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1. Introduction

We consider finitely generated Fuchsian groups G. For such groups Fricke defined
a class of fundamental polygons which he called canonical. The two most important
distinguishing properties of these polygons are that they are strictly convex and have
the smallest possible number of sides. A canonical polygon P in Fricke’s sense de-
pends on a choice of a certain “standard” system of generators § for G. Fricke proved
that for a given @ and § canonical polygons always exist. His proof is rather com-
plicated. Also, Fricke’s polygons are not canonical in the technical sense; there are
infinitely many P for a given G and §.

In this paper, we shall construct a uniquely determined fundamental polygon P
which satisfies all of Fricke’s conditions for every given G of positive genus and for
every given §. We call this P a canonical Fricke polygon.

For every given G of genus zero, and §, we shall define a uniquely determined
fundamental polygon P which we call a canonical polygon without accidental vertices.
From this P, one can obtain in infinitely many ways polygons satisfying Fricke’s
conditions.

Our canonical polygons are invariant under similarity transformations of the group
G if @ is of the first kind. If G is of the second kind, this statement remains true
after a suitable modification which will be clear from the construction.

The proof involves elementary explicit constructions, and continuity arguments
which use quasiconformal mappings, as developed by Ahlfors and Bers.

We give a geometric interpretation of the canonical polygons in the last section.

This interpretation provided the heuristic idea for the formulation of the main theorem.

1652944 Acta mathematica. 115. Imprimé le janvier 1966



2 LINDA KEEN

The author takes pride and pleasure in acknowledging the guidance of professor
Lipman Bers in the preparation of this dissertation. His patient and penetrating counsel

and his warm friendship will be remembered always.

2. Definitions

We say that S is a Riemann surface of finite type (g; n; m) if it is conformally
equivalent to S~ {(p,, Py, +--» Pa) U (dy, dyy ..., &)} where S is a closed Riemann sur-
face of genus g, the p; are points and the d; are closed conformal discs (p;=p;,
dind;=9 for i=+4, p;¢d;, n=0, m>0). Suppose that to each ‘‘removed” point p,,
i=1,2, ..., n, there is assigned an “integer” »;, »,=2, 3, ..., o0, », <9, < ... <, Then
we say that S has signature (9; n; vy, ..., vo; m). A surface’s type is preserved under
conformal equivalence, hence this definition is meaningful.

A surface S with signature (g; n; v, ..., v,3 m) is represented by a Fuchsian
group G if:

1) @ is a properly discontinous group of Mdbius transformations leaving the unit
disc U fixed.

2) If U; denotes U — {elliptic fixed points of G} then

2a) U/G is conformally equivalent toS — {(p,, ves P U {dy, ..., dy)} where v, = v, =

..=o00. Ug/G is conformally equivalent to 8—{(p,, ..., Px) U (dy, ..., dn)}-

2b) The map 7s:U—U/|G is locally 1 to 1 in the neighborhood of every point

of Ug, and is »; to 1 at the pre-images of the points p,, ..., p,_;.

3. Preliminaries

From now on we consider only Riemann surfaces of finite type.

The following three classical theorems are basic to the theory we are discussing.

THEOREM 1. Given a Riemann surface with a signature, a Fuchsian group representing
it 1s finitely generated and is determined up to conjugation by a Mobius transformation.

The proof may be found in Appell-Goursat [4].

TaeEoREM 2. All finitely generated Fuchsian groups represent surfaces of finite type.

A direct proof will appear in a forthcoming paper by Bers [7], and can also be

found as a special case of a theorem of Ahlfors [2].



CANONICAL POLYGONS FOR FINITELY GENERATED FUCHSIAN GROUPS 3

THEOREM 3. There exists a finitely generated Fuchsian group representing every sur-
face of finite type with a given signature provided that 33—3+n+m>0 and if g=0,
m=0, n=4 then >:_,v,>8.

Note that we omit any discussion of the triangle groups in this paper.

Proof of this may be found in Ford [9] and Bers [5]. However, the statement
also follows from the construction we will give later. We will sketch the proof at
the appropriate place.

