Skip to main content
Log in

Experimental techniques: Methods for cooling below 300 mK

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

There are at present three methods for cooling samples to temperatures below 300 mK: dilution, Pomeranchuk, and nuclear refrigeration. We give the basic principles of these methods with more details concerning dilutions refrigerators. This should allow the construction of a simple all plastic refrigerator for temperatures lower than 15 mK, or an even simpler Pomeranchuk cell. The source of heat leaks and other important points for reaching temperatures in the microkelvin range with nuclear refrigerators are given in the lecture by F. Pobell

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. V. Lounasmaa, Experimental Principles and Methods Below 1 K (Academic Press, New York, 1974).

    Google Scholar 

  2. D. S. Betts, An Introduction to MilliKelvin Technology, Cambridge studies in Low Temperature Physics, Cambridge Univ. Press (1989).

  3. D. S. Betts, Refrigeration and Thermometry Below One Kelvin, D. F. Brewer, ed., (Sussex Univ. Press, 1976).

  4. R. C. Richardson and E. N. Smith, Experimental Techniques in Condensed Matter Physics at Low Temperatures, Frontiers in Physics (Addison-Wesley, Reading, MA, 1988).

    Google Scholar 

  5. G. K. Walters and W. M. Fairbank, Phys. Rev. 103, 262 (1956).

    Google Scholar 

  6. J. P. Laheurte and J. R. G. Keyston, Cryogenics 11, 485 (1971).

    Google Scholar 

  7. D. O. Edwards, E. M. Ifft, and R. E. Sarwinski, Phys. Rev. 177, 388 (1969).

    Google Scholar 

  8. A. Ghozlan and E. J. A. Varoquaux, Comptes Rendus Acad. Sci. Paris, Ser. B 280, 189 (1975).

    Google Scholar 

  9. H. London, Proceedings of the International Conference on Low Temperature Physics (Oxford Univ. Press, 1951).

  10. H. London, G. Clarke, and E. Mendoza, Phys. Rev. 128, 1992 (1962).

    Google Scholar 

  11. J. Wilks and D. Betts, An Introduction to Liquid Helium, 2nd ed. (Clarendon Press, Oxford, 1987).

    Google Scholar 

  12. J. G. M. Kuerten, C. A. M. Castelijns, A. T. A. M. Waele, and H. M. Gijsman, Cryogenics 25, 419 (1985).

    Google Scholar 

  13. A. C. Anderson, W. R. Roach, R. E. Sarwinski, and J. C. Wheatley, Phys. Rev. Lett. 16, 263 (1966).

    Google Scholar 

  14. A. C. Anderson, D. O. Edwards, W. R. Roach, R. E. Sarwinski, and J. C. Wheatley, Phys. Rev. Lett. 17, 367 (1966).

    Google Scholar 

  15. J. P. Harrison, J. Low Temp. Phys. 37, 467 (1979).

    Google Scholar 

  16. L. del Castillo, G. Frossati, A. Lacaze, and D. Thoulouze, Proc. LT 13, Boulder, 1972, (Plenum, New York, 1974). Vol. 4, p. 640.

  17. G. Frossati, N. F. Oliveira, E. Ter Haar, L. Skrbek, and M. Meisel (to be published).

  18. G. Frossati, Proc. LT 15, Grenoble, 1978, J. de Physique, Coll. C-8 supp. 8 (1978).

  19. W. R. Abel, R. T. Johnson, J. C. Wheatley, and W. Zimmermann, Phys. Rev. Lett. 18, 737 (1967).

    Google Scholar 

  20. R. L. Rosenbaum, J. Landau, and Y. Eckstein, J. Low Temp. Phys. 16, 131 (1974).

    Google Scholar 

  21. D. A. Ritchie, J. Saunders, and D. Brewer, Phys. Rev. Lett. 59, 465 (1987).

    Google Scholar 

  22. G. A. Vermeulen and G. Frossati, Cryogenics 27, 139 (1987).

    Google Scholar 

  23. I. Pomeranchuk, Zh. Eksp. Teor. Fiz. 20, 919 (1950).

    Google Scholar 

  24. C. C. Kranenburg, S. A. J. Wiegers, P. G. van de Haar, R. Jochemsen, and G. Frossati Jpn. J. Appl. Phys. 26, 1723, Suppl. 26–3 (1987).

    Google Scholar 

  25. D. M. Lee and N. D. Mermin, Scientific American, 235, 56 (December, 1976).

    Google Scholar 

  26. J. R. Sites, D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 23, 836 (1969).

    Google Scholar 

  27. D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 28 (1972).

  28. L. P. Roobol, S. Steel, R. Jochemsen, G. Frossati, K. S. Bedell, and A. E. Meyerovich, Europhys. Lett. 17, 219 (1992) and references therein.

    Google Scholar 

  29. K. Andres and O. V. Lounasmaa, Recent progress in nuclear cooling, Proc. in Low Temp. Phys., D. F. Brewer, ed. (North-Holland, Amsterdam, 1982) Vol 8, p. 221.

    Google Scholar 

  30. D. S. Greywall, Phys. Rev. B 31, 1675 (1985).

    Google Scholar 

  31. R. M. Muller, C. Buchal, H. R. Folle, M. Kubota, and F. Pobell, Cryogenics 20, 395 (1980).

    Google Scholar 

  32. K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R. M. Mueller, and F. Pobell, J. Low Temp. Phys. 73, 101 (1988).

    Google Scholar 

  33. J. P. Carney, A. M. Guénault, G. R. Pickett, and G. R. Spencer, Phys. Rev. Lett. 62, 3042 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frossati, G. Experimental techniques: Methods for cooling below 300 mK. J Low Temp Phys 87, 595–633 (1992). https://doi.org/10.1007/BF00114918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114918

Keywords

Navigation