
J
H
E
P
0
5
(
2
0
1
5
)
0
3
1

Published for SISSA by Springer

Received: February 12, 2015

Accepted: April 13, 2015

Published: May 6, 2015

The holographic dictionary for Beta functions of

multi-trace coupling constants

Ofer Aharony,a Guy Gur-Aria,b and Nizan Klinghoffera

aDepartment of Particle Physics and Astrophysics,

Weizmann Institute of Science, Rehovot 7610001, Israel
bStanford Institute for Theoretical Physics,

Stanford University, Stanford, California 94305, U.S.A.

E-mail: Ofer.Aharony@weizmann.ac.il, guyga@stanford.edu,

Nizan.Klinghoffer@weizmann.ac.il

Abstract: Field theories with weakly coupled holographic duals, such as large N gauge

theories, have a natural separation of their operators into ‘single-trace operators’ (dual

to single-particle states) and ‘multi-trace operators’ (dual to multi-particle states). There

are examples of large N gauge theories where the beta functions of single-trace coupling

constants all vanish, but marginal multi-trace coupling constants have non-vanishing beta

functions that spoil conformal invariance (even when all multi-trace coupling constants

vanish). The holographic dual of such theories should be a classical solution in anti-de

Sitter space, in which the boundary conditions that correspond to the multi-trace coupling

constants depend on the cutoff scale, in a way that spoils conformal invariance. We argue

that this is realized through specific bulk coupling constants that lead to a running of the

multi-trace coupling constants. This fills a missing entry in the holographic dictionary.

Keywords: AdS-CFT Correspondence, 1/N Expansion, Renormalization Group

ArXiv ePrint: 1501.06664

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2015)031

mailto:Ofer.Aharony@weizmann.ac.il
mailto:guyga@stanford.edu
mailto:Nizan.Klinghoffer@weizmann.ac.il
http://arxiv.org/abs/1501.06664
http://dx.doi.org/10.1007/JHEP05(2015)031


J
H
E
P
0
5
(
2
0
1
5
)
0
3
1

Contents

1 Introduction and summary of results 1

2 A review of multi-trace deformations and holography 4

2.1 Example: double-trace Beta function 5

2.2 Multi-trace Beta functions from single-trace operators 6

3 Marginal multi-trace deformations 7

3.1 Renormalization 8

3.2 Boundary conditions and the multi-trace Beta function 9

3.3 The n-point function 11

4 Marginal double-trace deformations 13

4.1 Marginal double-trace deformations with a single operator 13

4.2 Marginal double-trace deformations with two operators 15

4.2.1 Renormalization 16

4.2.2 Boundary conditions and Beta function 16

5 Beta Function from the stress tensor 17

A Free bulk scalars and holography 22

A.1 The case ∆ 6= d/2 22

A.1.1 Boundary-to-bulk propagator 22

A.1.2 On-shell action 23

A.2 The case ∆ = d/2 25

B Solving the scalar equation of motion 26

1 Introduction and summary of results

The gauge/gravity duality relates gauge theories to gravitational theories, and in particu-

lar it relates conformal field theories (CFTs) in d space-time dimensions to gravitational

theories on (d + 1)-dimensional anti-de Sitter (AdS) space [1]. This correspondence is

most useful when the gravitational theory is weakly coupled, at least at low energies; this

situation arises in particular for gauge theories in the ’t Hooft large N limit, for which

the couplings in the gravitational theory scale as 1/N . In such a case (which we will as-

sume throughout this paper) we can use a classical approximation for the gravitational

theory. On the gravity side there is then a clear separation between single-particle and

multi-particle states, with small mixing between them. States on the gravitational side

map to operators in the dual field theory. Single-particle states map to operators called
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‘single-trace operators’, since in the large N gauge theory example, such operators arise as

single traces of products of fields in the adjoint representation. Multi-particle states map

to ‘multi-trace operators’; in the limit where the gravity theory is weakly coupled, these

operators can be thought of as the non-singular terms in the product of several ‘single-trace

operators’ that are taken to the same point.

In the original formulation of gauge/gravity duality, only field theory actions involving

single-trace operators were considered. It was understood [2, 3] how to relate the coupling

constants for these operators to the boundary conditions of the corresponding bulk fields

(that create the single-particle states). Marginal coupling constants are particularly inter-

esting, since when they are exactly marginal, turning them on can give families of conformal

field theories, while if they have non-trivial beta functions then conformal invariance is lost.

In the bulk theory, marginal single-trace operators map to massless bulk scalar fields, and

turning on coupling constants for these operators corresponds to giving a vacuum expec-

tation value to these scalar fields. A single-trace operator is exactly marginal if there is a

solution preserving the isometries of AdS space for every value of the corresponding bulk

scalar field, while otherwise the operator has a non-zero beta function; examples of both

types exist already in the simple example of the d = 4, N = 4 supersymmetric Yang-Mills

(SYM) theory, see for instance [4]. The beta functions for these operators can be related

to the bulk solutions that arise when turning on the corresponding scalar fields.

Multi-trace operators are usually irrelevant, since their dimension (in the classical

gravity limit) is the sum of the dimensions of the single-trace operators that they are made

of. However, there are cases when such operators can be relevant or marginal. In the

context of the gauge/gravity duality, turning on coupling constants for these operators

was first discussed in [5] from the point of view of the dual string worldsheet theory, and a

simple bulk picture for the corresponding coupling constants was then provided in [6, 7]. In

this picture these coupling constants are related to non-linear boundary conditions for the

bulk fields that are dual to the single-trace operators making up the multi-trace operator.

These boundary conditions do not affect the classical solution in the absence of sources,

but they affect the fluctuations around it.

When we have marginal multi-trace operators, it is interesting to ask if they are ex-

actly marginal or if they have a non-zero beta function. Such a beta function in general

depends (even in the large N limit) both on the single-trace coupling constants and on the

multi-trace coupling constants. Examples of exactly marginal multi-trace operators were

presented for instance in [5, 6], while a simple example of a non-zero beta function for a

double-trace operator was analyzed in [6] (and is reviewed below).

A particularly interesting situation is when we have a field theory in which all single-

trace beta functions vanish. Naively one would assume that such a theory must be con-

formal (at least in the large N limit). However, as analyzed for instance in [8–10], such

theories could still have (even in the large N limit, and even when all multi-trace coupling

constants vanish) beta functions for multi-trace coupling constants that would spoil con-

formal invariance. In particular, this is the typical situation at weak coupling in theories

that arise from ‘orbifolds’ of the N = 4 SYM theory (by which we mean the field theories

dual to orbifolds of the corresponding string theory [11–13]). It was shown in [8–10] that
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at weak coupling these theories have marginal multi-trace operators arising from products

of single-trace operators in the ‘twisted sector’ (that do not directly inherit their properties

from the N = 4 SYM theory), and that in non-supersymmetric orbifolds at weak coupling

these multi-trace operators always have non-zero beta functions (even when the multi-trace

coupling constants vanish). Moreover it was found that there is no weakly coupled solution

to the beta function equations, so that conformal invariance is broken in these field the-

ories. This precludes using these orbifolds as simple non-supersymmetric examples of the

AdS/CFT correspondence. Similar results were obtained for specific non-supersymmetric

theories that arise as deformations of the N = 4 SYM theory [14].

The main question we would like to answer in this paper is how such a situation is

reflected in the dual bulk physics. As described above, having a vanishing beta function

for all single-trace couplings maps to having a classical gravitational solution in AdS space.

Naively one would expect this to be enough to ensure that the dual field theory is con-

formal, but the discussion above implies that even in such a situation there could be beta

functions for multi-trace operators that would spoil conformal invariance. How are such

beta functions realized in the AdS/CFT correspondence? We expect to find that when we

perform a holographic renormalization on AdS space (as we usually need to do in order to

carefully cancel all the divergences in classical bulk computations), the value of the multi-

trace coupling constants will depend on the renormalization scale, so that we cannot set

them to zero at all scales, and that this will break conformal invariance (despite the fact

that the classical bulk solution in the absence of sources is conformally invariant).

We will show that indeed this happens, and that when we have marginal multi-trace

operators, there are specific types of coupling constants in the bulk that are related to

the beta functions for the multi-trace operators. For simplicity we work at leading order

in these coupling constants, and we show that their presence leads to a scale-dependence

of the multi-trace coupling constants which does not allow setting them to zero at all

scales. We emphasize the contribution to multi-trace beta functions that persists even

when the multi-trace couplings vanish (namely, it is a function just of the single-trace

couplings), since other contributions that depend on the multi-trace couplings are more

straightforward (they are often determined just by conformal perturbation theory) and

were analyzed already in the literature.

