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1 Introduction

The work of Wald in the early 1990s showed that a first law of black hole mechanics holds
for any theory of gravity arising from a diffeomorphism invariant Lagrangian [1]. This work
provides a definition of entropy, the Wald entropy, for any stationary (i.e. time independent)
black hole solution. It is natural to ask whether a second law of black hole mechanics can
also be established for this class of theories. Can one define an entropy for a dynamical (i.e.
time-dependent) black hole that (i) depends only on the geometry of a cross-section of the
event horizon, (ii) agrees with the Wald entropy in equilibrium, and (iii) increases in any
dynamical process?

An early proposal due to Iyer and Wald [2] satisfies (i) and (ii) above but the question
of whether it satisfies a second law (iii) was left open. A suitable definition of entropy has
been found for the special case of f(R) theories, i.e. theories with a Lagrangian that is a
function of the Ricci scalar. For such theories, the entropy is the integral of 47 f'(R) over a
horizon cross section [3]. This differs from the Iyer-Wald entropy, which suggests that the
latter will not satisfy (iii) in general.

More recently, the second law has been studied perturbatively around a stationary black
hole. Wall has found a definition of black hole entropy that satisfies (i) and (ii) and satisfies
(iii) to linear order in perturbation theory [4]. Note that the second law implies that the
entropy is constant to linear order (otherwise one could obtain a decrease by reversing the
sign of the perturbation). Nevertheless, this is still highly non-trivial e.g. in a general theory
the Bekenstein-Hawking entropy (proportional to the horizon area) would not be constant
to linear order. Wall’s definition involves adding certain terms to the Iyer-Wald entropy so,
following [5] we shall refer to it as the Iyer-Wald-Wall (IWW) entropy.

To see an increase in entropy one needs to go beyond linear perturbation theory. This
has been achieved in recent work of Hollands, Kovics and Reall (HKR) [5]. They showed
that the IWW entropy can be improved, by adding further terms, to define an entropy that
satisfies a second law to quadratic order in perturbations around a stationary black hole.
We shall refer to this improved entropy as the IWWHKR entropy. To establish a second law,
HKR introduced two physically reasonable assumptions: (a) the theory must be regarded
as an effective field theory (EFT) and (b) the black hole solution considered must lie within
the regime of validity of EFT. Assumption (a) means that the Lagrangian is a series of
terms with increasing numbers of derivatives, whose coefficients scale as appropriate powers
of [ where [ is a “UV length scale” e.g. a k-derivative term in the Lagrangian has coefficient
proportional to *~2. Point (b) means roughly that if L is any length/time scale associated
with a dynamical black hole then this must satisfy L > [. This assumption seems essential
since higher-derivative theories typically admit pathological solutions lying outside the
regime of validity of EFT and there is no good reason to expect that such solutions should
satisfy a second law. HKR established the above results for an EFT describing vacuum
gravity (no matter) or gravity coupled to a scalar field. They suggested that similar results
should hold for more general EFTs.

This paper has three aims. The first aim is to study examples for which the HKR
terms are non-trivial. The leading EFT corrections to Einstein gravity have 4 derivatives.



However, HKR terms are only generated for theories with 6 or more derivatives, i.e.,
the IWWHKR, entropy coincides with the IWW entropy for a 4-derivative theory. To
find examples for which the IWWHKR entropy differs from the IWW entropy one needs
to consider theories with at least 6 derivatives. We shall consider the EFT of vacuum
gravity in 4d. In vacuum, one can use a field redefinition to eliminate (non-topological)
4-derivative terms from the action and so the leading EFT corrections to the Einstein-
Hilbert Lagrangian have 6 derivatives. We shall determine the HKR terms in the entropy
for this EFT.

Second, we shall study the gauge-invariance of the HKR method. As with the method
of Wall, the HKR. approach makes use of Gaussian null coordinates defined near the
black hole horizon. One of these coordinates is an affine parameter along the horizon
generators. There is the freedom to rescale this affine parameter by a different amount along
each generator. The Wall and HKR approaches do not maintain covariance w.r.t. such a
rescaling. Nevertheless, HKR proved that the IWW entropy is suitably gauge invariant
under the rescaling. However, they did not demonstrate that the new terms generated
by their approach must also be gauge invariant. By classifying the possible form of HKR
terms in vacuum gravity we shall show that non-gauge-invariant terms cannot arise for
theories with fewer than 8 derivatives. In particular our results for 6-derivative theories are
gauge invariant. However, our classification shows that non-gauge-invariant terms might
appear for theories with 8 derivatives. By considering a particular 8-derivative theory we
confirm that such terms do appear. Hence the IWWHKR entropy is not gauge invariant
for this theory.

Our final objective is to consider a particularly interesting theory, namely Einstein-
Gauss-Bonnet (EGB) theory. In d > 4 dimensional vacuum gravity, field redefinitions
can be used to bring terms with up to 4-derivatives to the EGB form. Thus EGB can be
regarded as an EFT. However, since this theory has second order equations of motion,
it is often regarded as a self-contained classical theory (e.g. it admits a well-posed initial
value problem if the curvature is small enough [6]). It is interesting to ask whether the
HKR approach can be used to determine the entropy for this theory. To do this, we can
regard it as a very special EFT for which the coefficients of all terms with more than 4
derivatives are exactly zero. We can then apply the HKR method to this EFT to determine
the entropy to any desired order in the Gauss-Bonnet coupling constant. We shall use this
method to calculate the entropy to quadratic order in this coupling constant.

This paper is organized as follows. In section 2 we review the Wall and HKR algorithms.
In section 3 we explain how we calculate the IWWHKR entropy in practice using computer
algebra. Section 4 presents a classification of terms that can arise in the IWWHKR entropy,
explaining why this is necessarily gauge invariant for theories with up to 6 derivatives.
Section 5 presents the results of our calculations for EGB theory, 6-derivative theories, and
a particular 8-derivative theory. In section 6 we demonstrate gauge non-invariance of the
IWWHKR entropy for the 8-derivative theory. Section 7 contains a brief discussion.

Our conventions are a positive signature metric, Greek indices u, v, . .. denote spacetime
coordinate indices and (r, v, z*!) refer to the Gaussian Null coordinate system defined below.
We use units such that 167G = 1.



2 Review of Wall and HKR procedures

Let us first review the Wall and HKR procedures for constructing a dynamical black hole
entropy that satisfies a second law. The Wall procedure is sketched in [4] and described in
more detail in [7, 8]. The HKR procedure is detailed in [5].

2.1 Gaussian Null Co-ordinates

Both procedures involve an entropy current defined on the event horizon N of a black hole,
which is a null hypersurface. We assume N is smooth and has generators that extend to
infinite affine parameter to the future. This seems reasonable for a black hole “settling
down to equilibrium”, which is the physical situation considered by Wall and HKR.

We will use Gaussian Null Co-ordinates (GNCs) defined in a neighbourhood of N as
follows. Assume all generators intersect a spacelike cross-section C' exactly once, and take
z? to be a co-dimension 2 co-ordinate chart on C. Let the null geodesic generators have
affine parameter v and future directed tangent vector I* such that [ = 9, and v =0 on C.
We can transport C' along the null geodesic generators a parameter distance v to obtain a
foliation C'(v) of N. Finally, we uniquely define the null vector field n* by n - (8/0x4) =0
4) are then assigned to the point affine parameter
A

)

and n -l = 1. The co-ordinates (r,v,z
distance r along the null geodesic starting at the point on A with coordinates (v,z*') and

with tangent n# there. The metric in these GNCs is given by
1
g = 2dv (dr — §r2adv — rﬂAdxA> + ,uA]g;dacAda:B7 =0y, n=20, (2.1)

N is the surface r = 0, and C is the surface r = v = 0. The inverse of puap is denoted by
pAB  and we raise and lower A, B, ... indices with u4? and pap. We denote the induced
volume form on C(v) by €a,.. 4, , = €rvA,..A,_, Where d is the dimension of the spacetime.

The covariant derivative on C(v) with respect to pap is denoted by D4. We also define

1 _ 1 _ _
Kap = 50upap,  Kap =50pap, K= K4y, K=K, (2.2)
Kap describes the expansion and shear of the horizon generators. K 4p describes the
expansion and shear of the ingoing null geodesics orthogonal to a horizon cut C(v).

2.2 Gauge transformations and boost weight

Our choice of GNCs is not unique. In particular, on each generator we can rescale the affine
parameter v’ = v/a(z?) and tangent vector I’ = a(z?)l, where a(z4) > 0, to obtain a new
set of GNCs (', v/, z4). If a(z*) is non-constant then horizon cross-sections of constant v’
differ from cross-sections of constant v, i.e., the change of coordinates changes the foliation
C(v). The exception is the surface C, i.e., v = v’ = 0, which belongs to both foliations.
This freedom in rescaling the affine parameter is essential if we wish to compare the
entropy of two arbitrary horizon cuts C, C" with C’ strictly to the future of C' [5]. The
reason is that the Wall and HKR procedures define an entropy associated with a particular
set of GNCs. Introducing GNCs based on C' we can use the rescaling of affine parameter to



ensure that C’ is a surface of constant v, and then apply the second law of Wall or HKR.
However, we do not want our definition of the entropy of C' to depend on the choice of
C' and so we want the entropy of C to be gauge invariant under the rescaling of affine
parameter. Investigating whether or not this is true for the IWWHKR entropy is one of
the aims of this paper.

In general, GNC quantities have complicated transformation laws under this rescaling.
However, we will only be concerned with how they transform on the horizon cut C, i.e. on
r=v=0. On C, some quantities satisfy simple transformation laws [5]:

;U'A::EA, V=0 =0,

Wap = HAB; €Ay A, , = €A1..Aq_s> Rapepli'] = Rapeplu], D= Da,
85,[(1’43 = ap+185KAB, 81{),[?‘,43 = a*pflafR’AB, (2.3)
B4 =pPa+2Dsloga

on v=r=0

Note in particular that S4 transforms inhomogeneously, in the same way as a gauge field
(this is because 4 is a connection on the normal bundle of C' [5]).

An important concept for both the IWW and HKR. procedures is the boost weight of a
quantity. Suppose we take a(z?) to be constant, and suppose that a quantity T transforms
as T’ = a®T under the rescaling above. Then T is said to have boost weight b. See [5] for a
full definition. Some important facts are stated here:

e «, B4, and puap have boost weight 0. K45 and K 45 have boost weight +1 and —1
respectively.

o If T has boost weight b, then Dy, ... D4, 0702T has boost weight b+ p — q.
o If X; has boost weight b; and T' = [[; X;, then T has boost weight b =}, b;.

e A tensor component T}/ has boost weight given by the sum of +1 for each v
subscript and each r superscript and —1 for each r subscript and v superscript.

For non-constant a(z4), a tensor component Th-#n with boost weight b has a com-
plicated transformation away from C' under the rescaling above. However, on C the

transformation remains T/ Hn = gbTH1 - fin
1---Um Vi...Um

2.3 Perturbations around stationary black holes

The Wall and HKR results apply to the scenario of a black hole settling to an equilibrium
stationary state. To make this precise, we assume that our higher derivative gravitational
theories admit a family F of stationary black hole solutions for which the event horizon is a
bifurcate Killing horizon. This is equivalent to the assumption that a member of F satisfies
the zeroth law of black hole mechanics [10]. For an EFT describing vacuum gravity with
UV length scale [, a zeroth law can be proved for solutions constructed as a power series in



1 [9, 11].} (In some cases a zeroth law can be established assuming only validity of EFT
without resorting to an expansion in [ [12].) A black hole “rigidity theorem”, (showing that
the event horizon of a stationary black hole must be a Killing horizon) has also been proved
for solutions of this type [13].

