated, we may conclude that D), is a finitely
generated subgroup of the rationals. Hence Dj; is discrete. To prove (ii) observe that
(w/wFi )E has polynomial entries (Lemma 5.1), and so there are constants C;>0, ¢,>0

such that
|w(A) e (A) || BA)|| < C(L+||A])*  (AEL).

On the other hand, there is a constant ¢, >0 such that |<A, 8| =¢; >0 for all roots 8 of
(8> L) and all regular A€ Ly, and so there is a constant ¢, >0 such that | w(A)/w,;-i(A)] =
;>0 for all A€L]. This leads to (ii).
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TeroREM 7.3. (i) Let p>0. Given any £>0, and a, bEW, there are constants
D,=D, 44,>0, and ¢,=; a0,y =0, such that, for arbitrary V, v, and @ of type (A, 7,y), we

have
llpla; =; B)|| <D, |7, A|%|lg]|:E(=) "~ (z€G). (7.15)

(ii) Let py>0. Then there exists f,=PFo(y)>0 with the following property: given any u
with 0<u <1, we can select constants Ly, >0 and p, >0 such that for 1 <j<d, h€ 4} (u),
and for arbitrary V, v, and @ of type (A, T,y), one has the following estimate

lp(®) — d;(B)~ VP g, ()| < Ly 7, ALY || ol B ()7 P, (7.16)

Proof. We note first that it is enough to prove (i) with a =b=1. Suppose in fact that
this has been done. Let ¢;>0 and D, >0 be such that for arbitrary V, 7, A, and f of type

(A7, 9), ,
@l < Dilz, Al |fll. B @)+~ (zE®.

Let a, b€®, and deg (@) +deg (b) <p. Given f of type (A, 7, y), we define F as in Lemma
5.5 and use the notation therein (with a=a’, b=5", p=m). Since F is of type (A, 7, y), we
have, for each >0,

| P @) < De |7, Al || P, E ()7~ (z€G).

Lot a=3¢icr i, b=2¢csd;b; (¢, d,€C) and let Q=(Z|c,d,;|®)}. Then |f(a; z; b)|| <
Q|| F(x)|, and so, for 2€G and ¢>0,

lfta: ;)| < QDL[7, AE () *~*( b, falf*.

This gives (7.15) in view of (5.11) and the fact that |7, A| <c|7, A| for some constant
¢>0 independent of 7 and A.

It is convenient to prove (i) and (ii) together. We begin by choosing a number
Yor 0<yo<y, with the following property: given b€® and ¢>0, there are constants
L(b: &) >0 and p(b: &) >0 such that for arbitrary A, v, and ¢ of type (A, 7, ), and each £ >0,

llp(z; B)l < L(b: &) |7, A["*? ][ B (2)*~°  (¢€G). (7.17)

It is clear from Lemma 5.6 that such numbers y, exist; for example, 0. We now proceed as in
the proof of Theorem 7.1. Let 1 <j<d, ®, as in Lemma 5.2, and ¥*=d}*®. For v€ 3,, put
f=d;"ovod}. Define, for m € M;, the functions FY and G on (0, ) by

Fo(0)="F"(m exp tH), Gh(t)="F"(m exp tH;dpoD} 0d;™).
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Let 4; o =1@(T'(A: H)) + y0(H)1). Then, we have, on (0, o)

Arguing as in Theorem 7.1 we conclude that ®° (m) =lim,.,, ., V"° (m exp tH,) exists for each
m€M,; Write B°(m) =<, 02 (m)@e;, and put ¢, , =61

We shall now estimate W9 —@° using (6.3) (with 4, 4 instead of I'). To this end we
shall find bounds for the constaflts C, C,, « defined in (6.1) and (6.2).

Let 8, 5 be the set of eigenvalues of 4; », and, for c€S; 4, let B, ; 5 be the corre-
sponding spectral projection. Then it follows from Lemmas 5.1 and 7.2 that S; < D;+
voo(H ;) and that for any c¢€8; 4

B, a=1® s E(si'A) (A€L)). (7.18)

By At yo0) (B = ¢

Since Uj<j<a(D;Tpo0(H,)) is a discrete subset of R, we can select oq=aq(ya) such that
(1) 0<oy<} (i) if ¢ =0 and ¢€ U;<;cs(Ds+yoe(H))), then |¢| >a, With this choice of o,

we have
CE€B; a,ck0=|c|>a, (AEL[,1<7<d). (7.19)

Moreover, from (7.14) and (7.18), there are: constants C;>0, ¢, >0, such that

B Al <O A+]AID® (AEL, 1<5<d, c€S, ). (7.20)
Also {8; p]ls7y.

It remains to determine bounds for the .. We use Lemma 5.9 with H = H,, with F;
instead of F, and Fy, G5 and y, instead of F,, G, and y. Let ¢, 7, 0, (1 <s<q) be as in
that lemma; moreover, let Qg =0y 5 and c,(¢) = ¢g;, 5 (€) (0<e<1) be the constants satis-
fying (5.15). Then (5.15), (5.16), and (7.17) give us the estimates

[Fn®)]| < Cee,  ||GN(@0)]| < Opett (7.21)

for all m€M7;, >0, 0<e<1, where Co=C, ;- is defined as follows, with p,=r+

mazscaco Pl oag):
Comcole) |1, AP 3 Lo eao)) (1= y,m) " dy(m P E (m)' 1~ plle-  (7:22)
We now observe that for any m’€ My, gy, (m)]| < |° ()] and
llptm)y = & m'y =4 g, )| < =479 0 () = ©° ().

Define p” (¢) = p. + ¢, where p, is as above and ¢, is as in (7.20). Put
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K(e)=3C1¢o(e)rs( 2 L{w,: eay)) (7.23)
1<s<e
where (] is as in (7.20). From Lemma 6.1 we then get the following estimate (o, is as in
(7.19)): for arbitrary A, 7, ¢ of type (A, 7,7), mEMS;, t>0, and 0<e<} o,

llg(m exp tH,) — d;(m exp tH;)~ g, . (m exp tH,)|

7.24)
<K(e)|r, A

" (€) (1- s (m))~p”(8) = (m)1+’}/o—6‘ ”<P”2 g~ baet~ryoeHpt

Moreover, as g; ., (m)=@;y,(m exp H,), we obtain from (6.3) the following estimate for

Prps(m): lot

1\ 7@
K'(g)=K(g) (1 - ;) d,(exp H))'*7; (7.25)
then, for mE€M{;, 0<e< L ay,
l@s.ps (m)]| < K'(e) |7, A" @ E (m exp H )7, (m)" 7 [l (7.26)