4. Fricke polygons

If (9;m;59, ..., v,3m) is the signature of 8, and if G is the group representing
8, we call (g;n;9,, ..., v,; m) the signature of (. We remark that the signature of G
is preserved under conjugation.

Let ¢ be a finitely generated Fuchsian group with signature (g; n; v, ..., v, m)
and suppose R is a fundamental region for &. R is called a standard fundamental

region for G if it satisfies the following conditions:

1) R is bounded by 4g+2n+2m Jordan arcs in U and m arcs on the boundary
of U, forming a Jordan curve oriented so that the interior of R is on the left,
2) If the sides of R are suitably labelled in order:

’ ’ ’ ’ ’ ’ ’ ’ ’ ’
as, bl; @y, bla a3, b27 2, b2, ceey Oy bya €1, C15 ooy Cp, Cy dl: €1, dl: seey dm; €m, dma

there exist hyperbolic elements 4;, B; and D,;€@,1=1,2,...,9,j=1,2,...,m, such
that A4,(a;)= —a;, Bi(b;)= —b;, and D,d;)= —d;, and elliptic elements C,€G of order
v (parabolic if y,=oc0) k=1,2,...,n, such that Cy(c,)= —c;. These elements satisfy
the relation:

Dn e chn e ClB;lA;lBgAg “es BIIA{IBIAIZ 1. (].)

(Note: In this paper the notation 4B means first apply B and then apply 4.) The
e,7=1,2,...,m are arcs on the unit circle.

It is known that the elements of
S={A1, B,..,4,B,0C,,...C, Dy, ..., Dy}

with the single relation (1), generate G. We will call § a standard sequence of genera-
tors. R is said to belong to §.
Two standard fundamental regions are equivalent if they give rise to the same

standard sequence of generators.
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It follows easily from Theorem 2 that standard fundamental regions exist for
all finitely generated Fuchsian groups. However, this will also follow from the main
theorem of this paper; an explicit proof using this theorem will be given later (see
Section 7).

If the boundary arcs of a standard fundamental region R belonging to § (except
for the arcs on the unit circle) are non-Euclidean straight segments, R will be called

a Fricke polygon belonging to §.

5. Fricke’s theorem

Let § be a standard sequence of generators and let p, be a point in U. We
will construct a closed “polygonal” curve P(p,; S) such that if this curve has no
self-intersections, it is the boundary of a Fricke polygon belonging to §.

Let p, be given. Find the points:
po= A7 BT (py), p6= A7 (py), p5=Br'(p,), Pb=p1=Bi A7} (po)
Pi=A45' B Ax(p1), Pi= By 4s(py), 3= As(py), Pi=pe=B;1 45" By As(p1)
P2=A3" By A3(pa), D% = B3 45(p2), Py=As(pe),  pi=ps= B3 A3’ By As(pe),

pzla~1=Aa_lBgAa(Pa—l)’p%-lzBaAa(Pa—l)’pgvl:Aa(pn—l)’p:—lzpa=B;1A;anAa(py—1)
Py+1=C1(pg), DPg+2=C2(Pg+1)s -+, Pg+n=Crn(Pgsn-1),

Po+n+1=D1(Pg+n), Poin+2=Da(Dgine1)s oos Potnim =P(1)=Dm(1’y+n+m),

and label the fixed points of C,, C,,...,C, by ¢,,¢,, -.., ¢n.

If I, is the isometric circle (see Ford [9]) of D, I, intersects the axis of D,.
This axis has a direction in which it is moved by the translation D;. Let r; be the
endpoint of I; on the left side of the axis of D;. Then #;=D;(r;) is also to the left
of the axis of D,.

Join by non-Euclidean straight segments (see Figure 1):

v to p§, PG5 topo, poto P}, 1l to pi=p
pitopi, pitopl, pitopl, pitopi=p.

