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1 Introduction

Two-dimensional quantum Liouville theory has been a subject of much investigation since

its first appearance in the study of non-critical string theory [1] (for reviews see e.g. [2–4]).

The theory provides a realization of two-dimensional quantum gravity [5, 6], is an essential

ingredient of many string theory backgrounds and has been related to certain N = 2

SCFTs [7]. As a conformal field theory (CFT) it is non-compact, thus the set of Virasoro

representations that make up its space of states is continuous.

The aim of this work is to study a generalization of the two-dimensional Liouville

CFT to any number of even dimensions that consists of a log-correlated scalar field with a

background Q-curvature charge and an exponential Liouville-type potential (for an earlier

work on the dynamics of the four-dimensional conformal factor see [8]). Consider an even-

dimensional manifold M of dimension d without a boundary, equipped with a Euclidean

signature metric gab. The action of the higher-dimensional Liouville CFT reads:

SL(φ, g) =
d

2Ωd(d− 1)!

∫
M
ddx
√
g

(
φPgφ+ 2QQgφ+

2

d
Ωd(d− 1)!µedbφ

)
. (1.1)
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φ is a scalar field, Pg is the conformally covariant GJMS operator [9]:

Pg = (−�)
d
2 + lower order , (1.2)

where � = gab∇a∇b with ∇a being the covariant derivative, and Qg is the Q-curvature

scalar [10]:

Q =
1

2(d− 1)
(−�)

d
2
−1R+ . . . . (1.3)

The dimensionless parameters in the action (1.1) are the background charge Q, the

cosmological constant µ and b. Ωd = 2π
d+1
2

Γ[ d+1
2

]
is the surface volume of the d-dimensional

sphere Sd. When d = 2 the action (1.1) is that of the two-dimensional Liouville field

theory. When µ = 0, the action (1.1) describes a higher-dimensional Coulomb gas theory,

and we will denote this action by SC.G.(φ, g). It appeared in [11] as part of a proposal

for a field theory description of inertial range turbulence and the analysis of the A-type

conformal anomaly.

The action (1.1) defines non-unitary conformally invariant theories that localize semi-

classically on solutions that describe manifolds with a constant negative Q-curvature. We

will show that CT is independent of the Q-curvature charge and is the same as that of a

higher derivative scalar theory [12]. We will calculate the A-type Euler conformal anomaly

of these theories. We will study the correlation functions, derive an integral expression for

them and calculate the three-point functions of light primary operators. The result is a

higher-dimensional generalization of the two-dimensional DOZZ formula for the three-point

function of such operators [13, 14].

The paper is organized as follows. In section 2 we will consider the classical higher-

dimensional Liouville CFTs, verify their Weyl invariance, derive the field equations and de-

fine the background Q-curvature charge. In section 3 we will study the higher-dimensional

Coulomb gas theory, the two-point function and the quantum background Q-curvature

charge, CT and the A-type conformal anomaly. In section 4 we will analyze the Liouville

correlation functions, derive an integral expression for them and calculate the three-point

functions of light primary operators. Section 5 is devoted to a discussion and outlook. In

appendix A we briefly review the higher-dimensional Möbius transformations that are used

in section 4.

2 Higher-dimensional liouville CFT

2.1 GJMS operators and Q-curvature

There are two objects in the action (1.1) that play an important role in conformal geom-

etry (for a review see e.g. [15]). The first are the conformally covariant GJMS operators

Pg [9]. For instance, in two and four dimensions they are the Laplacian and the Paneitz

operator [16], respectively:

Pd=2 = −�, Pd=4 = ∇a
(
∇a∇b + 2Rab − 2

3
gabR

)
∇b . (2.1)
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The second object is the Q-curvature Qg [10], that takes in two and four dimensions

the form:

Qd=2 =
1

2
R, Qd=4 = −1

6

(
�R+ 3RabR

ab −R2
)
. (2.2)

The integral of the Q-curvature on a Riemannian manifold M is an invariant of the con-

formal structure, but is not in general a topological invariant. When M is a conformally

flat manifold, the Q-curvature is related to the Euler density Ed and:∫
M
ddx
√
gQg =

1

2
Ωd(d− 1)!χ(M) , (2.3)

where χ(M) is the Euler characteristic of M .