The bifurcate Killing horizon assumption ensures that all positive boost weight quantities
vanish on N for a member of F. Therefore, in perturbation theory around a member of F,
any positive boost weight quantity is of first order on A/. A quantity that is of cubic or
higher order in positive boost weight quantities vanishes to quadratic order in perturbations
around a stationary black hole.

2.4 The Iyer-Wald-Wall entropy

In standard 2-derivative GR coupled to matter satisfying the null energy condition, the
second law of black hole mechanics states that the area of a black hole is non-decreasing, i.e.

A(v) = /C . A2 /1 (2.4)

satisfies A(v) > 0 for all v. The interpretation of the area as the Bekenstein-Hawking
entropy re-expresses this law as saying the entropy of a black hole is always non-decreasing.

However, if we consider a higher derivative theory of gravity then there is no reason
why A(v) should be non-decreasing for a general black hole solution. Thus, in the hope of
preserving our interpretation of black holes as thermodynamic objects, we must come up
with a new definition of dynamical black hole entropy that does satisfy a second law.

The Iyer-Wald-Wall entropy is an attempt to do this. It satisfies a second law to linear
order in perturbations around a member of F. The starting point for this definition is the
vv component of the equations of motion, E,,, evaluated on A. In a procedure sketched by
Wall in [4]? and made explicit by Bhattacharyya et al. [7, 8], E,, can be manipulated into
the following form on N:

1

Ji

where sy, (boost weight 0) and s (boost weight 1) are expressions containing terms of

E’UU

up to linear order in positive boost weight quantities and the ellipsis denotes terms that are
quadratic or higher in positive boost weight quantities (and therefore of quadratic or higher
order in perturbation theory around a member of F). The method to get to (2.5) is purely
off-shell (i.e. it doesn’t use any equations of motion) and applies to any theory of gravity
arising from a diffeomorphism invariant Lagrangian.

!The assumption of an expansion in | seems reasonable for stationary black holes but it would certainly
not be appropriate in a time-dependent situation, where secular terms (growing in time) typically arise in
such an expansion. A simple example of this would be a quasinormal mode of a linearly perturbed black
hole. Such a mode is proportional to ™! with Im(w) < 0. Higher derivative terms will give a perturbative
shift in the quasinormal frequency, i.e., w = wo + [?w1 + .... Low lying quasinormal modes certainly lie
within the regime of validity of EFT, and decay exponentially in time. However if we expand in [ we obtain
secular growth: e~ ™! = eii“’ot(l — w1t + .. .). We emphasize that in this paper we do not require that
dynamical black hole solutions are constructed as a power series in .

2See [14, 15] for earlier work establishing a linearized second law in particular theories.



The IWW entropy of a horizon cross-section C/(v) is defined as®

Svw() =dr [ &2 fish (2.6)
C(v)

We can then write

. 1
Srww = 4w / —
C(v) Vi

o0 1
=4 / d?2y / dv 0, | —0, sY + D st
T - Vi ; N (Vustww) A

where in the first line we trivially added the total derivative ,/uD 454 to the integrand, and

a2/ [ O (VEshuw) + DAsA]

(2.7)

in the second line we assumed the black hole settles to a member of F, so positive boost
weight quantities vanish on the horizon at late times. The integrand can then be swapped
for terms that are quadratic or higher in positive boost weight quantities using (2.5) and the
equation of motion FE,, = 0. Thus S rww = 0 up to linear order in perturbations around a
stationary black hole, and hence satisfies a second law up to this order.

sty is the IWW entropy density described by Wall, whilst the need for the quantity
s was noted in [7]. These objects can be combined into a vector field (sYy4y, 5°) tangent
to NV, called the entropy current. How to construct s¥;;, and s? is briefly discussed in
section 3. s7y iy has boost weight 0 and contains terms that are either linear or zero order
in positive boost weight quantities. The zero order terms are exactly the Iyer-Wald entropy
density, and hence the IWW entropy density modifies this by terms linear in positive
boost weight.

We have defined sy, so that it includes only terms of up to linear order in positive
boost weight quantities. However, one can add terms to sfy;y;, of quadratic or higher order
in such quantities without affecting the linearized second law. Some previous work on
the IWW entropy (e.g. [4]) implicitly makes a choice for these higher order terms. We
emphasize that our definition of s}y, does not include such terms.

HKR proved that the IWW entropy is gauge invariant under changes of GNCs [5].
More precisely, they showed that it is gauge invariant to linear order in perturbations, i.e.,
to the same order that it satisfies the second law. They also showed that it can be made
gauge invariant to all orders by adding higher order terms as discussed in the previous
paragraph. The quantity s? is not gauge invariant in general [5, 16].

2.5 Gravitational effective field theory

At linear order, the second law states that the entropy is constant. To obtain an entropy
increase it is necessary to go beyond first order perturbation theory. To do this, HKR
worked within the framework of effective field theory (EFT).

In the EFT framework for gravity, we assume the GR Lagrangian comes with arbitrary
corrections made out of any diffeomorphism invariant quantity, ordered by the number
of derivatives they contain. The coefficients of these corrections are assumed to scale as

3We use units with 167G = 1.



appropriate powers of some “UV length scale” [, with an n-derivative term having coefficient
proportional to ["~2. In vacuum gravity the general EFT Lagrangian is of the form

L=-20N+R+1PLy+1"Le+1%Lg + O(1%) (2.8)

where L4 contains all independent 4-derivative terms, Lg contains all independent 6-
derivative terms, Lg contains all independent 8-derivative terms etc.*

The set of terms in each £,, can be reduced by neglecting total derivatives and using
field redefinitions. For example, let us consider £4. We can write the most general set of
independent 4-derivative terms in the above as:

L=-2A+ R+ (kiR* + ko Ry R*™ + k3R, po RMP7 + ks VY, R) + O(1)  (2.9)

The final 4-derivative term is a total derivative, which we can neglect. We can also use
a field redefinition of the form g, — g, + 12 (aAgu + bRy, + cR,,) with appropriate
constants a, b, ¢ to bring the remaining 4-derivative terms into the form of a single term
given by the EGB Lagrangian:®
1
L=-2A+R+ Ekz%mm’m Rpps T2 Ry p, 727 4+ O(1%) (2.10)

010920304
where the generalized Kronecker delta is

P1---Pn — 0] 5P Pn
AN ] S

] (2.11)

For general dimension d > 4, this is as far as we can go. In this case, EGB gravity is
the leading order EFT correction to GR. Its IWWHKR entropy is calculated in section 5.1.

However, in d = 4 dimensions the 4-derivative EGB term is topological and can be
neglected.® Therefore we can eliminate all order I contributions to £. We can perform a
similar procedure [17, 18] to reduce the set of 6-derivative terms to the following:

L= =20+ R+ 1k1 Ry RN R M 4 kg Ry R Ry e eP7) + O(15) - (2.12)

The k; term is parity even and the ko term is parity odd. The IWWHKR entropy of this
Lagrangian is calculated to order [* in section 5.2. The contribution at order 1% of a specific
term in Lg is calculated in section 5.3.

Following HKR, we shall not be interested in arbitrary solutions of these EFTs but only
solutions that lie within the regime of validity of EFT. HKR define this criterion as follows.
We assume we have a 1-parameter family of dynamical black hole solutions labelled by a
length L (this could be the size of the black hole or some other dynamical length/time scale)
such that A\ is the event horizon for all members of the family (this is a gauge choice). We

4For even spacetime dimension or a parity-symmetric theory, only even numbers of derivatives appear in
L. In this discussion we assume we are working with such a theory.

This process may also renormalize the values of A and G.

5This topological term in the action contributes a topological (constant) term to the entropy which does
not play a role in the situation we are considering of a black hole settling down to equilibrium. In fact, for
d = 4 there is another topological term of the form RWPURQB’J(’G‘“’”‘B which we ignore for the same reasons.



assume that there exist GNCs defined near A such that any quantity constructed from n
derivatives of {a, B4, ptap} is bounded by C,, /L™ for some constant Cy,, and that |A|L? < 1.
Then the solution lies within the regime of validity of EFT for sufficiently small [/L. This
definition captures the notion of a solution “varying over a length scale L” with L large
compared to the UV scale .

2.6 HKR procedure

A complete description of gravity in the regime of validity of EFT would require knowing
the coefficients of all terms for all orders of [ in the Lagrangian (2.8). However in practice
this is not possible, and so there we will be an N for we which we only know the terms
with N or fewer derivatives. Thus the equation of motion will take the form

Eu = 0@") (2.13)

where the L.h.s. denotes the known terms with up to N derivatives and the r.h.s. denotes
the unkown terms with NV 4 2 or more derivatives. On the r.h.s. we should really write
O(IV /LN+2) but we shall suppress the L-dependence henceforth. This dependence can be
reinstated by dimensional analysis.

Since the r.h.s. of the equation of motion is unknown, in EFT one cannot prove a
second law that holds exactly. The best one can hope for is to find a definition of entropy
that satisfies a second law to the same accuracy as the theory itself, i.e. modulo terms of
order O(I"). HKR showed how to define an entropy S(v) containing terms with up to
N — 2 derivatives that satisfies a second law to quadratic order in perturbations around a
stationary black hole, modulo terms of order O(IV):

528(v) > —O(N) (2.14)

where 62 indicates a second order perturbation around a member of F and the minus
sign on the r.h.s. indicates that 625 (v) might be negative but only by a small amount of
order O(IM).

To do this, HKR showed that the terms that are quadratic or higher order in positive
boost weight quantities in (2.5) (i.e. the terms denoted by the ellipsis) can be brought into
the following form on N:

EU’U

L0 [\}ﬁav (V) + DASA] _
9y [\jﬂa (7is")

where ¢V = S N2217¢Y (boost weight 0) and Y4 = S N=2["y A (boost weight 2) are of
quadratic or higher order in positive boost weight quantities, and X458 = ZT]L_QQ l”X;?B

(2.15)

+ (Kap + Xap) (K% + XA8) 4 Day* + 0(")

(symmetric, boost weight 1) is of linear or higher order in such quantities. An important
difference between this construction and the Wall procedure is that this construction requires
going on-shell by swapping some “non-allowed” terms for others using the equations of
motion E,, = O(I"). Details of how this is done are given in section 3.



The IWWHKR entropy density is defined as
Sv = S?WW + §U (216)
and the IWWHKR entropy of a horizon cross-section C(v) is defined by

Stwwakr(v) = 477/ A2/ S (2.17)
C(v)

We can perform a similar calculation to the IWW case to find

1

492, H/oo dv0, [
) v, Vi

e / A2 /1 / dv [(Kap + Xag) (KAP + XA) 4 Dav* + 0(1V)]
C(v) v
(2.18)

SrwwHKR = —4T /

9 0, (V/iS") + DASA]

The first term in the integrand is a positive definite form, so must be non-negative. The
second term D 4Y 4 need not have a definite sign. However, since Y4 is quadratic in positive
boost weight quantities, it is of second order in perturbation theory when we expand around
a member of F, i.e., YA = §2Y4 plus higher order terms. We then have

SyA4 .. (219
].'

/ A2z /i / dvD 452V A = / dd_%\/ﬁ‘ / dvDy
C(v) v C(v) Flv

where the ellipsis denotes terms of cubic or higher order in perturbation theory. Since
pap is independent of v when evaluated on a member of F, we can exchange the order
of integrations and see the integrand is a total derivative. Hence the integral vanishes
to quadratic order in perturbations around a stationary black hole, and so Siwwrkr is
non-negative to quadratic order, modulo O(I") terms.

3 Implementation of algorithm

We shall now discuss how one calculates the IWWHKR entropy in practice. Since the
equations involved get extremely lengthy, a symbolic computer algebra program is needed
to do this. The program of choice of the authors is Cadabra [20-22] due to its ability to
split u, v, ... indices into r, v and A, B, C, ... indices, and the ease with which expressions
can be canonicalised using symmetry or anti-symmetry of indices.