P2 to pi, ...
pi_topi o =p,

Py to 91, 4 to Po+1, Do+ to q2; -5 qn to Pgin

’ ’ ’ . 1
Dg+n to 71, "1 to Po+n+1s Pog+n+1 to T2, T2 to Po+n+2s «ves Tm to Pg+n+m = Do-
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Fig. 1 Fig. 2
Fig. 1. R is a standard fundamental region belonging to S ={A1, B,, A;, By, 0y, C,, Dy, Dz} where §
generates the group G with signature (2; 2; k, ©°; 2). R is in fact a Fricke polygon.
Fig. 2. @ has signature (2; 2; k, ©°; 0).

We call the resulting polygonal curve P(p, $). If it bounds a fundamental re-
gion for G (and hence is a Fricke polygon) we call p, suitable. If P(p,; S) is also
strictly convex (i.e. all the interior angles are strictly less than 7, except for those
at vertices which are fixed points of elliptic transformations of order 2) we call p,

very sustable.

Remark: If p, is suitable, the sum of the angles at the vertices composing the

accidental cycle (i.e. the cycle containing all the vertices which are images of p,) is 27.

TaEOREM 4. (Fricke) Let G be a finitely generated Fuchsian group with signature
(9 75 v5, oo, vu; m) and assume 39— 3+n+m>0. Then very suilable points exist for any
standard sequence of generators §.

Remark: Fricke calls polygons corresponding to very suitable points canonical
polygons. This paper originated from an attempt to find a new proof of Fricke’s
theorem. However, we were able to prove a stronger theorem involving a polygon
which is uniquely determined and hence “more canonical”’. Therefore we reserve the
name “‘canonical”’ for this new polygon. The proof of Fricke’s theorem is contained

in the proofs of the main theorems below.

6. Main Theorem, Part I
THEOREM 5. (Main Theorem, Part 1.) Let G be a finitely generated group of the first
kind with signature (g;m;v,, ..., v,) and assume g>0, 3g—3+n>0. Then, given any
standard sequence of generators S={A,, B,, ..., A,, B,, C4, ..., C,} the axes of A, and B,

intersect; their intersection point p* is very suitable.

We will call P(p*;S) a canonical Fricke polygon belonging to §.
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Proof. We will first give the construction of a canonical Fricke polygon for a
particular group G, which has the prescribed signature. The theorem will then follow
by a continuity argument.

Consider the unit circle and mark off the non-Euclidean lengths ¢ on the posi-
tive real and positive imaginary axes. At these points erect non-Euclidean perpen-
diculars and mark off the non-Euclidean lengths ¢ on the segments in the first quad-
rant. These perpendiculars do not intersect. If they did, their angle of intersection
would be greater than or equal to x/2. This is true because in a non-Euclidean
triangle the bigger angle is opposite the bigger side. The sum of the interior angles
of the resulting non.Euclidean quadrilateral would be at least 2z—an impossible
situation.

Join these new points (the endpoints of the perpendiculars) by a circular arc
concentric with the unit circle (see Figure 2). Partition this arc into 4(¢g—1)+2n
equal subarcs and label the subdivision points successively p,, P, ..., Pag-1+2n+1. Join
Py 0 Py, Py tO Dy, ..v, Pa-1y 10 Pag-1+1 Dy non-Euclidean straight segments. Draw
rays from the origin through . s, Py, --., Psg-n+2n-

If n>0, find the point ¢, on the ray through p,,_» such that the angle formed
by the non-Euclidean segment joining this point to psy-1+1 and the ray is z/v;. Join
this point with py,_1)+1; again the angle formed will be z/v;,, and the total vertex
angle Pyy_sPag-2Psg-1 Will be 2m/v,. Repeat the construction to find the points g,, ... ¢.
If v;=o00, ¢; will lie on the unit circle.