In principle, one example in which this situation should arise is the orbifolds of N = 4

SYM discussed above. However, that situation is at weak ’t Hooft coupling in the field

theory, so its bulk dual description is complicated, involving higher-derivative interactions

and light higher-spin fields (though the bulk is still weakly coupled in the large N limit).

In the same theories at strong coupling, the multi-trace operators are no longer marginal,

since (at least when the orbifold has no fixed points on the S5) the single-trace operators

that they are made of have large anomalous dimensions, so this issue does not arise. But

we expect that there should be many other situations where such beta functions could be

important (in particular with little or no supersymmetry).

Beta functions for double-trace operators were previously discussed in [15]; in that

paper a different suggestion was given for the bulk mapping of the beta functions, which

seems not to agree with ours. Beta functions for multi-trace operators were previously

– 3 –



J
H
E
P
0
5
(
2
0
1
5
)
0
3
1

discussed in [16], which focused on different issues than we do, and in [17] in the somewhat

different framework of the Wilsonian holographic renormalization group. As far as we can

see the results of [16, 17] agree with ours whenever they overlap.

We begin in section 2 with a review of the holographic dictionary for multi-trace

couplings and for computing their beta functions. In section 2.2 we give an argument for

how a beta function for multi-trace couplings that depends on single-trace couplings should

show up in the holographic dual, and we then test this suggestion for multi-trace couplings

involving three or more operators in section 3. In section 4 we discuss the special case of

double-trace operators. Finally, in section 5 we present an alternative computation of the

beta function, using the expectation value of the trace of the stress tensor. Appendices

contain some technical results.

2 A review of multi-trace deformations and holography

In this section we review the holographic dictionary for multi-trace coupling constants,

which are related to boundary conditions of the dual fields. For simplicity we will use the

language of large N gauge theories, though everything we say can be generalized to other

theories that have weakly coupled bulk duals.

Consider a gauge theory in d space-time dimensions with adjoint-valued fields Φ, and

a set of single-trace operators

Oi =
1

N
Tr(fi(Φ)) . (2.1)

Here, fi are polynomial functions of the fields Φ and their derivatives that do not depend

explicitly on N . The action for this theory is taken to be

S = −N2W (Oi) , (2.2)

where W does not depend explicitly on N . We define the ’t Hooft large N limit by taking

N → ∞ while keeping fixed the couplings that define W . With these conventions, it is

easy to see that the planar 1-point functions 〈Oi〉 are O(N0),1 and we can directly identify

each 1-point function with a mode of the holographically dual field (when the bulk fields

are normalized such that the bulk action is also proportional to N2; for simplicity we will

drop this overall normalization in the rest of this paper).

When the field theory is conformal, its holographic dual is a theory of gravity on

AdSd+1. We choose the background metric on the Poincaré patch of AdSd+1 to be

ds2 =
dz2 + dxidx

i

z2
, (2.3)

with the boundary at z = 0, and we set the AdS radius to 1.2

1Notice that the Φ propagator is O(N−1) in this case. In a model with vector-valued fields Φ̂ we

would define the ‘single-trace’ operators to be Ôi = N−1Φ̂ · gi(
←−
∂ ,

−→
∂ )Φ̂, and the action would be given by

S = −NŴ (Ôi). In the large N limit we would keep Ŵ fixed, and the planar 1-point functions would again

be independent of N .
2We will use Greek letters µ, ν, · · · to denote coordinates on the full AdS and Roman letters i, j, · · · to

denote coordinates on the boundary of AdS.

– 4 –



J
H
E
P
0
5
(
2
0
1
5
)
0
3
1

Consider a single-trace scalar operator O of dimension

∆ =
d

2
− ν , 0 < ν < 1 . (2.4)

We choose the range ∆ < d/2 because we are interested in cases where multi-trace de-

formations that involve O are marginal (we will separately discuss the double-trace case

below). The lower bound on ∆ is due to unitarity. This operator is holographically dual

to a scalar field φ with squared mass m2 = ∆(∆− d). Near the boundary, the scalar field

has the mode expansion

φ(x, z) = α(x)z∆ + β(x)zd−∆ + · · · . (2.5)

The boundary conditions of φ at z = 0 are a relation between β(x) and α(x), that is given

by3 [6]

β(x) =
δW

δO(x)

∣

∣

∣

∣

O(y)=−2να(y)

. (2.6)

When there are several operators Oi, the boundary conditions are given by

βi =
δW

δOi

∣

∣

∣

∣

Oj=−2νjαj

. (2.7)

The precise normalization is due to the fact that the expectation value of the operator is

related to the bulk scalar (2.5) by 〈O(x)〉 = −2να(x), when using the ordinary holographic

prescription [18]. We rederive this relation in appendix A.

For example, suppose that W depends on O through the multi-trace interaction

W = λft

∫

ddxOn/n. The boundary conditions for the dual scalar are then given by

β = λft(−2να)n−1. When all multi-trace coupling constants vanish, W is linear in O so

that β is fixed by the boundary conditions and is identified with the source of O, while α

is undetermined by these conditions and it is related to the expectation value of O.

2.1 Example: double-trace Beta function

In this section we review the holographic calculation of the beta function of a marginal

double-trace operator [6]. Consider a scalar operator O of dimension ∆ = d/2. The dual

scalar field in this case has the near-boundary expansion

φ(x, z) = α(x)zd/2 + β(x)zd/2 log(µz) + · · · , (2.8)

where we interpret µ as a renormalization scale. Here β corresponds to the source of O,

while α is related to its expectation value.

Let us turn on a double-trace deformation W = −λft

∫

ddxO2/4. In this case the

relation between the VEV and the bulk mode is 〈O〉 = −2α (this is derived in appendix A),

and the corresponding boundary condition for the bulk modes is

β = λftα . (2.9)

3Note that our conventions differ from those of [6] by a minus sign, due to our definition of W .
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To compute the beta function we map the procedure from field theory to the gravity side.

We shift the renormalization scale µ → µ̃ while keeping the observables (in this case the

field φ(x, z)) the same. In order to keep φ the same, the modes α, β must depend on the

renormalization scale. This leads to the relation

φ = αz∆ + βz∆ log(µz) + · · · = α̃z∆ + β̃z∆ log(µ̃z) + · · · , (2.10)

where α̃, β̃ are the modes at the shifted scale µ̃. We find that the relation between the

original and shifted modes is

α = α̃+ β̃ log(µ̃/µ) , β = β̃ . (2.11)

We apply the boundary condition β̃ = λ̃ftα̃ for the new modes, where λ̃FT is the coupling

at the new scale. Using the above relations we find that [6]

λ̃ft =
λft

1− λft log(µ̃/µ)
. (2.12)

This relation implies that the beta function for λft is one-loop exact, and is given by

βλft
=

dλft

d log(µ)
= λ2

ft . (2.13)

This is a universal contribution to the double-trace beta function in the large N limit,

which can be seen in conformal perturbation theory [6]. We will use the same method to

compute other multi-trace beta functions.

2.2 Multi-trace Beta functions from single-trace operators

In this paper we are interested in computing beta functions of multi-trace couplings using

holography. In particular, we are interested in beta functions that arise from single-trace

interactions. Some examples of this were mentioned in the introduction, but we can also

present a general scenario for how such beta functions can arise from single-trace operators

on the field theory side, by using an argument that relates OPE coefficients and beta

functions [19].4 Consider a set of n operators Oi with conformal dimensions ∆i, such that
∑

i∆i = d. Suppose there is an operator O of dimension d, and that the OO OPE contains

a multi-trace operator, taking the form

O(x)O(0) ∼ |x|−d
∏

i

Oi(0) + · · · . (2.14)

In this scenario, turning on the marginal deformation fO gives rise to a beta function

for the multi-trace deformation λ
∏Oi at order f2. Indeed, at this order in perturbation

theory we bring down in the path integral

1

2
f2

∫

ddxO(x)

∫

ddyO(y) =
1

2
f2

∫

ddx ddwO(x)O(x+ w) , (2.15)

4We thank Zohar Komargodski for pointing out this argument.
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where w = y − x. When w is close to 0 we can use the OPE (2.14). One of the terms in

the expansion is proportional to

f2 log(Λ)

∫

ddx
∏

i

Oi(x) , (2.16)

where Λ is the cutoff. This generates a beta function for the multi-trace coupling λ.