We assume that we know the terms with up to IV derivatives in the EFT Lagrangian.
The Lagrangian can be written £+O (") where O(I"V) is the contribution from the unknown
terms with N 4 2 or more derivatives and

L=-2AN+R+ £higher (3.1)

where Lyigher = Zﬁ[:_; "Ly 12 are the known higher derivative terms. We shall break down
how to calculate the HKR entropy density for this Lagrangian into steps.



3.1 Calculate equations of motion

First we calculate the equations of motion for this Lagrangian. This gives (2.13) with

E E_LL\/_Q’Q
Vg ag

where H,, = S"N"21"H,, ,, is the contribution from the known higher derivative terms.

1
= —Ag/ﬂ, — R“y + iRguV + HNV (32)

3.2 Calculate IWW entropy current

Second we must find the IWW entropy current sY;4;, and s (of equation (2.5)) for this
theory. Since they are not the main subject of this paper, we will only touch briefly on how
to calculate them. Full procedures are given in [8], but since the algorithms have many
steps there are no simple formulas for general £. However, if the Lagrangian depends only
on the Riemann tensor and not its derivatives, then there is a formula for sy, calculated
by Wall in [4], which reproduces a formula for holographic entanglement entropy derived
previously by Dong [19]. This formula involves taking partial derivatives of the Lagrangian
with respect to Riemann components,” and then discarding terms that are quadratic (or
higher order) in positive boost weight quantities:®

oL

§ o2L
SIWW = -2 <8R + 4

N ORyAvBOR crD "/\/’

KABKCD> - Sguadratic (33)

v
quadratic

positive boost weight quantities when the Riemann components are expanded out in GNCs

Here s is purely there to cancel any terms that are quadratic or higher order in
on N, so that overall sy, has only linear or zero order terms.

We can apply this to our EFT Lagrangian (3.1) if Lhjgher is @ polynomial in Ry .
The contribution from the Einstein-Hilbert Lagrangian is 1, and so

8£higher

0* Lhigh
v —1_9 igher
Sww ( 8]%frm"u

N ORyAvBORcrD ‘/\/

KABRCD> - sfgluadratic (34)

None of the Lagrangians we consider in section 5 contain derivatives of Riemann components,
and hence (3.4) is the formula we use to calculate sy .

There is no simple formula for s4 in general, and so we must follow the procedure
in [8] to calculate it. The method requires finding the total derivative term ©* given by
0(v/=9L) = /=9(E* g, + D,©O"[dg]), and the Noether charge for diffeomorphisms Q"
given by V, Q" = 2EM"(, 4+ ©"[0(¢] — ("L where we have set 6g,, = V,(, + V,(, in
the argument of ©#. For any given theory, both of these quantities can be calculated via
theorems given in [8].

"We define 8/(dRupo) to have the same symmetries as Ry.,0 and to be normalised such that a first
variation of some quantity X (Rpuup0) will give 6X = 5RWWQR‘17)§W.

8 Actually, Wall does not discard these terms. As discussed in section 2.4, one can include these terms
without affecting the validity of the linearized second law. But our definition of s7y -y requires that such
terms are discarded. Whether or not one includes these terms does not affect the IWWHKR entropy as we

shall discuss in section 5.2.

~10 -



3.3 Calculate remaining terms in FE,,

Now that we have E,,, s7yy and s, we proceed by expanding them out in GNCs? on N
and calculating the terms denoted by the ellipsis in equation (2.5), which we shall denote F":

N Oy [\/1/781) (Vustww) + Dys” (3.5)

By construction, these terms will be of quadratic or higher order in positive boost weight

F=FE,

quantities. For example, in standard GR (i.e. N = 2) we have sjyy = 1, s4 =0, and
Em,’ = 1489, Ksp — KapKAE. We can use Op\/1h = /1K to obtain F' = KaipKA4B for
standard GR.

Let us consider what possible GNC quantities F' can depend on. F is evaluated on N
which is r = 0, so there is no explicit r-dependence. It is also a scalar with respect to A, B, ...
indices. Therefore F' is a polynomial in the remaining quantities we can make out of the
GNC metric that are covariant in A, B, ... indices: «, fa, pan, p*Z, €Ay..A,_os RaBep|p]
and their 0,, 0, and D4 derivatives. Here €4, 4, , and Rapcp|p] are the induced volume
form and induced Riemann tensor'® on C(v). We can eliminate their 9, and 9, derivatives
in exchange for K45 and K4p via the formulae

Ov€Ay . Ay_s = €A1 Ay KK,

Or€ay. Ay s = €Ay Ay K,
dyRapoplu) = K* pRapcplp] — K¥ aRppeplul + DoDpKap—
DcDaKpp — DpDpKac + DpDaKpe,
O Rapceply] = K pRagep[W] — K¥ aRppeplu] + DeDpKap—
DcDaKpp — DpDpKac + DpDaKpe

(3.6)

Given a term of the form 000Dy, ... D4, ¢, we can commute the D derivatives to the left

using commutation rules:

n
05, Dalts,..5, = > 1P (DpKap, — DaKpp, — DB, KAD)B,..B,_,CBi11...Bn»
i=1
- (3.7)
[0r, Dalts,..5, = > 1u“P(DpKap, — DaKpp, — DB, KaD)tB,..B,_,CBi11...Bx
i=1
[0y, D] commutators introduce DgKpc terms, whilst [0, D] commutators introduce
DAKBC terms.
Using these results we can express F' as a polynomial in the following quantities:

HAB, /J,AB, €Ay, Ag_2> DA1-~-DA,LRABCD[,U] or DAI...DA"&’J’@;?@ for @E{a,ﬂA,KAB,RAB}

(3.8)

9Expanding out E,, in GNCs requires expanding out Riemann components and possibly their covariant
derivatives in GNCs. The appendix of [5] lists the expansions of all Riemann components, which is sufficient
for the EGB Lagrangian calculation in section 5. However, the cubic and quartic Lagrangians below have
equations of motion that depend on V,R,,0x and V.V, R,scx, and so these must also be calculated in

terms of GNCs. Beware, even for Cadabra this is an extensive computation.

(1]

10Ty d = 4 dimensions, C(v) is 2-dimensional which implies that Rapcp(u] = RT(ﬂAcuBD — WADUBC).
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3.4 Reduce to allowed terms

The key step in the HKR algorithm is to reduce the above set of terms to a much smaller
set of “allowed” terms:

Allowed terms: pap, ,uAB, €A1 Ay_os Da,...Da,Rapceplpl,
Da,...Da,Ba, Da,...Da,0°Kap, Da,...Da, 0K, A (3.9)

In particular, the only positive boost weight allowed terms are of the form DFOPK 4p.
This reduction is achieved through careful inspection of the GNC expressions for Ricci
components and application of the equations of motion. Let us see how this works via an
example.

Consider the GNC expression for R,4 on N:

1 1
Rya v 581;5,4 + DK acp®C — DaKpepP© + iKBCBANBC (3.10)

We can rearrange this to get 9,54 in terms of allowed terms and the Ricci component Ry 4:

ufa = —2DpKacuPC +2DaKpcpPC — KpofapPC + 2R, 4 N

(3.11)

We can rewrite the equation of motion (2.13) as R, = %Agw — ﬁg""ngW +H,, +
O(IN). Since Hy, is at least O(I?), we can therefore swap Ry, for 725Ag,,, plus higher order
terms in {. Thus we can use (3.11) to eliminate 0,54 in favour of allowed terms plus terms
of higher order in I. Working order by order in ! we can therefore eliminate occurrences
of 9,34, pushing them to higher order at each step. Eventually we reach O(I"), at which
point we stop since we do not know the terms in the equation of motion at this order.

We can find a similar expression for 0,54 by considering R, 4

_ _ _ 1_
9,84 = DpKacpuPC — DaKpopBC + KapfouPc — iKBCBA,UBC — RTA‘N (3.12)

Again we can use the equations of motion to swap out R,4 and push any occurrence of
0rB4 to higher order in [, eventually reaching O(IV).

We can similarly eliminate Oy K an using Rap, and eliminate « using R,.. We can
take D and 9, derivatives of these expressions to eliminate further terms. We can’t take
O, derivatives since the expressions are evaluated on r = 0, so instead we look at the V..
derivatives of the Ricci tensor. For example, to eliminate 0,«, we look at V,R,,.

When looking at a specific theory, one will only need to calculate a finite number of
these elimination rules, as there will be only so many derivatives involved. The set we need
for the EGB, cubic and quartic Lagrangians in section 5 are given in appendix A.1.

3.5 Manipulate terms order-by-order

Once we have eliminated non-allowed terms, we proceed order-by-order in I. We can

separate terms in F":
N—2

F=Fy+ Y I"F,+0(") (3.13)
n=2
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Each F,, will be quadratic in positive boost weight terms and only depend on allowed terms
by construction. Fjy is the contribution from the 2-derivative GR Lagrangian calculated
previously: Fy = KapKAB. Note Fy is of the required form (2.15) at order [° with
¥ = X§'8 = Y{! = 0. Hence we work inductively: let us assume we have manipulated F
into the correct form up to some order ™2, m < N:

m—2 m—2
F = <KAB + Z lanAB) (KAB + Z lnX;?B> +

n=2 n=2
1 m—2 m—2 N-2
Dy l\/ﬁav <\/ﬁ > z%;;) + DAY YA+ D F,+ oY) (3.14)
n=2 n=2 n=m

with the remaining F), quadratic in positive boost weight terms and only containing allowed
terms. Let us study F),. As noted above, the only positive boost weight allowed terms are
of the form Dkagj'K 4. Hence each monomial in F}, must have at least two factors of this
form, and schematically F,,, takes the form

Fn= > (D" P K) (D*20P2K) Ay, 1y 1 o (3.15)

k1,k2,p1,p2

where the Ay, ko p1po (DOOSt weight —p; — po) are made up of allowed terms. Note that
the K’s (and D’s) above should have indices K 4p but these have been dropped in the
schematic form for notational ease. They should not be interpreted as K = K4 4. The
Ay ko p1,po €an in principle include more DFOPK terms, so for simplicity when performing
the algorithm we always order the terms in the following priority: p; and po as small as
possible, p1 < pg, and then k1 and ko as small as possible.