2.2 Classical Weyl invariance

Consider the Liouville CFT defined by the action (1.1). Under a Weyl transformation of

the metric gab → e2σgab the Liouville field φ transforms as:

φ→ φ−Qσ , (2.4)

while the GJMS operator Pg transforms as:

Pe2σg = e−dσPg , (2.5)

and the Q-curvature as:

Qe2σg = e−dσ (Qg + Pgσ) . (2.6)

These transformations imply that the action (1.1) is classically Weyl invariant:

SL(φ−Qσ, e2σg) = SL(φ, g)− SC.G.(Qσ, g) , (2.7)

for Q = 1
b . This is the classical value of the background charge, and it will be modified

by quantum corrections. We denoted previously by SC.G.(φ, g) the µ = 0 action (1.1) that

describes a higher-dimensional Coulomb gas theory.

Equation (2.6) can be written as:

Pgσ +Qg = Qe2σgedσ . (2.8)

If we take Qe2σg = Q a real constant then solutions σ to equation (2.8) are answers to the

question: given a manifold M with a metric gab, can we find σ such that under a Weyl

transformation gab → e2σgab we get a manifold that is conformally equivalent to M and has

a constant Q-curvature. In two dimensions this means that we get a conformally equivalent

surface with a constant scalar curvature. In higher dimensions the Q-curvature does not

determine the curvature tensor, however, the new metric with a constant Q-curvature may

have special properties.

The field equations derived from the Liouville action (1.1) for a rescaled Liouville field

σ = bφ take the form (2.8) with a negative constant Q-curvature:

Pgσ +Qg = −Ωd(d− 1)!µb2edσ . (2.9)

– 3 –
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2.3 Background charge

For a conformally flat manifold with the topology of the sphere we get using (2.3) for a

constant shift of the field by φ0:

SC.G.(φ+ φ0, g) = SC.G.(φ, g) + dQφ0 . (2.10)

We will study these theories on the d-sphere Sd and the following discussion is a generaliza-

tion of the two-dimensional analysis in [14] to d-dimensions. Since the sphere is conformally

equivalent to flat space we can preform a (singular) Weyl transformation and work with a

flat metric. The results boundary conditions for φ read:

φ(x) = −2Q log (|x|) +O(1), |x| → ∞ , (2.11)

and this is called a background charge −Q at infinity.

When using a flat reference metric, one must regulate the region of integration and

introduce boundary terms. We can define the action to be the large R limit of:

SL(φ) =
d

2Ωd(d− 1)!

∫
Bd
ddx

(
φ(−�)

d
2φ+

2

d
Ωd(d− 1)!µedbφ

)
+

dQ

Ωd−1

∫
∂Bd

dd−1Ωφ ,

(2.12)

where Bd is the d-dimensional ball of radius R and dd−1Ω is the volume element on its

boundary ∂Bd = Sd−1. In writing down this action we have neglected boundary terms that

are necessary in order to analyse the conformal boundary conditions for this theory [17],

but are irrelevant to our analysis. In addition, this action needs to be regularized in order

to ensure its finiteness, and this is done by adding a constant term of the form NQ2 logR

where N is a suitable number.

2.4 The semiclassical limit

The semiclassical limit of the theory is b → 0. In this limit it is convenient to work with

the rescaled field φc = bφ and the action (2.12) reads:

b2SL(φc) =
d

2Ωd(d− 1)!

∫
B
ddx

(
φc(−�)

d
2φc +

2

d
Ωd(d− 1)!µb2edφc

)
+

d

Ωd−1

∫
∂B
dd−1Ωφc +O(b) . (2.13)

The boundary condition (2.11) becomes:

φc(x) = −2 log (|x|) +O(1), |x| → ∞ . (2.14)

The field equations that follow from (2.13) read:

(−�)
d
2φc = −Ωd(d− 1)!µb2edφc , (2.15)

and this is equivalent to the equation:

Qe2φcδab = −Ωd(d− 1)!µb2 . (2.16)

Equation (2.16) describes a manifold with constant negative Q-curvature. Indeed, as dis-

cussed in a previous section, the semiclassical field equations resulting from the variation

of (1.1) on a manifold M with a metric gab describe metrics on M that are conformally

equivalent to gab with a constant negative Q-curvature.

– 4 –
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3 Higher-dimensional Coulomb gas theory

3.1 Two-point function

In Coulomb gas theory, i.e. µ = 0, the two-point correlation function of φ reads:

〈φ(x)φ(0)〉 =
2

d
log

(
L

|x− y|

)
+ . . . , (3.1)

where the computation is done using an IR regulator L in the limit L → ∞ and the dots

indicate finite regulator dependent terms. As in the two-dimensional case, we define vertex

operators as:

Vα(x) = edαφ(x) , (3.2)

which in the free Coulomb gas theory are primary conformal operators of dimension:

∆α = dα(Q− α) . (3.3)

In the Liouville theory the result is the same, since we can compute the dimension of vertex

operators by considering correlations in a state of our choice. By choosing a state in which

φ� 0 we can turn off the Liouville interaction potential and reduce the calculation to the

free field case.