Note that the sum of the angles at the accidental vertices (i.e. p;, =1, ...,
4(g—1)+1,49—1,49+1,...,49+2n+1, and 0, ¢ and ip) is a continuous function of
. We will show that the limit of this sum as ¢ tends to 1 is 37/2. We break up
the polygon in the following manner. Join py_3 t0 Psg_1, Pag-1 t0 Psgiy, .., and
Pi+2n-1 t0 Pagiant: by non-Euclidean straight segments. The sum of the interior
angles of this truncated polygon tends to 3x/2 as ¢ tends to 1. The original polygon
consists of this truncated one plus » triangles. As o tends to 1, all the vertices of
these triangles tend to the horizon of the non-Euclidean plane and therefore the sum
of their interior angles tends to 2m/v,, When p is close to zero, the truncated polygon
is almost Euclidean. It is a convex figure with 4g+n sides. Since the sum of the
interior angles of a Euclidean polygon is (S—2)z, where § is the number of sides,
the sum of the angles of the original non-Euclidean polygon definitely exceeds 27
for small g. We conclude that for some p it is exactly 2.

Performing our construction for this p, we obtain a polygon R, satisfying all
the conditions of Poincaré’s theorem (see Appell-Goursat [4]). Therefore the group G,
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generated by the sequence §;, of non-Euclidean motions indicated on Figure 2 is
Fuchsian and of the desired signature. Moreover, R, is a Fricke polygon for G, be-
longing to the standard sequence of generators §,. We note that 4} and B} are hy-
perbolic motions whose axes are the real and imaginary axes respectively, so that R,

also satisfies the conditions of Theorem 5.

7. A lemma

The following lemma is obvious.

Lemma 1. For any finitely generated Fuchsian group G, with signature, there exists a
standard fundamental region R such that each bounding arc is C* and such that the angles

at the accidental vertices are never 0 or 7.

8. Continuity argument

We now return to the proof of the main theorem.

Let B be a given standard fundamental region for the given group @ satisfying
the conditions of Lemma 1. Since G, and G have the same signature, R, and R have
the same number of sides. We can define a continuous mapping w: Ry—R by de-
fining it first on the boundaries of R, and R respecting the identifications, and then
extending it quasiconformally inside (see Ahlfors—Bers [3]). Since the identifications
are respected, we have that for every A €S, there is an A€ S such that

w(dy(2)) = 4(w(z)) (2)

on the boundary of R, The mapping 4,—~ A gives us an isomorphism of G, onto ¢/
by which we may now extend w to the rest of the unit disk so that (2) holds. w is
now a homeomorphism of U onto itself and, since it is quasiconformal inside R, it
is quasiconformal everywhere. Since it is a quasiconformal map of the whole disk it
can be extended to the closed disk.

Define u(z)=w;/w. and note that |u(z)|<k<1 in U and

wA@R) A @) =puz)A'z) for AEQ. (3)

Without loss of generality we may assume that w(0)=0, w(1)=1, because if B is a
Mébius transformation such that B(w(0))=0, B(w(1))=1, we can replace G by B™'GB.
Consider the functions #u(z), 0 <¢<1. Define w'* as the solution of the Beltrami

equation w;=fuw, which maps the closed unit disk onto itself leaving 0 and 1 fixed.
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w™ is then quasiconformal by definition and is a continuous function of f. In fact,

when ¢=0, w'*=identity, while when t=1, w' =w. Define
A*=(w"*) lod ow” for AE€EG.

By Bers [5], A*™ is a Mobius transformation. Then §* = (w*)™! §yw' is a standard se-
quence of generators of a group G*; G* will be Fuchsian since @, is.

Let p! be the intersection point of the axes of A% and BY. We see that these
axes always intersect, because the fixed points of A% and B separate each other
for t=0, and since w' is a homeomorphism of the closed disk, they must always
separate each other.

Set P,=P(pf; §*). We claim that the set of #’s for which p{ is very suitable
is non-empty, open and closed and hence consists of all £, 0<¢<1. The set is non-
empty since it contains =0 and p,=pe is very suitable by construction. Let i be
very suitable and |¢—¢,| be small. The curve P, lies very close to the curve P and
since P, is simple and in fact strictly convex, P, must also be simple and strictly
convex. Since the elements of S* satisfy (1), the sum of the angles at the accidental
vertices is a multiple of 2. Since P, is close to P, the sum is close to 2z and
therefore exactly 27. By Poincaré’s theorem, P, is a fundamental region for G* and
therefore is a Fricke polygon belonging to §%.

