
Lecture Notes in Mathematics 

Edited by J.-M. Morel, F. Takens and B. Teissier 

Editorial Policy 
for the publication of monographs 

I. Lecture Notes aim to report new developments in all areas of mathematics -
quickly, informally and at a high level. Monograph manuscripts should be reason­
ably self-contained and rounded off. Thus they may, and often will. present not only 
results of the author but also related work by other people. They may be based on 
specialized lecture courses. Furthermore, the manuscripts should provide sufficient 
motivation, examples and applications. This clearly distinguishes Lecture Notes 
from journal articles or technical reports which normally are very concise. Articles 
intended for a journal but too long to be accepted by most journals, usually do not 
have this "lecture notes" character. For similar reasons it is unusual for doctoral 
theses to be accepted for the Lecture Notes series. 

2. Manuscripts should be submitted (preferably in duplicate) either to one of the 
series editors or to Springer-Verlag, Heidelberg. In general, manuscripts will be 
sent out to 2 external referees for evaluation. If a decision cannot yet be reached on 
the basis of the first 2 reports, further referees may be contacted: the author will be 
informed of this. A final decision to publish can be made only on the basis of 
the complete manuscript, however a refereeing process leading to a preliminary 
decision can be based on a pre-final or incomplete manuscript. The strict minimum 
amount of material that will be considered should include a detailed outline 
describing the planned contents of each chapter, a bibliography and several sample 
chapters. 
Authors should be aware that incomplete or insufficiently close to final manu­
scripts almost always result in longer refereeing times and nevertheless unclear 
referees' recommendations, making further refereeing of a final draft necessary. 
Authors should also be aware that parallel submission of their manuscript to 
another publisher while under consideration for LNM will in general lead to 
immediate rejection. 

3. Manuscripts should in general be submitted in English. 
Final manuscripts should contain at least 100 pages of mathematical text and 
should include 
- a table of contents; 
- an informative introduction. with adequate motivation and perhaps some 

historical remarks: it should be accessible to a reader not intimately familiar 
with the topic treated; 

- a subject index: as a rule this is genuinely helpful for the reader. 

Continued on inside back-cover 



Lecture Notes inMathematics
Editors:
J.-M. Morel, Cachan
F. Takens, Groningen
B. Teissier, Paris

1785



Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo



Juan Arias de Reyna

Pointwise Convergence
of Fourier Series

Springer



Author

Juan Arias de Reyna

Facultad de Matematicas
Universidad de Sevilla
Apdo.1160
41080 Sevilla, Spain

e-mail: arias@us.es

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Arias de Reyna, Juan:
Pointwise convergence of Fourier series I Juan Arias de Reyna. - Berlin;
Heidelberg; New York; Barcelona; Hong Kong; London; Milan; Paris;
Tokyo: Springer, 2002
(Lecture notes in mathematics ; 1785)
ISBN 3-540-43270-1

Mathematics SubjectClassification (2000): 42A20

ISSN 0075-8434
ISBN 3-540-43270-1 Springer-Verlag BerlinHeidelbergNewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Lawof September 9, 1965,
in its current version, and permission for use must alwaysbe obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg NewYorka member of BertelsmannSpringer
Science + Business Media GmbH

http://www.springer.de

o Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready TEX output by the author

SPIN: 10868476 4113142/DU - 543210 - Printed on acid-free paper



Preface

This book grew out of my attempt in August 1998 to compare Carleson’s and
Fefferman’s proofs of the pointwise convergence of Fourier series with Lacey
and Thiele’s proof of the boundedness of the bilinear Hilbert transform. I
started with Carleson’s paper and soon realized that my summer vacation
would not suffice to understand Carleson’s proof.

Bit by bit I began to understand it. I was impressed by the breathtaking
proof and started to give a detailed exposition that could be understandable
by someone who, like me, was not a specialist in harmonic analysis. I’ve
been working on this project for almost two years and lectured on it at the
University of Seville from February to June 2000. Thus, this book is meant
for graduate students who want to understand one of the great achievements
of the twentieth century.