In the Liouville CFT we require that the interaction term has dimension ∆b = d, and

thus using (3.3) we get the quantum-corrected value of the background charge:

Q = b+
1

b
. (3.4)

3.2 The coefficient CT

The flat space stress-energy tensor is defined as the variation of the action with respect to

the metric:

Tab = − 2
√
g

δS

δgab

∣∣∣∣
gab=δab

. (3.5)

As a result of the Weyl transformation law of the Liouville field and the quantum cor-

rections to the dimension of the interaction term, the cosmological constant term in the

Liouville action is not only Weyl invariant, it is in fact invariant under all variations of the

metric. Therefore, the stress-energy tensors obtained from the Liouville action and from

the Coulomb gas action are identical.

We can write the dependence of the flat space stress-energy tensor on the background

charge in the following way:

Tab = Tab|Q=0 + (−1)
d
2

dQ

Ωd(d− 1)!(d− 1)

(
∂a∂b −

1

d
δab�

)
�
d
2
−1φ , (3.6)

where Tab|Q=0 is the stress energy tensor in the absence of a background charge, i.e. the

part originating from the variation of Pg.

– 5 –
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Looking at the two-point function of the stress-energy tensor for Coulomb gas theory,

and using the fact that the theory is Gaussian and the three-point function vanishes:

〈Tab(x)Tcd(0)〉 − 〈Tab(x)Tcd(0)〉|Q=0 ∝
(
∂a∂b −

δab
d
�

)(
∂c∂d −

δcd
d
�

)
�d−2 〈φ(x)φ(0)〉 .

(3.7)

The r.h.s. vanishes (up to contact terms) for d > 2.

The coefficient CT is defined by:

〈Tab(x)Tcd(0)〉 =
CT

(x2)d
Iab,cd(x) , (3.8)

where Iab,cd(x) is the inversion tensor for traceless symmetric tensors. The calculation (3.7)

implies that for d 6= 2 the coefficient CT is independent of the background charge Q and is

the same as calculated for the higher derivative scalar theory in [12].

3.3 A-type conformal anomaly

Consider the quantum action of Coulomb gas theory:

W = − log(Z) =
1

2
log

(
det

(
d

Ωd(d− 1)!

√
gPg

))
− 1

2

(
d

Ωd(d− 1)!

)2

Q2QgDQg , (3.9)

where D is the propagator of the theory:

(
√
gPg)xD(x, y) =

Ωd(d− 1)!

d
δd(x, y) , (3.10)

and we used the notation:

QgDQg ≡
∫
ddxddy (

√
gQg)xD(x, y) (

√
gQg)y . (3.11)

The A-type conformal anomaly coefficient a is defined by:

〈T aa 〉 =
1
√
g

δW

δσ
= (−1)

d
2

+1aEd , (3.12)

where Ed is the Euler density normalized as:∫
Sd

√
gddxEd = Ωdd! , (3.13)

and we work on a conformally flat space where all the Weyl invariant terms on the r.h.s.

of (3.12) vanish. We get:

a =
2

Ωd(d!)2

∫ d
2

0
dt

d
2
−1∏
i=0

(
i2 − t2

)
+

(−1)
d
2

Ωd(d− 1)!
Q2 . (3.14)

The first term in (3.14) has been calculated in [18].

– 6 –
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4 Liouville correlation functions

4.1 Correlation functions

We are interested in calculating correlation functions of the vertex operators (3.2):

〈Vα1(x1) · · ·Vαn(xn)〉 ≡
∫
Dφe−SL

n∏
i=1

edαiφ(xi) . (4.1)

By shifting φ→ φ− log µ
db we get using (2.3) the KPZ scaling relation:

〈Vα1 · · ·Vαn〉 ∝ µs, s =
Q−

∑
i αi

b
. (4.2)

Consider correlation functions with a fixed area A =
∫
ddxedbφ. This is done by inserting

the identity 1 =
∫∞

0 dAδ
(
A−

∫
ddxedbφ

)
into the Liouville functional. We get:

〈Vα1 · · ·Vαn〉 =

∫ ∞
0

dA

A
e−µA 〈Vα1 · · ·Vαn〉A , (4.3)

where the fixed area correlation function is defined by:

〈Vα1(x1) · · ·Vαn(xn)〉A =

∫
Dφe−SC.G.Aδ

(
A−

∫
ddxedbφ

) n∏
i=1

edαiφ(xi) . (4.4)

By shifting φ→ φ+ logA
db one sees that the fixed area correlation functions satisfy the

scaling relation:

〈Vα1(x1) · · ·Vαn(xn)〉A = A−s 〈Vα1(x1) · · ·Vαn(xn)〉A=1 . (4.5)

Using the relation (4.3) we find that for Re(s) < 0:

〈Vα1 · · ·Vαn〉 = (µA)sΓ(−s) 〈Vα1 · · ·Vαn〉A . (4.6)

For Re(s) ≥ 0 the integral has a UV divergence at A→ 0. This corresponds to the fact

that when Re(s) ≥ 0, as we will see later, there are no solutions to the classical equation

of motion, i.e., there are no real saddle points. In this case the correlation function will

include a non-universal part which is polynomial in µ and depends on a UV cutoff, and a

universal cutoff independent part which is proportional to (µA)s 〈Va1(x1) · · ·Van(xn)〉A.

4.2 Relation to a free field

The KPZ scaling relation (4.2) shows that the correlation functions in Liouville theory are

not analytic in µ and therefore we expect the naive perturbation theory in µ to fail. This

follows from the fact that by shifting the Liouville field we can always change the value of

µ and therefore there is no sense in which we can consider it to be small.

We can separate the zero mode of the path integral over φ(x) from the non-zero mode

φ0 and write φ(x) = φ0 + φ̄(x). As in the two-dimensional case (see e.g. [3]), the Liouville

measure factorizes in the following way:

Dφe−SL(φ) = dφ0e
−dQφ0 [Dφ̄]µ,φ0 . (4.7)

– 7 –
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Under translations of the zero mode the measure dφ0 is invariant and the measure over the

non-zero mode satisfies [Dφ̄]e−dbδµ,φ0+δ = [Dφ̄]µ,φ0 . In the limit φ0 → −∞ the interaction

term vanishes and the measure [Dφ̄]µ,φ0 is asymptotic to the free Coulomb gas measure

with corrections given by the interaction term:

[Dφ̄]µ,φ0 ∼
φ0→−∞

[Dφ̄]freee
−SC.G.(φ̄)

∞∑
n=0

(−µ)nednbφ0

n!

(∫
ddxedbφ̄

)n
. (4.8)

This is a power series in the translationally invariant small variable µedbφ0 . While the

limit φ0 → ∞ of the integral over the zero mode is well behaved due to the presence of

the Liouville-type interaction term, this is generally not the case for φ0 → −∞. For the

correlation functions (4.1) the leading dependence in this limit is e−dbsφ0 and we see that

the integral has to be regularized for Re(s) > 0. We can regularize it by subtracting the

leading divergences, as given by the asymptotic behaviour (4.8). One gets:

〈Vα1(x1) · · ·VαN (xN )〉= lim
q0→−∞

(∫ ∞
q0

dφ0e
−dbsφ0

∫
[Dφ̄]µ,φ0

N∏
i=1

edαiφ̄(xi) (4.9)

−
∞∑
n=0

(−µ)n

n!

e−d(s−n)bq0

d(s−n)b

∫
[Dφ̄]freee

−SC.G.(φ̄)
N∏
i=1

edαiφ̄(xi)

(∫
ddxedbφ̄

)n)
.

The correlation functions (4.9) have poles in the variable s at values s = n. Denoting the

residues G(n)
α1,...,αN (x1, . . . , xN ) = Res

s=n
〈Vα1(x1) · · ·VαN (xN )〉 we get:

G(n)
α1,...,αN

=
(−µ)n

dbn!

∫
[Dφ̄]freee

−SC.G.(φ̄)
N∏
i=1

edαiφ̄(xi)

(∫
ddxedbφ̄

)n
=

(−µ)n

n!

∫
ddu1 · · · ddun 〈Vα1(x1) · · ·VαN (xN )Vb(u1) · · ·Vb(un)〉C.G. . (4.10)

In this equation 〈· · · 〉C.G. denotes correlation functions in Coulomb gas theory, in which:

〈Vα1(x1) · · ·Vαk(xk)〉C.G. =
∏
i<j

|xi − xj |−2dαiαj ,

k∑
i=1

αk = Q . (4.11)

The correlation functions vanish unless
∑k

i=1 αk = Q.