- Let t;—>t and let p; be very suitable for all j. Then for N large, | pi,—pr| is
small. The limit of a sequence of strictly convex polygons is either a convex polygon,
or is a straight line. In our case, if the limit were a straight line, the axes of A" and
B would coincide. This is impossible since the fixed points of 4} and B} separate
each other, Hence the limit polygon is a convex polygon and reasoning as we did
before we see that it is a fundamental polygon for G*“. Hence p; is suitable.

To see that this P, is strictly convex, suppose the angle at p; is «, (0 <a<um).
The sides emanating from pf lie along the axes of Ai{* and Bi*. Applying either of
these transformations to P, yields a polygon, A% (P;) or B (P,), which is adjacent to
the original polygon. Moreover, since the axes are invariant, the angle at pf in either
A (P) or Bi*(P,) is m— a; hence both the angle at A%~(p}) and the angle at Bi*'(pt)
is #—o. Now the sum of the angles at the three vertices p;, Ai* }(p}) and Bi**(p})
is 2w —a. Since the sum of the angles at all the accidental vertices is just 27, all
the other angles must be strictly less than 7. Therefore the set is closed and p; is
very suitable for all ¢, 0<¢<1, q.e.d.
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9. Main Theorem, Part I1

THEOREM 6. (Main Theorem, Part I1.) Let G be a finitely generated Fuchsian group
of the second kind with signature (g; n; v, ..., v,; m) and assume ¢>0, 39— 3+m+n>0.
Then given any standard sequence of generators, $ ={A,, B,, ..., Dy}, the axes of A, and B,
intersect. Their intersection point p* is very switable and leads to a unique strictly convexr

Fricke polygon P(p*, S). We again call this polygon a canonical Fricke polygon.

Proof. The proof, as in Theorem 5, is by continuity. However, we must modify
our construction as follows. Again draw the real and imaginary axes and mark the
non-Euclidean lengths ¢ on the positive halves. Again erect perpendiculars and mark
the length ¢ in the first quadrant on them. Again join these points by a circular are
concentric with the unit circle. But now partition it into 4(g — 1)+ 2n + 4m equal sub-
arcs and label the subdivision points p,, ..., Pyg-1y+2n+4m+1- Find the points ¢y, ..., ¢,

as before and join by non-Euclidean straight segments:

Py 50 Dy, P 10 Dy, -..; Pag—4 £O Pyg-3, Pag-3 tO ¢,

9y %0 Pag-15 Pag-1 10 Gy, @5 $0 Pags1; ---5 Gn 10 Pag—ss2n-

.. .
Draw rays from the origin through pyy_1)12n+2; Pacg-1+2n+ts ---» Pag-D+2n+am. Call the
endpoints of these rays 7, ..., fap,. Draw non-Euclidean segments from puq-1120+1 tO
1o Py 60 Pag-1+ants Pag-vr2nts 80 Ty oon, Fom 0 Pag_ni2n+am+1- (See Figure 3.)

We use the same argument as we used before to fix the value of g and to apply
Poincaré’s theorem. Hence we obtain a group G, generated by a standard sequence
of generators §,={A49%, BY, ..., Y, ..., D}, ..., D7} for which the constructed region E,
is a Fricke polygon belonging to $,.

Recall that in defining P(p,; $) we fixed the non-parabolic vertices lying on the
boundary of U as endpoints of isometric circles. We can alter B, by réplacing Frs vens
fam by any set of pairs of points related by D, ..., D, and again obtain a Fricke
polygon. Therefore, in order to make R, a canonical Fricke polygon, we replace
Fys Tgy +evs Fam—1 by the endpoints r,, ..., r,, of the isometric circles of D, ..., D, lying
to the left of their axes. We then set

’I'}. =D1(7‘1), ey r}n = Dm("”‘)'

The resulting polygon is now the required canonical polygon for the group G,.
We now prove Lemma 1 for the case g>0, m>0. All the arguments go through

as they did before since the isometric circles change continuously, q.e.d.
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10. Canonical polygons without accidental vertices

If g=0 we have no conjugate pairs of hyperbolic generators (4, and B,) and
hence can no longer take the intersection point of their axes as a starting point for
our canonical polygon. In fact, we make use of a different kind of polygon, suggested
by a construction of Fricke, to get an analogous result. We call the new polygon a
canonical polygon without accidental vertices and obtain it as follows.