We now convert (7.24) and (7.26) into uniform estimates for [|p(h) —d,;(k)"+g, , (B)]|
as h varies over Af(u). Let ;a be the null space of «;, so that a=;a+a; is a direct sum.
If Hea, H=;H +a;(H)H; where ;H€q; if H€a*, then ,H€Cl(a*). Suppose now h=
exp HEA(u) (cf. (7.2)), where 0<p<1 and oy logh)>2. Then h=m exptH, where
t=%o;(H)>1 and m=exp (;H+4o,(H)H,). Clearly m€M{,; and y;(m)<lfe. We now
substitute these.choices for m and tin (7.24). We also select, for any ¢ with 0<¢ <}, a con-
stant d(e)>0 such that Z(h')11" s <d(g)e~ 1T~ 22e08R) for a1l b’ €CUA+). Defining

K, (e)=K(e) ( 1-— _1;3) _p”(E)d(e), (7.27)

we obtain from (7.24) -the following estimate: for arbitrary A, 7z, ¢ of type (A, 7, 9),
k€A (u) with a;(log k) >2, and 0<e< }«,
llp(h) —d; ()=, . (|| < Ky (e) |7, AP ||gp|]p e~ HF7e-Betonitiedos b,

in deriving this we must remember that ¢ =4 o;(log %) > (u/2) o(log k). So, remembering
(2.1} we find, for arbitrary A, 7, ¢ of type (A, 7, ), and g with 0< &< (ot/16),

lph) — dy(B)" g, ,, (B)]| < Ky (e) |7, A

"(€) ”‘P"zE (h)1+yo+(aoul8), (7~28)

for all A€ Af (u) with «;(log &) >2. On the other hand, let Q, = {k: k€ 4] (u), o, (log b) < 2}.
Then C1(Q,) is compact, and so.we. can find, for each ¢ with 0.<.& < (oo u/16), & constant
K(e: p) >0 such that for all ,EQ,,
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L(1: &) E(h)*r*+ K' () B (hexp H)' " < K(g: p) B (h)! 7o+ Co/®,

Taking into account (7.17) a=b=1 we have, from (7.26) and the above inequality, for
all REQ, and 0< < (o, u/16),

lp(®) — d;(B)~ g, (B)]| < K(e: p) |7, AP ||l 2 (h)H 7ot Con® (7.29)

where p,=p(1:¢&)+p,. Let &, = (yu/16) and write

Bo= 1o, py=pe’u’Lu=K(8M:/")+Kl(su)' (7.30)

Then, on combining (7.28) and (7.29), we obtain the following result. Given u, with
0<u<1, we have, for arbitrary A, 7, ¢ of type (A, 7, y), and €A (1) (1<j<d),

lloB) = &y (B) =70 gy, (W[ < L7, Afos [[pllo B (R) 77 (7.31)

We must remember that (7.31) has been proved under the sole assumption that, for each
be® and >0, (7.17) is satisfied by all ¢ of type (A, 7,y). Note also that L, and p,
depend on y, and .

We are now in a position to prove (i) with a=b=1. Let Z be the set of all numbers
»" with 0 <y’ <y such that (i) is true for all ¢ of type (A, 7, ¥) with »' replacing 4 in the
estimate (7.15). From Lemma 5.6 it follows that 0€Z, so that Z is nonempty. Let
Yo¢=8up, czy’. Then, for any £>0, there is a y,€Z such that y,—~&/2 <y, <y, A simple
argument then proves that given b€® and £>0, we can select constants L(b: &)>0,
p(b: &) =0 such that (7.17), and hence (7.31), is true for all p of type (A, 7, »), A, v being
arbitrary. If y, >y, we already obtain (i) (with =1 to be sure, but this is enough, in view
of our earlier remarks). We shall now prove that y,<y leads to a contradiction. Suppose
0 <yy<y. If ¢ is of type (A, 7, ), then we know from Theorem 7.1 that for any m €M,
@;,y(m)=1lm,,,d,(m exp tH,;}**" p(m exp tH,;) exists. On the other hand, as y —y,>0,
dy(m exp tH;) """’ ~0 as ¢t-> + o, for each m €M, Therefore we have ¢, , =0, 1<j<d.
So, from (7.31) we have, for arbitrary A, 7, @ of type (A, 7, y), h€AT (1) (0 <p <1, 1<j<d)

el < Ly |7, APs [lllaE () 7o+, (7.32)

Choose , with 0< uy<1 such that A* S Uigjcadf (o) (cf. (7.3)) and write Ly= Ly,
Dy = Py,, 6= By tto- Then (7.32) gives us the following result: for arbitrary A, v, and ¢ of
type (A, 7,9).

o)l < Lo |7, AP lglls B @) 7 (z€G). (7.33)

It is clear from (7.33) that v, +06,€Z, contradicting the definition of y,. The proof of (i) is

thus complete.
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By virtue of (i), estimates of the form (7.17) are now true with y replacing y,. But then
the estimates (7.31) are also true, with y replacing y, This gives (ii).
Theorem 7.3 is completely proved.

CoroLLARY 74. Fix y>0 and a ¢ of type (A, 7,y). Then, given a,b€®, there are
constants C>0, ¢=0 such that

llpla: ; bY|| < CE(x)*” (1 +o(z))? (x€G). (7.34)

Proof: As usual we come down to the case a=b=1. We use induction on dim (G).
Choose iy, 0 <po<1, such that A* S U,c,ca 4} (o), and let Ko=L, |7, A"]|p[|2 6o =Boto
where L, and p, are as. in (7.31). Then (7.31) implies that for all he 4+

llo@ll < KB E@) 7%+ > d;(h)~ 4 {lgp,,, ). (7.35)

1<i<d

Now ¢;,,=0 if P, is not cuspidal. Consider j such that P, is cuspidal, and write ¢, , =
Z<i<r,Prys 88 in Theorem 7.1. Since g, ;|M; is of type (s;A|m;N1L 7z, y) and
dim (M) <dim (&), the induction hypothesis is applicable (1) and so we can find constants
C=>0, ¢ =0 such that

s ,(m)]| < CEm)*7 (1 +o(m))?  (meM,, 1<j<d). (7.36)

If h€A* and we write h=h, h, where hy€M,N A, h,€A,, then A(log h;) >0 for all A€AZ,
while there is a constant ¢,>0 independent of & such that 1 +a(h,) <c,(1 + o(h)). Therefore,
as' @y, (k) =, (), we find from (7.36) and (2.1) the following result: there are constants
C,>0, ¢, >0 such that for all A€A+, 1<j<d,

e, (108 HY(1+7)

s B < Cre
From (7.37), (7.35) and (2.1) we obtain, for all A€ 4

1+ a(h))e. (7.37)

lp®)|| < KB (R)7 4%+ dC, E (B)7 (1 + o(h))@. (7.38)
®
This leads to the corollary easily.