4.3 The semiclassical limit

In this section we consider correlation functions of vertex operators:

〈Vα1(x1) · · ·Vαn(xn)〉 ≡
∫
Dφce

−SL
n∏
i=1

exp
(
d
αi
b
φc(xi)

)
. (4.12)

The following analysis is a generalization of the two-dimensional case and follows the dis-

cussion in [14, 19].

We wish to evaluate the integral (4.12) in the semiclassical limit b→ 0 using the saddle

point approximation. The action (2.13) scales as b−2, thus in order for a vertex operator

– 8 –
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insertion Vα in (4.12) to affect on the saddle points we require the scaling α ∼ b−1. We

define α = η/b, where we keep η fixed when b → 0. Such vertex operators define “heavy”

operators whose dimensions read (3.3):

∆ = dη(1− η)/b2, b→ 0 . (4.13)

“Light” operators are defined by vertex operators with α = bσ where σ is kept fixed when

b→ 0 and their dimension is ∆ = dσ in the semiclassical limit.

The insertion of light operators can be quantified to lowest order in b by a b-independent

factor of edσiφc(xi), where φc is the saddle point and hence it does not affect it. On the

other hand, an insertion of a heavy operator modifies the field equation (2.15):

(−�)
d
2φc = −Ωd(d− 1)!µb2edφc + Ωd(d− 1)!

∑
i

ηiδ
d(x− xi) . (4.14)

Assuming that in the neighbourhood of an operator insertion we can ignore the exponential

term, one gets near a heavy operator the boundary condition:

φc(x) = −2ηi log |x− xi|+O(1), x→ xi . (4.15)

The physical metric e2φc(x)δab in this region reads:

ds2 =
1

r4ηi

(
dr2 + r2dΩ2

d−1

)
, (4.16)

where dΩ2
d−1 is the metric on Sd−1 and the effect of a heavy operator can be interpreted

as creating a conical singularity in the physical metric. Thus solving equation (4.14)

corresponds to finding conformally flat metrics of constant negative Q-curvature on the

sphere Sd with the correct conical singularities.

Inserting the solution back into the field equations and requiring that the exponent is

subleading one gets the condition:

Re(ηi) <
1

2
. (4.17)

Condition (4.17) is called the Seiberg bound in the two-dimensional case [2]. It was inter-

preted as the non-existence of local operators with Re(η) > 1
2 . Stated differently, α and

Q− α correspond to the same quantum operator:

VQ−α = R(α)Vα , (4.18)

where the relative scaling R(α) is called the reflection coefficient. When considering the

semiclassical limit we use out of these two operators the one that satisfies the Seiberg bound.

An additional constraint for real saddle points follows from the Gauss-Bonnet-Chern

theorem, by integrating (4.14): ∑
i

ηi > 1 , (4.19)

which implies that there is no real saddle point for the Liouville path integral with light

operator insertions. When
∑

i ηi < 1, we can consider the fixed area path integral (4.4),

– 9 –
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which still has a real saddle point. In the limit b→ 0, we can fix the area A =
∫
ddxedφA ,

where φA = bφ, by using a Lagrange multiplier. This results in the following semiclassical

equation of motion:

(−�)
d
2φA =

Ωd(d− 1)!

A

(
1−

∑
i

ηi

)
edφA + Ωd(d− 1)!

∑
i

ηiδ
d(x− xi) . (4.20)

We see that in the case
∑

i ηi < 1, the classical solutions correspond to manifolds with

positive constant Q-curvature (that include the correct singularities) and finite area.

The action evaluated on a classical solution obeying our boundary conditions is diver-

gent. In order to regularize it, we preform the action integral only over the part of the ball

Bd that excludes a ball bi of radius ε around each heavy operator insertion:

b2SL =
d

2Ωd(d− 1)!

∫
Br∪idi

ddx

(
φc(−�)

d
2φc +

2

d
Ωd(d− 1)!µb2edφc

)
+

d

Ωd−1

∫
∂B
dd−1Ωφc −

∑
i

dηi
Ωd−1

∫
∂bi

dd−1Ωφc +O(b) . (4.21)

The action is regularized by adding the field independent terms logR, η2
i log ε multiplied

by suitable numbers. The equations of motion for this action include both the equation of

motion (4.14) and the boundary conditions.