This argument can actually be used to tell us how the multi-trace beta function should

appear in the holographic dual. Let φ be the massless scalar field that is dual to O, and

let φi be the fields dual to Oi. Perhaps the simplest way to generate the OPE (2.14) would

be to include a bulk interaction of the form
∫

dd+1x
√
g φ2

∏

i

φi . (2.17)

Such an interaction contributes to the correlator 〈OO∏

iOi〉 at separated points. If the

limit in which the Oi coincide is regular, then this interaction also leads to the desired

OPE.5 In practice, in this calculation one encounters divergences that must be subtracted,

but this does not change the conclusion.

Next, we turn on the marginal deformation fO in the field theory; this corresponds

to shifting φ → φ + f in the bulk. Expanding around the new vacuum, we find the bulk

interaction term

f2

∫

dd+1x
√
g
∏

i

φi , (2.18)

which should lead to the multi-trace beta function discussed above. Our guess is thus that

including a term of this type in the bulk action, with a coefficient η, should lead to a beta

function proportional to η for the corresponding multi-trace coupling constant.6

This is quite surprising, since naively one would expect a term like (2.18) to affect the

correlator 〈∏iOi(xi)〉 at separated points, rather than having anything to do with multi-

trace operators. However, we will show in the next sections that indeed terms like (2.18)

give rise (at least at linear order in their coefficient) to a multi-trace beta function. Since

the same bulk coupling is usually associated with the n-point function, this raises the

problem of how to get n-point functions 〈∏iOi(xi)〉 that will be independent of the multi-

trace beta function (as in field theory). We will show that combinations of such bulk terms,

involving also terms with derivatives, contribute to the n-point function without affecting

the beta function.

3 Marginal multi-trace deformations

In this section we consider a field theory that has a weakly coupled holographic dual and

a scalar operator O of dimension ∆ = d/n, where n ≥ 3, such that On is a marginal

5This happens, for example, for the φ1φ2φ3 interaction in [20], provided that ∆2 = ∆1 +∆3.
6Note that we could also generate the desired OPE (2.14) from more complicated bulk couplings that

involve extra derivatives in (2.17), and we would generally expect all such terms to contribute to the beta

function.
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deformation.7 The Euclidean bulk action for the dual field φ is taken to be

Sbulk =

∫

ddx

∫

dz
√
g

[

1

2
gµν∂µφ∂νφ+

1

2
m2φ2 +

η

n
φn

]

. (3.1)

Guided by the discussion of section 2.2, we have included a φn interaction term, whose

coefficient η could depend on various single-trace coupling constants (as in section 2.2).

We will compute the contribution of this bulk interaction to the multi-trace beta function

at leading order in η.

As usual in holographic computations we will encounter IR divergences in the bulk,

which correspond to UV divergences in the dual field theory, so we must ‘renormalize’ the

theory [23, 24].8 We first regulate it by placing a cutoff at z = ǫ, and we will include

a boundary action Sct of local counter-terms to subtract divergences. We would like to

apply specific boundary conditions that correspond to multi-trace deformations, and we

must therefore verify that these conditions are compatible with extremizing the action —

including its boundary piece. We will generally have to add also non-singular boundary

terms, denoted S∂ , to ensure this compatibility. Our total action will therefore be

S = Sbulk + S∂ + Sct . (3.2)

3.1 Renormalization

In this section we solve the bulk equations of motion to leading order in η, and intro-

duce counter-terms to subtract divergences in the on-shell action. The scalar equation of

motion is

z2φ′′ + z2�xφ+ (1− d)zφ′ −m2φ = ηφn−1(x, z) , (3.3)

where φ′ ≡ ∂zφ(x, z). In appendix B we solve this equation near the boundary, to leading

order in η. The solution (for ∆ = d/2− ν) is

φ(x, z) = α(x)z∆ + β(x)zd−∆ +
η

2ν
αn−1(x)zd−∆ log(µz)

+O(z∆+2) +O(ηzd−∆+2ν) +O(η2) . (3.4)

Here µ is an arbitrary scale which we interpret as the renormalization scale. The appearance

of a logarithm hints at a loss of conformality and the generation of a beta function, and

we will see that this is indeed the case.

The next step is to compute the on-shell bulk action (3.1). After integrating by parts

in the z direction, and using the scalar equation of motion, we find

Son−shell
bulk = −1

2

∫

z=ǫ
ddx

√
γ ǫφ′φ(x) +

(

2− n

2n

)

η

∫

ddx

∫

ǫ
dz

√
g φn(x, z) . (3.5)

7Beta functions for irrelevant multi-trace operators were considered in [21, 22].
8A different approach to holographic renormalization, based on the Wilsonian renormalization group,

was proposed in [25, 26]. This approach discusses multi-trace operators more carefully, in a way that is

somewhat similar to our computations, but we will not explicitly use it here. Results very similar to ours

were found in the Wilsonian holographic renormalization group approach in [17].
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Here γ is the induced metric on the boundary (
√
γ = ǫ−d). We now plug in the solu-

tion (3.4), and introduce local counter-terms to subtract the divergences that appear. The

diverging part of the action as ǫ → 0 is

∫

z=ǫ
ddx

[

−∆

2
α2(x)ǫ−2ν − dη

4ν
αn(x) log(µǫ)

]

+
νη

d

∫

z=ǫ
ddxαn(x) log(µǫ) . (3.6)

The first integral contains the divergence from the free term in (3.5), and the second

integral contains the one from the interacting term. The divergences can be subtracted by

the counter-term action

Sct =

∫

z=ǫ
ddx

√
γ

[

∆

2
φ2(x) +

η

n
log(µ0ǫ)φ

n(x)

]

. (3.7)

The first counter-term cancels the power-law divergence, and the second one cancels the

remainder of the log divergence. We introduced an arbitrary parameter µ0 in (3.7) on

dimensional grounds, which affects only the finite part of the boundary action.

3.2 Boundary conditions and the multi-trace Beta function

In this section we write down the complete boundary action that is compatible with

the boundary conditions of a multi-trace deformation, and we compute the beta func-

tion for this deformation. In order to turn on a multi-trace deformation of the form

W = λft

∫

ddxOn/n in the field theory, we need to apply the boundary condition

β = λft(−2να)n−1 (3.8)

for the scalar modes. This condition must be compatible with the variation of the action.

For this purpose, let us introduce the boundary action

S∂ =

(

2νλ

n
+

η

2νn

)
∫

z=ǫ
ddx

√
γ φn(x) . (3.9)

(The factors in front are for later convenience.) It is easy to see that this action does not

introduce new divergences into the on-shell action. The total action (3.2) is now given by

S =

∫

ddx

∫

ǫ
dz

√
g

[

1

2
gµν∂µφ∂νφ+

1

2
m2φ2 +

η

n
φn

]

+

∫

z=ǫ
ddx

√
γ

[

∆

2
φ2(x) +

(

η

n
log(µ0ǫ) +

2νλ

n
+

η

2νn

)

φn(x)

]

. (3.10)

We now vary this action with respect to the scalar, and keep the variation δφ arbitrary.

We find that in order to extremize the action, the following equation must be satisfied on

the boundary:

∆φ− ǫφ′ +

[

η log(µ0ǫ) + 2νλ+
η

2ν

]

φn−1(x) = 0 . (3.11)
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Once we plug in the scalar solution (3.4), we find that the boundary conditions are9

β(x) =

[

λ− η

2ν
log(µ/µ0)

]

αn−1(x) +O(ǫ2−2ν) +O(ηǫ2ν) +O(η2) . (3.12)

Neglecting the subleading corrections and comparing with the desired boundary condi-

tions (3.8), we can identify the multi-trace deformation with

λft =
1

(−2ν)n−1

[

λ− η

2ν
log(µ/µ0)

]

+O(η2) . (3.13)

We see that the multi-trace coupling of the field theory corresponds to a mix of the two

φn couplings — in the bulk and on the boundary.

From (3.13) it is immediate to compute the beta function

βλft
=

dλft

d log(µ)
=

η

(−2ν)n
+O(η2) . (3.14)

Notice that the beta function does not depend on λft, but only on the single-trace cou-

pling constants encoded in η. This can be understood from large N counting for n ≥ 3:

contributions of λft to its own beta function, of order λ2
ft or higher, are suppressed by

factors of 1/N .