We now aim to manipulate this sum so that everything in it is proportional to K 4p.
First we move over the D*1 derivatives in the first factor of each term in the sum using the
product rule D(f)g = —fD(g) + D(fg). This will produce some total derivative D,Y,4:

Fp= > (00K)(D*OP2K) Ay py p + DaYs (3.16)

k,p1,p2

Secondly we move over the 0! derivatives in each term, We do this in such a way as to
produce terms of the form 0, (ﬁ&, (\/ﬁcv)), where ¢V will contribute to the IWWHKR
entropy density. It is proved in [5] that for any £ > 0 and p1,p2 > 1, there exist unique
numbers a; such that

(051 K) (DP ORI ) Ay =

1 p1+p2—1 ) .
0,0 50 |V X @ IR (DM ) A

J=1

(3.17)

+...
where the ellipsis denotes terms of the form (971 K) (D]_“352K)AE7[71 5y With P1+Pp2 <p1+p2
(which can be dealt with inductively) or py = 0 (which are proportional to K4p) or p2 = 0
(which are proportional to DFK 4p and so can be made proportional to K45 by moving

over the D derivatives and adding to Y,/ as above). How to calculate the a; is described in
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appendix A.2. The new A; ; . include terms like 0, Ay p, p, which will involve non-allowed

terms. These must be swapped out using the elimination rules and equations of motion,
and so will generate O(I?) terms.
Thus we can repeat this procedure until we have manipulated F;, into the form
Fn = 2KABX£B + 0y

Lo (vi)| + DavA + o) (3.18)

N

We take X;fLB to be symmetric. It will be linear in positive boost weight quantities, and

¥, and Y, will be quadratic in positive boost weight quantities. The O(I?) terms are also
quadratic in positive boost weight quantities, and so can be incorporated into Zﬁf;ﬁ% o I"Fhy.
Substituting this into (3.14) gives

m—2 m—2
F= <KAB + Z lﬂXnAB) (KAB + Z lanB> +2lmKABX£B+

n=2 n=2
1 m m N-2
Oy lay <\/ﬁ > z%;;) +DAY YA+ Y I"F+0(N) (3.19)
\//7 n=2 n=2 n=m+2

We then complete the square with the first two terms, generating more higher order
quadratic terms which get incorporated into 7]::721 19 l"Fy. This leaves the desired form of
F up to order I and completes the induction. We perform this procedure through each
order of [ until all terms have been dealt with up to O(IV):

N-2 N-2
F= (KAB +> l”XnAB> <KAB + > Z"X;‘B> +

n=2 n=2

1 N—-2 N—-2 " N
9y | — 0, I"? "y I ,
[\/ﬁ <\/ﬁ§2 S )] +DA;2 YA +ouY) (3.20)

The IWWHKR entropy density is then defined as

N-2
SY = shww + > 1" (3.21)
n=2

4 Classification of possible terms in the IWWHKR entropy density

Before we display calculations of the HKR entropy density for specific Lagrangians, we
discuss what possible terms can appear in "], which is the addition to s}y, at order ™.
We will be interested in the number of derivatives associated with a quantity on
N. We can write GNC quantities on N as derivatives of the metric: o = —%83%1}] A
BaA = —argvA|N and pap = gap. Hence a, B4, pap are associated with 2, 1 and 0 derivatives
respectively. This motivates a definition of “dimension” to count derivatives from [5]:

Definition. The “dimension” of o, Sa and pap are 2, 1, 0 respectively. Taking a derivative
w.r.t. v, T or T increases the dimension by 1. Dimension is additive under products.
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Note K45 and K45 both have dimension 1. € Ay..A,_, has dimension 0. We also define
the dimension of [ and A to be —1 and +2 respectively so that E,, = —Agu, — R, +
%Rguy + >, 1" H,,, has consistent dimension 2 on N. This also means the elimination
rules for non-allowed terms are dimensionally consistent. A quantity with boost weight b
must involve at least |b| derivatives, and so has dimension at least |b].

Now, ¢" arises from manipulating F,,, which in turn comes from varying the (n + 2)-
derivative Lagrangian £, 2. Thus F), has dimension n + 2. ¢ appears with two extra

derivatives in Fi,:

Fy =8, Uﬂa (Viis?)

Therefore ¢¢ has dimension n. It is also boost weight 0 since F,, is boost weight +2.
By construction ¢V is a sum of terms of the form (97 K) (DFOF K) A, 1. py with k,p,p/ >
0 and where A,y is made exclusively out of allowed terms. Suppose A}, has

+o (4.1)

dimension d,, 1 ,,» and boost weight by, . ,, . To match the dimension and boost weight of
¢y, we have two conditions:

dnkpy =n—2-p—p —k

, (4.2)
bukpp =—2—p—p
But dp ipp > |bnkpp| which we can rearrange to give
2p+2p +k<n-—4 (4.3)

If n = 2 then the r.h.s. is negative, which is impossible for k,p,p’ > 0. Thus ¢} = 0,
and so SV necessarily agrees with sy, at order 12 [5].

If n = 4 then the r.h.s. is 0, and so we must have k = p = p’ = 0. Hence ¢J must be

a sum of terms of the form KABKCEAQEOC:{)E. We have dy 0,0 = —b4,0,00 = 2 s0 Aﬁgoc,g

must contain two r derivatives and no other derivatives. The only combinations of allowed

terms that have this are I_(Fgf_(HITABCEFGHI and 8T[_(F0TABCEFG TABCEFGHI

and TABC’EFG

, where
are any combination of the 0-dimension quantities p? and 41442 In
other words, ¢f is a sum of terms of the form KapKepKraKr or KapKeog0,Kpe with

ArAd—2  The transformation

their indices completely contracted in some way with 4% or e
laws (2.3) imply that such terms are gauge invariant on C, so the IWWHKR entropy
density is gauge invariant up to and including order {* terms, i.e., it is gauge invariant for a
Lagrangian with up to 6 derivatives.

If n > 6 then the above conditions don’t rule out gauge non-invariant terms appearing
in ¢¥. For example the term K K K K 3434 has dimension 6, boost weight 0 and is quadratic
in positive boost weight quantities so might appear in ¢§. But due to the occurrence of 54,
which transforms inhomogeneously, this term is not gauge invariant on C.

The above discussion focuses solely on vacuum gravity EFTs. However, [5] also proved
that scalar-tensor EFTs (i.e. the EFT of a metric coupled to a scalar field ¢) have a
corresponding IWWHKR entropy that satisfies a second law to the same order. We can
perform a similar classification of terms for this case. The procedure is very similar to the
above. There are additional terms of the form D4, ... Dy, 070%¢ that can appear in F'. We
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can eliminate terms with both p, ¢ > 1 via the equation of motion for ¢, in a similar fashion
to eliminating non-allowed GNC terms. We must therefore add to the set of allowed terms
Dy, ...Dy,00¢ and Dy, ... Dy, 0l¢. The scalar field has dimension 0 and boost weight
080 Dy, ...Da,00¢ is a new allowed term with positive boost weight. The classification
above can be repeated with K4p replaced with ¢ € {Kap,0,¢} and K4p replaced with
¢ € {Kap,0,¢}. We again find that ¢§ = 0 and that ¢} is gauge invariant on C.

5 Examples of IWWHKR entropy density

5.1 Einstein-Gauss-Bonnet

For our first example, we shall consider Einstein-Gauss-Bonnet (EGB) theory. Recall
that this describes the leading 4-derivative EF'T corrections to Einstein gravity in d >
4 dimensions. Specifically, we argued that using field redefinitions and dropping total
derivatives, the Lagrangian for the EFT for vacuum gravity can be brought to the form
Lreap + O(1*) where

1
Lpop = —2A+ R+ 1—6kl25”1p2”3"4 Ry, T Ry, 77 (5.1)

01020304

The equation of motion is (2.13) with N =4 and

By = —Aguw — G + %kﬁgmﬁﬁiﬁiﬁi@i Rpypy 7172 Rpyp, 727 (5.2)
If we view this theory as an EFT with N = 4 then, as explained above, the IWWHKR
entropy coincides with the IWW entropy (as for any N = 4 theory). However, EGB has
the special property of possessing second order equations of motion, despite arising from
a 4-derivative Lagrangian. This property means EGB gravity can be considered as a self-
contained classical theory rather than just the N = 4 truncation of an EFT. The IWWHKR
procedure can be used to define an entropy for this classical theory as an expansion in 2.
The idea is to treat this EGB theory as a very special EFT for which the coefficients of the
terms with more than 4 derivatives are exactly zero (i.e. the Lagrangian is exactly Lrpgp)
and use the INWHKR procedure to define an entropy order by order in [2. We shall show
explicity how this works to order 4.

Let us proceed with the HKR procedure for this theory. We have calculated the
equations of motion above. The next step is to find the IWW entropy current. It is given

in [8] with a different normalisation. In our units it is'!

1
stww =1+ Sk R[ul, s* = ki? (DK — DPK* ). (5.3)

"For a stationary black hole, the IWW (or IWWHKR) entropy reduces to the EGB entropy defined in
ref. [23] (which is reproduced by the method of [1]). For EGB, the IWW entropy density involves only terms
of vanishing boost weight and so, for a non-stationary EGB black hole, the IWW entropy is the same as the
Iyer-Wald entropy.
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We then calculate the remaining quadratic terms in F,:

1
Vi
= Kp KB +ki? {DAKD 2K —2DsKDBPKpA+DAK DKo B —DAKBC DKo+

F=FE,,—0, [

Do (Visiww)+s™

AR Dy ac-+ Kan (0,Kep KPP -0, Kop K Py ~20, Kop KPP+
DCKCEBEMAB_'_DCKABﬁC_DAKBC'6C+DADCKBC_DADBK_DCDCKAB+
1 _
1 1 1 1

2KACRE o) = S KE Bofupt + L KB Bop P + S KACBY fo— T KAP BT fo—

KCERACBE[N/]+KCERCE[,U/],U/AB+KCEKCE}?MAB+2KACKBERCE_

KAYKB K -K°PK¢ FKEF,/‘BH (5.4)
It happens that no non-allowed terms appear in F' for this Lagrangian, so we do not yet
need to use equations of motion to eliminate such terms. We proceed to move one of
the D derivatives over in the terms of the form (DK)(DK), producing a total derivative

D4 (1?Y5Y). We find that all remaining terms are proportional to K 4p, and we can express
F' in the desired form

F = (Kap +PXonp) (K% + 2X45) + DAIPYS') - ' Xoap X5 (5.5)
where

XAB = ék(z;avKCEf(ABMCE 48, Kcp K uBuCP — 49, KopKBC AP 1
40, Kcp K pAC 1P + 40, Ko p KF AP + 2DAK BB — ADC K BopP —
2DCKA 0P + 4D K PBppA? + 4ADCKABBo — 2DAKBC B0 + 2DADPK —
4D’ DEKopuP + 2KAPR[u] — AKAP K Kep — AKAYR[u)® o —
QKCEﬁcﬁEMAB + Kﬁcﬁc,uAB + KACBBﬁc _ KABIBCBC . 4KCERMA 0B ot
4KCER[M]CEMAB 4 4KCEKCEK—MAB 4+ 8KACKPBER o — AKACKE (K —
4KCEKC FREFMAB . 4[—(ACOUKCEMBE + 2DBK6A _9pCKB CBA_
2DP KAC 50+ 2DP DAK — 4K PO R o + KP4 50), (5.6)

Yi' =k (DAKK - 2D KK*? + DPKpoK*® - D KpoKP¢ + DpK* 0 K°)
(5.7)

As expected from section 4, we find ¢§ = 0, i.e., the IWWHKR entropy coincides with the
IWW entropy to O(I?) [5].
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In completing the square in (5.5) we have produced O(I*) terms, namely —I*Xp45 X455,
We denote these as [*F;. We can expand these out and proceed with the HKR algorithm
at order (. We find

1

+ 2K A X8 + DAY + O(12 5.8
N 1 f (%) (5.8)

F4:avl Oy (VHsy)

where!?
1 _ b _ _
= gk [ (6 -d) KKKK — KKKAPK,p + AKKAP K, “Kpo+
(=14 +2d) KKAPK K p — 2KAP K “Kp P Kop — 2KAPKP K yo Kpp+  (5.9)
(6 —d) K'PKCK pKep +4KAP K, “KKpo — KAP K pKK
and X fB and Y4A are very lengthy expressions of boost weight +1 and +2 respectively.
Non-allowed terms do appear at this order after extracting ¢f, and swapping them out using

the equations of motion produces the O(I?) terms in (5.8).
We then group like terms together and complete the square to write F' in the desired

form:
Feo,|-La (var'sy)
Vi
+(Kap+PXoap+1" Xuap ) (K47 +2X3P +10X17) + Da (Y5 +1'7{) + O(1°)
(5.10)
The IWWHKR entropy density is then
SY = sYw + 14 + 0(1°) (5.11)

To this order, S? is gauge invariant as expected (section 4), as it only contains u4Z, R[u], Kp
and K 4p which transform homogeneously under a change of GNCs on C.

We can continue the algorithm to the next order by expanding out all the O(I°) terms.
We find that the O(I%) part of S? is extremely lengthy. It is also not gauge invariant,
however since it is so unwieldy we leave the discussion of gauge non-invariance to the
considerably shorter expression arising from the quartic Lagrangian below.