The leading exponential asymptotic in the limit b → 0 for the correlation function of

heavy and light operators is given by the semiclasssical expression:〈
V η1

b
(y1) · · ·V ηn

b
(yn)Vbσ1(x1) · · ·Vbσm(xm)

〉
∼ e−SL(φη)

m∏
i=1

edσiφη(xi) , (4.22)

where φη is the solution of the equation of motion obeying the correct boundary conditions.

This formula includes effects that are O(b−2) in the exponent exactly, while O(b0) effects

are included only if they depend on the positions or conformal dimensions of the light

operators. In general there will be more than one solution, and the right hand side will

include a sum, or an integral, over the solutions.

4.4 Three-point functions of light primary operators

In a conformal field theory, the three-point function of primary operators is determined up

to a constant by conformal invariance. In particular we have:

〈Vα1(x1)Vα2(x2)Vα3(x3)〉 =
C(α1, α2, α3)

|x12|∆1+∆2−∆3 |x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1
, (4.23)

where the function C(α1, α2, α3) specifies the structure constants of Liouville field theory.

We now consider the case where all three operators are light and therefore we need

to examine the fixed area correlation function. The relevant solution to the fixed area

equation of motion is the sphere metric of area A (4.20):

φA(x) = − log

(
|x|2 + 1

2

)
+

1

d
log

(
A

Ωd

)
. (4.24)
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We have to integrate over all solutions related to this one by conformal mappings, as

follows from the conformal invariance of the problem. According to Liouville’s theorem,

all conformal mappings on a domain of Rd for d > 2 are a composition of translations,

inversions, dilations and orthogonal transformation, i.e. are higher-dimensional Möbius

transformations. We describe these transformations using 2 × 2-matrices with entries in

the Clifford algebra Cd−1 = C`0,d−1(R), as detailed in appendix A. In this formalism,

higher-dimensional Möbius transformations can be written as x → (αx + β)(γx + δ)−1

where α, β, γ, δ ∈ Γd−1 ∪ {0}, αβ∗, γδ∗, γ∗α, δ∗β ∈ Rd and αδ∗ − βγ∗ = 1. This conformal

mapping introduces a Weyl transformation with σ = 2 log (|γx+ δ|).
We can now write the general Möbius transformation of the saddle point:

φA(x) = − log

(
|αx+ β|2 + |γx+ δ|2

2

)
+

1

d
log

(
A

Ωd

)
. (4.25)

We now see that the moduli space of saddle points is given by SL(2, Cd−1)/SU(2, Cd−1),

because elements of the subgroup SU(2, Cd−1) of SL(2, Cd−1) leave the solution (4.25) fixed.

Note, that in equation (4.22) when there are no heavy operators included all effects

of operator insertions are O(b0) in the exponent. If we wanted to include all effects of

this order, we would need to renormalize the functional determinant det
(
δ2SC.G.(φA)

δφ2

)
and

would also need the Jacobian for changing the integral over φA to an integral over α, β, γ, δ.

We explicitly include O(b0) terms in the action, but represent the functional determinant

and Jacobian as a b-dependent factor Â(b) whose logarithm is at most O(log b) [19]. Note,

that it is independent of σi since neither effect is affected by light operator insertions.

We can now write:

〈Vbσ1(x1)Vbσ2(x2)Vbσ3(x3)〉A ≈ Â(b)e−SC.G.(φA)

∫
dµ(α, β, γ, δ)

3∏
i=1

edσiφA(xi) , (4.26)

where dµ(α, β, γ, δ) is the invariant measure on SL(2, Cd−1). The Coulomb gas action is

given by:

SC.G. =
1

b2
d

2Ωd(d− 1)!

∫
B
ddx φA(−�)

d
2φA +

(
1

b2
+ 1

)
d

Ωd−1

∫
∂B
dd−1ΩφA . (4.27)

Evaluating this action for the solution (4.25) we get:

SC.G.(φA) =
1

b2

[
SBulk + log

(
2d
A

Ωd

)]
+ log

(
2d
A

Ωd

)
+O(b2) . (4.28)

Here the constant SBulk is given by regularizing (i.e. taking the finite part of) the large

R limit of the integral:

SBulk =
dΩd−1

2Ωd(d− 1)!