Alternatively, we can compute the beta function by the same method we used in

section 2.1. This method uses only the bulk solution and the boundary conditions, and

does not rely on the renormalization procedure or the explicit boundary action. To do this

we shift the renormalization scale µ in the bulk solution (3.4), µ → µ̃, while keeping the

field φ(x, z) fixed in the bulk. We have

φ = α(x)z∆ + β(x)zd−∆ +
η

2ν
αn−1(x)zd−∆ log(µz) +O(z∆+2) +O(ηzd−∆+2ν) +O(η2)

= α̃(x)z∆ + β̃(x)zd−∆ +
η

2ν
α̃n−1(x)zd−∆ log(µ̃z) +O(z∆+2) +O(ηzd−∆+2ν) +O(η2) ,

(3.15)

where α̃, β̃ are the modes at the shifted scale µ̃. We find the relation

α = α̃+O(η2) , β = β̃ +
η

2ν
α̃n−1 log(µ̃/µ) +O(η2) . (3.16)

Next we demand that the shifted modes satisfy a boundary condition of the form β̃ =

λ̃ft(−2να̃)n−1, whre λ̃ft is the effective coupling at the shifted scale µ̃. The couplings are

then related by

λft = λ̃ft +
η

(−2ν)n
log(µ/µ̃) +O(η2) . (3.17)

We find that the beta function is given by equation (3.14), reproducing the answer we

found above.

9When writing subleading terms such as O(ǫ2ν), we are ignoring possible log(ǫ) factors which do not

affect the discussion.
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3.3 The n-point function

In this section we are interested in contributions to the n-point correlation function of O.

A φn bulk interaction term will generally contribute to this correlator at leading order in

the coupling (see for example [20]). When the operator dimension is ∆ = d/n, it is easy to

check that this contribution has a divergence, and that this divergence is canceled by the

φn counter-term that we introduced to renormalize the action. In general there will be a

finite contribution to the correlator after renormalization.

As we saw in the previous section, turning on a φn bulk interaction inevitably breaks

conformal invariance when the operator dimension is ∆ = d/n and n ≥ 3. Which couplings

can we turn on in the gravity theory, that affect the n-point function of O without breaking

conformal invariance? The boundary interaction term λφn gives one such coupling, which

affects both the n-point function and the multi-trace coupling λft in the field theory. As

we will now see, there are also bulk couplings that have these properties. Together with the

boundary coupling λ, they can be used to independently control both the n-point function

and the multi-trace coupling. For the case of n = 3, the couplings we will write down

determine the 3-point function completely, while for larger n they will affect a specific

conformal structure in the correlator.

Let us now set η = 0 and consider the following bulk action:

Sbulk =

∫

ddx

∫

ǫ
dz

√
g

[

1

2
(∂φ)2 +

1

2
m2φ2 + ζ

(

φn−2gµν∂µφ∂νφ−∆2φn
)

]

. (3.18)

Let us compute the contributions of ζ to the field theory n-point function and to the

multi-trace coupling. The variation of this action is

δSbulk =

∫

ddx

∫

ǫ
dz

√
g δφ

[

−�φ+m2φ− d∆ζφn−1 − (n− 2)ζφn−3(∂φ)2 − 2ζφn−2
�φ

]

−
∫

∂
ddx

√
γ δφ

(

1 + 2ζφn−2
)

ǫφ′ . (3.19)

The solution of the bulk equation of motion near the boundary is

φ = z∆
[

α(x) +O(z2)
]

+ zd−∆
[

β(x) +O(z2)
]

+O(ζ2) +O(zd−∆+2ν) . (3.20)

The relative factor of ∆2 in the action (3.18) was chosen to cancel the log term that would

otherwise appear at order ζ. With this choice of couplings the bulk modes are independent

of the renormalization scale, and therefore the beta function of the On coupling in the field

theory vanishes. In addition, the on-shell action is renormalized by a single counter-term,

Sct =
∆

2

∫

ddx
√
γ φ2 . (3.21)

In particular, we do not need to introduce counter-terms with an explicit ζ dependence, or

with a scale dependence.10

10Indeed, the on-shell bulk action is given by

−
∫

ddx
√
γ ǫφ′φ+ ζ

∫

ddx

∫

ǫ

dz
√
gφn−2

[

ν∆φ2 +
n

2
(∂φ)2 + φ�φ

]

. (3.22)

The first integral contains a power-law divergence that is subtracted by the counter-term (3.21), while the

second integral is finite.
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We now have a renormalized gravity theory that is dual to a conformal field theory

for every value of ζ. We include two additional terms in the boundary action. The first is

the boundary interaction λφn(x) that was discussed above. The second is a term that is

proportional to J(x)φ(x), which is necessary for compatibility with the boundary conditions

(written below) that include a source for O. The total action reads

S =

∫

ddx

∫

ǫ
dz

√
g

[

1

2
(∂φ)2 +

1

2
m2φ2(x, z) + ζ

(

φn−2gµν∂µφ∂νφ−∆2φn(x, z)
)

]

+

∫

z=ǫ
ddx

√
γ

[

∆

2
φ2(x) + 2νǫd−∆J(x)φ(x) +

2νλ

n
φn(x)

]

. (3.23)

One combination of the couplings λ and ζ should correspond to the multi-trace deformation

λftOn/n (which can now be turned on without any beta function). The other combina-

tion, as we shall see, independently controls a specific conformal structure in the n-point

function of O.

To find the combination that corresponds to a multi-trace deformation, we write down

the boundary conditions that are compatible with the boundary equation that follows from

the variation of the total action (3.23). Using (3.19) we get the boundary equation

∆φ− ǫφ′ + 2νǫd−∆J + 2νλφn−1 − 2ζφn−2ǫφ′ = 0 . (3.24)

It is compatible with imposing the boundary conditions

β = J + λft(−2να)n−1 , (−2ν)n−1λft = λ− ∆

ν
ζ . (3.25)

This gives us the mapping to the multi-trace coupling.

Next, we can compute the n-point function 〈O(x1) · · · O(xn)〉 at leading order in these

couplings. There are two Witten diagrams, one with a λ vertex on the boundary, the other

with a ζ vertex in the bulk. The λ contribution is given by

−n! · 2νλ
n

∫

z=ǫ
ddx

√
γK∆(ǫ, x;x1) · · ·K∆(ǫ, x;xn) , (3.26)

where K∆ is the boundary to bulk propagator that is given by (see appendix A)

K∆(z, x;x
′) =

cz∆

[z2 + (x− x′)2]∆
, c ≡ Γ(∆)

πd/2Γ(∆− d/2)
. (3.27)

Taking ǫ → 0, we can write the result as

−2νλcn(n− 1)!

∫

ddx

(x− x1)2∆ · · · (x− xn)2∆
. (3.28)

The 2-point function of O, computed in appendix A, is 〈O(x)O(0)〉 = −2νc|x|−2∆. There-

fore the contribution (3.28) is equal to

λ(n− 1)!

(−2ν)n−1

∫

ddx〈O(x)O(x1)〉 · · · 〈O(x)O(xn)〉 . (3.29)
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This has the expected form of a contribution to the n-point function that comes from an

On interaction in field theory. If we set ζ = 0, we see from (3.25) that this is the expected

contribution due to the λft multi-trace deformation.

The contribution of the ζ coupling can be computed in a similar way once we notice

that the bulk coupling is secretly a surface term on-shell. Indeed, using integration by

parts and applying the equations of motion, �φ = m2φ+O(ζ), it is easy to check that

∫

ddx

∫

ǫ
dz

√
g
[

φn−2(∂φ)2 −∆2φn
]

=
∆

∆− d

∫

z=ǫ
ddx

√
γǫφ′φn−1 +O(ζ) . (3.30)

Using the same method as for the λ contribution, we find that the n-point function at

leading order is

−2ν

[

λ− ∆

ν

(

d

d+ 2ν

)

ζ

]

cn(n− 1)!

