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1 Introduction

Zero modes in gauge theory play an important role when one considers the theory in a
small box with periodic boundary conditions. Their dynamics is highly nontrivial, however,
due to its nonperturbative nature even in the case where the other modes can be treated
perturbatively. The importance of zero modes can be most clearly seen by recalling the
large-N reduced model [1], which implies that the zero-mode effective theory can be actually
equivalent to the original gauge theory under certain conditions [2, 3]. Furthermore, the
maximally supersymmetric version of the large-N reduced model [4] is conjectured to be a
nonperturbative formulation of superstring theory, in which (3+1)-dimensional expanding
space-time is expected to emerge [5].

One of the issues related to the dynamics of zero modes in lattice gauge theory concerns
the existence of nontrivial degenerate vacua known as “torons”, which have constant diagonal
link variables in each direction up to a gauge transformation. All these configurations
minimize the plaquette action, which implies that they represent the orbit of vacua or the
moduli space of the gauge field configurations. At weak coupling, the perturbative expansion
can be performed by integrating out all the fluctuations including zero modes around each
toron configuration, and one is left with the integration over the toron configurations. Then
an important question is whether the trivial vacuum Un,µ = 1 dominates over the other
toron configurations or not.

This question is answered in the affirmative for 4D SU(3) lattice gauge theory [6],
and the leading 1/β correction to the Wilson loop have been obtained by perturbative
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expansion around the trivial vacuum. The 4D SU(2) case, on the other hand, turned out to
be marginal according to the same criterion.

In this paper, we first show our Monte Carlo results for the Wilson loops at large
β in the 4D SU(2) and SU(3) cases and compare them against the O(1/β) predictions
obtained by perturbation theory around the trivial vacuum. In the SU(3) case, our results
approach the perturbative predictions as β →∞ with the deviation being suppressed by
β−1/2 compared to the leading O(1/β) correction. In the SU(2) case, on the other hand, our
results approach the perturbative predictions as well, but the approach turns out to be much
slower than in the SU(3) case. The deviation is suppressed only by O(1/ log β) compared to
the leading O(1/β) correction. This suggests that the trivial vacuum dominates as β →∞
in the SU(2) case as well although the fluctuations around it vanish much more slowly with
increasing β than in the SU(3) case.

Here we attempt to understand this behavior of the 4D SU(2) lattice gauge theory by
the effective theory for the zero modes around the trivial vacuum, which takes the form
of the large-N reduced model at the leading order. In fact, it was noticed in section 3.3
of ref. [6] that the partition function of the zero-mode effective theory has logarithmic
divergence as β → ∞ in the 4D SU(2) case.1 This is actually due to the power-law tail
(with the power of −1) of the eigenvalue distribution [9] in the reduced model, which was
investigated in the context of matrix models for superstrings. We argue that this power-law
tail is responsible for not only the dominance of the trivial vacuum as β →∞ but also the
unusual finite β effects.

We also calculate the Polyakov line at large β in order to confirm our conclusion. In
particular, we find that the distribution of the Polyakov line is peaked near unity in both
SU(2) and SU(3) cases, but the difference is that the distribution in the SU(2) case has a
long tail, which vanishes only very slowly at large β.

The rest of this paper is organized as follows. In section 2, we present our Monte Carlo
results for the Wilson loops at large β, and compare them with perturbative predictions. In
section 3, we review the effective theory for the zero modes, which explains our results in
the SU(3) case. In section 4, we discuss how our results in the SU(2) case can be understood
from the viewpoint of the zero-mode effective theory. In section 5, we show our results for
the Polyakov line, which confirm our understanding. Section 6 is devoted to a summary and
discussions. In appendix A, we discuss the volume dependence of our results. In appendix B,
we provide some supplementary information on our analysis.

2 Wilson loops v.s. perturbative predictions

In this section, we present our Monte Carlo results for the Wilson loops and compare them
with perturbative predictions at large β. Let us consider an SU(N) gauge theory on an

1In ref. [7], non-perturbative treatment of the zero modes has been discussed in the context of the gradient
flow used in a running coupling constant scheme. In particular, the logarithmic behavior in the SU(2) case
has been discussed by using a simple example [8], in which 1/ log β appears in the perturbative expansion of
the exact result.
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L1 × · · · × LD lattice with periodic boundary conditions with the action

Sg = − β

2N
∑
n

∑
µ,ν 6=µ

tr[Un,µUn+µ̂,νU
†
n+ν̂,µU

†
n,ν − 1] , (2.1)

where β is the inverse coupling constant squared. The Wilson loop of size R1 × R2 is
calculated by perturbation theory around the trivial vacuum Un,µ = 1 neglecting higher
order terms than O(β−1) as [6]

W (R1, R2) = 1− c
(tot)
1
β

+ O(β−
3
2 ) . (2.2)

The coefficient c(tot)
1 = c

(zero)
1 + c

(nonzero)
1 consists of the zero-mode contribution

c
(zero)
1 = N2 − 1

2(D − 1)V (R1R2)2 (2.3)

and the non-zero-mode contribution

c
(nonzero)
1 = N2 − 1

8V
∑
k 6=0

1∑
µ sin2 kµ

2

∣∣∣eik1R1 − 1
∣∣∣2
∣∣∣∣∣∣
R2−1∑
m=0

eik2m

∣∣∣∣∣∣
2

+ (1↔ 2)

 , (2.4)

where kµ = 2π
Lµ
nµ denotes the lattice momentum with nµ being an integer. Note that the

nonzero-mode contribution vanishes for a maximal Wilson loop with R1 = L1 and R2 = L2
since eik1R1 = eik2R2 = 1 in that case.