Let G be a Fuchsian group with signature (0; n; vy, ..., v,; m) and let
$={C,, ..., Ca, Dy, ..., Dy}

be a standard sequence of generators for G. Label the fixed points of C,, ..., 0, by
4, --+» ¢n- Label the endpoints of the isometric circles of D, ..., D, lying to the left
of their axes, 7, ..., r, respectively.

Let:
qg:ol‘l(%)’ q§=(0201)_1 (q3); s q?i'l=(0n—1 Cl)il(q")’
7y =Dy(ry), Py =Dy(ry), .., 7= Di(7m),

1 =(Cy ... C}) Y r)) = (D,C, ... C)) HF) =71
2 =(D,C, ... C)) (1) =(DyD,Cy ... C) M (Fy) =722

2= (Dp g e DyCy oo ) (1) = Dy oo DyC oo C) M Fmon) =371
72" =(Dp_q . D,Cp ... ) M om) = (D ... DyC ... C) HFm) =73 " =Ty
Join by non-Euclidean straight segments:
G1t0g, gtogy ..., qutor, Ftor, 7tors,.., Tm—1 tO Tp,

Fr b0 M 2= nim=l gndmo2 o putmeS_gntu-z .,

rPto gl gh to gi 3, ..., gk to g
Call the resulting polygonal curve @(S). A special case is shown on Figure 4.

LeEMMA 2. If Q(S) is mot self-intersecting, it ts the boundary of a fundamental

region for Q.

Proof. Q(S) satisfies all the conditions of Poincaré’s theorem.

LemMa 3. If Q(S) 18 not self-intersecting, it is strictly conver.
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Fig. 3 Fig. 4
Fig. 3. G has signature (2; 2; k, ©°; 2). Similar shading indicates congruency under D; (¢=1, 2).
Fig. 4. G is generated by $= {Cl, C,, D,, Dz}, signature (0; 2; k, ©°; 2).

Proof. Each vertex is either part of an elliptic or parabolic cycle, or is the in-
tersection of the unit circle with a non-Euclidean straight line, or is a cusp on the

unit circle so that its angle is zero.

11. Main Theorem, Part I1I

THEOREM 7. (Main Theorem, Part II1.) Q(S) is a strictly convexr fundamental
polygon for G. We call Q(S) the canonical polygon without accidental vertices deter-
mined by S.

Recall that if m=0, n=4, we require >3v;>8.

Proof. We must only show that Q(S) it not self-intersecting. We need only con-
struct a particular canonical polygon without accidental vertices since the continuity
argument is completely analogous to the one given before.

Consider the regular non-Euclidean n+m-gon N with radius ¢<1 centered at
the origin. Suppose that the point (g, 0) is a vertex. Then proceeding in a counter-
clockwise direction, label the sides s, ..., 8y+m. Using s, ¢=1, ..., n, as a base, erect
an isosceles triangle 7'; outside N, with vertex angle 2m/y;. Call the vertex g;. Trisect
the angles subtending the sides s;,7=1,...,m, by rays from the origin whose end-
points we call 7y ¢=1,2,j=n+1,...,n+m. Then draw non-Euclidean straight seg-
ments Lj,@'= 1,2,j=1,...,m, from the endpoints of the sides to the corresponding 7;;.
Call the region bounded by Iy, s;, l;, and an arc of the unit circle, M ;» Now let

N " oo
P=NuUT,u jl;]lM,.

i=1
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Fig. 5. First step of the construction of
P for @ with signature (0; 2; k, ©0; 2).

