Skip to main content
Log in

The application of dimensional analysis to cosmology

How to make cosmology simple by using dimensional conspiracy

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Cosmology as it is usually studied suffers from the problem that no criterion is known which isolates from the large class of models allowed by the equations of physics those few which are realized in Nature. To provide such a criterion, it is proposed that cosmology should be based on the study of models which are free of arbitrary scales or units, this condition being compatible with (but not identical with) the Cosmological Principle. Formally, the basis for scale-free cosmology can be expressed in a dimensional Conspiracy Hypothesis: The material parameters of a system (mass, density, pressure etc.), the constants of physics and the coordinates have realizable physical meanings only when they occur together in dimensionless combinations (η-numbers) in which the components may vary with time or place but in such a manner that the variations conspire to keep the η-numbers constant. The Conspiracy Hypothesis (CH) streamlines cosmology, simplifying it to the finding of a few dimensionless numbers. Applied to Einstein's general relativity, the CH yields a simple cosmological model consisting of static clusters of galaxies with inverse-square density profiles embedded in an expanding, homogeneous background. This model agrees well with the observed Universe insofar as the latter can be described by general relativity. The CH can also be applied to other theories of gravity, especially those in which the gravitational parameter G is variable, and can also in itself be taken as a basis for gravitational theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barenblatt, G. E. and Zel'dovich, Y. B.: 1972, Ann. Rev. Fluid Mech. 4, 285.

    Google Scholar 

  • Birkhoff, G.: 1950, Hydrodynamics, Princeton Univ. Press, Princeton, N.J..

    Google Scholar 

  • Canuto, V., Adams, P. J., Hsieh, S.-H., and Tsiang, E.: 1977, Phys. Rev. (Ser. 3) D16, 1643.

    Google Scholar 

  • Close, F. E.: 1979, Nature 278, 209.

    Google Scholar 

  • De Vaucouleurs, G.: 1970, Science 167, 1203.

    Google Scholar 

  • De Vaucouleurs, G.: 1971, Publ. Astron. Soc. Pacific 83, 113.

    Google Scholar 

  • Dirac, P. A. M.: 1938, Proc. Roy. Soc. London A165, 199.

    Google Scholar 

  • Dirac, P. A. M.: 1974, Proc. Roy. Soc. London A338, 439.

    Google Scholar 

  • Eddington, A. E.: 1924, The Mathematical Theory of Relativity, 2nd. ed., Cambridge Univ. Press, London.

    Google Scholar 

  • Einstein, A.: 1931, Berlin Sitz, (Deutsch Akad. Wiss., 16th. April), 235.

  • Goldstein, H.: 1959, Classical Mechanics, Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Gunn, J. E., and Tinsley, B.: 1975, Nature 257, 454.

    Google Scholar 

  • Harwit, M.: 1971, Bull. Astron. Inst. Czech. 22, 22.

    Google Scholar 

  • Henriksen, R. N. and Wesson, P. S.: 1978, Astrophys. Space Sci. 53, 429.

    Google Scholar 

  • Infeld, L. and Schild, A.: 1945, Phys. Rev. (Ser. 2) 68, 250.

    Google Scholar 

  • Infeld, L. and Schild, A.: 1946, Phys. Rev. (Ser. 2) 70, 410.

    Google Scholar 

  • Langhaar, H.: 1951, Dimensional Analysis and Theory of Models, J. Wiley, New York.

    Google Scholar 

  • Llewellyn-Smith, C. H.: 1972, Phys. Rep. 3C, 261.

    Google Scholar 

  • Maeder, A.: 1977, Astron. Astrophys. 56, 359.

    Google Scholar 

  • Marciano, W. and Pagels, H.: 1978, Phys. Rep. 36C, 137.

    Google Scholar 

  • McVittie, G. C.: 1965, General Relativity and Cosmology, 2nd. ed., Chapman and Hall, London.

    Google Scholar 

  • Milne, E. A.: 1935, Relativity, Gravitation and World Structure, Oxford Univ. Press, London.

    Google Scholar 

  • Mulvey, J.: 1979, Nature 278, 403.

    Google Scholar 

  • Podurets, M. A: 1964, Soviet Astron. (Astron. J.) 8, 19.

    Google Scholar 

  • Politzer, H. D.: 1974, Phys. Rep. 14C, 129.

    Google Scholar 

  • Ritter, R. C., Gillies, G. T., Rood, R. T., and Beams, J. W.: 1978, Nature 271, 228.

    Google Scholar 

  • Sedov, L. I.: 1959, Similarity and Dimensional Methods in Mechanics, Academic Press, London.

    Google Scholar 

  • Tinsley, B.: 1977, Physics Today 30 (June), 32.

    Google Scholar 

  • Tinsley, B.: 1978, Nature 273, 208.

    Google Scholar 

  • VandenBerg, D. A.: 1976, Monthly Notices Roy. Astron. Soc. 176, 455.

    Google Scholar 

  • VandenBerg, D. A.: 1977, Monthly Notices Roy. Astron. Soc. 181, 695.

    Google Scholar 

  • Van den Berg, S.: 1977, Vistas Astron. 21, 71.

    Google Scholar 

  • Van Flandern, T. C.: 1975, Monthly Notices Roy. Astron. Soc. 170, 333.

    Google Scholar 

  • Weinberg, S.: 1974, Rev. Mod. Phys. 46, 255.

    Google Scholar 

  • Wesson, P. S.: 1978a, Astron. Astrophys. 68, 131.

    Google Scholar 

  • Wesson, P. S.: 1978b, Cosmology and Geophysics, A. Hilger, Bristol, U.K..

    Google Scholar 

  • Wesson, P. S.: 1979, Astron. Astrophys. 80, 296.

    Google Scholar 

  • Wesson, P. S.: 1980, Gravity, Particles, and Astrophysics, D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Weyl, H.: 1922, Space-Time-Matter, 4th. ed., Methuen, London (reprinted, 1952, Dover, New York).

    Google Scholar 

  • Wilkinson, D. H.: 1958, Phil Mag. (Ser. 8) 3, 582.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesson, P.S. The application of dimensional analysis to cosmology. Space Sci Rev 27, 109–153 (1980). https://doi.org/10.1007/BF00212237

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00212237

Keywords

Navigation