Let us first discuss the N = 3 case. In figure 1, we plot β
{

1−W (R1, R2)
}
for square

Wilson loops (R1 = R2) on a 44 lattice with β = 6 – 19200.2 While the 1 × 1 Wilson
loop approaches c(tot)

1 monotonically, the larger Wilson loops show prominent overshooting
behaviors. Moreover, the slope of the data points at the origin seems to be infinite for the
latter case, which suggests that the subleading terms become non-analytic in 1/β. In fact,
we can fit β

{
1−W (R1, R2)

}
to c(tot)

1 + c β−1/2 as shown in figure 1 (Right) although for
the 1× 1 Wilson loop, the coefficient c is consistent with zero. Therefore, the Wilson loops
for the SU(3) case are given by the expansion (2.2), where the subleading term is O(β−

3
2 ).

The coefficient of the non-analytic term c β−1/2 increases with the size of the Wilson loop,
which is responsible for the larger deviation from the leading perturbative prediction seen
in figure 1 (Left). This is reasonable since the larger Wilson loops are more sensitive to
quantum fluctuations in the infrared regime. The origin of this non-analytic term can be
understood from the viewpoint of the zero-mode fluctuations [6] as we explain later.

Next we discuss the N = 2 case. In figure 2, we plot β
{

1 −W (R1, R2)
}
for square

Wilson loops (R1 = R2) on a 44 lattice with β = 6 – 19200. From figure 2 (Left) alone, it is
not clear whether the data points are approaching c(tot)

1 . However, figure 2 (Right) suggests
2Simulations at larger β require longer runs due to stronger auto-correlation. For instance, the auto-

correlation time of the maximal Wilson loop at β = 19200 is estimated as 15000 trajectories for N = 3 and
50000 trajectories for N = 2. In order to get reasonable statistics, we have made 400000 trajectories for
N = 3 and 1000000 trajectories for N = 2. See appendix B for the details.
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that β
{

1−W (R1, R2)
}
can be fitted to c(tot)

1 + c/ ln β although for the 1× 1 Wilson loop,
the coefficient c is consistent with zero. In particular, this result shows that the trivial
vacuum Un,µ = 1 dominates over the other toron configurations at large β even for the
SU(2) case, which is not obvious from ref. [6]. We will provide clear understanding of this
property as well as the appearance of the logarithmic term c/ ln β from the viewpoint of
the zero-mode effective theory.

3 Brief review of the zero-mode effective theory

In this section, we review the zero-mode effective theory following ref. [6]. We consider the
classical solutions, which are given by toron configurations, and discuss the perturbative
expansion around them including the zero modes. In particular, we find in the SU(3) case
that the trivial vacuum dominates at large β and that the leading term in the Wilson loop
can be obtained by using the zero-mode effective theory.

3.1 The effective action for the zero modes

The minima of the plaquette action are degenerate under periodic boundary conditions,
and they are given, up to a gauge transformation, by torons U (0)

n,µ = eiBµ , where Bµ is a
constant real diagonal matrix. Let us expand the link variables around them as

Un,µ = eiQn,µ eiBµ , (3.1)

where Qn,µ represents the fluctuations given by traceless Hermitian matrices satisfying

1
V

∑
n

(Qn,µ)ii = 0 for all i . (3.2)

Plugging (3.1) into (2.1), we obtain

Sg = − β

2N
∑
n

∑
µ,ν 6=µ

tr
(
eiQn,µei(1+Dµ)Qn,νe−i(1+Dν)Qn,µe−iQn,ν − 1

)
, (3.3)

where DµQn,ν = ei adj(Bµ)Qn+µ̂,ν −Qn,ν and adj(Bµ) = [Bµ, · ].
Let us then decompose Qn,µ as

Qn,µ = Aµ + Ãn,µ , (3.4)

where Aµ represents the zero modes, which satisfy (Aµ)ii = 0 for all i due to (3.2). The
plaquette that appears in (3.3) can be expressed as

eiQn,µei(1+Dµ)Qn,νe−i(1+Dν)Qn,µe−iQn,ν

= exp
[
i

{(
DµÃn,ν −DνÃn,µ

)
+
(
DµAν −DνAµ

)
+ i
[
Aµ, Aν

]
+ i

[
Aµ, DµAν −

1
2DνAµ

]
+ i

[
DνAµ −

1
2DµAν , Aν

]
+ i

2
[
DνAµ, DµAν

]
+ · · ·

}]
, (3.5)
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Figure 1. Monte Carlo results for β
{

1−W (R1, R2)
}
on a 44 lattice are plotted against β (Left)

and against β−1/2 (Right) for N = 3. The error bars are estimated by the jackknife method. The
dashed and solid lines represent c(nonzero)

1 and c(tot)
1 , respectively. Note that c(nonzero)

1 = c
(tot)
1 for

the 4× 4 maximal Wilson loop. The dash-dotted line represents a fit to the behavior c(tot)
1 + c β−1/2

except for the 1× 1 Wilson loop, which is fitted by c(tot)
1 + c/β.
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Figure 2. Monte Carlo results for β
{