We are now concerned with the sum of those interior angles of P lying at the
vertices which are common to both P and N. (We call these the accidental vertices
of P.) We call this sum >3 and note that it depends continuously on g. For g close
to 1 it is nearly equal to the sum >, of the interior angles of N, and 2, is close
to zero. For p close to zero, >3> >y and Dy is nearly (N —2)x>2x since n>4, and
N is nearly Euclidean. Hence for some g, >3 is exactly equal to 2.

By Poincaré’s theorem, there exists for this g, a Fuchsian group G, generated

by the identifications indicated in the figure, with the relations
D}..DYCY...00=1, Cp=1, j=1,..,m. (1)

To make our constructed polygon the canonical polygon without accidental ver-
tices for G, we proceed as follows. If I, is the isometric circle of Dj, let r; be the
endpoint of I; which lies to the left of the axis of D;. Let 7;=.D/(r;). Draw the non-

Euclidean straight segments [, from the endpoints of the sides s; to the corresponding

r; and 7. The region M; bounded by I, s;, lp; is congruent to M ; 8o that the polygon

n m
Py(Sy)=Nu UT,uU M,
i-1 i=1
is again a Fricke polygon for G,.

For the sake of simplicity in drawing the figure, consider the transformation B
which maps ¢ onto 0 and the fixed points of C, onto the positive half of the real axis.
The image B(P,) we again call P,. B will give us an isomorphism of G,— BG B!
generated by BC;B™', BD,B™', j=1,...,n,k=1,...,m which we again call G, C,
and D, respectively.

Using this construction, we complete the proof of Lemma 1.
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Now consider the polygons:
CiY(Py), (Co,C) UPy), .oy (Do oo DOy oo C)HP).

They all have the origin as a vertex. Find the points ¢, ...,q27 %, 77, ..., 7%"™ 1 de-

defined by the relations on page 10. Join them in the order given there. Let:
C1(0)=py, Co(P1) =Dy, -, Ca(Pr-1) = Pny Di(Pr) = Pn+15 -5 Du(Prsm-2)=Prsm-1-

Then the following regions are congruent in pairs:

T,=(0,4,, %) Tl = (P 9> %)

T, =(0, ¢k, ¢3) Ty= (P 02 %)

Tn~1 = (07 qﬁi%, 92_1) Tn—l = (pn-l: qdn-1, qn)

T.= (O’ qz—l, T;L) Tn = (pm qns "'1)

Trs1=(0, 77, r5*) T2 = (Pass, Fus 7o)

Tn+2 = (O; 'réwl’ T§+2) Tn+2 = (_pn+2; i2> 7'3)

Tn+m—l = (O: 7‘:111-,;,{1_2, 7,:1"+m—1) Tn+m-1 = (pn+m-l> fm-ly rm)

Subtract U?*" 1T, from Py(S) and add U{*™ 7T, Call the resulting region Q,(S).
This region is what we have called the canonical polygon without accidental vertices
for this group.

The argument that @(S) is in general not self-intersecting is just the same con-
tinuity argument we used previously.

This completes the proof of the main theorem.

12. Fricke polygons for genus zero

From a canonical polygon without accidental vertices we may obtain many
standard Fricke polygons. To find one, draw the non-Euclidean straight segment join-
ing ¢, to 7. (If m=0 join ¢, to g¢,.) Pick a point inside the convex polygon ©® whose
vertices are q,, g3, ..., 7. Call it P Join it to each of the vertices of ® by non-

Euclidean straight segments. The following pairs of triangles are congruent:
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q
=2 2 3 2
i

Fig. 6 Fig. 7
Fig. 6. Q(S,) is the inner polygon.

Fig. 7. Construction of a Fricke polygon from a canonical polygon without aceidental vertices.