5.2 Cubic order Riemann Lagrangians

Let us now specialise to d = 4. As mentioned above, the EGB term is purely topological in
this dimension so we shall ignore it, and we can eliminate all other 4-derivative corrections
through field redefinitions and total derivatives. At 6-derivative order, we can similarly
reduce the number of corrections to just two [17, 18]. The Lagrangian is £ + O(I%) where

L=-2A+R+ l4(k1£even + k2£0dd) (512)

12For d = 4 the GB term is topological. In this case one can show that ¢} vanishes, using special identities
satisfied by 2 x 2 matrices.
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where Leven and Loqq are even and odd parity terms respectively, given by

Leven :RWI{ARMX”RXU " (5.13)
Loaa :RMVHARHAXWRX?WUG“WM .

Let us follow our implementation of the HKR algorithm to find the entropy density at order
I*. The equation of motion for this Lagrangian is (2.13) with N = 6 and

Euw=—Agu—Gp+
4 [/ﬁ (%Rmﬁ Rix RappoGuw—3R " Ry Rogpo — 3R, “PPNV oV Ry gy —
6V R0’V Ryos,— 6V R, PPV 5 Ryapo —3R, PPNV 4 Ryopp—
3R, VoV Ry~ 3Ry PV Vo Ryog, ) +

1
kQ (_ R;L K /{)\Run aﬂRaﬁpaen/\pU - §R,u’r] HAR&B paR/{)\paenaﬁ v Ru " )\aeAaﬁpvan‘Ryo’ﬁp—

26" PP R, AV Ryvap—26" VPR, % AV Rypas— R 2a€ PPV V o Ryospt
Rix“Pe VoV ) Ryo s +26* LV o R PP7V 5 Ry po +265* LVP R,5 77V Raopo +
R, "AePP N7, N s Raapo + Riox P,V )V Rypap+ Ry " €P7 ,V 5V . Ryapo —

1
R;L nHARl/naﬁRHApaeaﬁpa - iRun K/\Raﬂ pURn)\po"fnaﬁ w RV " AaG)\aﬂpvnvaR;Loﬁp_

Ru " Aaﬁ)\aﬂpvgvaua,Bp'i'Rn)\ QBGKAP uvavauga,B +26K}\a ;LVHRV BvaBR)\apa+
26" VP Ry577V . Raapo + Ry "7,V .V s Ryapo + Rir P € |,V .V Rygas+

R, ”Aaeﬁf’“uvﬁvn}zmpa)} (5.14)

We now must find the IWW entropy current for this theory. £ depends only on the Riemann
tensor and not its derivatives up to and including order /4, and hence we can calculate
the IWW entropy density sy, using the formula (3.4). Splitting this into the individual
contributions from Leyen and Logq we get

S?WW =1+ 14(k182ven + stgdd) - sguadratic (5'15)

where

$%en = —6RroaBRroep " PP =24 R0y A Rypu gt +12 Ry Ryro — 24 Ry 40 KAY K P 0
seaa = —4Rapop Rrorae " pP% —8Ry apo Revup e ' —8Rypr a Rupope it —

16 Rypr 4 Rrvop€ B+ 16 RypaB Ryvroe B+ 16 R yp K¢ KopePP +

16R, 405K 0K pe“? —16 R aus Kop KPP e (5.16)

v
quadratic

boost weight quantities when the Riemann components above are expanded out in GNCs,

and where s is there to cancel any terms that are quadratic or higher in positive

so that s%y;y;, is only linear or zero order in positive boost weight. After expanding, we find
Stadratic = I [ (12K P KPR a0 Kpp — 36KAP Ky CKp PKep)+

- o (5.17)
ko (32K 4 BKp C K P Kope® — 16K 4 BKCEKBEKCFeAF)}
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v
even’

v
quadratic

of them is a zero boost weight quantity depending only on Riemann components, p

The quantities s Spqq and s are separately gauge invariant. This is because each

AB 6AB
K ,p and K 4p, all of which transform homogeneously on C. Hence sty s also gauge

invariant without the need to add terms of quadratic or higher order in positive boost

weight quantities (discussed at the end of section 2.4). The gauge invariance of sl ., and

sY4q follows from the gauge invariance of the first part of (3.3). What is perhaps surprising

v
quadratic

We can expand out the Riemann components in GNCs on A using the expressions in

here is that s is also gauge invariant. We shall discuss this further in section 6.

the appendix of [5] to get
stww = 1+
I [m (120? = 3DB5 DB + 3D 3P Dpfa + 6as" B4 + 25A5A6353+
24D P Kp “Kac — 12D Ka P Kep — 1207 8,6.48,85—
12K45 840,85 + 6K 310,85 + 12K PK 4 BpBc + 24K P K 4 C&J_(Bc)

kg( — 4D 4BpR[ue*® + 16D 4Bpae® + 4D 485 BC e B+
8DABP K yc Kppe®® + 8DAKp Ce*B8,8c + 8DsKp “ Ko ¥ BpetB
AK 4P BceC 0,85 + 16D AKp ©e*P0, b + 8K 4 P Bre*“0, -
8DAKp“Kc PBpe?P — 8K4BKpCBcfrett — 8620, 540,85+

8K APBpe€0,6c + 4K A PBpe€0,8c — 8Ka BKc P BpfpetC —

8K PKpoR[pu]e” —16DABP K pc K ape®F + 32K 4 BKpcaet®+

8K 4 PKpcBY Bret —8DsBP K5 Kope® + 16KAPK 4cc“ PO, Kpp—

16K 4 BKC EEACOUKBE + SDAﬁBKC EKAEEBC — 16K 4 B[_(B CEAE&,KVCE)}
(5.18)

In this expression, the terms involving only boost-weight 0 quantities give the Iyer-Wald
entropy. The other terms, which are linear in positive boost weight quantities, are the Wall
terms. We can calculate s4 using the method in [8]. The expression is very lengthy and is
given in appendix B.1.

Proceeding with the HKR algorithm, we calculate F' = E,,,—9, [ﬁ Ay (/IS Tyyw) +D ASA]
in GNCs on N, swap out any non-allowed terms using the equations of motion and then
manipulate the order [* terms into the required form:

\;ﬁav (viit'sy)

where we find

F =0, [ +(Kap + 1" Xaap) (K2 + 1X{P)+ DAY +0(°) (5.19)

¥ = kl( —36KPK,“KpPKep +6KKAPK,“Kpe + 6KAPK 4 CKRBC)+

ks (32KA BRpCRp P Rope®? — SKK4BKoPKppeC + 8KABPKOP K ppKopet —

8K, BKpC RI’(CEEAE) (5.20)
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and X fB and Y4A are very lengthy expressions. The IWWHKR entropy density is then
SV = Y + 140 (5.21)

As expected (section 4), ¢¥ is gauge invariant since it involves only p4Z, e4B, K p and
Kap. Thus, the leading order (6-derivative) EFT corrections to vacuum gravity in four
dimensions produce a SY that is gauge invariant on C'. It can be written in a manifestly
gauge invariant way by re-instating the Riemann components in sfyy:

SY=1 +l4 |:k1 (_ GRTvABRrUCDNAC,UJBD - 24RrvrARrva,UAB + 12Rrvrva}'m -
24R, 4o KACKP 0~ 12K P KPR 40 Kpp+6K KAP Ky C K po+ 6K P Ky CK K o)

AB CF EG_gp

k2 ( —4RapceRwrGe 480 Rrowp€BC 1P —8 R,y ARy pepeC? AP —

16 R, pr AR 0B EAB +16 Ry aBRrvro GAB +16R; avB KACI_{CD GBD+
16R7~AUBKA CKB D€CD — IGRTA,,BKCDRBDGAC —8K K4y BKC EKBEEAC—F

SKABKCEKppKope™ 8K BKpCKopKe A +16K 4 BKCEKBEKCFeAF)]
(5.22)

This satisfies the second law, to quadratic order, modulo terms of order 6.

We have followed a “strict” definition of the IWW entropy density, in which it contains
terms only of up to linear order in positive boost weight quantities. An alternative definition
might allow terms of quadratic or higher order in such quantities (which do not affect the
linearized second law). For example, Wall defines the entropy for the above theory to be
STww T Squadratic: corresponding to the just the first part of (3.3). Adopting this alternative
definition for the IWW entropy would not affect our final answer for S because adding
a quantity to sfyy, and then running the HKR algorithm simply results in subtracting
the same quantity from ), {"¢" and so this quantity cancels out in the definition of S,
equation (3.21).

5.3 An example quartic Riemann theory

We can go beyond 6-derivative, i.e. O(I*), terms in our EFT Lagrangian in d = 4 and
consider the next order, 8-derivative terms, i.e. O(I%). To do this in the most general case,
we should include all possible 8-derivative terms in the Lagrangian, up to field redefinitions
and topological terms. We should also be aware that the algorithm used to construct
¢i above produces higher order terms via two sources: (a) swapping non-allowed terms
using the higher order equations of motion and (b) the remainder, —I®X;45X*?, from
completing the square in (5.19). However since there are no O(I?) terms in our theory, both
of these sources produce terms of order at least (I)? = [8. Therefore, the O(I%) terms in
the entropy arise only from the 8-derivative terms in the Lagrangian.

The minimal set of 8-derivative terms in EFT after field redefinitions and neglecting total
derivatives is discussed in [17]. Here we will restrict our attention to just one term since this
is enough to demonstrate that the IWWHKR entropy can be gauge non-invariant. Therefore

- 21 —



let us consider adding to our d =4 EFT Lagrangian (5.12) the following 8-derivative term

15C5 = KI° Ry po R*™P7 Rypnyn RN (5.23)

This contributes the following to the equation of motion:

E

1
,L(S/) = klﬁ {5RXWH)\RxnnARaBPURaﬁpog,uV - 4Ru nHARunnARaﬁpgRaBpa_

ARPR a5 V? (Vo Ryupvo) — 16RPVPR, 0, OV s Riras—
8RRV (V3 Ragipa) — 16R, ™, VRV \ R o~ (5:24)
4R'€’\O‘BR,€,\Q,BVP (VRuovp) — 16R”>‘O‘ﬁva# 7oV Rirap—

SR, ", RO (Ve Ragps) |

We can calculate the contribution to the IWW entropy current:

1
6) _ (6)v (6)A
E;)) =0, l\/ﬁav (\/ﬁsIWW) + Dgs + ... (5.25)

where the ellipsis denotes terms at least quadratic in positive boost weight quantities. The

lengthy expression for s

Stww

(6)v

(6)v

6)4 g given in appendix B.2. For s}y, we find

= le (128RTUTARTUM)RM)UBHAB —8RapceRraHI RrvrvﬂAFHBG#CH,UfEI -

64RTABCR7‘U7"U RUEFG,U'AENBFNCG - 64RTA’UB RerERrvrv MAE/J’BC -

64R, Ar B Ryoro Rucv i 1PF + 32Ry 4 Ryvc s Ryorop™C pPF —

32Ry 0 Rroro Revrw — 8RapcpRrarr K'F K yppt (B0 O 1 F1—
64R, apc Ropra K™ K ip® 1P* %Y — 64R, gy Rrcon KX C K pau® 1i7¢ —
64R, 4rp Roco K'Y Kpap© iP¥ — 64R, 4rp Rucos K AP K P +