1−W (R1, R2)
}
on a 44 lattice are plotted against β (Left)

and against 1/ log β (Right) for N = 2. The error bars are estimated by the jackknife method. The
dashed and solid lines represent c(nonzero)

1 and c(tot)
1 , respectively. Note that c(nonzero)

1 = c
(tot)
1 for

the 4× 4 maximal Wilson loop. The dash-dotted line represents a fit to the behavior c(tot)
1 + c/ log β

except for the 1× 1 Wilson loop, which is fitted by c(tot)
1 + c/β.
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where DµAν = (ei adj(Bµ) − 1)Aν . Thus, the action can be rewritten as

Sg = 1
2N

∑
µ,ν 6=µ

tr
[
β

2
∑
n

(
DµÃn,ν −DνÃn,µ

)2
− βV

(
UµUνU

†
µU
†
ν − 1

)
+ O

(
(βV )−

1
4
)]
,

(3.6)

where we have defined

Uµ = eiAµeiBµ . (3.7)

From this, one finds that the elements of Aµ are generically of the order of (βV )−
1
2 . Care

should be taken when there exist i and j 6= i such that (Bν)ii − (Bν)jj = 0 for any ν. In
that case, one has

(
adj(Bν)Aµ

)
ij

= 0 for any ν. Therefore, one finds that the ij element

of Aµ is of the order of (βV )−
1
4 . Based on this power counting,3 one finds that the terms

abbreviated as · · · in (3.5) are of the order of (βV )−
1
4 at most. One can rewrite the Haar

measure dUn,µ in terms of dBµ, dAµ and dÃn,µ as

dUn,µ = dBµ dAµdÃn,µ
(
1 + O(V

1
2β−

1
2 )
)
. (3.8)

Let us introduce the gauge fixing term for the non-zero modes

Sg.f. =
β

2N
∑
n

tr

(∑
µ

DµÃn,µ

)2
= β

2N
∑
k 6=0

tr
∣∣∣∣∣∑
µ

(ei(kµ+adj(Bµ))−1)Ãµ(k)
∣∣∣∣∣
2

, (3.9)

where Ãµ(k) represents the Fourier modes of Ãn,µ. At the leading order in 1/β, the partition
function becomes

Z =
∫
dBµ dAµdÃn,µ dc dc̄ e

−Szero−Snonzero , (3.10)

where c and c̄ are the ghosts associated with the gauge fixing (3.9) and the actions for the
zero modes and the nonzero modes are given, respectively, as

Szero = −βV2N
∑
µ,ν 6=µ

tr
(
UµUνU

†
µU
†
ν − 1

)
, (3.11)

Snonzero = β

2N
∑
k 6=0

∑
µ,λ

4 tr
{
Ãµ(−k) sin2 kλ + adj(Bλ)

2 Ãµ(k)

+c̄(−k) sin2 kλ + adj(Bλ)
2 c(k)

}
. (3.12)

The expectation value of an observable O can be obtained as

〈O〉 = 1
Z

∫
dBµ dAµdÃn,µ dc dc̄O e−Szero−Snonzero . (3.13)

3Note that this power counting is not valid for the 4D SU(2) case, where the fluctuations in Aµ are larger
than O((βV )−1/4).
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3.2 The integration over the torons

In this section, we discuss the integration over the torons Bµ, which represent the minimum
action configurations.

As stated below (3.6), the order of magnitude of the zero modes Aµ depends on the
toron configuration Bµ. Here we parametrize the toron configuration as

B(0)
µ =


b

(1)
µ 1V1

b
(2)
µ 1V2

. . .
b

(M)
µ 1VM

 , (3.14)

where (V1, · · · , VM ) is a partition of N , and consider the fluctuations Bµ = B
(0)
µ + B̃µ

around (3.14). The plaquette appearing in the action (3.11) for the zero modes can then
be expanded as∑

µ 6=ν
tr
(
eiQn,µei(1+Dµ)Qn,νe−i(1+Dν)Qn,µe−iQn,ν − 1

)
= −1

2 tr
[{
i([B(0)

µ , Aν ]− [B(0)
ν , Aµ]) + i[B̃µ, Aν ]− i[B̃ν , Aµ] + i[Aµ, Aν ]

−
[
Aµ, [B(0)

µ , Aν ]− 1
2[B(0)

ν , Aµ]
]
−
[
[B(0)

ν , Aµ]− 1
2[B(0)

µ , Aν ], Aν
]

− i

2
[
[B(0)

ν , Aµ], [B(0)
µ , Aν ]

]}2
+ · · ·

]
. (3.15)

Thus, the elements of Aµ that appear in the action quadratically are those outside the
Vr × Vr blocks. The number of such modes is

E2(V ) = (D − 1)
(
N2 −

M∑
r=1

V 2
r

)
, (3.16)

where −1 in the factor (D − 1) is due to the gauge fixing of the zero modes [6]. On the
other hand, the elements of Aµ that appear quartically are those inside the Vr × Vr blocks.
The number of such modes is

E4(V ) = D
M∑
r=1

(V 2
r − 1) , (3.17)

after subtracting the number of modes corresponding to B(0)
µ . Each of the quadratic and

quartic modes contribute to the partition function a factor of O(β−1/2) and O(β−1/4),
respectively. Hence, the fluctuations around the toron labeled by (V1, · · · , VM ) contribute
to the partition function as

Z(V ) ∼ β−{
1
2E2(V )+ 1

4E4(V )} , (3.18)

which implies that the toron configurations with V that minimizes 1
2E2(V ) + 1

4E4(V ) give
the dominant contribution. From this argument, one finds a critical dimension

Dc = 2N
N − 1 (3.19)
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such that for D ≤ Dc, the dominant configuration corresponds to M = N with V1 = V2 =
· · · = VN = 1, while for D ≥ Dc, it corresponds to M = 1 with V1 = N .