THEOREM 7.5. (i) Let 1<p<2 and $=2/p)—1. If p€EA: G:1)NLAG: V), then
QEL?(G: V) if and only if ¢ is of type (A, 7,7) for some y>7.

(i) Let 1<p<2. Then there is ¢y=2¢y(p) >0, and, for each a, b€, constants C, , >0,
94,620, such that for arbitrary V, z, A, and € EA: G: )N LA(G: V),

(Y) Cf. the remarks made made in §2 concerning My. If d=1, M;is compact, E;(m)=1, and
(7.36) is triyia,l,. So the case d=1, which starts the induction, is simaple to handle, and in fact, its
proof is contained in the given proof.

18~ 722902 Acta mathematica 129. Imprimé le 6 Octobre 1972
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lp(a: z; B)| < Cop |7, A%t flgl, E (@)®*  (2€G). (7.39)

Proof. (i) If @ is of type (A, 7, p) with y>(2/p) —1, then ||p(z)||” <const. E(x)? for all
z€G, f being a constant >2. So g €LA(G: V).

Conversely, let p€E(A: G: 1) NLP(G: V). Arguing as in Corollary 3.4 we see that
apb€L?(G: V) for all a,b€Q. Hence by Theorem 3.3, sup,.oE(z)-2?|p(a: z; b)|| < oo
for all a, b€@®. So ¢ is of type (A, 7, ).

We shall now prove that ¢;; =0, 1 <j<d. Fix j and write p =¢; ;. Choose u such that
0<p<1 and A4 (u) is nonempty. We then obtain from (7.16) (with ¥ replacing p) the
following result: there are constants C'>0, >0 such that, for all h€Af(u),

dj(h)—(Z/D) ”w(h)” < ”(P(h)” + Oe—((2/p)+¢5)0(108h) (740)

Let J be asin (3.1). Then J(h) <e?2%¢ ™ for all h € A+, and so, each of the functions appearing
in the right of (7.40) belongs to L?(A+, Jdh). So, if we write a,={H: HEa"*, o,(H) >
max (1, ug(H))}, then q, is nonempty, and

| ttexp e dytoxp Hy*s(exp Hy d < =, (7.41)
%

dH being a Lebesgue measure on a. On the other hand, if we put

*J(h) = H (el(logh) _ e-l(logh))dim(gl) (h€ A+), (7.42)
AeA}'
i

it is easily seen that there is a constant ¢, >0 for which J (exp H) > c,d, (exp H)* *J(exp H)
for all HE a,. (7.41) then gives us

f llp(exp H)||P *J(exp H)dH < oo. (7.43)
O

Let ;o be the null space of ;. Select H,€aq,, and write Hy=H,+s,H,, where H€ a.
If we put
U={H":H'€,, «(H)>0 for i +j, Jo(Hy) <p(H')<20(H,)}
then an easy verification shows that U is a neighborhood of H, in ,a and that H' +sH,€aq,
whenever H' €U and s>2s,. Writing dH’ for the Lebesgue measure on ;a, we then get from
(7.43)
fu f: llw(exp H' exp tH,)||P *J(exp H' exp tH,) dH' dt < . (7.44)

But the integrand in (7.44) is independent of t. So w(exp H' exptH,)=0, for H'€U,
t>2s,. As y is analytic, | A =0; and the fact that y is 7p,-spherical then implies that ¢ =0.
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It now follows from (7.16) (with y=p and ¢;;=0) that for suitable constants
C >0, 6>0, |p@)|| <CE(x)***° for all x€G. (i) follows from this.

To prove (i), select p, such that 0<p,<1 and A+< U,¢<a 4] (o), and take y =7,
u=po and g€LP(G: V)N E(A: G: 1) in (7.16). If Ky=L, 3, Pp=DPu.y» 0= oMo We obtain
the following result: for arbitrary A, 7, p€ E(A: G: )N LG V)

llp@)) < Kol v, AP ||@ll: B (x)@P* % (x€ Q). (7.45)

This proves (ii) with a =b=1. The case of arbitrary a, b€® is then deduced from this in

the usual manner. This proves the theorem.

8. Estimates for the matrix coefficients of the diserete series

Let P,P, and k(8) (PEPU —P) be as in §1. It is obvious that k(f)=4k(—p)=
k(sf)>0 (s€W(b,)), and that k(f) does not depend on P. Moreover, for fixed g, if
PP+ (resp. PP~) is the set of all €P with <&, ) >0 (resp. (&, f)<0), Pg=PFty
(—PP), and &= %Eaepﬂ o, then it is easily seen that P4 is a positive system and k()=
0g(Hpg). This shows that %(f) is an integer for all 8. For any Cartan subalgebra §j of g, we
define the function Dy and the set Gy as in [13] (p. 110). The function D is a in §1. If
1), (=1, 2) are Cartan subalgebras of g,, and 0, is a W(§),)-orbit in §j, we say that O, and O,
correspond if there is a y €@, such that y-§;, =1, and O,0y=0,.

Let A€ L5 and  >0. Suppose 7 is a representation in w(1), and that, for some ¢=>0
and a pair y,, v, of nonzero K-finite vectors in the space of 7,

sup B ()" (1 + o(2)) ™% ((2) 9y, )| < o3 (8.1)

Ee

then a simple argument, based on Theorem 1 of [14] and the irreducibility of s, shows
that (8.1) is true when y, and y; are replaced by any other pair y, ¢’ of K-finite vectors,
with the same choice of y and g. Thus, in this case, w(1) is of type y in the sense of the
definition in § 1. The purpose of this section is to obtain proofs of the following theorems.