This is the first exposition of Carleson’s theorem about the convergence
of Fourier series in book form. It differs from the previous lecture notes,
one by Mozzochi [38], and the other by Jørsboe and Mejlbro [26], in that
our exposition points out the motivation of every step in the proof. Since
its publication in 1966, the theorem has acquired a reputation of being an
isolated result, very technical, and not profitable to study. There have also
been many attempts to obtain the results by simpler methods. To this day
it is the proof that gives the finest results about the maximal operator of
Fourier series.

The Carleson analysis of the function, one of the fundamental steps of
the proof, has an interesting musical interpretation. A sound wave consists
of a periodic variation of pressure occurring around the equilibrium pressure
prevailing at a particular time and place. The sound signal f is the variation
of the pressure as a function of time. The Carleson analysis gives the score of
a musical composition given the sound signal f . The Carleson analysis can
be carried out at different levels. Obviously the above assertion is true only
if we consider an adequate level.

Carleson’s proof has something that reminds me of living organisms. The
proof is based on many choices that seem arbitrary. This happens also in
living organisms. An example is the error in the design of the eyes of the
vertebrates. The photoreceptors are situated in the retina, but their outputs
emerge on the wrong side: inside the eyes. Therefore the axons must finally



VI Preface

be packed in the optic nerve that exit the eyes by the so called blind spot.
But so many fibers (125 million light-sensitive cells) will not pass by a small
spot. Hence evolution has solved the problem packing another layer of neurons
inside the eyes that have rich interconections with the photoreceptors and
with each other. These neurons process the information before it is send to
the brain, hence the number of axons that must leave the eye is sustantially
reduced (one million axons in each optic nerve). The incoming light must
traverse these neurons to reach the photoreceptors, hence evolution has the
added problem of making them transparent.

We have tried to arrange the proof so that these things do not happen,
so that these arbitrary selections do not shade the idea of the proof. We have
had the advantage of the text processor TEX, which has allowed us to rewrite
without much pain. (We hope that no signs of these rewritings remain).

By the way, the eyes and the ears process the information in totally differ-
ent ways. The proof of Carleson follows more the ear than the eyes. But what
these neurons are doing in the inside of the eyes is just to solve the problem:
How must I compress the information to send images using the least possible
number of bits? A problem for which the wavelets are being used today.

I would like this book to be a commentary to the Carleson paper. There-
fore we give the Carleson-Hunt theorem following more Carleson’s than
Hunt’s paper.

The chapter on the maximal operator of Fourier series S∗f , gives the first
exposition of the consequences of the Carleson-Hunt theorem. Some of the
results appear here for the first time.

I wish to express my thanks to Fernando Soria and to N. Yu Antonov for
sending me their papers and their comments about the consequences of the
Carleson-Hunt theorem. Also to some members of the department of Math-
ematical Analysis of the University of Seville, especially to Luis Rodŕıguez-
Piazza who showed me the example contained in chapter XIII.
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Introduction

The origin of Fourier series is the 18th century study by Euler and Daniel
Bernoulli of the vibrating string. Bernoulli took the point of view, suggested
by physical considerations, that every function can be expanded in a trigono-
metric series. At this time the prevalent idea was that such an expression
implied differentiability properties, and that such an expansion was not pos-
sible in general.

Such a question was not one for that time. A response depended on what is
understood by a function, a concept that was not clear until the 20th century.
The first positive results were given in 1829 by Dirichlet, who proved that
the expansion is valid for every continuous function with a finite number of
maxima and minima.

A great portion of the mathematics of the first part of the 20th century
was motivated by the convergence of Fourier series. For example, Cantor’s
set theory has its origin in the study of this convergence. Also Lebesgue’s
measure theory owes its success to its application to Fourier series.

Luzin, in 1913, while considering the properties of Hilbert’s transform,
conjectured that every function in L2[−π, π] has an a. e. convergent Fourier
series. Kolmogorov, in 1923 gave an example of a function in L1[−π, π] with
an a. e. divergent Fourier series.

A. P. Calderon (in 1959) proved that if the Fourier series of every function
in L2[−π, π] converges a. e., then

m{x : sup
n

|Snf(x)| > y} ≤ C
‖f‖2

y2 .