In D = 4 dimensions, in particular, N = 3 corresponds to the latter case, which means
that the trivial vacuum Bµ = 0 dominates in the SU(3) case. On the other hand, N = 2 is
marginal and one cannot determine the dominant toron configurations from this argument
alone in the SU(2) case.4

3.3 Perturbative expansion of the Wilson loops

The discussion above implies that one can obtain the perturbative expansion of the Wilson
loops for N = 3. Since the dominant toron is the trivial vacuum, Bµ fluctuates around 0;
namely Bµ = B̃µ. Expanding the zero-mode effective theory (3.11) with respect to Aµ and
B̃µ using (3.7), we obtain, at the leading order,

Z0 =
∫
dXµ e

−S0 ,

S0 = −βV4N
∑
µ 6=ν

tr[Xµ, Xν ]2 , (3.20)

where Xµ = Aµ + B̃µ. Thus, the zero-mode contribution to the Wilson loop in (2.2) can be
obtained by

−c
(zero)
1
β

= 1
2N (R1R2)2

〈
tr
(
[X1, X2]2

)〉
0
, (3.21)

where the expectation value 〈 · 〉0 is taken with respect to (3.20). Using the Schwinger-
Dyson equation

−βV
N

∑
µ 6=ν

〈
tr[Xµ, Xν ]2

〉
= D (N2 − 1) , (3.22)

derived from (3.20), one obtains (2.3).

4 Understanding based on the reduced model

In this section, we show how the difference between SU(2) and SU(3) in 4D can be understood
in terms of the zero-mode effective theory. For that, we have performed Hybrid Monte
Carlo simulations of the zero-mode effective theory (3.20) for N = 2 and N = 3 with
D = 4, where the coefficient βV in the action is set to unity since it can be absorbed by
rescaling Xµ.

In figure 3 we plot the histogram of tr(B̃µ)2 for N = 2 and N = 3. We observe a peak
near the origin for both cases, which suggests that the trivial vacuum dominates at large
β not only for SU(3) but also for SU(2). However, the difference is that the histogram
for the SU(2) case has a longer tail than that for the SU(3) case (Notice the scale of the
horizontal axis.).

4According to this argument, nontrivial toron configurations dominate over the trivial vacuum at large β
in the case of 3D SU(2) gauge theory and 2D SU(N) gauge theories with arbitrary N .
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Figure 3. Histograms of 1
N tr(Bµ)2 obtained by simulating the zero-mode effective theory for N = 3

(Left) and N = 2 (Right).
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Figure 4. Histograms of 1
N tr(Aµ)2 obtained by simulating the zero-mode effective theory for N = 3

(Left) and N = 2 (Right). We also plot the results obtained by setting the fluctuations B̃µ in the
toron to zero for comparison.

In figure 4 we plot the histogram of tr(Aµ)2 for N = 2 and N = 3, which shows that the
results for N = 2 has a much longer tail than that for N = 3. In the same figure, we also plot
the histogram obtained by setting B̃µ in Xµ to zero, which corresponds to prohibiting the
fluctuations in the toron. We observe that the histogram in the SU(2) case becomes almost
flat with a sudden plunge at 1

N tr(Aµ)2 ∼ 1600, which seems to indicate some problem in
the simulation in this case. In any case, it is conceivable that the large fluctuations in
the zero mode Aµ that appear around the trivial vacuum B̃µ = 0 are responsible for the
dominance of the trivial vacuum B̃µ = 0.

The problem in the simulation for N = 2 can be seen also by checking the Schwinger-
Dyson equation (3.22). In the case of setting B̃µ = 0, the right-hand side of eq. (3.22) should
be replaced by D(N2 −N). In table 1 we show the left-hand side of the Schwinger-Dyson
equation normalized by the constant on the right-hand side so that one obtains unity if
the Schwinger-Dyson equation is satisfied. We find that the result is indeed unity within
the error bar for N = 3, but not for N = 2. In figure 5 we plot the history of this quantity
in the case without the fluctuations B̃µ in the toron, which corresponds to the case with
larger deviation from unity for the N = 2 case as one can see from table 1. We observe that
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N = 3 N = 2
w/o B̃µ 0.999(3) 0.729(8)
w/ B̃µ 1.0009(12) 0.966(4)

Table 1. The expectation values of − βV
DN

∑
µ 6=ν〈tr[Xµ, Xν ]2〉 normalized by N2 − 1 or by N2 −N

depending on whether B̃µ is included or not.
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Figure 5. Histories of the quantity that is supposed to be unity theoretically due to the Schwinger-
Dyson equation in the zero-mode effective theory for N = 3 (Left) and N = 2 (Right). The black
horizontal line indicates the exact value, whereas the dashed line with a band indicates the measured
expectation value with a statistical error. The two types of line coincide in the N = 3 case.

the history for N = 2 has larger spikes than that for N = 3. From this observation with
the fact that the expectation value is smaller than theoretically expected, it is conceivable
that the simulation fails to sample rare configurations that give large spikes. We consider
that this is due to the large fluctuations in Aµ that appear when the fluctuations B̃µ in the
toron become small.