∫

ddx

(x− x1)2∆ · · · (x− xn)2∆
. (3.31)

We thus find that the combination of couplings that controls that particular conformal

structure in the n-point function can be written as

λ− ∆

ν

(

d

d+ 2ν

)

ζ . (3.32)

This combination and the combination (3.25) that controls the multi-trace deformation are

inequivalent. We conclude that by turning on both λ and ζ we can independently control

both the multi-trace deformation and the n-point function in the field theory. For n = 3

the correlator has a single conformal structure, so we can control it completely. For n > 3,

the couplings we wrote down only control the conformal structure that appears in (3.28).

These statements still hold true when we turn on η and break conformal invariance.

Note that in a specific theory, the coefficients of the two terms proportional to ζ

in (3.23) will be two independent functions of the single-trace couplings. Our discussion in

this section implies that, restricting the bulk action to include these specific terms, the beta

function for the multi-trace deformation will vanish only when the coefficients of these two

terms are equal to each other. Whenever this does not happen for any value of the exactly

marginal single-trace couplings (if any), conformal invariance will necessarily be broken.

4 Marginal double-trace deformations

In this section we consider marginal double-trace deformations, and write down bulk in-

teraction terms that turn on beta functions for these deformations.

4.1 Marginal double-trace deformations with a single operator

The first case we discuss involves an operator O of dimension ∆ = d/2. It is dual to a

bulk scalar φ with mass squared given by m2 = −d2/4. Following the strategy laid out in

section 2.2, we turn on a bulk term proportional to φ2 (this is the double-trace analog of

– 13 –
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the φn interaction we considered in section 3), and compute the beta function of the O2

coupling. The bulk action is

Sbulk =
1

2

∫

ddx

∫

ǫ
dz

√
g
[

(∂φ)2 +m2φ2 + ηφ2
]

. (4.1)

The η deformation shifts the mass, so we must choose η ≥ 0 in order not to violate

the Breitenlohner-Freedman bound [27]. The reader may wonder how such a shift can

break conformal invariance in a non-trivial way; as we will discuss below, there are indeed

boundary conditions on φ for which conformal invariance is preserved, but they are not

the ones we get by starting from the boundary conditions corresponding to ∆ = d/2. For

now let us treat η as a perturbation and solve to leading order. Solving the bulk equation

of motion near the boundary, we find

φ = α(x)zd/2 + β(x)zd/2 log(µz) +
η

2
α(x)zd/2 log2(µz) +

η

6
β(x)zd/2 log3(µz)

+O(zd/2+2) +O(η2) . (4.2)

The field theory deformation W = −λft

∫

ddxO2/4 corresponds to the boundary

conditions11

β = λftα . (4.3)

As before, we compute the beta function by varying µ while keeping φ constant, and the

result is

βλft
= λ2

ft − η +O(η2) . (4.4)

This contains the usual universal λ2
ft term that we discussed in section 2.1. However,

now the beta function does not vanish if we set λft = 0, so turning on the bulk coupling

η (which we interpret as some function of the single-trace couplings of the field theory)

breaks conformal invariance as expected. On the other hand, in this case we also have two

fixed points, which are at λft = ±√
η to leading order.

Alternatively, we can solve exactly in η. The bulk field is given by

φ = z∆
[

α̃(x) +O(z2)
]

+ zd−∆
[

β̃(x) +O(z2)
]

, (4.5)

where ∆ = d/2− ν and ν =
√
η. The new modes are related to the previous ones by

α = µ−ν β̃ + µνα̃ , β = ν
(

µ−ν β̃ − µνα̃
)

. (4.6)

In terms of these new modes, the boundary condition (4.3) is

β̃ = µ2νgα̃ , g ≡ ν + λft

ν − λft

. (4.7)

11The relation between the expectation value and the mode α in this case is 〈O〉 = −2α; see appendix A.
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We now have an operator Õ of dimension ∆ < d/2, and µ2νg controls the relevant de-

formation Õ2 of dimension 2∆ = d − 2ν. The running of the dimensionless coupling g is

determined by this dimension, and its beta function is given by

βg = −2νg . (4.8)

This agrees with (4.4) to leading order in η.

The two fixed points, at λft = ±ν, correspond using (4.7) to g = 0 or g = ∞.

These give the boundary conditions β̃ = 0 and α̃ = 0, respectively, which are the two

quantizations where we don’t turn on a double-trace deformation. These correspond to

two conformal field theories. As usual one can flow from the β̃ = 0 CFT to the α̃ = 0

CFT by turning on the Õ2 deformation in that theory. But we see that the boundary

condition that we get by starting from the theory with ∆ = d/2 and no double-trace

deformation, λft = 0 or g = 1, is far from these fixed points, and as we saw it does lead

to a breaking of conformal invariance by a beta function for the double-trace operator.

The end-point of the corresponding renormalization group (RG) flow is precisely the CFT

that we get by quantizing the same bulk action with the boundary condition α̃ = 0, in

which the scalar field corresponds to an operator of dimension ∆ = d/2 +
√
η. This has

an alternative description as the theory with ∆ = d/2 that we started from (which was

not conformal), with a finite double-trace deformation (and possibly other effects related

to the bulk interaction proportional to η).

4.2 Marginal double-trace deformations with two operators

In this subsection we consider marginal double-trace deformations involving two different

operators O1 and O2 with dimensions d − ∆ and ∆, respectively, such that (d/2) − 1 <

∆ < d/2, and write down bulk interaction terms that turn on beta functions for these

deformations. As usual, we denote ∆ = d
2 − ν. The operators are dual to bulk fields

φ1, φ2, both with the same mass squared, m2 = ∆(∆− d). As before, the action will have

three pieces,

S = Sbulk + Sct + S∂ , (4.9)

where Sct contains the counter-terms, and S∂ are regular boundary terms. The bulk action

for this theory is taken to be

Sbulk =
1

2

∫

ddx

∫

ǫ
dz

√
g
[

(∂φ1)
2 + (∂φ2)

2 +m2φ2
1 +m2φ2

2 + 2ηφ1φ2

]

. (4.10)

As we will show, the term φ1φ2 will generate a beta function for the double-trace defor-

mation O1O2 at order η, even when the double-trace coupling vanishes. The reasoning for

choosing this term again follows from the discussion in section 2.2.

As before, the same action can also be quantized as a conformal theory in which

the dimensions of the operators are shifted at order η. Indeed, after diagonalizing the

mass matrix we find that the decoupled fields ψ± = φ1 ± φ2 can correspond to operators

with dimensions

∆± =
d

2
± ν +

η

2ν
+O(η2) (4.11)
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in a theory with no double-trace couplings. However, in our case we will choose different

boundary conditions, corresponding to the original scaling dimensions with a small beta

function for the double-trace deformation; as before, the conformal field theory with both

dimensions equal to ∆+ in (4.11) will arise at the end of the RG flow.

4.2.1 Renormalization

We start by solving the bulk equations of motion, and renormalizing the theory. Renor-

malization is not strictly necessary for computing the beta function, and we include this

discussion for completeness. The variation of the bulk action is

δSbulk =

∫

ddx

∫

ǫ
dz

√
g
[

δφ1(−�φ1 +m2φ1 + ηφ2) + δφ2(−�φ2 +m2φ2 + ηφ1)
]

−
∫

ddx
√
γ
(

δφ1ǫφ
′
1 + δφ2ǫφ

′
2

)

. (4.12)

The solution of the bulk equations of motion near the boundary (see appendix B) is

φ1 = α1(x)z
∆ + β1(x)z

d−∆ +
η

2ν

[

β2(x)z
d−∆ − α2(x)z

∆
]

log(µz) +O(z∆+2) +O(η2) ,

φ2 = α2(x)z
∆ + β2(x)z

d−∆ +
η

2ν

[

β1(x)z
d−∆ − α1(x)z

∆
]

log(µz) +O(z∆+2) +O(η2) .

(4.13)

The bulk on-shell action is given by

Son−shell
bulk = −1

2

∫

z=ǫ
ddx

√
γǫ(φ1φ

′
1 + φ2φ

′
2) (4.14)

= −1

2

∫

z=ǫ
ddxǫ−2ν

[

∆(α2
1 + α2

2)−
2η

ν
∆α1α2 log(µǫ)−

η

ν
α1α2

]

+(finite)+O(η2) .

The following counter-term action cancels the divergences:

Sct =
1

2

∫

ddx
√
γ

[

∆(φ2
1 + φ2

2)−
η

ν
φ1φ2

]

. (4.15)

4.2.2 Boundary conditions and Beta function

Let us write down the boundary conditions that correspond to a double-trace deformation,

and compute the beta function for the double-trace coupling.