32R,o 4B Rrvce KT O Kpap© pPP + 128 Ry Revup K KoppP —

32RrvrervrvKABKAB) - 5(6)1]

quadratic

(5.26)

where we cancel the terms that are of quadratic or higher order in positive boost weight

quantities with

S

(6)v

quadratic

- klf‘( — 32KABK s K Ropa — SKABK 45 KCF Kop At Br—
22KABKCPK g Kopa + 64KAB K, C K PKopa+
16K P KA K P KepBt Br — 128KAPKCE K 4o Kppa+
64K4PK 4 €08, Kpc +16KAP K, ¢ 8EBrd, Kpc + 32K KPY Kpo K R[] —
2KAPKCEK s KopR[p) — 32KAP K g KCP Kep KF O K pi—
RKABKPKFCK \ s KepKpg +64KAP Ky KPP Kp C Ko Kpp—
128DAKPCD s Kpc KFF Kpp + 128D KB Dy K yc KFY K+
64DAKBPC Ko KFY KppBa — 64ADAKBC K o K¥T' K pp e —
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64DAKPC KPP Ko Kppfa + 64DAKPC KPP K yp K ppfo—

32K PKOFK yp Ko P Bpfr + 128D BP K4 “ KF  Kpc Kpp+
128KAPKCPK 5 Ko F0,Kpp — 128 KAPKCPKFCK ypKorp Kpa—

64K P K ypp“P "0, KepdyKpe + 6AK P Ky C KPP Kppo, Kpo+
64KAPK g KCP Ko PO, Kpp — 6AKAPKCFE 9, K s g0, Ko+

64K PK CKEY Kpod, Kpp + 64KAP Ky Ko KPY 0, K g —

64K PK A KPFKpe Kp CKpg — 64DABP K C KPP K yc K pp+

64K P K 4T 0, 500,85 + 64K AP KCP K oo, Br—

32K B K yp K Bc0,fp — 32K P KOP K yc Kpp ¥ Br

1+ UKABKOPK  p KopBE ﬁp) (5.27)

We shall prove that sg%})w is gauge invariant in the next section. Proceeding with the HKR
algorithm once again with I6Fy = E,(,?,) — Oy {#&J (\/,Es%%})w> + DAS(G)A}, we find

1
— + 2K A X8 + DAYA + O(12 5.28
N 6 6 (%) (5.28)

FGZavl Oy (VHsg)

where

k _ _ _ _ _
=3 —64KAP KPP0, K 430, Kop+64K P Ky Kpo KPY 0, K pp—

64K P K appu“F uF 0, Kopd, Kpa+ 64K P K ap KCF K 50, Kop+

96DADAKKPC0, Kpe—96DADyKKP K P Ko p—96DA DA KB KO, Ko+
96DADAKBPC KK P Kep— 96D KB KPP Kpe KppfBa+48DAK KB K P Ko Ba—
192D KB’ DuKpc K ' Kpp+192DAKBC D K yc KPP K —48DAK KPC 8,40, K po+
96DAKPCKEY Ky o Kppfp—96DA K2 BK  Kpp KopfY +96 DAK KBC K s p K po fE —
48D KPC KB40, Kpc+48D KB KK P Kepfa—192DAK 4 BDC K KEF K+
192DAK A BDp KK P Kop+ 96D KA PKCP K Ko pBp+192DAKDP Ky p K P K p—
192DA*KDsKKP°Kpc—96D* KKP K Kpcfa+96D*K 4P D (9, Kop) KOF—

192D K4 B DpKep K" KpP+96DA* KD (0, Kpc) KPY—192D*KDAKpc K¥PKp©+
96D KP D (8, Kpc) KA¥ —192D s KP°Dp Kop KAP K p ¥ — 48Dy K B¢ KAP B0, Kpc—
48DAK A BKCF B0, Kep+48D A KPP  KAP K " Ko p Bp+48DAK A PKCP Ko " K —
96DAKPC Dy (8, Kpc) K+192DAKB D yKcp KKp® —16 K K42 R[]0, K ap—

16D 4B KAPK“E0, Kop+16KABP KCE B, B0, Kcp+32K KABND, K Ao+

16KKAP K KpeR[pu]+16D 4 KA K P Ko P Kpp—16 KAP KCE Ky P KppBofe—
32KKAPK,“ Ko AN—48DABAKKPC 0, Kpc+48DABAKKPC Kp P Kop+

216 KA P KPK \pKopR[u] —60K KAP KK sp Ru) +48D A K pc KB KEF K o g —

64D Kpc KA P KFY KpppC + 28 KAPKOFP K yp KoY Br— 48K KAP K yp Ko pB° Y —
112D4B8 KB KPP Ky o Kpp+112D 4 BB KA KEY Kpo Kpp+8D 4B KA P K P K Ko p—
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304KAPKCPK yp KepA+104K KAP KK AgA—96DAK s KK P Ko p B8+

96DsKKKPC Ko fA+48KKAP KK 43¢ o +64DA K s KCP K PF Ky o —

48DAKKPAKP Kopfp—28 KA P KOP KK ApBcfBr—16DADaKpc KB KP K pp+

16DAD K ac KBS KPP Kpp—8DABA KPP K Kpo Kpp—16DADP K pc KA KPP K o+

16D D KKAP K  Kop—48D4 (0, Kpc) KKPC B4 +96DAKpc KK PP Ky © 4~

96 KAP K 4 “ R0, Kpc+96DaDp (0, Kop) KAP K9P —192D 4D Kep KAP KT Kp P —

192DaKp“DpKeop KAP KB 1192KAP KCF K 4o Kpp Rlu| +48K AP K ap K°P Ko p R[] —

96K 7 K CKp P KopRlu)~48D 4 (9, K pe) KPC KP4 85+ 96 DAK po KPAK TP K © B |
(5.29)

and X{P and Yy* are (also) very lengthy expressions. The IWWHKR entropy for this
8-derivative theory is given by adding sg,)[})w + 196 to the result for the general 6-derivative
theory in the previous section. The main reason for performing this calculation is to
investigate whether or not the result is gauge invariant. This will be done in the next
section.

6 Gauge (non-)invariance

6.1 Introduction

In order to define our dynamical black hole entropy, we took a spacelike cross-section C of
the horizon A and chose Gaussian Null Co-ordinates (r, v, :(:A) with r = v =0 on C. This

choice defines a foliation C'(v) of A/. The entropy of C(v) is then given by the integral
Stwwakr(v) = 41 /C( )dd_%\/ﬁsv (6.1)

If we fix C' then there are two freedoms in our choice of GNCs: (a) picking a different
set of co-ordinates z'4 on C, and (b) rescaling the affine parameter on each generator
v = v/a(xz?) with a(z?) > 0. The procedure for calculating SV is manifestly covariant in
A, B,C,...indices and so (a) will not change Sriwwrrr(v). If instead we make the rescaling
(b) then in general our foliation will change C’(v") # C(v). Therefore Srwwrakrr(v) and
Stww i r(v') calculate the entropy of different surfaces, so we do not expect them to be
the same. However, we should hope that Sywwrrgr(v) is gauge invariant at v = v’ = 0,
since C'(0) and C’(0) are the same surface C.

Hence we concern ourselves with how quantities change under the rescaling (b)
when evaluated on C. The transformation laws of tensorial components and all allowed
GNC quantities on C are given in section 2.2. Most terms transform homogeneously:
ThHitn nap,eap, Rapep|p], Da, 0K ap and 85[@;3 just gain a factor of ab, where b is

V1...Um

their boost weight. However, 84 transforms as

B4 = Ba+2D4loga (6.2)
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and so the presence of 54 is a warning sign of gauge non-invariance. Also note that a
quantity such as DK p¢c transforms as

D' Ko =Da(aKpe)

(6.3)
=a(DaKpc + Da(loga)Kpe)

which is also inhomogeneous. This will be the case for all D derivatives of 0P K 45 or 82?]? AB-
We can get round this by swapping D4 derivatives for gauge covariant derivatives Dy
defined by [5]

DAT = DT — (b/2)BaT (6.4)

for =Dy, ... Da, 00 Kap or Dy, .. .DAn@%’f(AB with boost weight b. This can be shown
to transform homogeneously as DT’ = a*D4T on C.

6.2 IWW entropy

We shall start by discussing how the IWW entropy behaves under a gauge transformation.
For EGB theory, the IWW entropy is the same as the Iyer-Wald entropy, which is manifestly
gauge invariant. For the cubic and quartic Riemann Lagrangians, the IWW entropy is

determined by equation (3.3). The first part of this equation is manifestly gauge invariant.

v
quadratic

For the cubic theories we found that s

Hence s{y v+ must be gauge invariant, as confirmed by equations (5.16) and (5.26).

v
quadratic

The same is true for the quartic theory considered above. This can be shown as follows.
(6)v

quadratic
components using the elimination rules in appendix A. Here we do not eliminate the Ricci

. . . -
is also gauge invariant, and hence so is sy -

In s (equation (5.27)) we swap out non-allowed terms for allowed terms plus Ricci

components using equations of motion, we are simply working with Ricci components since,
as tensor components, they transform homogeneously under gauge transformations. We
also swap D derivatives for D derivatives on K5 and K4p terms. Of the terms that are
left, the only ones that can transform inhomogeneously under a gauge transformation are
those involving D4, ... D4,B4. We find that

5O =192k KAPKCP K \p K¢ FD[EBF} + terms independent of 54 (6.5)

quadratic

But D4fp is clearly gauge invariant (it is the “field strength” of the connection 34). Hence
(6)v
quadratic

have found that g, atic; and hence also spyyy,, is gauge invariant.

This is puzzling. HKR proved that, without modification, the IWW entropy is gauge

is gauge invariant. In summary, for both the cubic and quartic Lagrangians, we

invariant to linear order in perturbation theory. Since the IWW entropy is of at most
linear order in positive boost weight quantities, one might think that this automatically
implies that is gauge invariant to all orders. That this is not true can be seen as follows.
The easiest way to perform a gauge transformation of an expression involving (derivatives
of) a, B4 etc is to rewrite it in terms of a new set of quantities (e.g. Ricci components)
that transform nicely under gauge transformations. In general, this rewriting does not
preserve the property of being “linear in positive boost weight quantities.” (For example the
linear term D 49,8 can be eliminated in favour of V4R, but this introduces nonlinear
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terms of the schematic form K2K.) Hence after applying a gauge transformation, when we
transform back to the original set of quantities, the difference S%/VW — sty will involve
not just terms of linear order in positive boost weight quantities, but also possibly terms of
higher order. The former must vanish by the linear argument of [5] but the latter may not.
This problem is what the “improvement” terms of [5] are designed to fix. But surprisingly,
in the cases we have studied, such terms are not required, and sy, is gauge invariant
without improvement.

To solve this puzzle, we shall now show that this result holds for any Lagrangian that
depends only on the Riemann tensor (and not its derivatives). For such a Lagrangian,
sfww is given by (3.3), which involves the Riemann tensor but not its derivatives. Since
the Riemann tensor has dimension 2, this implies that sfy;;, depends only on quantities
with dimension of 2 or less. Any such quantity is built from “primitive factors” (in
the terminology of [5]) belonging to one of the following sets, where the subscript refers
to the boost weight: Sy = {0,Kap}, S_2 = {0,Kap}, S1 = {DaKpc,Kap,0uB4},
S_1 ={DaKpc,Kap, 0,84} and

So = {pan, B, eap, a, Ba, DaBp, Rlulacp, 0wOriian}- (6.6)

Furthermore, s}y, depends at most linearly on elements of Sy and S1. We can write
stww = 86 + s] where sg is built only from terms of zero boost weight and s{ is a sum of
terms, each containing exactly one primitive factor of positive boost weight. Now, sj is
simply the Iyer-Wald entropy density, which is gauge-invariant by definition. So we just
need to understand how sj transforms.