∫ R

0
dr rd−1

(
�
d
4
r log

(
1 + r2

))2

, (4.29)

where �r = 1
rd−1∂r

(
rd−1∂r

)
is the radial part of the Laplacian and �

d
4
r stands for ∂r

(
�
d−2
4

r

)
in the case of odd d

2 .
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Using the SL(2, Cd−1) transformation properties of the integral (4.26) we can write [19]:∫
dµ

3∏
i=1

edσiφA(xi)

=

(
2d
A

Ωd

)∑
i σi

|x12|d(σ3−σ1−σ2)|x23|d(σ1−σ2−σ3)|x13|d(σ2−σ1−σ3)Î(σ1, σ2, σ3) ,

(4.30)

where:

Î(σ1, σ2, σ3) =

∫
dµ(α, β, γ, δ)

(|β|2 + |δ|2)dσ1 (|α+ β|2 + |γ + δ|2)dσ2 (|α|2 + |γ|2)dσ3
. (4.31)

This integral is invariant under the SU(2, Cd−1) subgroup of SL(2, Cd−1). We can now

parametrize SL(2, Cd−1) elements by a unitary matrix times an upper triangular matrix

(i.e. a composition of dilatation and translation). The relevant integral is therefore:

I(σ1, σ2, σ3) =

∫ ∞
0

dλ

λ
λd(σ1+σ2−σ3)

∫
ddw

1

(|w|2 + 1)dσ1
(
|w + λ|2 + 1

)dσ2 . (4.32)

In changing coordinates from α, β, γ, δ to λ,w we get a b-independent Jacobian which we

can ignore by replacing Â(b) by a new factor A(b). This integral can be evaluated explicitly

with the result [19]:

I(σ1,σ2,σ3) =
π
d
2

2

Γ
(
d
2
(σ1+σ2+σ3−1)

)
Γ
(
d
2
(σ2+σ3−σ1)

)
Γ
(
d
2
(σ3+σ1−σ2)

)
Γ
(
d
2
(σ1+σ2−σ3)

)
Γ(dσ1)Γ(dσ2)Γ(dσ3)

.

(4.33)

Finally, we find the semiclassical result for the structure constants of light operators:

C(bσi)≈
π
d
2

2
A(b)

(
2d
A

Ωd

)∑
iσi−1/b2−1

e−SBulk/b
2

(4.34)

×
Γ
(
d
2(σ1+σ2+σ3−1)

)
Γ
(
d
2(σ2+σ3−σ1)

)
Γ
(
d
2(σ3+σ1−σ2)

)
Γ
(
d
2(σ1+σ2−σ3)

)
Γ(dσ1)Γ(dσ2)Γ(dσ3)

.

This is the higher-dimensional generalization of the two-dimensional DOZZ formula for the

three-point function of light primary operators [13, 14].

5 Discussion and outlook

In this work we initiated the study of a higher-dimensional generalization of the two-

dimensional Liouville CFT that consists of a log-correlated scalar field with a background

Q-curvature charge and an exponential Liouville-type potential. There are many interesting

classical and quantum aspects of these theories that deserve further study. Classically, the

solutions to the field equations describe manifolds with a constant negative Q-curvature.

The space of solutions to this mathematical problem is not known in more than two di-

mensions and it corresponds to a higher-dimensional uniformization-like problem.

Quantum mechanically, it is quite possible that these theories can be solved once the

three-point function is calculated exactly. We calculated it for the special case of three light

primary operators. Performing the integral expression (4.10), (4.11) in general and deriving

the exact formula for the three-point functions is an interesting and challenging problem.
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Another interesting direction to follow is to study these theories in a Lorentzian sigan-

ture. Being non-unitary and higher derivative theories it is not clear whether they can be

defined and analyzed consistently in such a signature.

Much research on adding boundaries to CFTs revealed a rather rich structure in diverse

dimensions. It would be interesting to study the higher-dimensional Liouville CFTs in the

presence of boundaries. One needs to formulate the consistent boundary conditions and

study issues like boundary operators, correlation functions and boundary anomalies [17].

One can also consider the odd-dimensional bulk case with an even-dimensional boundary,

where the GJMS-type operators are pseudo-differential [11].

One can add fermionic degrees of freedom to the higher-dimensional Liouville CFTs

and, as in the two-dimensional case, construct and study supersymmetric versions of them.

Finally, it would be interesting to explore the possible role of the higher-dimensional Li-

ouville CFTs in the study of higher-dimensional random geometry, as well as a possible

generalization of the AGT relation [7].
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A Higher-dimensional Möbius transformation

This appendix is based on [20].