Ty : (g Do B) TI (g1 Ci(1); 45)

T,: (Q%: Pys qg) Tz 2 (¢ 0201(1’0)’ q3)
Tw:(qn " Do 1) T (g Cr ... Co(Do)s 7)
Tn+l : (rilr po: "'S-H) Tn+1 : (Fp chn e 01(1’0)’ 72)

Trimr: ™Y 00 ) Trimer: Fm-1, Dm-1 ... Cy(Dp)s Tm)

Subtract U1 T; from Q(S) and add UMy"? ;. Call the resulting polygon P(p,: S).

Since the sum of the angles at p, is 27, the sum of the angles at the accidental
vertices of P(p,: S) is 2m. Each angle is strictly less than n because it is an angle
of a non-Euclidean triangle and the sum of the angles of a non-Euclidean triangle is
strictly less than m. Hence P(p,: §) is strictly convex and is therefore a Fricke polygon.
Fricke’s theorem is now completely proved.

If we chose our starting point p, in Q(S)—©, the above construction would not
lead to a convex polygon. However, a similar construction works unless m=0 and
P, is on the line joining ¢, and ¢,. In this case a convex polygon will result, but it

will not be strictly convex.
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13. Geometric interpretation

For the sake of simplicity we consider the case g=2, 2 =0, m=0. We can in-
terpret the main theorem geometrically by looking at the Riemann surface § which
G represents. We consider on § the Riemannian metric induced by the hyperbolic
metric of the disk. On S we are given a set ' of 4 curves, I'={«,, §,, &, B} which
intersect in only one point p and which are oriented as in figure 8. Cutting S along
I’ will yield a simply connected surface. I’ is traditionally called a canonical dissection
of S. There is an obvious natural correspondence between I' and a standard sequence
of generators § of G. The canonical Fricke polygon belonging to § corresponds to a
particular set of curves I"™ obtained from I' as follows.

Consider all curves freely homotopic to «, and let the unique shortest be called
a,. Consider all curves freely homotopic to 8, and let the unique shortest be called
b,. a, and b, intersect in a unique point p*. In the disk @, and b, correspond to
segments @; and b, of the axes of 4, and B,. This statement needs proof.

Consider z, A(z) and A%z) where A is an hyperbolic transformation. Then,

min {6(2, A(2)) +8(A(2), 4¥2))},

i

where &(P, @) is non-Euclidean distance will occur when the three points are co-linear;
they will be co-linear only when z is on the axis (see Bers [8]).
If p is the intersection point of the original canonical dissection we need to de-

fine a curve o, from p to p* which has the properties

-1 -1
01 U0y~ 0y, 01 By0y~Db,

Fig. 8 Fig. 9

Fig. 8. Canonical dissection of § of the type (2; 0; 0).
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where ~ denotes free homotopy and a, or b, is the shortest geodesic in the (bounded)
homotopy class of &, or f,. o, (whose existence will be discussed below) is unique up
to a homotopy. To see this, assume another such curve &, existed. Then &;'o, G, ~as,
511 8,6, ~b, and consequently

6,01 0,0,61 ~ay, 5,017 By6,51 ~ B
Hence 6,01 commutes with both «, and B, and so is homotopic to the identity. We
now take o, as the shortest geodesic in its homotopy class.

The existence of o, is equivalent to the existence of a deformation mapping f
of I' into I"™={a,,b,,a, b,}. We can prove the existence of f by the same kind of
continuity argument used in the proof of the main theorem of this paper.

We must now verify that this new dissection has as one of its images in the
disk, the canonical Fricke polygon P(p*) belonging to $. In the disk, draw P(p*) and
draw a Fricke polygon P corresponding to I' and containing p* as an interior or
boundary point. From figure 9, we then see that &, is homotopic to &;'@,&. Since
d, is a geodesic and there is a unique geodesic in any homotopy class of curves through
a given point on 8§, @, projects into a,.

A similar interpretation can be given for all other surfaces of finite type and
positive genus.

If S has type (0;n;0) join by geodesics the first distinguished point to the
second, the second to third and so on until we reach the nth. This dissection will
correspond to the canonical polygon without accidental vertices. This is the dissection

originally used by Fricke in the case g=0.
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