Using a formula from appendix A.1, 9,84 can be eliminated in favour of R,4 and
other elements of the above sets. Importantly, 0,84 depends linearly on R,4 and other
quantities with positive boost weight so when we eliminate it, we do not introduce any
nonlinear dependence on positive boost weight quantities (unlike what happens for a
term like D 40,35, mentioned above, which might arise from a more general Lagrangian
involving derivatives of the Riemann tensor). Similarly we can eliminate 9,34 in favour
of R,4 and other quantities listed above. We can also eliminate D4Kpc and DaKpc
in favour of Dy Kpc and DK e respectively. The result is to replace S; and S_; with
S| ={DaKpc,Kap,Rya} and S’ | = {DAI_(BC,R'AB,RTA} respectively. So now s is a
sum of terms built from quantities belonging to Syo, S’.; and Sp, and each term in s¥
contains exactly one element of Sy or S7. We can write

s =Y PN;Z; (6.7)
4

where P; is an element of Sy or S}, with boost weight b; € {2,1}, N; has boost weight —b;
and is either an element of S_o or S’ ; or a product of two elements in S’ ;. Z; has boost
weight 0 and is a product of elements of Sy. Now P; and N; are quantities that transform
homogeneously under a gauge transformation and P;N; has boost weight zero so it is gauge
invariant. Hence, under a gauge transformation the change in sy is

Asy =Y PNAZ; (6.8)

(2
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where AZ; is the change in Z;, which arises from the dependence of Z; on the quantities
a,Ba,DaBp and 0,0,-uap which do not transform homogeneously under a gauge trans-
formation. Importantly, the transformation laws for these quantities involve only other
quantities of boost weight 0 and not, say, quantities like K K. This is obvious for 54 and
D 4Bp. We can write 0,0, 145 in terms of R4p (appendix A.1) to deduce how it transforms.
The result is that A(9,0,puap) depends only on the first and second derivatives of loga,
and on 84. By writing « in terms of R, and R4p one sees that the same is true for'3 Aa.
Thus AZ; depends only on elements of Sy and on the first and second derivatives of log a.

We can now rewrite P; and N; of (6.8) in terms of our original basis, i.e., in terms
of Si1 instead of S’ ;. Recall that this does not spoil the property of having exactly one
primitive factor of positive boost weight. This rewriting may generate extra factors (e.g.
B4) belonging to Sp. The result is that we have shown

A

Asy =Y PN;Z; (6.9)

where ]51 is an element of Sy or Sp, with boost weight b;, ]\Afl has boost weight —b; and is
either an element of S_9 or S_; or a product of two elements of S_1, and ZAl depends only
on elements of Sy and on the first and second derivatives of log a.

Given an arbitrary dynamical black hole with metric g, ref. [5] explains (section 3.3)
how to construct a “background” black hole metric g,, (not necessarily satisfying any
equations of motion) such that, on C, all background quantities of positive boost weight
vanish whereas background quantities of non-positive boost weight agree with those of
G- Let 09, = g — G, for which all quantities of non-positive boost weight vanish
on C. Consider the 1-parameter family of metrics g, (\) = Guv + Mg, for which all
quantities of non-positive boost weight agree with the corresponding quantities of g,, and
gy on C and hence N;[g(\)] = {Vl[g] = Ni[g] and Z;[g(\)] = Zi[g] = Zi[g). SiAnce P is
an element of Sy or S; we have P;[g(\)] oc A, i.e., the linear approximation to P;[g(\)] is
exact: there are no terms of order A? or higher. Hence we have P;[g(\)|N;[g(\)]Zi[g(\)] o A
so AsV[g(A)] o< A. However, ref. [5] proved that the IWW entropy is gauge invariant
to linear order in perturbations around any background solution defined as above, i.e.,
AsY[g(\)] = O()\?). Combining these results we have As{[g(\)] = 0. Setting A = 1 we
obtain As}[g] = 0 and we have proved that the INWW entropy is nonperturbatively gauge
invariant for this class of theories.

6.3 IWWHKR entropy

Now we shall discuss gauge invariance of the IWWHKR entropy. In section 4, we explained
why the IWWHKR entropy density SY must be gauge invariant up to and including order

13 An alternative way of obtaining these results is to observe that A(9,0ruap) and Ax are of boost weight
0 and dimension 2 and are a sum of terms, each of which involves at least one factor of a (first or second)
derivative of loga. A derivative of loga has boost weight 0 and dimension at least 1, and so must multiply a
boost weight 0 term of dimension at most 1. A term with boost weight 0 that contains primitive factors
with non-zero boost weight must have dimension at least 2. So primitive factors of non-zero boost weight
cannot appear in these quantities.
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I terms, simply because there are no gauge-noninvariant terms that can appear at this
order. This is confirmed by our calculations for the EGB and cubic Lagrangians. We shall
now discuss the quantities calculated at order I% for the quartic Lagrangian above. As
just discussed, the IWW part of the entropy is gauge invariant so we just need to discuss
the transformation of the quantity ¢f given in equation (5.29). This quantity is made out
of allowed terms, so we already know how all the terms transform. We again swap all D
derivatives for D derivatives on K45 and K 4p terms. We then find

. Kk

§6:§

12K AP KT Ky P K yp) +240Dpa B KM KPR 1K pt

DaBp) (—48KKH18TKHWAB+48KKHJKH PR ppB —112KABKHI, K+

Ba (—48KHIDAK6TI_(H[+48KHJDAKI_(H PR p—48KDAKHI 9, Kyt
WSKDAKT Ky P K p—32 K K'PRonDAK 1 p+ 32K K'P Koy D1 KA p—
32K K Koy DK p+ 32K K Koy Dr K — 144K T DE KA 0, K 1 —
44KACKHI D, (aJ(HI) + 14K DO KA GKy T Ky p+ 288 KA K K P Dy K yp—
48K K™D (0, K ) +96 K K& Ko "DAK ;p —144K AP D K111 0, Ky +
144KAEDEKHJKHPKJP)+

BaBB (16KABKH18TK'H1—16KABKHJKH PKJP) +homogeneous terms (6.10)

The S 4-dependence strongly suggests that this is not gauge invariant. To confirm this, we
apply a gauge transformation and find

, k _ o
" =si+3 2DADBloga(—48KKH18TKHmAB+48KKHJKHPKJPMAB—

12KABKHIg K+ 112K AB KHT |y PR’JP)+

2D 4 loga(—48KHIDAK8TI_(H1+48KHJDAKI_(H PR p—4SKDAKHI 9, Kyt
BEDAK" Ky PK jp—32K" K'PKauDAK jp+ 32K K'P KauD K p—
BKAY K K ayDP K p+ 32K K Koy Dr K — 144K I DE KA 0, Ky —
144KACKHID,, (&f(g;) L UAKHIDO KA Ky PRy p+ 288 KA KG Ko PDI K 5 p—
ASK KHIDA (&KH]) 196K KC! Ko PDAK jp— 144K A D K19, Ky +

144AKAED L KHT K PI’(JP)+

4(BaDploga+DalogaDgloga) (16KABKH18TI_(HI—16KABKHJI_(H P}’(Jp)]

(6.11)

The IWWHKR entropy involves the above expression integrated over the horizon cross-
section C. Integration by parts can be used to simplify the dependence on a(z?) in this
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integral:

k16
Stwwukr = StwwHKR + 47 /C de?\/ﬁ

2DAloga( — 32K°EDBKA 10, Kop—

32KABDpKCEd. Kop — 32KABKCP Dy (&J_{CE) 1

32K DBKA Ko P Kpp + 32KAPDg KP Ko P K pp+

64K BKCP K P DpKpr — 32KBC KPP Kpe DAK pr—

168 KB KPP K e Kpp + 32KCP KB Ko Dp KA p+

168K “KPY KA o Kpp — 32 KA K Kpp DP Ko p—

168" KAPKCE KppKop + 32KAPKCP Kop Dp K+

1688 KA pKCPKopK + 328 KA s KCF 9, Ko p—

3288 KA pKCERF K’EF)

+ 4D 4log aDgloga (16KABKCE6J(CE _16KABKCEK, FKEF) } (6.12)

For gauge invariance to hold the coefficients of the terms linear and quadratic in D4 loga
must vanish independently. However, these coefficients depend in a complicated way on
expressions of quadratic order in positive boost weight quantities. There is no reason
why they will vanish for a generic perturbation. Therefore the IWWHKR entropy of this
8-derivative theory is not gauge invariant at order I°.

This statement concerns non-perturbative gauge invariance. However, since the
IWWHKR satisfies the second law only to quadratic order in perturbation theory, modulo
terms of order 8, it is natural to demand gauge invariance in the same sense, i.e., only to
quadratic order in perturbation theory, modulo terms of order [®. Positive boost weight
quantities are of at least linear order in perturbation theory so, to quadratic order, we can
evaluate the negative boost weight quantities above in the unperturbed stationary black
hole geometry. This might lead to extra cancellations. To investigate this, we shall focus
on the DylogaDpgloga term above. It has coefficient proportional to (5K ABRCDR ~.p
(using the expression for R,c,p in [5]). To quadratic order, we can evaluate R,c,p in
the stationary black hole geometry. Gauge invariance in the sense just discussed would
require that R.c.p = O(I?) on C. Using the equation of motion R,.. = O(I?), this gives
Crcrp = O(I?) on C, where the Lh.s. is a component of the Weyl tensor. This is the
statement that n = 9/0r is a principal null direction of the unperturbed black hole, modulo
terms of order [?. Recall that, by definition, n is orthogonal to C. For a generic choice of C'
there is no reason why n should be close to being a principal null direction (although it
can be in special cases e.g. a spherically symmetric cross-section of a spherically symmetric
black hole). In particular, for a rotating black hole, one would expect an “ingoing” principal
null direction to have non-zero rotation at the horizon (e.g. this is true for a Kerr black
hole), whereas n has vanishing rotation by definition. We conclude that, in general, the
D logaDpgloga term above is generically non-vanishing, of order (%, to quadratic order in
perturbation theory. Thus, for this 8-derivative theory, the IWWHKR entropy is not gauge
invariant in the desired sense.
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7 Discussion

We have explained why the IWWHKR entropy is gauge invariant to order I, i.e., up to
an including 6-derivative terms in the Lagrangian. But we have seen that it is not gauge
invariant at order [° for a specific 8-derivative term in the Lagrangian. It is conceivable that
if we allowed all possible 8-derivative terms then demanding gauge invariance might lead to
non-trivial relations between their coefficients, i.e., it might function as a selection rule for
such theories. However we think this is unlikely, and that the lack of gauge invariance is a
flaw of the HKR prescription. Nevertheless, we repeat that the IWWHKR entropy is gauge
invariant for terms with up to 6 derivatives in the Lagrangian, i.e., for the leading order
EFT corrections to 4d vacuum gravity (and next to leading order for higher dimensional
gravity). It is only for the next to leading order corrections that the problem arises so this
is probably not a serious issue for practical applications.