On the field theory side we introduce the term W = −λftO1O2. Using (2.7), this

corresponds to the boundary conditions

α1 = −2νλftα2 +O(η) , β2 = 2νλftβ1 +O(η) . (4.16)

The extra minus sign is due to the fact that one of the dimensions is greater than d/2.

The O(η) terms correspond to possible corrections coming from the extra term in the bulk

action. They will not affect the result for the beta function at leading order in η so we can

ignore them.
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To compute the beta function we again shift the renormalization scale, taking µ → µ̃

while keeping φ fixed and keeping track of the bulk modes. The φ1 field for the two choices

can be written as

φ1|µ = α1z
∆ + β1z

d−∆ − η

2ν
(α2z

∆ − β2z
d−∆) log(µz) +O(z∆+2) +O(η2) ,

φ1|µ̃ = α̃1z
∆ + β̃1z

d−∆ − η

2ν
(α̃2z

∆ − β̃2z
d−∆) log(µ̃z) +O(z∆+2) +O(η2) , (4.17)

and similarly for φ2. Demanding that φi|µ = φi|µ̃, we find the relations

α̃1 = α1 +
η

2ν
log(µ̃/µ)α2 +O(η2) , α̃2 = α2 +

η

2ν
log(µ̃/µ)α1 +O(η2) ,

β̃1 = β1 −
η

2ν
log(µ̃/µ)β2 +O(η2) , β̃2 = β2 −

η

2ν
log(µ̃/µ)β1 +O(η2) . (4.18)

Let us apply boundary conditions of the form (4.16) also at µ̃, denoting the effective

coupling at this scale by λ̃ft. Using (4.18), we see that the couplings at µ and µ̃ are

related by

λ̃ft − λft =
η

(2ν)2
log(µ̃/µ)

[

(2νλft)
2 − 1

]

+O(η2) . (4.19)

Here we used the fact the λ̃ft = λft +O(η). We find that the beta function is

βλft
=

dλft

d log(µ)
= η

[

λ2
ft −

1

(2ν)2

]

+O(η2) . (4.20)

For λft = 0 the situation is analogous to what we found in the higher-trace cases, discussed

in section 3. The beta function in this case is similar to the one obtained there — see

eq. (3.14) — and we see that the bulk φ1φ2 term breaks conformality.

As in the previous double-trace case, here we also find a term proportional to λ2
ft,

whose appearance in the double-trace case can be understood from large N counting:

double-trace contributions to double-trace beta functions are not suppressed at large N .

Notice that there are two fixed points, at λ2
ft = (2ν)−2. Again, we interpret these fixed

points as corresponding to the ‘standard’ conformal quantizations of the action (4.10).

5 Beta Function from the stress tensor

We will now calculate the multi-trace beta function using a different approach, to back up

the previous results. We will use the relation between the beta function and the trace of

the stress tensor in the field theory. The stress tensor can be calculated from the gravity

action by the procedure outlined in [28–30], which we will review shortly, and the beta

function can then be computed from a Ward identity. Our results confirm the previous

result (3.14).

Beta functions are related to the traced stress tensor by the Ward identity

〈T i
i (x)〉J =

∑

λft

βλft
〈Oλft

(x)〉J , (5.1)
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where the subscript J denotes the presence of sources, and the sum is over interaction terms

λftOλft
whose beta functions are βλft

. Here we focus on terms of the form λftOn/n, where

On is a multi-trace operator. We then expect a holographic calculation of the traced stress

tensor to produce

〈T i
i 〉 =

βλft

n
〈O〉n =

βλft

n
(−2να)n , (5.2)

where α(x) is the fluctuating mode of the scalar field dual to O. Here we used large N

factorization and the relation 〈O(x)〉 = −2να(x).

We start with the matter action (3.10) for n ≥ 3 and add to it a source term, so our

action reads

Smatter =

∫

ddx

∫

ǫ
dz

√
g

[

1

2
gµν∂µφ∂νφ+

1

2
m2φ2 +

η

n
φn

]

+

∫

z=ǫ
ddx

√
γ

[

∆

2
φ2(x) + 2νǫ(d−∆)/2Jφ

+

(

η

n
log(µǫ)− (−2ν)n

λft

n
+

η

2νn

)

φn(x)

]

. (5.3)

Here we used (3.13). To calculate the field theory stress tensor we will also need to consider

the contribution from the pure-gravity action,

Sgravity =
1

16πGN

∫

ddx

∫

ǫ
dz

√
g (R[g] + 2Λ)− 1

16πGN

∫

z=ǫ
ddx

√
γ 2K . (5.4)

Here γij = gij |z=ǫ is the induced metric on the boundary,

Kij ≡
1

2
(∇inj +∇jni) (5.5)

where ni is the unit vector normal to the boundary, and K = γijKij = ∇ini is the

extrinsic curvature (the covariant derivative is defined with respect to the full metric g).

For consistency with [24], we we will work with the coordinate ρ = z2, for which the metric

can be written as12

ds2 = gµνdx
µdxν =

dρ2

4ρ2
+

1

ρ
hij(x, ρ)dx

idxj . (5.6)

The holographic dictionary tells us that the stress tensor of the dual theory is given by

〈Tij〉 =
2√
h0

δSren

δhij0
, (5.7)

where Sren is the renormalized action of the gravity theory (5.3) (obtained after subtracting

divergences), and h0 is the field theory metric which is the boundary value of hij(x, ρ),

namely hij0 = hij(x, ǫ2). In the presence of a boundary at ρ = ǫ2, this can be written as

〈Tij〉 = lim
ǫ→0

2
√

h(x, ǫ2)

δSren

δhij(x, ǫ2)
= lim

ǫ→0

[

1

ǫd−2
T by
ij [γ]

]

. (5.8)

12In our convention the metric components gµν , hij are dimensionless, the coordinates xµ have length

dimension, ρ has length-squared dimension, and the AdS space has unit radius.
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Here, γij = ǫ−2hij is the induced metric at ρ = ǫ2, and

T by
ij [γ] =

2√
γ

δSren

δγij
(5.9)

is the stress tensor of the bulk theory with a cutoff at ρ = ǫ2, also known as the Brown-York

stress tensor. After taking the trace we get

〈T i
i 〉 = hij0 〈Tij〉 = lim

ǫ→0

[

1

ǫd
γijT by

ij [γ]

]

. (5.10)

To compute the stress tensor of the boundary theory we will evaluate it in terms of the

scalar modes. To do that we use the scalar solution (3.4), together with the leading order

back-reaction on the metric. It will be enough to solve for traces of the metric modes.

We will now rederive equation (5.17) of [24], which relates the metric and scalar modes.

The Einstein equation is

Rµν −
1

2
gµν (R+ Λ) = −8πGNT bulk

µν , (5.11)

where T bulk
µν is the bulk stress tensor of the matter fields, defined by

T bulk
µν =

2√
g

δSbulk

δgµν
. (5.12)

It is useful to write down the following combination of the ρρ component and the traced-ij

component of equation (5.11),

4 (1− d) ρRρρ −
Λ

ρ
= −8πGN

[

hijT bulk
ij + 4 (2− d) ρT bulk

ρρ

]

. (5.13)

In terms of the metric modes we find the equation13

Tr

[

h−1h,ρρ −
1

2
h−1h,ρh

−1h,ρ

]

= − 4πGN

ρ (1− d)

[

hijT bulk
ij + 4 (2− d) ρT bulk

ρρ

]

, (5.14)

where hij,ρ = ∂ρhij . On the left-hand side we use matrix notation for the metric.

In the absence of matter fields, the solution to this equation is given by the Fefferman-

Graham expansion of hij ,

h(x, ρ) = h0(x) + ρh2(x) + · · ·+ ρd/2hd(x) + kd(x)ρ
d/2 log(µ2ρ) + · · · , (5.15)

where the logarithm only appears for even d and we omitted the indices for simplicity.

However, in the presence of the scalar, the various powers of ρ on the right-hand side

of (5.14) change this expansion (see, for example, [31]). For the non-minimally coupled

scalar (5.3), the equation can be written as

ρ2Tr

[

h−1h,ρρ +
1

2
h−1
,ρ h,ρ

]

= −16πGN

[

(ρφ′)2 − ∆2

4(d− 1)
φ2 +

η

2n(d− 1)
φn

]

. (5.16)

13For consistency with [24] we work with the following conventions R l

ijk = ∂[iΓ
l
j]k+Γl

p[iΓ
p

j]k, Rij = R k

ikj ,

where square brackets denote anti-symmetrization with respect to indices.
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The bulk scalar solution is given by (3.4).