These observations can be understood by recalling the dynamical properties of the
reduced bosonic model (3.20). In particular, it was found that the eigenvalue distribution
ρ(x) of one of the D matrices, say X1, in the model, has a power-law tail [9]

ρ(x) ∼ x−p , p = 2N(D − 2)− 3D + 5 (4.1)

except for D = N = 3. Note that, in D = 4, the power is p = 1 for N = 2 and p = 5 for
N = 3. Since the partition function is given by Z ∼

∫∞
−∞ dx ρ(x), it converges for N = 3,

but diverges logarithmically5 for N = 2. When Bµ 6= 0, one obtains quadratic terms in Aµ
from (3.5), which suppress the fluctuations in Aµ. Therefore, in the N = 2 case, the huge
fluctuations in Aµ appear only when Bµ = 0 and make Bµ = 0 dominate at large β.

Next we discuss the slow convergence to the trivial vacuum, which is found to be
described by the 1/ log β corrections in figure 2. Note first that, the fluctuations in Aµ is
bounded by O(β−1/4) according to the effective theory (3.6) at large β even when Bµ = 0.
Therefore, the fluctuations in Aµ cannot be the reason for the slow convergence, and hence
we focus on the fluctuations in Bµ, which will be denoted in what follows as B for simplicity.

5The logarithmic divergence of the partition function (3.20) for N = 2 was found earlier in ref. [6] from a
different argument. However, the dominance of the trivial vacuum was not concluded.
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Figure 6. (Top) Histograms of |P | for N = 3 on the 44 lattice. In the left panel, we show the region
0 ≤ |P | ≤ 0.9 with the bin size 0.02, while in the right panel, we show the region 0.9 ≤ |P | ≤ 1 with
the bin size 0.001. (Bottom-Left) |P | for N = 3 on the 44 lattice plotted against 1/β. (Bottom-
Right) 1 − |P | for N = 3 on the 44 lattice plotted against 1/

√
β. The error bars in the bottom

panels are estimated by the jackknife method. The dashed line represents the leading perturbative
prediction (5.1). The solid line represents a fit assuming O(β−1) corrections.

Since the quadratic term in (Aµ)12 in the action has a coefficient ((Bµ)11 − (Bµ)22)2 ∼ B2,
the partition function for Bµ after integrating out Aµ is suppressed at large B by 1/B2.
At small B, on the other hand, the partition function for Bµ is expected to have a bound∫
dx ρ(x) ∼ ln β due to the power-law behavior (4.1) since β plays the role of a cutoff for

the zero-mode effective theory. Combining these two asymptotic behaviors of the partition
function for Bµ, the typical value of B can be roughly estimated by balancing 1/B2 and
ln β. This explains the slow convergence to the trivial vacuum.

5 Polyakov line v.s. perturbative predictions

In this section we provide further supports on our conclusion by measuring the Polyakov line
for SU(2) and SU(3) on the 44 lattice with the same setup as in section 2. In particular, we
show that the probability distribution of the Polyakov line exhibits a remarkable difference,
which can be understood by the discussion in the previous section.

In figure 6, we present our results for SU(3) on the 44 lattice.6 In the Top panels, we
show the histogram of the Polyakov line |P | for various β within the region |P | ≤ 0.9 (Left)

6The auto-correlation time of the Polyakov line |P | turned out to be almost the same as that of the
maximal Wilson loop. See footnote 2 and appendix B for the details.
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Figure 7. (Top) Histograms of |P | for N = 2 on the 44 lattice. In the left panel, we show the region
0 ≤ |P | ≤ 0.9 with the bin size 0.02, while in the right panel, we show the region 0.9 ≤ |P | ≤ 1 with
the bin size 0.001. (Bottom-Left) |P | for N = 2 on the 44 lattice plotted against 1/β. (Bottom-Right)
1− |P | for N = 2 on the 44 lattice plotted against 1/ log β. The error bars in the bottom panels are
estimated by the jackknife method. The solid line represents a fit assuming O(1/ log β) corrections.

and |P | ≥ 0.9 (Right), respectively. The peak near |P | = 1 becomes sharper and sharper
for increasing β, which confirms that the trivial vacuum dominates and the zero-mode
fluctuations are suppressed in the large β limit.

Using the perturbative expansion around Bµ = 0, we obtain a prediction for the
Polyakov line as

P = 1− L4
2

2N
〈

tr
[
(A4 + B̃4)2

]〉
+ L4

4

4!N
〈

tr
[
(A4 + B̃4)4

]〉
− N2 − 1

2βV
∑
k 6=0

1
4
∑
µ sin2 kµ

2

∣∣∣∣∣∣
L4−1∑
m=0

eik4m

∣∣∣∣∣∣
2

+ O(β−
3
2 ) . (5.1)

The last term in the first line is logarithmically divergent for N = 3 due to the power-law
tail (4.1). In the full lattice theory, this divergence is replaced by unpredictable O(β−1 log β)
terms, which are indistinguishable from the O(β−1) corrections. In the Bottom-Right panel,
we plot 1− |P | against 1/

√
β and compare our results against the O(β−1/2) perturbative

prediction. We find that our results can be fitted by assuming O(β−1) corrections as
expected from the above argument.