We shall end by mentioning possibilities for future work. HKR highlighted the issue
of how the IWWHKR entropy transforms under EFT field redefinitions, and possible
non-uniqueness of dynamical black hole entropy. This remains an interesting open question
that we intend to return to. It would also be interesting to generalize the HKR algorithm
beyond vacuum gravity, or gravity plus a scalar field, to include EFTs with more general
matter content e.g. a Maxwell field.
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A Details of HKR algorithm

A.1 Elimination rules for non-allowed terms

In our GNC expansion of F' = E,, — 0, {#&J (VESTww) + DASA:| on N, we want to
reduce the set of terms that appear up to O(I"") from the set given in (3.8) to the set of
“allowed terms” given in (3.9). To eliminate non-allowed terms we study Ricci components
and their covariant derivatives evaluated on A/. For the EGB, cubic and quartic Lagrangians
above, we need the following;:

OvBa=—2DPKap+2DsK~KfB4+2R,a
_ o 1.
Orfa=DBKap—DaK+Ka®Bp— §KﬁA —Rya

_ 1 _ 11 _
OvKap = §RAB[M]+KB CKAC+KACKBC_§KKAB_§KABK—

1 1 1 1
D - —-D —=
1 PBPa—BaPe—Dabp—5Rap
1 _ _ 1
a=—3D*Ba—p"P0,Kap+K"PKan—33"Ba—Rr, (A1)
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2 _ 4 _ _ _ _ _ _ 4 _
OprBa= §DB (0, Kap)— §DBKA “Kpc+2DaKP°Kpc—2DPKp® KAC+§DBKKAB—
2 . 2 _ - 2 . 10 p-

gDA (0, Kpc) P — gKar/BA‘f'KKA BﬂB—gﬂAMBC@KBc—gKA BKpCBo+

4 _ _ _ _
§ﬂBarKAB+2KA B9, B+ KB Kpcfa—V,Rar

OroKap= %DBDCKAC_ %DBDAK_ %DCDCKAB—F%DCDAKB(J-FgDcﬁAKBc—
iDBBA[_(+3DBﬂC[_(AC+ZDC/@B[_(AC+2[_(ACau[_(BC+KB O, Kac+
2KpC0,Kac+Ka CarKBC‘F%DABOKBC_%DCﬁCKAB_%KABHCEavKC’E_
%Kar[(AB_%RavRAB_%KABMCEarRCE_iDAﬁBR+%KB  KKac+
KKa“Kpe—2K KacKpr—3Kp“Ka EKCE-F%DCKBCﬂA—iDBRﬂA%-
Kp CﬂAﬁc_ikﬁAﬁB_?)KACRB PKep+K“PKapKep+KapK P Kep—

3 oo i i _ 1
§DCKABﬂc+DBKA “Bo—KapBBo+KaBrBc— iKB “Raclu)+

%KA “KKpc+ iDCKA(JﬁB - iDAffﬁB - %KOERACBE[,U] +DaKg€Bo—
5D (0,5) ~ Kapa— 3640065~ 150,54~ 3 Da (0u55)~ 3V Rars

dpa= 3 DAGP Roap— K54 a— 3 DA (0,6a)+ 5 D Ka P By~ L DAR Ba— 3 Ko
%#AB&”UI_(AB+RABavRAB+§KAB8TRAB - %KABRA “Kpc+ gRABﬁAﬁB—
£510, A+ 3, R (A.2)

We also need elimination rules for dy,S4, OurBa, Ovve34, OverBa, OvvK an and Oyycr, but
these can be found by taking 0, derivatives of the above. We can then use the equation of
motion R, = ﬁAgW — ﬁgp"ng#V +H, + O(lN) to exchange R, for d—EQAgW plus
terms that are at least O(I?). We can repeat this process until all non-allowed terms are of
order [V, at which point we can neglect them for our calculation of the HKR entropy.

A.2 Calculation of ¢, terms

The HKR algorithm involves finding numbers a; such that
(O K) (Dk652K)Ak»p17p2 =

1 p1tp2—1 ‘ A
0. VS a @R (DR K ) A | | 4 (A3)
j=1

—0,
Vi
where the ellipsis denotes terms of the form (971 K) (D*oP2 K )Ar 5
or p1 =0 or pp = 0.
How to calculate the a; for any k,pi, ps is given in [5], and is as follows. When the

15, With p1+ P2 < p1+p2

derivative term on the r.h.s. is expanded out we get a set of p; + p2 — 1 linear equations on
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the a; in order to satisfy the required conditions. The linear equations can be written in
matrix form as

MP1+p2—1a = Vpy (A4)
where
0
210 0...0
1 2 1 0 “
a
Mpip1=10 1 2 1 0|, a= 2, v, =1 (A.5)
0
0 ... ... 01 2 Aprtpa—1
0

where (v, )p, = 1 and (vp,); = 0 for j # pa. My, 4p,—1 can be shown to have non-vanishing
determinant, and so the system of equations has a unique solution.

When performing the HKR algorithm for specific Lagrangians in practice, one should
investigate for which values of k, p1, p2 do terms of the form on the Lh.s. of (A.3) appear in
F', and pre-calculate the corresponding r.h.s. of (A.3). For the EGB, cubic and quartic La-
grangians above, the only relevant terms that appear are 0, K A0, Kcp, Oy KapDcO0yKpE,
OwKapDcDpOy,Kgr which have (p1,p2) = (1,1) and a1 = 1, and 0, K40y, Kcp which
has (p1,p2) = (1,2) and (a1, a2) = (—3, 2).

B Results for s4

B.1 s4 for cubic Riemann Lagrangians
s™ = 1*(k1siven + k255ua) (B.1)

where

sA . = —18DPKACDpBc +12DPKAC D + 9D B KAC B8 — 6 DB KAP 5+
12DBKA cKPKpp — 12D KA KPP Koy — 12KAP K C Kop B+
6KPKF KppBo — 24p*P € 0,8c0,Kpp + 12K P K €0, B0+
12K o8P 8, K pp — 6D 80, 8p — 1202 9P 0, K .0, B+
6KPYKA 00,85 + 6KP K p PKA pfo — 384 5P0,8p — 1201470, 85—
12K4PaBp — 388 8pp°0,8c — 6DP K “ D e — 12DP K © i * 0, Kcp—
3DBK5CB48c — 6DBDRBcKAC — 12D (avf(BC) KAC _3DBBgKACH,—
12DB K49, Kpe — 3DPKAC 860 + 12KAP €8, Ko — 6D DA B K BC —
12Dp ((%KCE) KBCUAE _ 3DpBcKBCBA — 3DpB KB (B.2)

st = —8DpBcePC At d, By — 12DpAc KA fpePC — 8K © KopePY ur'a, Bp—
8Kp CKAEKCFﬁE€BF — 16630MAE87«,8381}KCE —8Kp CKA CEBEaT,BE—f—
8SKpcfPeCEu Y o,Kpp + 8K C KA ¢ KprppP Pt — 4D BP0, 60—
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8eBC AP0, K ppdyfe + 4K C KA ¢ePP0,05 + 4K K ' K4 ¢ 8pePP —
285B82¢PC0,8c + 16D K el + 8K AafcePC + 4D Ko 4 BF frePC —
12DB K PDpBre’’ + 8DP Ko P DpBre®C + 6DpBcKr CpBeAr —
4DpBcKp BBCeAY + 8DPKep K Kppef — 8Dp Ko PK PP KppetC —
8K ‘Ko PKppBl el + 4K KPP Ko pBre® — 16648 1°F 8,800, K g+
8K Ko PetPo,8p + 8KP e 0,Kpp — ADp Y B0, Bc—

8B uCE 8, Kpcd,Br + 4K B¢ Kopefd,0p + 4K B Kp P K ppfoet -
285820, 0 — 8ae*P8,8p — 8K “afoe? — 285 et d, Bo—

8DpK¢ “R[u)ePC — 4K AR[1)BcePC — 8DPKA ¢ K C KppeP +

8D K Ky PKopeft —aKp C KAP KppBoePt + 16D Ko PePC AT 9, K pp—
8DpKep K KpCePY — 8K5“BpePEutt 0, Kop + AKP K KopBre® +
4DpKec PDABRePC + 8D Ko FePC A 8, Kpp — 8DpKep KT KA pePP —
AKp Ko PK* pBre®" +2DpKc P ppe” + 4DP Kpo D Bpe +
8DPKpceCF Y0, Kpp + 2DP KpoBpBie’? —ADPDyBcKp 4 —

8DB (avKBo) Kg2e“F + 2DBBrKeABreCf + 2DpBc Ky A8 BE+
ADBKcADpBpe? + 8DPK-4e“Po,Kpp + 2DP K 4858 F —

8K A8CePE, Kop — ADDABcKp BeCE — 8Dp (&j{w) KpBeCF A _
2DpBcKp BB + 2D Ko PBre’? — ADpDeBpK AP eBC -
6DpBcKACBreP? — 4D KA° DpBceP? — 8D KAC PP o, Kop—

2D KACBcBrpePf + 8KABB0e Y8, Kpp — 4D D e Kp € PP —

8Dp (aUKCE) KpCeBE A8 _ oDpBcK g CpABE — 2D Ko B BpeBC -
8DP Ko Pe’C0,Kpr — 2DP Ko ¥ BpBre’C + 8K 5 € BE AP0, Kop—
4DpDcBrKBEAC _ 8Dy (avKCE) KBCAE _ 90DpBcKBCBge Al —
2DpBcKFBBReAC — ADP K DpBee® —8DP K5 AP0, Kop—

2DP K foppe’” — ADP Dok © et — 8DP (0,Kpe) Ki© et~
9DBRRKcEppeC — 8Dp (&JI_(CE) KACBE (B.3)

B.2 sé for quartic Riemann Lagrangian

s@ = k1% 8P 0,85 R[> — 16 K K R[1) ™ 0,85 +16 K PC K g R[] P 0, 85—
16K KKR[u)Bp+16 KA P K P Kop R[] fp+16 KPC Ko K¥F Kppp90,8a+
16K P KCP K KY K peBp+16 KPC KPP K g K pppA€ 0, Ba+
16K KOP K KopKpeBp—32KP  Kp P Ko ' Kppu©o,8c—
2KAPKPK P Ky “Kpafp+64DPKCEDpKeput 0,8 —
64DP K Do Kpput 0,8r —32Dp Kop KT B2 uAr 0, 8p+
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32D KepKBCBE 1AY 0, +64DP K Dy Ko KAY Bp—64DP KCP Do K pp KAF Bp—
32DpKop KA KF BpBP +32Dp Kop KA KPCBppP +32DP KOF Ko pBppu’ 0, 8r —
32DBKF KppBopt 0,8r —16 KPC Kpc ¥ Bput 0,8r +16 KPC Ko pBp B 1t 0,8+
32D K"K KopBpBr—32DP K" KA KppBofr—16K P KOP KopBp Bt Br+

16K*P KPP KppBpop” +32u" nF 1190, Kord, Kpa 0o fp—

32KBCKp Pt 0, KcpdyBr+32K* 2 B uf €0, Kepd, Kpa—

RKABKCP Ko B0, Kpr—32KB K cyAr0,Kppo,fr—32KAPKCP KT 18p0, Ko p—
16D 8° D Sep*F0,fp+32D" B¢ Do B 0,65+32D" Bo KP K p o™ 0,81+

32D" B KAP K" Kppfp—64DpBS° KP* Kopu' 0,8r —64Dp S  KAP KP Kopfp+

64K P KE Kpp Kopp© 0,86 +64K AP KP K¥C Kop KpaBp+64D" BC 14 E 0, K0, Br+
16D 5 Bc 8P B 0, B +64u* B F 10, Ko p 0, K pe0y B — 64K P K g ¥ i 0, Ko p 0y, Br—
64K P K P Ko ¥ Bpo, Kpp+328°8° u** 0, K pc0,Be+6B" B B° BonFo,Be—

320" 10, B0, B0y B —32K P Bt F 0, 5c0,8—32K P B " 0, 800, fr—

2K K BpBc0,fp+16Kp 57 170,500, +16 KA P Ko ¥ 85870, S+

32050, Bpa’ +1605” Bpp© 0,60 +8DP KA s R[> ~16DP K 5 DCB¥ D fp+

32DBKA gD BPDpfc+64DP KA gD BP0, Kcp+16DP KA gD BrBC BE+

64D° K pu“P "0, Kordy Kpa+32DP K g 3¢ BP0, Kop+6DP K* p3° Bc B B+

32DB KA pa?+16DP K pafCBe+16Dp R[u) KB R[u) —32Dp D S DC EKAB +

64Dp Do fpD”3C KAP 464D DC B¥ K4P0, Kop+16Dp Do S K47 B° 57 +

64D5B° D (0, Kpc) KA¥ +128Dp (0uKcp) KAP u“r u#90, Kpa+

32D (0, Kcp) KA B8P +16DpB DefrK P 8P +64Dp B  KAP 870, Ko p+
24DpcKAB B BpBE+16Dp A Dy fc KAB BE +64Dpa K AP a+

16D 3K AP 3C B +32D g Bo K AP afC } (B.4)
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