To solve for the metric in the presence of the scalar, we start by writing the solution

as a sum of the pure-gravity piece [24] and a scalar back-reaction piece,

h = hpure + hscalar . (5.17)

To solve equation (5.16) we will match powers of ρ on both sides. As discussed in [31], the

scalar changes the mode expansion of the metric. Following [31] we assume that

p+ q
∆

2
6= d

2
(5.18)

for all integer q ≥ 2 and integer p.14 Under this assumption our mode expansion takes a

form similar to (2.23) in [31],

hij(x, ρ) = h0(x) + ρh2(x) + · · ·+ ρd/2hd(x)

+ ρd/2 log(µ2ρ)kd(x) + ρ∆k̃2∆(x) + · · · . (5.19)

The field theory stress tensor for the pure gravity case was calculated in [24] in terms

of the metric modes, with the result

〈T i
i 〉 =

1− d

8πGN
Tr

[

d

2
hd + kd

]

+X [hn<d] . (5.20)

The terms in X are related to anomalies, and hd, kd are the only terms that survive the

ǫ → 0 limit after subtracting the divergences. To compute the trace of the stress tensor

we need to solve (5.16) only for the modes hd, kd, and k̃2∆, where the latter is necessary

for canceling a divergence which occurs when taking the ǫ → 0 limit of the Brown-York

tensor. Under the assumption (5.18), equation (5.16) reduces to

ρ2Tr
[

hscalar,ρρ

]

= −16πGN

[

(ρφ′)2 − ∆2

4(d− 1)
φ2 +

η

2n(d− 1)
φn

]

(5.21)

for the powers of ρ that multiply the three modes we are interested in. After substituting

the scalar solution (3.4), we find the solution

hscalard =
8πGN

1− d

[

4

(

n− 1

n2

)

dαβ − 4η
αn

dn

]

+O
(

η2
)

,

kscalard =
8πGN

d− 1

[

2η

(

n− 1

n− 2

)

αn

n

]

+O
(

η2
)

, (5.22)

k̃scalar2∆ =
8πGN

1− d

[

d

2
α2

]

+O
(

η2
)

.

The Brown-York tensor (5.9) for the scalar with action (5.3) is

T by
ij [γ] =

1

8πGN
(γijK −Kij)

+ γij

[

∆

2
φ2 +

( η

2ν
+ η log(µǫ)− (−2ν)nλft

) φn

n
+ 2νǫd−∆Jφ

]

. (5.23)

14In [31] it is also assumed that ∆ is rational, which is always true in the cases we discuss in this section.
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Let us first compute K in terms of the modes of hij (we will only need the trace of Kij

to compute the trace of the stress tensor). The normal vector is nρ = 2ρ with all other

components vanishing (it is normalized using gij). We find that15

K = ∇ini = ∂ini + Γi
iµn

µ = Γi
iρn

ρ = ρTr(h−1h,ρ)− d . (5.24)

As in the pure-gravity case, the ρd/2 term in K is

ρd/2
[

d

2
hd + kd

]

, (5.25)

and the diverging ρd/2 log(ρ) term cancels with the contributions from the scalar (which

are in the second line of (5.23)). After substituting in the modes of the metric and the

scalar solution we apply the multi-trace boundary condition

β = λft(−2να)n−1 + J . (5.26)

To get the field theory stress tensor we need to take the limit ǫ → 0. The counter-terms

for the pure gravity contribution were already calculated in equation (3.3) of [24], and we

encounter no new additional divergences when taking the limit. Thus we find that the

contribution to the field theory stress tensor from the back-reacted modes is

〈T i
i 〉J = J (d−∆) 2να+

η

n
αn +X [hn<d] +O

(

η2
)

, (5.27)

where again X is a function of the pure-gravity metric modes hn<d as found in [24]. From

here we can read off the beta function using (5.2), and we find

βλft
=

η

(−2ν)n
. (5.28)

This is in accord with the previous result (3.14).

For the case of n = 2 (double-trace deformations) the computation is similar and

reproduces (4.4).
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A Free bulk scalars and holography

In this appendix we review some known results for bulk scalar fields that are dual to

operators with dimension (d/2) − 1 < ∆ < (d/2) + 1, with no multi-trace deformations.

These include the boundary-to-bulk propagator, the renormalized on-shell action, and the

precise relation between the operator expectation value and the fluctuating mode of the

scalar [3, 18, 32].

Consider a scalar operator O of dimension ∆ = (d/2) − ν, which is dual to a scalar

field φ in the Poincaré patch of AdSd+1. The action is

S =
1

2

∫

ddx

∫

∞

0
dz

√
g
[

(∂φ)2 +m2φ2(x, z)
]

+ Sct , m2 = ∆(∆− d) , (A.1)

where the metric was defined in (2.3). The action Sct will contain boundary terms that

are required for renormalization and for compatibility with the boundary conditions.

A.1 The case ∆ 6= d/2

When ∆ 6= d/2 the field has the near-boundary expansion

φ(x, z) = z∆
[

α(x) +O(z2)
]

+ zd−∆
[

β(x) +O(z2)
]

, (A.2)

and we identify β with the source J of the operator. Namely, the holographic dictionary

for the generating function of O correlators is

Z[J ] =

〈

exp

∫

ddxJ(x)O(x)

〉

= exp (−Son−shell(φ)) , (A.3)

where the on-shell action is evaluated with the boundary condition β(x) = J(x).16 In what

follows we will compute the on-shell action, and derive the relation

〈O(x)〉 = −2να(x) (A.4)

between the expectation value of the operator and the fluctuating mode of the scalar.

A.1.1 Boundary-to-bulk propagator

We begin by computing the boundary-to-bulk propagator, K∆(x, z;x
′). It is defined by

the condition that

φ(x, z) =

∫

ddx′K∆(x, z;x
′)β(x′) (A.5)

is a solution of the bulk equation of motion �φ−m2φ = 0, such that the coefficient of the

zd−∆ mode is β(x). By setting β(x) = δ(x−x0) we see that K∆(x, z;x0) is itself a solution

of the equation of motion, which includes the specific mode δ(x− x0)z
d−∆.

Due to translation invariance we have K∆(x, z;x
′) = K∆(x−x′, z). It is convenient to

first compute the momentum-space propagator,

K∆(k, z) =

∫

ddxe−ik·xK∆(x, z) . (A.6)

16This is consistent with our convention for the multi-trace boundary conditions, equations (2.2) and (2.6).
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It satisfies the bulk equation of motion

z2∂2
zK∆ + (1− d)z∂zK∆ − (m2 + z2k2)K∆(k, z) = 0 , (A.7)

and it should include the mode zd−∆ with unit coefficient (this is the Fourier-transform of

the mode δ(x)zd−∆). The solution we are looking for is

K∆(k, z) =
21+ν

Γ(−ν)
|k|−νzd/2Kν(|k|z) . (A.8)

Here Kν is the modified Bessel function, which was chosen because it leads to a regular

solution as we take z → ∞. Expanding the solution at small z, we have

K∆(k, z) =
Γ(ν)

Γ(−ν)

(

k

2

)−2ν

z∆
[

1 +O(z2)
]

+ zd−∆
[

1 +O(z2)
]

. (A.9)

We see that the zd−∆ mode has the required coefficient.

We can now Fourier transform back to position space, and verify that the propagator

takes the known form [3]

K∆(x, z;x
′) =

Γ(∆)

πd/2Γ(−ν)

z∆

(z2 + |x− x′|2)∆
. (A.10)

Here we will assume that the functional form of the propagator is as indicated, and will

only verify that the coefficient is correct for any ∆ 6= d/2. To do this, let us set x′ = 0

and isolate the z∆ mode of the propagator. The Fourier transform of this mode should be

equal to the z∆ mode of the expansion (A.9). This can be verified using the relation17

∫

ddxe−ik·x 1

|x|2∆ =
πd/2Γ(ν)

Γ(∆)

(

k

2

)−2ν

, (A.11)

which is valid for (d/2)− 1 < ∆ < (d/2) + 1, ∆ 6= d/2.