In figure 7, we show our results for the N = 2 case. From the Top panels, we find
that the histogram of |P | has a peak near |P | = 1, which becomes sharper and sharper for
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increasing β. However, the difference from the SU(3) case lies in the tail of the histogram,
where the height of the histogram is decreasing but only slowly. From the Bottom-Left
panel, it is not even clear whether the expectation value of |P | is approaching unity as β
increases. From the Bottom-Right panel, we find that 1− |P | decreases as 1/ log β at large
β, which is similar to the behavior of the Wilson loop in figure 2 (Right). These behaviors
are consistent with our conclusion in section 4 that the trivial vacuum dominates at large
β, while the fluctuations in the zero modes Aµ are large and decrease very slowly with
increasing β.

6 Summary and discussions

In this paper we discussed a subtle issue in lattice perturbation theory for 4D SU(2) and
SU(3) gauge theories with periodic boundary conditions. The minima of the action are
actually degenerate and they are given by the toron configurations. For the SU(3) case,
it is known that the trivial vacuum dominates over the nontrivial torons as β →∞, and
the fluctuations of the zero modes are described by the effective theory, which takes the
form of the bosonic reduced model. In the SU(2) case, the criterion on the dominance of
the trivial vacuum discussed in the previous work is marginal. Our simulations on a 44

lattice have shown in this case that the Wilson loops at large β reproduce the leading 1/β
correction obtained perturbatively around the trivial vacuum as shown in figure 2 although
the subleading term decreases very slowly except for the 1× 1 Wilson loop.

We have provided an explanation of this observation based on the zero-mode effective
theory. Namely, the trivial vacuum dominates because the fluctuations in the zero modes
become large around it as one can deduce from the power-law tail of the eigenvalue
distribution in the reduced model. We have confirmed our conclusion by measuring the
Polyakov line, which shows the dominance of the trivial vacuum as well as the large
fluctuations in the zero modes at large β.

The issue addressed in this paper concerns any SU(N) gauge theory in a finite periodic
box. Note, however, that it becomes irrelevant in the infinite-volume limit in which the
boundary conditions have no effects. This can be understood since the gauge symmetry
and the center symmetry allows us to restrict the integration domain of Bµ to [6]7

− 2π
Lµ

< (Bµ)ii − (Bµ)jj <
2π
Lµ

, (6.1)

which shrinks to zero in the Lµ →∞ limit. On the other hand, the issue is relevant in a
finite periodic box8 even in the continuum limit, in which the toron configurations should

7In fact, one can use the center symmetry to restrict the integration domain of Bµ to

−N − 1
N

π

Lµ
< (Bµ)ii ≤

N − 1
N

π

Lµ
,

as one can prove explicitly for N = 2 and 3. However, this does not affect our discussion here.
8Such a set up is useful in making perturbative analyses applicable. For instance, QCD in a small box

has been used recently in obtaining the critical point for color superconductivity based on the one-loop
self-consistency equation [10].
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be described by Bcont
µ ≡ Bµ/a, where a is the lattice spacing, since the integration domain

of Bcont
µ remains finite in the Lµ →∞ limit with Lµa fixed. In order to clarify these points,

we have performed simulations on the 84 lattice and present our results for the Wilson loops
and the Polyakov line in appendix A.

The subtlety in the 4D SU(2) gauge theory discussed in this paper is expected to
be important also when one performs Monte Carlo simulations in a small box since the
simulations may suffer from the ergodicity problem associated with the nontrivial dynamics
of the zero modes. For instance, it was reported that the “two-color QCD” simulations
on a 33 × 64 lattice with Nf = 2 flavor Wilson quarks at finite density failed to reproduce
the behavior of the quark number density expected for free quarks [11]. We suspect that
there might be some problem in the simulations judging from the fact that our independent
simulations with the same setup reproduce the expected behavior.

Finally let us recall that the trivial vacuum is expected not to dominate for the 3D
SU(2) gauge theory according to the criterion of ref. [6] (See footnote 4.). Note, however,
that the partition function of the naive zero-mode effective theory (3.20) diverges according
to the eigenvalue distribution (4.1) for D = 3 and N = 2. This effect, which clearly favors
the trivial vacuum, is not taken into account in the criterion of ref. [6]. Therefore we think
it worth while to simulate this theory in a small box to see whether the prediction (2.2)
around the trivial vacuum is approached or not in the large β limit.
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A Results on the 84 lattice

In this appendix, we present our result on the 84 lattice and discuss the behaviors of the
Wilson loops and the Polyakov line at large β. In particular, we find that the effect of the
zero modes is suppressed for small Wilson loops, whereas it remains to be important for
large Wilson loops and the Polyakov line.