TurEorEM 8.1. Let A€ L5, w=w(l), and let ©, be the character of w(A). Fiz y>0.
Then, in order that w be of type v, it is necessary that for each Cartan subalgebra § of g,

sup | Dg () ["2 | D() || O ()| < o0; (8.2)
ZE€ b

in particular, it is necessary that

|(2) (Hpg)| = yk(B) (VBEP,). (8.3)
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Moreover, in order that w(sA) be of type y for all s€ W(b,), it is necessary and sufficient that
[(s2) (Hg)| > yk(B) (YBEP,, VsEW(D,)). (8.4)

TaEOREM 8.2. Fix p, 1 <p<2. If w € E(G), then w € E,(G) if and only if it is of type y
for some y>(2[p)—1. Let A€ Eé, w=w(A). Then, in order that w € E,(G) it is necessary that
for some y>(2/p) —1, (8.2) should be satisfied for all Cartan subalgebras Yj of g; in particular,

it 18 necessary that

wdal=(-1)kp (vpery. (85)
In order that w(sA)€ E,(G) for all SEW(D,), it is necessary and sufficient that
|(s2) (Hp)| > (2%‘ 1) k(B) (YBE P, YsEW(D,)). (8.6)

We begin with the proof that (8.4) is sufficient for w(sd) to be of type v for all
SEW(b,). We need a lemma.

LemMa 8.3. Let Q be the set of all § with 1<j<d such that the parabolic subgroup P, is
cuspidal. Given BEP, and j€Q, let us write f~7, if there is some y€Q, and some t=0
in R, such that, 62=1, Hy=tH,, and k()= |t|o(H,). Then, for any BEP,, there is j€Q
such that f~j; and, for any j€Q, there is BEP, such that p~j. In particular, if A€ Ch, Op=
W(b.)-2, and Oy is the W(l.)-orbit in ¥ that corresponds to Op, then

{|u(Hp)| [k(B): 11 €O, BEP,} = {|ACH,) | o(H ): A€Oy jEQ}.

Proof. Let S €P,. Let b(f) be the null space of §. Select H,€b(f) such that 3 is the only
root in P that vanishes at H,. Let 3 be the centralizer of H in g, and 3,, the derived algebra
of 3. Then dim (3;) =3, 6(3;) =3;, and the noncompactness of § implies that 3, is isomorphic
to 31(2, R). Tt follows (cf. also [13], § 24) from this that we can find H', X', ¥’ €3, such that
() [H', X1=2X', [H',Y'|=—2Y", [X', Y']=H' (i) HE€3, Y'=—0X', X'—Y =iH,.
Since B(B) is the center of 3 band B(B)+R-H' =Y are two f-stable Cartan subalgebras of
3 (and g), and so, we can find y,€G, such that, y, centralizes b(f), y4 b=}, and
H% =H'. Let A’ be the set of roots of (8es Be), and P'=Poygs". Then P’ is a positive system
for A’ and k(f)=34Zyep|o'(H')|, so that, we must have k(‘ﬁ) =1 Zwerwam>0® (H'). On
the other hand, let mt’ be the centralizer of H’ in g, and let. 1" be the space spanned by the
eigensubspaces of ad H' that correspond to its positive eigenvalues. It is easy to see that
p’=m’'+n’ is a parabolic subalgebra of ¢; our previous expression for k() now gives
k(B)=4% tr (ad H'),. Also R-H’ =} 3 is the split component of p’. Choose Fg Y and k€K
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such that (p')¢=pp. Clearly a,=(hNn38)*=4°N3. p;y is thus cuspidal and dim (az)=1, so
that F=F, for some 7€Q. It follows from the construction of p’ that H*=¢H, for some
£>0, and so k() =io(H,). Write §),=}. Let M, be the complex analytic subgroup of G,
defined by C-mj; Then there is €M, such that §i.=1. Define y=2zky, Then b=,
Hy=tH;=tH,, and k(B)=to(H,). This proves that f~7.

Conversely, let j€Q. Let §, be a 0-stable Cartan subalgebra of m,; such that
),n8=R-H, If M, is as in the previous paragraph, we can find 2€M, such that
hi=L. Asb,is not conjugate to b in G, we can find a root o’ of (g b.) that is real valued on
b, (6], Lemma 33). It is obvious that H,.€R-H,, and so, replacing «’ by —«’ if necessary,
we may assume that H, =tH, for some ¢>0. It follows from the definition of 1, that
t0(H ) =% Zpeacanys0 ¥ (Hy), where A’ is the set of roots of (g, ). If P'is a posi-
tive system in A’, we have then #p(H )=} Z,.cp|y'(H,)|. On the other hand, a simple
argument, based on the facts that §); is O-stable and &' is real valued on §j,, enables us to
select nonzero X, €q, such that, X, are root vectors corresponding to +a', X _, =
~0X,, and (X,., X_,]=H,. Write b;=(§;nH +R-(X, —X_.). Then b, <¥, and b, and
h; are Cartan subalgebras of the centralizer of §;n ¥ in g. Select y; €G, centralizing ;N §
such that bii=§,. Then o, =a'oy, is a non compact root of (g, by), P"=Poy, is a
positive system of roots of (g, by,), and, to(H,)=3 X, p.|y(H,,)|. Select k€K such that
b*=b, and write §; = x,0k. Then ; is noncompact and so f=¢f, €P, where e= +-1. If
y=2zyk, then b¥ =1, HY=cH: =¢etH,, k(B) =to(H,). So f~j. The second statement of the
lemma is an immediate consequence of the first.

At this stage we can complete the proof that (8.4) is sufficient for w(si) to be of type
for all s€ W(b,). Fix s, 4; let Op=W(b,)-A, and O, the corresponding W ([)-orbit in I};
and let A€0;. Let z be a representation in w(sd) acting in a Hilbert space H. Let D be an
equivalence class of irreducible representations of K that occurs in z|K. We write
#y for the corresponding subspace of ¥ and denote by Py the orthogonal projection
#~>Hy. Denote by V, the algebra of endomorphisms of ¥, and, for k€K, vEV,,
let Ty 1 (k)o=my(k)v, o7y (k) =vmy(k), where my(k)=or(k)| . Then v—|||v]|2=tr (vv')
(T denotes adjoints) converts V; into a Hilbert space, and 7p= (73,5, 75 5) is & unitary
double representation of K in Vy. If we define @y(z) = @(z) =Pyn(x) Py (considered as an
element of V) for 2 €@, it is clear that ¢ € £(A: G 1) in the notation of § 7. In view of Corol-
lary 7.4, it is sufficient to prove that ¢ is of type (A, ,y). Let v, be the supremum of
all numbers y’ >0 such that ¢ is of type (A, 7, 3’). It is obvious from the definition in § 7
(cf. (7.1)) that ¢ is of type (A, 7,y,) also. We assert that for some Jo with 1<4,<d,
@io,ve +0. Otherwise, if ¢, =0 for 1 <j<d, the estimates (7.16) (withy =y,) would imply
the existence of constants C >0, § >0 such that ||| p(2)|]] < CE(z)***** for all x € @; this would
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show that ¢ is of type (A, 7,y,+0), contradicting the definition of y,. From Theorem
7.1 we now conclude that P, is cuspidal, i.e., j,€Q, and that there exists A’ €0ysuch that
A'(H)= —peo(H;). But then the last statement of Lemma 8.3 implies at once the
existence of E€P, and p €05 such that |u(Hp)| =y,k(B). So, by (8.4), y,=y. Since ¢ is of
type (A, 7,9,), it must be of type (A, 7,y) also. This proves what we wanted.