A.1.2 On-shell action

Having computed the boundary-to-bulk propagator, we now proceed with the computation

of the on-shell action. We start with the action (A.1), and regulate the theory by placing

a cutoff at z = ǫ. After integrating by parts and using the equations of motion, we find

the regularized on-shell action

−1

2

∫

z=ǫ
ddx

√
γǫ(∂zφ)φ+ Sct , (A.12)

where γ is the induced metric on the boundary, and
√
γ = ǫ−d. The minus sign in the first

term is due to the fact that z = ǫ is the lower limit of the dz integral. The first term in

17For ∆ < d/2 this integral converges and is straightforward to compute. For ∆ > d/2 it diverges; it

can be computed by placing a cutoff in the radial direction, and minimally subtracting the diverging part.

When ∆ ≥ (d/2) + 1 additional divergences appear, and we do not consider this case.
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this action diverges as we take ǫ → 0; this can be seen by using the expansion (A.2). We

must therefore introduce a counter-term to cancel the divergence.

Let us begin with the case ∆ < d/2, and choose our boundary action to be

Sct =

∫

ddx
√
γ

[

∆

2
φ2(x) + 2νǫd−∆φ(x)J(x)

]

. (A.13)

The first term in the boundary action is a counter-term that cancels the divergence

in (A.12). Since we are interested in computing correlators, we would like to impose the

boundary condition β(x) = J(x) for a source J(x), and we must make sure that our action

is compatible with this condition. This is achieved by the second term in the boundary

action (A.13). Indeed, for ∆ < d/2 the scalar mode β(x)zd−∆ is not the leading mode in z.

Therefore, we need to impose Neumann-like boundary conditions, in which the variation of

the field is left arbitrary. The variation of the action (A.1) with the choice (A.13) includes

the boundary term
∫

z=ǫ
ddx

√
γδφ(∆φ− ǫ∂zφ+ 2νǫd−∆J) = −2νǫ−∆

∫

ddxδφ[β(x)− J(x)] + · · · , (A.14)

where the remaining terms are subleading in ǫ. As promised, this variation is compatible

with the boundary condition. The renormalized on-shell action is now

Son−shell = lim
ǫ→0

1

2

∫

z=ǫ
ddx

√
hφ(∆φ− ǫ∂zφ+ 4νǫd−∆J) = ν

∫

ddxα(x)β(x) . (A.15)

Here we used the expansion (A.2) and the boundary condition β = J .

Next, consider the case ∆ > d/2. Here we choose our boundary action to be

Sct =
d−∆

2

∫

z=ǫ
ddx

√
hφ2 , (A.16)

in order to cancel the divergence coming from the bulk action. In this case the source mode

β(x)zd−∆ is the leading mode near the boundary, so we apply the Dirichlet-like boundary

condition limz→0 z
∆−dδφ(x, z) = 0. This is compatible with setting β(x) = J(x) for any

J(x), and there is no need to introduce any additional boundary terms. The renormalized

on-shell action in this case is

Son−shell = lim
ǫ→0

1

2

∫

z=ǫ
ddx

√
hφ[(d−∆)φ− ǫ∂zφ] = ν

∫

ddxα(x)β(x) . (A.17)

This is simply the continuation of the action (A.15) to the range ∆ > d/2. We therefore

find that the on-shell action for any ∆ 6= d/2 is given by

ν

∫

ddxα(x)β(x) . (A.18)

Let us derive 1-point and 2-point functions of O from the on-shell action. Using the

relation

α(x) =
Γ(∆)

πd/2Γ(−ν)

∫

ddx′
β(x′)

|x− x′|2∆ , (A.19)

– 24 –



J
H
E
P
0
5
(
2
0
1
5
)
0
3
1

which follows from (A.10) and (A.2), the renormalized on-shell action becomes

Son−shell =
νΓ(∆)

πd/2Γ(−ν)

∫

ddxddx′
β(x)β(x′)

|x− x′|2∆ . (A.20)

The 1-point function is given by (cf. (A.3))

〈O(x)〉 = −δSon−shell

δβ(x)
= − 2νΓ(∆)

πd/2Γ(−ν)

∫

ddx′
β(x′)

|x− x′|2∆ = −2να(x) . (A.21)

We find that the relation

〈O〉 = −2να (A.22)

holds for all ∆ 6= d/2 [18].18 This relation holds for a specific normalization of O, which is

given by its 2-point function. Differentiating again, we find that

〈O(x)O(x′)〉 = − 2νΓ(∆)

πd/2Γ(−ν)

1

|x− x′|2∆ . (A.23)

As a check on these results, notice that this 2-point function is reflection positive for

all ∆ 6= d/2.

A.2 The case ∆ = d/2

In this case ν = 0, and the near-boundary expansion of the scalar is

φ(x, z) = zd/2 log(zµ)
[

β(x) +O(z2)
]

+ zd/2
[

α(x) +O(z2)
]

. (A.24)

Here β corresponds to the source, because one can turn on α without β but not the other

way around [18]. The boundary-to-bulk propagator in momentum space is

K∆(k, z) = −zd/2K0(kz) . (A.25)

This can be verified by checking that the zd/2 log(z) mode of this solution has unit

coefficient.

The on-shell action is given by (A.12), and the counter-term action that renormalizes

the theory in this case is

Sct =

(

d

4
+

1

2 log(ǫµ)

)
∫

ddx
√
hφ2 . (A.26)

This counter-term is introduced to cancel the divergence in the first term in (A.12). In this

case the source term is the leading term near the boundary, so we can impose Dirichlet-like

boundary conditions (as we did for ∆ > d/2), which are compatible with the boundary

condition β(x) = J(x). After taking ǫ → 0, we find the renormalized on-shell action

Son−shell =

∫

ddxα(x)β(x) . (A.27)

18To compare with [18] one should flip the sign of ν.
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In this case it is convenient to proceed in momentum space. Expanding the propaga-

tor (A.25) near the boundary, we see that

K∆(k, z) = zd/2 log(µz)[1 +O(z2)] + zd/2
[

γ + log(k/2µ) +O(z2)
]

, (A.28)

where γ is Euler’s gamma, whose appearance is an artifact of our choice of scale µ. Com-

paring with the expansion (A.24) (after Fourier-transforming it), we find the momentum-

space relation

α(k) = [γ + log(k/2µ)]β(k) . (A.29)

Plugging this in the on-shell action (A.27), and differentiating with respect to β, we find

the relation

〈O〉 = −2α . (A.30)

Differentiating again, we find the 2-point function

〈O(k)O(k′)〉 = −2 log(k/µ)δ(k + k′) + · · · , (A.31)

where we have omitted terms that are constant in the momentum, because they correspond

to contact terms in position space. One can now transform back to position space using

the relation

∫

ddx e−ik·x 1

|x|d = − 2πd/2

Γ(d/2)
log(kε) + const , (A.32)

where ε is a cutoff in position space (|x| > ε). At separated points, we find that

〈O(x)O(x′)〉 = Γ(d/2)

πd/2

1

|x− x′|d . (A.33)

This determines the normalization of the operator O in our calculation, and also shows

that this procedure leads to a reflection-positive 2-point function.

B Solving the scalar equation of motion

In this section we solve the equation of motion (3.3) for the scalar field near the boundary,

to leading order in η. The equation is

z2φ′′ + z2�xφ+ (1− d)zφ′ −m2φ = ηφn−1(x, z) , n ≥ 3 , (B.1)

where φ′ = ∂zφ. Let us expand the solution as

φ = φ0 + ηφ1 +O(η2) , (B.2)

where the free field solution is given by

φ0 = z∆
[

α(x) +O(z2)
]

+ zd−∆
[

β(x) +O(z2)
]

. (B.3)
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The equation for φ1 is

z2φ′′
1 + z2�xφ1 + (1− d)zφ′

1 −m2φ1 = φn−1
0 (x, z)

= αn−1(x)zd−∆ +O(zd−∆+2ν) . (B.4)

The effect of the z2�xφ1 term is subleading in z, and the solution is

φ1 =
1

2ν
αn−1(x)zd−∆ log(µz) +O(zd−∆+2ν) . (B.5)

The full solution near the boundary is thus

φ(x, z) = z∆
[

α(x) +O(z2)
]

+ zd−∆
[

β(x) +O(z2)
]

+
η

2ν
αn−1(x)zd−∆ log(µz) +O(ηzd−∆+2ν) +O(η2) . (B.6)
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