Let us first discuss the Wilson loops. In figures 8 and 9, we plot β
{

1−W (R1, R2)
}
for

square Wilson loops (R1 = R2) on the 84 lattice with β = 3200 – 19200 in the SU(3) case and
the SU(2) case, respectively. In the SU(3) case, we find from figure 8 that β

{
1−W (R1, R2)

}
can be fitted well with c

(tot)
1 + c β−1 except for the maximal 8 × 8 Wilson loop, which

can be fitted to c(tot)
1 + c β−1/2. Thus the O(β−1/2) contribution, which comes from the

zero-mode fluctuations, is indeed suppressed for small Wilson loops on a larger lattice.
In the SU(2) case, we find from figure 9 that the smaller (1× 1 and 2× 2) Wilson loops
can be fitted by c(tot)

1 + c β−1, whereas the larger (4 × 4 and 8 × 8) Wilson loops can be
fitted by c(tot)

1 + c/ ln β. Thus the O(1/ ln β) contribution, which comes from the zero-mode
fluctuations, is indeed suppressed for small Wilson loops on a larger lattice. Note also that
the dominance of the trivial vacuum Un,µ = 1 holds in the SU(2) case as well as in the
SU(3) case even on a larger lattice.

Let us next discuss the Polyakov line. In the Top panels of figure 10, we show our
results for the SU(3) case. We find that the Polyakov line |P | is consistent with the leading
O(β−

1
2 ) perturbative prediction in (5.1), where the coefficient is the same as in the case of

the 44 lattice. We can also fit our data assuming subleading O(β−1) corrections. In the
Bottom panels of figure 10, we show our results for the SU(2) case, where we find that |P |
can be fitted by assuming O(1/ ln β) corrections. Thus the Polyakov line exhibits the effect
of the zero modes even on a larger lattice.
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Figure 8. Monte Carlo results for β
{

1−W (R1, R2)
}
on the 84 lattice are plotted against 1/β (Left)

and against β−1/2 (Right) for N = 3. The error bars are estimated by the jackknife method. The
dashed and solid lines represent c(nonzero)

1 and c(tot)
1 , respectively. The dash-dotted line represents a

fit to the behavior c(tot)
1 + c/β for the 1× 1, 2× 2 and 4× 4 Wilson loops and c(tot)

1 + c β−1/2 for
the 8× 8 maximal Wilson loop.
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Figure 9. Monte Carlo results for β
{

1−W (R1, R2)
}
on the 84 lattice are plotted against 1/β (Left)

and against 1/ log β (Right) for N = 2. The error bars are estimated by the jackknife method. The
dashed and solid lines represent c(nonzero)

1 and c(tot)
1 , respectively. The dash-dotted line represents

a fit to the behavior c(tot)
1 + c/β for the 1× 1 and 2× 2 Wilson loops, and c(tot)

1 + c/ log β for the
4× 4 and 8× 8 Wilson loops.
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Figure 10. Monte Carlo results for the Polyakov line on the 84 lattice for N = 2 (Top) and 3
(Bottom). In the Left panels, |P | is plotted against 1/β, while in the Right panels, 1 − |P | is
plotted against 1/

√
β for N = 3 and against 1/ log β for N = 2. The error bars are estimated by

the jackknife method. The dashed line in the Top-Right panel for N = 3 represents the leading
perturbative prediction (5.1). The solid line represents a fit assuming O(β−1) corrections for N = 3
and O(1/ log β) corrections for N = 2.
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B Supplementary information on our analysis

In this appendix, we provide some supplementary information on our analysis. The auto-
correlation time of the quantities plotted in figures 1, 2, 6 and 7 are summarized in table 2
and 3. The information on the fitting shown in figures 1, 2, 6 and 7 are summarized in
table 4 and 5.

auto-correlation time
1/β

1
2 β trajectories W (1, 1) W (2, 2) W (3, 3) W (4, 4) |P |

0.00722 19200 400000 5000 20000 5000 15000 15000
0.0102 9600 400000 1000 10000 1000 10000 10000
0.0204 2400 400000 5000 10000 4000 10000 10000
0.0289 1200 600000 2000 4000 2000 5000 6000
0.0400 625 400000 1000 2000 1000 3000 5000

Table 2. The total number of trajectories and the auto-correlation time in units of trajectories for
the Wilson loops and the Polyakov line are presented in the SU(3) case.

auto-correlation time
1/ log β β trajectories W (1, 1) W (2, 2) W (3, 3) W (4, 4) |P |
0.101 19200 1000000 4000 80000 5000 50000 50000
0.109 9600 1000000 15000 50000 20000 60000 60000
0.150 800 200000 1000 2000 1000 2000 4000
0.196 165 200000 500 10000 500 3000 40000
0.242 62.5 200000 1000 1000 2000 1000 10000
0.256 50 200000 10000 2000 10000 1000 2000

Table 3. The total number of trajectories and the auto-correlation time in units of trajectories for
the Wilson loops and the Polyakov line are presented in the SU(2) case.