We shall now fix A€ L, assume that w=w(4) is of type y >0, and prove that (8.2)
and (8.3) are satisfied. Put ®=0,. Q is as in (5.8).

Lemma 84. Assume, as above, that w is of type y. Then, given any & with 0 <e <y,
we can find a constant C=C,>0 and an integer p=p,20 such thai, for all fECT(G),

|0()| < O sup E=7| Q. (8.7)

Proof. Let m be a representation in o acting in the Hilbert space }, and let
E(K) (resp. &,) denote the set of all equivalence classes of irreducible unitary representa-
tions of K (resp. oceurring in the reduction of #|K). Given D€ &,, let Hy, Vs, Py, 7p and
®» have the same meaning as in the preceding discussion, so that ¢, is of type (A, 73, 7).
Write n(b)=dim (H) (D€ &,); then, there is a constant c,>0 such that #(D) <¢, dim (b)?
for all beE,. For bEE(K), let ¢(d) denote the scalar into which the element Q is
mapped by representations from d. Then ¢(p) is real, >1, and it is not difficult to show
that there are constants ¢, >0, »,>0 for which

> ¢(d) < co, dim (D) <e (D) (VDE EXK)) (8.8)
beed)
(cf. [14], §4). Since 7y, (@) =15 5(Q) =c(0) - identity, [}z, (Q)]| = |75, 2(Q)]| = c(0) (D€ E,).
So, in view of (5.10) we can choose a constant ¢=c¢, >0 such that |75, A|< ce(d)? for all
EE,.

Given any & with 0<e<1y, we can select by virtue of (i) of Theorem 7.3, constants

D, >0, g,>0 such that for all D€ £, and all z€ G,

llgs@)lll < Dalzs, Al gl (@) +7 2. (8.9)
On the other hand, if ¢, ..., €, is an orthonormal basis for #;, we have

llp@lF= 3 |@(z)e,e)f (@€6),

I<i i<

from which it follows that ||@s)|,=dtn(D), d,, being the formal degree of w. From (8.8),
(8.9), and the earlier estimates for |75, A| and n(b) we then obtain the following result:
given any ¢ with 0 <e¢ <y, we can find a constant D, >0 and an integer g,>0 such that,
for all DEE, and all 2EG,
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n(0) ||| @s (@)]|| < Dye(D)% E () 7=/, (8.10)
Let f€ C(G). Then
o= 3 | 1ot

the series converging absolutely. Now, for any integer p=0 and z€ G, py(a; Q) =
¢(d)? s (); so, for such p,
0= 3 o [ (2000 (ga(o) o
beg, G
On the other hand, if D€ &, and z€ G, |tr (s (2))| < (D) ||| s (@) |||, s0 that |tr (g5 (x))] <
D,e(dD)%E (x) T~ by (8.10). Choosing p=p,=g.+ 7, in the last formula for (f), and
writing C; =D, = Yy, £,¢(0)™", we have,

10| < f E(x)' 7P| f(x; Q)| d. (8.11)

Put O,= 0, [E(z)**®®dx. Then (8.11) leads to (8.7). This proves the lemma.

By a simple modification of the argument above that led to (8.10) we obtain the following
result from (7.39): let 1<p<2, and =, an irreducible unitary representation of ¢ in a
Hilbert space H such that the equivalence class of m belongs to £,(G). Then, there are
constants >0, »>0 such that, with £ >0 as in (ii) Theorem 7.5,

| (72(2) 1, ") | < Ce (D) e(D') B () &P+ (8.12)

for all €@, all b, b’ € &,, and arbitrary unit vectors p€ s, v’ € Hy. The estimate (8.12)
leads at once to the following two corollaries. For deducing the first of these we must
recall that if w€H is a differentiable vector for 7, then Zyeq [|Pyyl|c(D)™ < oo for every
m>0 ([14], §3).

CoRrROLLARY 8.5. Let 1 <p<2. Let 7w be an irreducible unitary representation of G in a
Hilbert space H such that the equivalence class of n is in E,(Q). Then, if v, y' are two dif-
ferentiable wvectors for m, and £,>0 is as tn Theorem 7.5, (i), we can find a constant
C=0, >0 such that

[((x) p, y')| < CE (z)¥P%e  (z€G).

In particular, the function x| (m(x)y, )| lies in L*(Q).

COROLLARY 8.6. Let 1 <p<2. Let ;w be an irreducible unitary representation in a
Hilbert space W such that the equivalence class of st belongs to E,(G). Then, there are constants
¢>0, r>0, such that, for arbitrary D, d' € E,, and p €Wy, ' € Hy, with ||lp]| =]y’ || =1,
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f | () p, v") [P da < ce(d) e(d') (8.13)
G

Consider a @-stable Cartan subalgebra §j that is not conjugate to b under G. Let
Ay be the corresponding Cartan subgroup; Aj, the set of regular points of Ay; Gy=(4g)%
Write §,=0HNn8, 4,=4;N K, 4,=exp . Then Ay=A4,4, is a direct product, and we
write a;, for the component in A,, of a€A4y. Given u€ Gy, £, denotes the corresponding
character of Ay. Let A{ be a connected component of 4;, fj; be the set of all H€lj, such
that «(H)=+0 for any root « of (g, f);) that is not identically zero on lj,, and let §)7 bea
connected component of f; write 45 =exp hF. Fix a positive system @* of roots of
(0c» Be), such that, if « is a root and a|h, =0, then «€Q+ if and only if a(H)>0 for all
HEYs. Let
0'=% 2 a, Af=£&s+ 11 (&-1). (8.14)
as@t we@™
8+|19, actually depends only on f)7. In fact, let 3 be the centralizer of ), in g, and, more
generally, for any »€}3, let g, be the space of all X€g with [H, X]=v»(H)X for all
Hel,; if n+=3 ‘

vio >0V Hep} B then p*=3-+nu+ is a parabolic subalgebra, and

SHH) =1 tr (ad H)p+ (HED,). (8.15)