For many people the belief in Luzin’s conjecture was destroyed; it seemed too
good to be true.

So, it was a surprise when Carleson, in 1966, proved Luzin’s conjecture.
The next year Hunt proved the a. e. convergence of the Fourier series of every
f ∈ Lp[−π, π] for 1 < p ≤ ∞.

Kolmogorov’s example is in fact a function in L log log L with a. e. di-
vergent Fourier series. Hunt proved that every function in L(log L)2 has an
a. e. convergent Fourier series. Sjölin, in 1969, sharpened this result: every
function in the space L log L log log L has an a. e. convergent Fourier series.
The last result in this direction is that of Antonov (in 1996) who proved the



XII Introduction

same for functions in L log L(log log log L). Also, there are some quasi-Banach
spaces of functions with a. e. convergent Fourier series given by Soria in 1985.

In the other direction, the results of Kolmogorov were sharpened by Chen
in 1969 giving functions in L(log log L)1−ε with a. e. divergent Fourier series.
Recently, Konyagin (1999) has obtained the same result for the space Lϕ(L),
whenever ϕ satisfies ϕ(t) = o(

√
(log t/ log log t)).

Apart from the proof of Carleson, there have been two others. First, the
one by Fefferman in 1973. He says: However, our proof is very inefficient near
L1. Carleson’s construction can be pushed down as far as L log L(log log L),
but our proof seems unavoidably restricted to L(log L)M for some large M .
Then we have the recent proof of Lacey and Thiele; they are not so explicit
as Fefferman, but what they prove (as far as I know) is limited to the case
p = 2.

The proof of Lacey and Thiele is based on ideas from Fefferman proof,
also the proof of Fefferman has been very important since it has inspired
these two authors in his magnificent proof of the boundedness of the bilinear
Hilbert transform. The trees and forests that appears in these proofs has
some resemblance to the notes of the function and the allowed pairs of the
proof of Carleson that are introduced in chapter eight and nine of this book,
but to understand better these relationships will be matter for other book.

The aim of this book is the exposition of the principal result about the
convergence of Fourier series, that is, the Carleson-Hunt Theorem.

The book has three parts. The first part gives a review of some results
needed in the proof and consists of three chapters.

In the first chapter we give a review of the Hardy-Littlewod maximal
function. We prove that this operator transforms Lp into Lp for 1 < p ≤ ∞.
The differentiation theorem allows one to see the great success we get
with a pointwise convergence problem by applying the idea of the maxi-
mal function. This makes it reasonable to consider the maximal operator
S∗f(x) = supn |Sn(f, x)|, in the problem of convergence of Fourier series.

In chapter two we give elementary results about Fourier series. We see
the relevance of the conjugate function and explain the elements on which
Luzin, in 1913, founded his conjecture about the convergence of Fourier series
of L2 functions. We also present Dini’s and Jordan’s tests of convergence in
conformity with the law: s/he who does not know these criteria must not
read Carleson’s proof.

The properties of Hilbert’s transform, needed in the proof of Carleson’s
Theorem are treated in chapter three.

In the second part we give the exposition of the Carleson-Hunt Theorem.
The basic idea of the proof is the following. Our aim is to bound what we
call Carleson integrals

p.v.

∫ π

−π

ein(x−t)

x − t
f(t) dt.
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To this end we consider a partition Π of the interval [−π, π] into subintervals,
one of them I(x) containing the point x, and write the integral as

p.v.

∫ π

−π

ein(x−t)

x − t
f(t) dt = p.v.

∫
I(x)

ein(x−t)

x − t
f(t) dt

+
∑

J∈Π,J �=I(x)

∫
J

ein(x−t)f(t) − MJ

x − t
dt +

∫
J

MJ

x − t
dt.

where MJ is the mean value of ein(x−t)f(t) on the interval J .
The last sum can be conveniently bounded so that, in fact, we have

changed the problem of bounding the first integral to the analogous prob-
lem for the integral on I(x). After a change of scale we see that we have a
similar integral, but the number of cycles in the exponent n has decreased in
number.