1/
√
β χ2 d.o.f. p-value

W (1, 1) 0.00721–0.0354 10.4 14 0.73
W (2, 2) 0.00721–0.0289 5.87 11 0.88
W (3, 3) 0.00721–0.0448 12.2 16 0.73
W (4, 4) 0.00721–0.0448 7.84 16 0.95
|P | 0.00721–0.0289 9.43 11 0.58

Table 4. The information on the fitting for the Wilson loops and the Polyakov line such as the
fitting range, χ2-value (before dividing by the degrees of freedom) and the p-value are presented in
the SU(3) case.
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1/ log β χ2 d.o.f. p-value
W (1, 1) 0.101–0.182 6.27 13 0.94
W (2, 2) 0.101–0.145 10.0 7 0.19
W (3, 3) 0.101–0.161 10.5 10 0.40
W (4, 4) 0.101–0.161 7.67 10 0.66
|P | 0.101–0.167 9.19 11 0.60

Table 5. The information on the fitting for the Wilson loops and the Polyakov line such as the
fitting range, χ2-value (before dividing by the degrees of freedom) and the p-value are presented in
the SU(2) case.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] T. Eguchi and H. Kawai, Reduction of Dynamical Degrees of Freedom in the Large N Gauge
Theory, Phys. Rev. Lett. 48 (1982) 1063 [INSPIRE].

[2] A. Gonzalez-Arroyo and M. Okawa, The Twisted Eguchi-Kawai Model: A Reduced Model for
Large N Lattice Gauge Theory, Phys. Rev. D 27 (1983) 2397 [INSPIRE].

[3] A. Gonzalez-Arroyo and M. Okawa, Large N reduction with the Twisted Eguchi-Kawai model,
JHEP 07 (2010) 043 [arXiv:1005.1981] [INSPIRE].

[4] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large N reduced model as superstring,
Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].

[5] K.N. Anagnostopoulos et al., Progress in the numerical studies of the type IIB matrix model,
arXiv:2210.17537 [DOI:10.1140/epjs/s11734-023-00849-x] [INSPIRE].

[6] A. Coste, A. Gonzalez-Arroyo, J. Jurkiewicz and C.P. Korthals Altes, Zero Momentum
Contribution to Wilson Loops in Periodic Boxes, Nucl. Phys. B 262 (1985) 67 [INSPIRE].

[7] Z. Fodor et al., The Yang-Mills gradient flow in finite volume, JHEP 11 (2012) 007
[arXiv:1208.1051] [INSPIRE].

[8] Z. Fodor et al., The gradient flow running coupling scheme, PoS LATTICE2012 (2012) 050
[arXiv:1211.3247] [INSPIRE].

[9] W. Krauth and M. Staudacher, Eigenvalue distributions in Yang-Mills integrals, Phys. Lett. B
453 (1999) 253 [hep-th/9902113] [INSPIRE].

[10] T. Yokota et al., Color superconductivity on the lattice — analytic predictions from QCD in a
small box, JHEP 06 (2023) 061 [arXiv:2302.11273] [INSPIRE].

[11] S. Hands, T.J. Hollowood and J.C. Myers, Numerical Study of the Two Color Attoworld,
JHEP 12 (2010) 057 [arXiv:1010.0790] [INSPIRE].

[12] S. Ueda et al., Development of an object oriented lattice QCD code ‘Bridge++’, J. Phys. Conf.
Ser. 523 (2014) 012046 [INSPIRE].

[13] Y. Akahoshi et al., General purpose lattice QCD code set Bridge++ 2.0 for high performance
computing, J. Phys. Conf. Ser. 2207 (2022) 012053 [arXiv:2111.04457] [INSPIRE].

– 21 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.48.1063
https://inspirehep.net/literature/176459
https://doi.org/10.1103/PhysRevD.27.2397
https://inspirehep.net/literature/182439
https://doi.org/10.1007/JHEP07(2010)043
https://arxiv.org/abs/1005.1981
https://inspirehep.net/literature/855872
https://doi.org/10.1016/S0550-3213(97)00290-3
https://arxiv.org/abs/hep-th/9612115
https://inspirehep.net/literature/427202
https://arxiv.org/abs/2210.17537
https://doi.org/10.1140/epjs/s11734-023-00849-x
https://inspirehep.net/literature/2173460
https://doi.org/10.1016/0550-3213(85)90064-1
https://inspirehep.net/literature/17050
https://doi.org/10.1007/JHEP11(2012)007
https://arxiv.org/abs/1208.1051
https://inspirehep.net/literature/1125976
https://doi.org/10.22323/1.164.0050
https://arxiv.org/abs/1211.3247
https://inspirehep.net/literature/1202684
https://doi.org/10.1016/S0370-2693(99)00395-0
https://doi.org/10.1016/S0370-2693(99)00395-0
https://arxiv.org/abs/hep-th/9902113
https://inspirehep.net/literature/495398
https://doi.org/10.1007/JHEP06(2023)061
https://arxiv.org/abs/2302.11273
https://inspirehep.net/literature/2635443
https://doi.org/10.1007/JHEP12(2010)057
https://arxiv.org/abs/1010.0790
https://inspirehep.net/literature/872038
https://doi.org/10.1088/1742-6596/523/1/012046
https://doi.org/10.1088/1742-6596/523/1/012046
https://inspirehep.net/literature/1299913
https://doi.org/10.1088/1742-6596/2207/1/012053
https://arxiv.org/abs/2111.04457
https://inspirehep.net/literature/1962992

	Introduction
	Wilson loops v.s. perturbative predictions
	Brief review of the zero-mode effective theory
	The effective action for the zero modes
	The integration over the torons
	Perturbative expansion of the Wilson loops

	Understanding based on the reduced model
	Polyakov line v.s. perturbative predictions
	Summary and discussions
	Results on the 8**(4) lattice
	Supplementary information on our analysis