Define the function @5 on 4y by @y(a)= A7 (a)O(a) (a€4j), @ (and o) being as in
Lemma 8.4. If «€Q* is real on Y, it is not difficult to verify that £,—1 has no zero in
Ay A3. Writing A7 =Af A3 0 Ay we may therefore conclude that ®y| A¢ extends to an
analytic function on Af A3 ([12], Lemma 31). Let Oy be the W(§j,)-orbit in § that cor-
responds to W(b.)-A. It is then clear that for suitable constants ¢} (1 €0p) we have the

following formula:
Qg(@)= 3 ci&,(a,) "M%  (a€Adyp). (8.16)
peob
Lemma 8.7. Let w=w(l) be of type y, @ =0, and let notation be as above. Then
UEOy, ¢ £0 = (u-+ydt)(H) <O for all HEDS. (8.17)
Proof. It is clearly enough to prove the following implication:

HEOg ¢t 0 = (u+(y—e)d*)(H)<O for all HEDS, (8.18)

for every & with 0<g<y. In what follows we fix & (0 <g<y), write %=y —¢, and select
C>0, p>0 such that |O(f)| <C supg E-1*|QFf| for all fECS(G). Let Af be the normal-
izer of Ay in G, and let W, be the image of Af/4y in W(H,).



ASYMPTOTIC BEHAVIOUR OF EIGEN FUNCTIONS ON A SEMISIMPLE LIE GROUP 273

Proceeding as in § 19 of [14] we construct a map S+ f5 of C2(A4p) into OF°(Gy) with.the

following. properties:

(i) for BEC(4y) and a€ Ay, writing G=G/4,,

a3 [ fanaz= 3 o) (8.19)

here, z+—Z is the natural map. of G onto G, dZ is an invariant measure on G.

(ii) there is a compact set X=X-1<@G such that supp (fs)< (supp B)* for all
BeCE(4y).

(iii) Let | be the algebra of functions on Ay generated by 1 and all the
Ne=(1-§,) (&« any root of (g, b)), and let § be the subalgebra of & generated by
(1, §); then, given any u €@, there exist u,,€9, g,,€ R (SEW,, 1<¢<gq) such that, for all
BEC(4y), a€dy, x€X,

lfpa®; w)|<|éa+@)| 2 2 |gu(@)][B(a®; wis)- (8.20)
<I<qseWy
It follows from (8.19) that O(fs) = | Ai’q)f) (@) B(a) da for all B€ CZ(Ap), provided da is suit-
ably normalized. On the other hand, by (ii) above, we have, for all 3€C° (Af)L DR

sup BT\ QP fe| = sup  E(a®)7*|fs(a"; Q)],
G +
aeA[).xeX

and we can estimate the right side of this relation by (8.20). Observing that there is a
constant ¢>0 with ¢E(y) <E(z,yx,) <cE(y) for all y€G, x,, 2,€X, we then get the
following result: there are v, €9, k€N (1<i<r, s€W,) such that for all B€CT(4y),

<3 sup (E(a) &+ (@) R (@) | B0 w10 ). (8.21)

L8
¢ aeA[;‘

lf . Po(a) Bla)da
4

Now, each element of W, is induced by some element of K, and hence E(a®)=E(a)
(a€Adp, sEW,)(Y). On the other hand, from (8.15), and the fact that the parabolic
subalgebra p+ defined there is conjugate to some p, through an element of X, we conclude
that 1<E (exp H)e"+‘H’<co(1+||H||)'° for all HEYy, ¢, and r, being as in (2.1). So

1< |&+(a)| E@) <eol+o(@)® (a€AD). (8.22)

(1) Suppose a:EAg induces s€W,. Writing =k exp Z (K€K, ZE€S) one finds that exp 2Z =
Oz acEAg, so that Z€l,. This shows that k€A and induces s.
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Finally, since N is stable under the action of W,, the functions f: ar>hy (as_l) (a € 4y,
SEW ) belong to R. Using these observations in (8.21) we find after a simple calculation,
the following estimate, valid for F€CT(A]):

<653 sup (L + oo [és (@)~ @)] | B@s 01)]).

aeAﬁ

f , @g(a) Bla)da
4p

Since &+:a—|&+(a)|* is a character of Ay, it follows that £+ ov, 08+ are well defined
elements of §. Replacing § by &+ in the above estimate, we finally obtain the following
result: there exist m>1, v,€9, h,€R (1<j<r) such that, for all FEC7(4y),

< sup ((1+ a(a))™ | k;(a)| | Bla; 2))]). (8.23)

1<igr

f , Py(a) & (a) p(a)da
4p

ae.‘lb+

The estimate (8.23) is the analogue of Lemma 32 of [14] with the funection

+
q)b §+ ca> Z C;E,, (a1) e(’“”“s (log as)
;;eoﬁ

in the place of ®. If we now argue as in [14]. we obtain (8.18) in exactly the same
way as Lemma 34 is deduced from Lemma 32 in [14]. This proves the lemma.
Tt follows from (8.16) and (8.17) that, if w =w(4) is of type y, and ) =0(}) is as above,

then there is a constant ¢; >0 such that
ID@)|}0(a)|< cflést (@) (a€ 47). (8.24)

Let Qf be the set of all roots « €EQt with atlf)2=0, and let » be the number of elements
in @Q*\Q7. If a€4] and x€Q"\Qf, we have |1—&_,(a)| <1+ *®F %<2, while, for
a€Ay and x€Qf, |&,(a)| =1. Hence, for a€Ay,

[Dy@)f= TI [1-&(@)||1-¢é o(a)

«e@+\QF ‘
= TI |1=¢_a)Pé(@)| <2 [] |&(a)|=2"|&s+(a) .
aeQ+\Q}" xe@+t

Writing ¢(4g) =2"cg, we then obtain from (8.24)
|D(@)|}|©(a)| < e(47)| Dy(a)[ "2 (a€ 4f). (8.25)

Since there are only finitely many sets of the form Ay (for a given ), and since their
union is.dense in Ay, we conclude from (8.25) that for w =w(1) to be of type y, (8.2) must
be true for all §.
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In order to complete the proof of Theorem 8.1 it remains to show how (8.3) may be
obtained from (8.2) by choosing ) suitably. Let 8 be a noncompact root of (g, b.).
We now specialize the Cartan subalgebra §j of the above discussion to be the one con-
structed at the beginning of the proof of Lemma 8.3. Let H' be as in that lemma,
y=exp (—~1)¥(z/4)(X'+Y’).- Then H'€l, and on defining )5 ={tH":¢>0}, we find
at once that §+(H')=k(f). On the other hand, there are nonzero constants ¢, (s€ W(G/B))
such that, for all aEAg ,

€& (styoy—1(4) e—l((s).)oy_l) (og as)l (8.26)

A (@)O@)= >
seW(GIB)

This formula was established by Harish-Chandra in §24 of [13] in the special case
when rk (G/K)=1; in the more general case treated here, (8.26) can be established
with only minor modifications in the arguments of [13]. In view of (8.26) and (8.24), we
must have |(loy=2)(H')| Zyd+(H'), ie., |A(Hp)| =yk(B).

