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EDITORIAL 

Machine Learning and Concept Formation 

The task of concept formation 

The vast majority of research in machine learning has focused on the 
acquisition of concepts. Yet despite this emphasis, little of the work has 
any direct relevance to modeling human concept learning. For a variety 
of reasons, machine learning researchers have tended to make assumptions 
that  violate our knowledge about the representation, use, and acquisition 
of human concepts. 

For instance, most AI researchers have a t tempted to describe concepts 
in logical terms, as the conjunction or disjunction of features. However, 
we know that  many human concepts cannot be described in such a logical 
formalism. Some instances of a concept are more typical than others; e.g., 
robins are more typical birds than penguins. This would seem to require a 
more flexible representation, combined with some form of partial matching. 

Another common assumption is that  concept learning is supervised; i.e., 
a benevolent teacher is present to direct the learning process. However, we 
know that much human concept learning is unsupervised. Children form 
useful concepts long before they acquire enough language to benefit from a 
tutor 's  advice, and they seem to accomplish this through direct interaction 
with their environment,. 

Researchers have also tended to focus on learning one or a few concepts 
at a single level of abstraction. However, we know that  humans organize 
their concepts into large hierarchies that  describe categories at varying 
levels of specificity. Thus, models of concept learning should address the 
formation of conceptual hierarchies as well as the formation of individual 
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categories. 

Finally, much of the work on concept acquisition has used nonincremental 
learning methods. Yet we know that humans interact with their environ- 
ment over time, encountering new instances and incorporating them into 
memory one after another. This strongly suggests that  humans form their 
conceptual hierarchies in an incremental fashion, and that  this process is 
closely related to the classification of new instances. Thus, models of hu- 
man concept learning should employ incremental methods that  are flflly 
integrated with a performance element. 
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Taken together, these observations suggest a new task for machine learn- 
ing the task of concept formation. We will use this term to refer to the 
acquisition of conceptual hierarchies in which each concept has a flexible, 
non-logical definition and in which learning occurs incrementally and with- 
out supervision. We believe these features characterize much of the process 
of human concept learning. 

Mode l s  of  c o n c e p t  f o r m a t i o n  

Exceptions to the above trends certainly exist. For instance, much of the 
work on learning from examples has taken an incremental approach. Sim- 
ilarly, research on conceptual clustering has focused on the construction of 
concept hierarchies from unsupervised data. And recent work on learning 
from examples has explored more flexible concept representations and par- 
tial matching (Michalski, 1987; Quinlan, 1987). But very few researchers 
have broken with all the assumptions listed above and focused on the full 
task of concept formation. 

However, the papers by Lebowitz and Fisher in the current issue do ex- 
actly that. Neither author puts forth his system as a psychological model 
per se, but both reject the four assumptions listed above and replace them 
with more plausible ones. Thus, Lebowitz's UNIMEM and Fisher's COB- 
WEB allow partial matching to occur, and the latter system replaces logi- 
cat concept definitions with probabilistic descriptions. Both systems learn 
without aid from a tutor and both construct entire concept hierarchies 
rather than single-level categories. Finally, both COBWEB and UNIMEM 
acquire knowledge incrementally, modifying their concepts and hierarchies 
in the very act of classifying new instances. In other words, they fully 
integrate the learning and performance aspects of classification. 

Fisher's and Lebowitz's systems also share a number of other features. 
Like Feigenbanm's (1963) early EPAM model of human learning, both 
UNIMEM and COBWEB construct their concept hierarchies in a top-down 
fashion, though each includes other means for modifying the hierarchy 
as well. 1 In addition, both incorporate numeric information into their 
concept representations, though the interpretation of these numbers is quite 
different. 

Moreover, both Fisher and Lebowitz explicitly reject the systematic 
search paradigm that has dominated research on empirical learning meth- 
ods. In contrast to Mitchell's (1982) breadth-first search or Michalski's 
(1983) beam search, the authors in this issue allow only one 'hypothesis' 
in memory at a time. Their systems can be viewed as searching the space 

1We should briefly mention Hanson and Bauer 's (1986) WITT,  a concept formation 
system that  also rejects the assumptions listed earlier. Unlike UNIMEM and COBWEB, 
this system constructs hierarchies in an agglomerative manner,  from the bot tom up. 
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of concept hierarchies, but the search method  is very weak and best char- 
acterized as hill climbing. This strategy is not guaranteed to achieve the 
op t imum solution, but the heuristic approaches used by COBWEB and 
UNIMEM give good results in practice and they have very low computa- 
tional requirements. We expect that  other machine learning researchers 
will soon follow their lead on this dimension. 

Evaluating models of concept formation 

The two papers in this issue also share a common theme in their at- 
tempt  to carefully evaluate concept learning behavior. Lebowitz examines 
the effect of varying UNIMEM's parameters on the quality of the resulting 
concept hierarchies. Using the domain of universities, he shows how two 
parameters the percentage of features needed to create concepts and the 
percentage needed to retain them affect the quality of the resulting hi- 
erarchies, using a number of dependent measures. These empirical studies 
help clarify the inner workings of UNIMEM. 

Such a parametric analysis would be inappropriate for COBWEB, since 
that  system has no parameters. Instead, Fisher emphasizes that  the knowl- 
edge acquired during concept formation can be used for prediction, and he 
uses this fact to evaluate COBWEB's  behavior. Using the domain of soy- 
bean diseases, he measures his system's ability to make accurate predictions 
as a function of two variables the number of instances encountered and 
the dependence between features. As one would expect, predictive abil- 
ity improves as more instances have been seen and as one increases the 
correlations between features. 

Both Lebowitz and Fisher test their systems on real-world tasks, but de- 
spite their attractions, such natural domains have drawbacks as well. For 
instance, one has no control over the characteristics of the domain, nor can 
one easily determine whether tile optimal solution has been found. Thus 
Fisher turns to artificial tasks, studying the effect of domain regularity on 
whether COBWEB finds the optimal clustering and on its time to con- 
vergence. The use of artificial domains lets him systematically vary task 
characteristics in a way that  is impossible for real-world domains. 

Finally, both authors show a concern for the time required to incorporate 
new instances into memory. Lebowitz shows empirically that  UNIMEM's 
time for incorporation increases only gradually with the number of in- 
stances encountered. Fisher shows analytically that  the update cost for 
COBWEB increases only logarithmically with the number of instances. 
Thus, the papers arrive at similar results using two different approaches. 
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In summary, the two papers in this issue are innovative along two impor- 
tant dimensions. First, they question some assumptions commonly held in 
the machine learning community and then present running systems that 
are based on alternative assumptions. Second, they support their novel 
approaches with extensive empirical studies that clarify the nature of the 
learning algorithms and the conditions under which they are useful. Fisher 
and Lebowitz each make significant additions to our understanding of con- 
cept formation, but their contribution extends beyond this class of prob- 
lems. We encourage other researchers to imitate their examples by propos- 
ing novel methods and by supporting them with careful experiments and 
analyses. Therein lies the path to a true science of machine learning. 

Pat Langley 
University of California, Irvine 

Langley@CIP.UCI.EDU 
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