A.1 Clifford algebras

The Clifford algebra Cn = C`0,n(R) is the real associative algebra generated by n elements

i1, i2, . . . , in subject to the relations ihik = −ikih, h 6= k, i2k = −1 and no others. Every

element of Cn can be expressed uniquely in the form a =
∑
aII where the sum is preformed

over all products I = iv1iv2 · · · ivk with 1 ≤ v1 < v2 < · · · < vk ≤ n and aI ∈ R. The

null product is permitted and identified with the real number 1. Cn is therefore a real

vector space of dimension 2n and one can identify C0 with R, C1 with C and C2 with the

quaternions H. We give Cn the Euclidean norm so that if a =
∑
aII then |a|2 =

∑
a2
I .

There are three involutions of Cn:

1. ∗: replace each I = iv1iv2 · · · ivk with ivk · · · iv2iv1 . It determines an anti-automorphism

of Cn: (ab)∗= b∗a∗.

2. ′: replace each ik with −ik. It determines an automorphism of Cn: (ab)′= a′b′.

3. :̄ ā= (a′)∗= (a∗)′. It determines an anti-automorphism of Cn.

Clifford numbers of the form x = x0 + x1i1 + · · ·+ xnin are called vectors. They form

an (n+1)-dimensional subspace which we identify with Rn+1. For vectors x∗ = x and thus

– 13 –
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x′ = x̄. Further, xx̄ = x̄x = |x|2 so non-zero vectors are invertible with x−1 = x̄/|x|2. Thus

products of non-zero vectors are invertible and form a multiplicative group, the Clifford

group Γn.

We have the following important property: if a ∈ Γn and x ∈ Rn+1 then axa′−1 ∈ Rn+1

and the mapping ρa(x) = axa′−1 is orthogonal. Furthermore, the map φ : Γn → O(n+ 1)

given by φ(a) = ρa is onto SO(n+ 1) with kernel Rr {0}.

A.2 Clifford matrices

We now consider Clifford matrices T =

(
a b

c d

)
with elements in Γn ∪ 0. Each such matrix

is identified with the map T : R̂n+1 → R̂n+1 (where R̂n+1 = Rn+1 ∪ {∞} is the one-point

compactification of Rn+1) given by:

Tx = (ax+ b)(cx+ d)−1 (A.1)

The group of invertible 2× 2 Clifford matrices is given by:

GL(2, Cn) =

{(
a b

c d

)
: ab∗, cd∗, c∗a, d∗b ∈ Rd, ad∗ − bc∗ ∈ Rr {0}

}
(A.2)

The quantity ∆(T ) = ad∗ − bc∗ is called the pseudo-determinant. The inverse matrix

is given by T−1 = ∆(T )−1

(
d∗ −b∗

−c∗ a∗

)
. A Clifford matrix induces a bijective mapping

R̂n+1 → R̂n+1 if and only of it is in GL(2, Cn).

Each T ∈ GL(2, Cn) is a composition of:

• Translation:

(
1 µ

0 1

)
, x→ x+ µ, µ ∈ Rn+1

• Inversion:

(
0 1

−1 0

)
, x→ −x−1 = − x̄

|x|2

• Dilation:

(√
λ 0

0 1/
√
λ

)
, x→ λx, λ ∈ R+

• Trivial:

(
α 0

0 α

)
, x→ x, α ∈ Rr {0}

• Special orthogonal:

(
a 0

0 a′

)
, x→ axa∗, a ∈ Γn, |a| = 1

• Reflection:

(
1 0

0 −1

)
, x→ −x

Further, T is orientation preserving if and only if ∆(T ) > 0.
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We define PGL(2,Cn) = GL(2,Cn)/(Rr{0}), SL(2,Cn) = {T ∈GL(2,Cn) : ∆(T ) = 1},
PSL(2,Cn) = SL(2,Cn)/Z2. Then PGL(2,Cn) is isomorphic to GM(n+1), the full group

of Möbius transformations of R̂n+1 and PSL(2,Cn) is isomorphic to M(n+1), the group of

orientation preserving Möbius transformations of R̂n+1.

The linear distortion of T ∈ GL(2, Cn) is |T ′(x)| = |∆|
|cx+d|2 .

Finally, we define the group:

SU(2, Cn) =

{(
a b

−b′ a′

)
∈ SL(2, Cn)

}
(A.3)

For each Clifford matrix T =

(
a b

c d

)
we define ||T ||2 = |a|2 + |b|2 + |c|2 + |d|2. Then

for all U ∈ SU(2, Cn) we have ||UT || = ||TU || = ||T ||.
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