Theorem 8.1 is therefore completely proved. Theorem 8.2 follows at once from
Theorem 8.1, since an w in E,(G) belongs to &£,(6) if and only if it is of type y for some
y>(2/p)—1 (cf. Theorem 7.5).

9. Examples and remarks

We shall now complement the results of the preceding sections with some examples

and remarks.
We begin with a discussion of the condition (cf. [10], [11]) of Harish-Chandra which is

sufficient for w(sA) to belong to &;(GF) for all s€ W(h,). Let A€ g, Op=W(b,)-1, O;=the
W(L,)-orbit in [} that corresponds to Op; and let p be the subset of a* obtained by restricting
the elements of O to a. Given v€a* we write ¥y<0 to mean v(H,;) <0 for 1<¢<d; here,
the H; are as in § 2. Let 0~ be the set of all €0 such that y<0. Then Harish-Chandra’s
result is as follows: In order that w(sA)€ E,(Q) for all s€ W(b,) it is sufficient that v +p<0
for every v€p~. To prove this it is enough to verify that this condition implies that
| (sA) (ﬁﬁ)l >k(B) for all s€W(b,), BEP,, or equivalently, that |A(H,)| >e(H,) for all
A €0;and j€Q, by virtue of Lemma 8.3 (here @ is as in that lemma). This implication is an

immediate consequence of the following lemma.

Lemma 9.1. Fiz A€Oy, j€Q. Then there exists A’ €0, such that (i) |A'(H,)| =|AH))]
(i) (A’[a)€o™.

Proof. We use the notation of § 2. Let §), be a 0-stable Cartan subalgebra of g such that
hnd=a,(=R-H,). As in the proof of Lemma 8.3 we can select a root &' of (g., fy)
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and an element z€G, centralizing H,, such that 7, =1, and H,.=cH, for some c+0. If
0= a'0z7Y, then o is a root of (g, Y,) and H, =cH, This shows that A(H,)=+0 and
(8, AY(H)=—A(H,;). We may therefore assume without any loss of generality that
A(H;)<0.

Select a positive system @+ of roots of (g,, [,) with the property that, if « is any root
and «|a=0, then «€Q+ if and only if «(H)>0 for all H€a+. Let @F be the set of all
«€Q* with o(H,;)=0, and let 6] =}Z,eqra. @ is then a positive system of roots of
(C-myy, L), and 6;“la=gpj. Let 3= [, my,l, f=3n [, and @=30Na. As a,=center (1m1,,) N 3,
it follows that @ is precisely the orthogonal complement of g, in g, so that & =m,0 a also.
Now A is regular and integral, and so, we can find an s€ W(Ic)pi such that (sA)(H,)
is an integer <O for all x€Q;. Then s-H;=H;, and we can write —sA=A;~+0] where
A(H,)>0 for every x€Qf. On the other hand, if B, ..., 8, are the simple roots in
QF, it follows from a well known result that we can write A, I_IC=Z]1< /.-srm,(ﬂ,-].fc) where
the m; are all >0. In particular A |a=23;c,m,(8,|a). But the §, vanish on a,, and g%
vanishes on a; moreover, (sA)(H,)=A(H;). So, on defining t=—A(H,)/o" (H,), we find
that ¢>0 and sA|a= —gp, —t0" —Zigjc,my(B;|0). If w=min (1,2), (sA)(H)< —ug(H) for
all H€Cl(at), so that (sA)(H;) <0, 1 <i<d. We then have (i) and (ii) with A’=sA.

We assume next that G/K is Hermitian symmetric, and consider those members of
&,(G) which constitute the so-called holomorphic discrete series. For brevity, a positive
system of roots of (g, b,) will be called admissible if every noncompact root in it is totally
positive. We now assume that the positive system P is admissible. Let P, be the set of
compact roots in P. We write =1 Z,.po. Let A'€L; be such that A'(H,)>0 for all
a€P, and (X' +0)(H,) <0 for all a€P,. Then A=A'+8€L}; moreover, if m, is the
representation associated with A' constructed by Harish-Chandra in [3], [4], [5], then

7;-€w(A): Our aim now is to examine under what circumstances w(A) € &(G).

TEEOREM 9.2. Let G/K be Hermitian symmetric and let A, P be as described above. The

following statements are then equivalent:

(i)  w@)€&ET)

() |AHg)| >k(B) for all BEP,.

(iti) A(H)<1—26,(Hyp) for all BEP,, where 20, =2 ,cp, a.

Proof. Theorem 8.2 gives the implication (i)=-(ii). In his paper [5] (Lemma 30)
Harish-Chandra established the implication (iii)= (i). It therefore remains to verify
that (ii) > (iii). Let P’ = — P, U P,. If s, is the element of the Weyl group of (f,, b,) such that
8 Py= —Py, it is clear that s,-P=P'. So P’ is a positive system of roots of (g, b,). It is
obvious that P’ is also admissible and that P,=P,. Let (B, ..., ;) be the simple system
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of roots of P’, and let notation be such that g, ..., §; are precisely the noncompact roots
fime among f3,, . /3, It is known that every «€Py is a linear combination with non-
negative integral coefficients of 0,4, ..., b; ([3], Lemma 13), so that, o(f ,3]) <0 whenever
®€P; and 1<j<t. It is also known that, for any g, " €P,, f"(Hz) >0 ([5], Lemma 10).

Assume that A satisfies (ii). Since k(8) is an integer and A(Hz) <0 for fEP,, we have
MHp) < —k(B)—1 for all BEP,. We assert that A(Hy) < —23,(Hy) for 1<j<I. Suppose
j>t. Then B,€ — P, so that Z(Hﬁi)< 0. But $8,=4, for all s in the Weyl group of (¥, b.),
as P is admissible, so thaﬁ On(H ﬁi)‘= 0. Thus our assertion is true in this case. On the other
hand, let 1<j<¢. Then f,€P, and so Z(Hf;’_)< ~k(8;)—1. Now

k(B = %NZPII a(Hp)|=3{ 2 (—a(Hg))+ ae%ﬁ(ﬁﬂ,)} =—3} 2 a(Hp)+20,(Hp).

oceP; xeP’

But, as g, is simple in P’, } Dpep at(H, s)=1. So
k() +1=28,(Hp) (1<j<t). (9.1)

From' (9.1) we obtain A(H B) < —20, (H 5) when 1< j<{. Our assertion is therefore proved.