Therefore we can repeat the reasoning. With this procedure we obtain the
theorem that Sn(f, x) = o(log log n) a. e., for every f ∈ L2[−π, π]. We think
that to understand the proof of Carleson’s theorem it is important to start
with this theorem, because this is how the proof was generated. Only after we
have understood this proof can we understand the very clever modifications
that Carleson devised to obtain his theorem.

The next three chapters are dedicated to this end. The first deals with
the actual bound of the second and third terms, and the problem of how we
must choose the partition to optimize these bounds.

In Chapter five we prove that the bounds are good, with the exception of
sets of controlled measure. Then, in Chapter six, given f ∈ L2[−π, π], y > 0,
N ∈ N , and ε > 0, we define a measurable set E with m(E) < Aε and such
that

sup
0≤n≤N/4

∣∣∣p.v.

∫ π

−π

ein(x−t)

x − t
f(t) dt

∣∣∣ ≤ C
‖f‖2√

ε
(log N).

From this estimate we obtain the desired conclusion that

Sn(f, x) = o(log log n) a. e.

These three chapters follow Carleson’s paper, where instead of f ∈ L2

he assumed that |f |(log+ |f |)1+δ ∈ L1, reaching the same conclusion. Since
we shall obtain further results, we have taken the simpler hypothesis that
f ∈ L2. In fact, our motivation to include the proof is to allow the reader to
understand the modifications contained in the next five chapters.

The logarithmic term appears in the above proof because every time we
apply the basic procedure, we must put apart in the set E a small subset
where the bound is not good. We have to put in a term log N in order to
obtain a controlled measure. In fact, we are considering all pairs (n, J) formed
by a dyadic subinterval J of [−π, π], and the number of cycles of the Carleson
integral. If we consider the procedure of chapters four to six, then we suspect
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that we do not need all of these pairs. This is the basic observation on which
all the clever reasoning of Carleson is founded.

In chapter seven we determine which pairs are needed. Carleson made an
analysis of the function to detect which pairs these are. If we think of f as the
sound signal of a piece of music, then this analysis can be seen as a process
to derive from f the score of this piece of music. In this chapter we define
the set Qj of notes of f to the level j.

In chapter eight we define the set Rj of allowed pairs. This is an enlarge-
ment of the set of notes of f , so that we can achieve two objectives. The
principal objective is that if α = (n, J) is a pair such that α �∈ Rj , then
the sounds of the notes of f (at level j) that have a duration containing J ,
is essentially a single note or a rest. This is very important because if we
consider a Carleson integral Cαf(x) with this pair, then we have a candidate
note, the sound of f , that is an allowed pair and therefore can be used in the
basic procedure of chapter four.

Chapter nine is the most difficult part of the proof. In it we see how, given
an arbitrary Carleson integral Cαf(x), we can obtain an allowed pair ξ such
that we can apply the procedure of chapter four, and a change of frequency
to bound this integral.

In chapter ten we apply all this machinery to prove the basic inequality
of Theorem 10.2.

The last part of the book is dedicated to deriving some consequences of
the proof of Carleson-Hunt.

First, in chapter eleven we prove a version of the Marcinkiewicz interpo-
lation theorem and give the definition and first properties of the spaces that
we shall need in chapter twelve. In particular, we study a class of spaces near
L1(µ) that play a prominent role. We prove that they are atomic spaces, a
fact that allows very neat proofs in the following chapter.

In Chapter twelve we study the maximal operator S∗f of Fourier series.
In it we give detailed and explicit versions of Hunt’s theorem, with improved
constants. We end the chapter by defining two quasi-Banach spaces, Q and
QA, of functions with almost everywhere convergent Fourier series. These
spaces improve the known results of Sjölin, Soria and Antonov, and the proofs
are simpler.

In the last chapter we consider the Fourier transform on R. We consider
the problem of when we can obtain the Fourier transform of a function f ∈
Lp(R) by the formula

f̂(x) = lim
a→+∞

∫ a

−a

f(t)e−2πixt dt.

We prove by an example (Example 13.2) that our results are optimal.