We therefore have {4, 8,> < —2{6,, B,>, 1 <j<I. This implies that {1, 5> < —2¢6,, 8>
for all BEP’, in particular, for all BEP,. But then A(Hp) < —26,(Hp) <1 —26,(Hj) for all
BEP,, proving (iii).

We shall now use Theorem 9.2 to construct examples of 1€ Lg such that w(2) € & (&),
but w(sd) ¢ £,(F) for some s€ W(b,). Let notation be as above. We shall assume that there
are elements of W(b,) which transform a compact root into a noncompact root.(*) Let
¢ s ¢ be integers >0 such that 0< —8(Hy)<c,<k(f,) for t<j<l Since —f,EP
(¢<j<l) and k(8)>d(Hp) VBEP, it is possible to choose such ¢;. Define 1€} by setting
l(ﬁ,gj) = —¢;, 1 <j<I. It is obvious that 1€ Cy, and that A=1'+4, where N(H,) >0 for all
%€P,;; and so, (iii) of Theorem 9.2 shows that w(1)€ &,(H if ¢, ..., ¢; are all sufficiently
large. But, if j and s€W(b,) are such that £<j<I, and sf,=f is a noncompact root
|4 (Hp)| = |MHy)| <k(B)=k(B), s0 that w(sh) ¢ £().

Let us now return to the case of an arbitrary G. The estimatés for the eigenfunctions
for 3 which we have obtained have also taken into account the variation of the eigenvalues.
We shall now indicate an application of these estimates.

Fix p with 1<p<2. Let C(@) (=C36) in the notation of the remark following
Corollary 3.4) be the Schwartz space of G. Let °L*@)) (resp. °LZ(G)) be the smallest

closed subspace of L?(G) containing all the K-finite matrix coefficients of the members

(*) It is not difficult to show that this is 'a.lwa.ys the case unless § is the direct sum of (£n
and & certain number of algebras isomorphie to al 2, R).
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of Ey(GF) (resp. £,(G)). Let °E (resp. °E,) be the orthogonal projection L3*(G)->"L(G)
(vesp. L¥G)—"L:(@)). Harish-Chandra has proved ([15]) that if f€ C(G), *Ef€ C(Q) also,
and that f>"Ef is continuous in the Schwartz topology. We shall now obtain an exten-

sion of this result.

TurorEM 9.3. Let notation be as above. Then, for any f€ C(G), °E,f€ C¥(Q), and the
map f— E,f is continuous from C(G) into CP(G).

Proof. Let L(p) be the set of all A€L; such that A(H,)>0 for all «€P, and
(A€ E,(G). Then Ar>w(4) is a bijection of L(p) onto E,(G). For each 1€ L(p) we select
a Hilbert space H;, a representation m,€w(4) acting in H,;, and an orthonormal basis
{es. s tEN;} of H;, such that, each e, ; lies in a subspace invariant and irreducible under
7;(K). Let Q be as in (5.8). Then there are numbers ¢, ,>1 such that 7;(Q)e; ;=¢; ;€5 ;
(¢€N,). Now, there is an integer m >1 such that for any 1€ Ly and any equivalence class
0 of irreducible representations of K, the multiplicity of D in ;| K is <m-dim (9). It
follows from this and (8.8), that there are constants @ >0, r >0 with the following property:

sup 2 ¢i=a< oo,
vel(p) ieNy
Moreover, if  is the Casimir of &, we have ugs(w) (1) = [|All>— [|6]|® (6= 1 Dsepe) for all
A€ L;. So, if z=w+ (1+|6]|%), we have 2€ 8, and pq6(2) (1) =1+ || A||%, A€L5.
Let d; be the formal degree of w(i). We define

@,1,5(@)=df(m (%) &1, €1,0)  (F€G, 4, JEN). (9.3)

Then {a,;,: A€L(p),4,jEN;} is an orthonormal basis for °L2(G), and one has, for any
e L),
OEpf= 2, Z (f @n1.5) @1 5- (9.4)
AeL(p)i,jeN,
Suppose now that f€C(G). If ¢>0 is sufficiently large, foE(1+0)~9|g|dy <oo for each
gE€L2G). Tt follows easily from this that the function x> [, f(2y)g(y)dy is of class C*
for each g €L3(). { is thus a weakly, and hence strongly, differentiable vector for the left
regular representation. A similar result is true for the right regular representation also.
Since °E, commutes with both regular representations, °E,f is also differentiable for both.
In paf‘oicular °E,f is of class O, and, for u, v€®, v(°E,f)u="E,(vfu); so
OB flu= 2 > (ufv,au;;)an, (9.5)

AeL(p) i,jeN,

We shall now estimate the terms on the right of (9.5). Since za, ; ;= (L +||A||%) @155
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Q"a; Q" =cl¢lsas,, ;. and since both fand a; ; ; are in C((), we have, for any integer

m=0,
(ufv, ay ;= [es 0(1 + H}.ﬂz)]‘”‘ (Q 2" ufvQ™, s ¢ ;). (9.6)

On the other hand, we obtain without much difficulty, the following estimate, from
(7.39): there are constants ¢ >0, ¢ =0 such that

|as. ;. 5(@)]| < Clewsen (1 + || AP B (z)EPre 9.7

for all A€EL(p), 4, jEN;, z€G (g>0 as in {7.39)). So, combining (9.6) and {9.7) we have,

for any integer m=>q and 4, ¢, §, x as above,
[(ufv, a5, ) aa,; ;(x)| < Clo;c; (1 + [A2)] "~ QB (2)®* = || Qm 2" ufo Q™|,. (9.8)
Choose mg > ¢ such that

Co=0C 2 2 [ee,(1+ )] ™ 2< o, (9.9)

AcL(p) 1,JeN,
which is clearly possible in view of (9.2). We then have, from (9.5) and (9.8)

—((2/p)+€0)

CE,f) (w; ;v)| < Oy Q™2 ufo Q™ 5, (9.10)

sup B (z)
zeG

for all f€ C(#F). Theorem 9.3 follows at once from (9.10).
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