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1 Introduction

The work of Wald in the early 1990s showed that a first law of black hole mechanics holds
for any theory of gravity arising from a diffeomorphism invariant Lagrangian [1]. This work
provides a definition of entropy, the Wald entropy, for any stationary (i.e. time independent)
black hole solution. It is natural to ask whether a second law of black hole mechanics can
also be established for this class of theories. Can one define an entropy for a dynamical (i.e.
time-dependent) black hole that (i) depends only on the geometry of a cross-section of the
event horizon, (ii) agrees with the Wald entropy in equilibrium, and (iii) increases in any
dynamical process?

An early proposal due to Iyer and Wald [2] satisfies (i) and (ii) above but the question
of whether it satisfies a second law (iii) was left open. A suitable definition of entropy has
been found for the special case of f(R) theories, i.e. theories with a Lagrangian that is a
function of the Ricci scalar. For such theories, the entropy is the integral of 4πf ′(R) over a
horizon cross section [3]. This differs from the Iyer-Wald entropy, which suggests that the
latter will not satisfy (iii) in general.

More recently, the second law has been studied perturbatively around a stationary black
hole. Wall has found a definition of black hole entropy that satisfies (i) and (ii) and satisfies
(iii) to linear order in perturbation theory [4]. Note that the second law implies that the
entropy is constant to linear order (otherwise one could obtain a decrease by reversing the
sign of the perturbation). Nevertheless, this is still highly non-trivial e.g. in a general theory
the Bekenstein-Hawking entropy (proportional to the horizon area) would not be constant
to linear order. Wall’s definition involves adding certain terms to the Iyer-Wald entropy so,
following [5] we shall refer to it as the Iyer-Wald-Wall (IWW) entropy.

To see an increase in entropy one needs to go beyond linear perturbation theory. This
has been achieved in recent work of Hollands, Kovács and Reall (HKR) [5]. They showed
that the IWW entropy can be improved, by adding further terms, to define an entropy that
satisfies a second law to quadratic order in perturbations around a stationary black hole.
We shall refer to this improved entropy as the IWWHKR entropy. To establish a second law,
HKR introduced two physically reasonable assumptions: (a) the theory must be regarded
as an effective field theory (EFT) and (b) the black hole solution considered must lie within
the regime of validity of EFT. Assumption (a) means that the Lagrangian is a series of
terms with increasing numbers of derivatives, whose coefficients scale as appropriate powers
of l where l is a “UV length scale” e.g. a k-derivative term in the Lagrangian has coefficient
proportional to lk−2. Point (b) means roughly that if L is any length/time scale associated
with a dynamical black hole then this must satisfy L� l. This assumption seems essential
since higher-derivative theories typically admit pathological solutions lying outside the
regime of validity of EFT and there is no good reason to expect that such solutions should
satisfy a second law. HKR established the above results for an EFT describing vacuum
gravity (no matter) or gravity coupled to a scalar field. They suggested that similar results
should hold for more general EFTs.

This paper has three aims. The first aim is to study examples for which the HKR
terms are non-trivial. The leading EFT corrections to Einstein gravity have 4 derivatives.
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However, HKR terms are only generated for theories with 6 or more derivatives, i.e.,
the IWWHKR entropy coincides with the IWW entropy for a 4-derivative theory. To
find examples for which the IWWHKR entropy differs from the IWW entropy one needs
to consider theories with at least 6 derivatives. We shall consider the EFT of vacuum
gravity in 4d. In vacuum, one can use a field redefinition to eliminate (non-topological)
4-derivative terms from the action and so the leading EFT corrections to the Einstein-
Hilbert Lagrangian have 6 derivatives. We shall determine the HKR terms in the entropy
for this EFT.

Second, we shall study the gauge-invariance of the HKR method. As with the method
of Wall, the HKR approach makes use of Gaussian null coordinates defined near the
black hole horizon. One of these coordinates is an affine parameter along the horizon
generators. There is the freedom to rescale this affine parameter by a different amount along
each generator. The Wall and HKR approaches do not maintain covariance w.r.t. such a
rescaling. Nevertheless, HKR proved that the IWW entropy is suitably gauge invariant
under the rescaling. However, they did not demonstrate that the new terms generated
by their approach must also be gauge invariant. By classifying the possible form of HKR
terms in vacuum gravity we shall show that non-gauge-invariant terms cannot arise for
theories with fewer than 8 derivatives. In particular our results for 6-derivative theories are
gauge invariant. However, our classification shows that non-gauge-invariant terms might
appear for theories with 8 derivatives. By considering a particular 8-derivative theory we
confirm that such terms do appear. Hence the IWWHKR entropy is not gauge invariant
for this theory.

Our final objective is to consider a particularly interesting theory, namely Einstein-
Gauss-Bonnet (EGB) theory. In d > 4 dimensional vacuum gravity, field redefinitions
can be used to bring terms with up to 4-derivatives to the EGB form. Thus EGB can be
regarded as an EFT. However, since this theory has second order equations of motion,
it is often regarded as a self-contained classical theory (e.g. it admits a well-posed initial
value problem if the curvature is small enough [6]). It is interesting to ask whether the
HKR approach can be used to determine the entropy for this theory. To do this, we can
regard it as a very special EFT for which the coefficients of all terms with more than 4
derivatives are exactly zero. We can then apply the HKR method to this EFT to determine
the entropy to any desired order in the Gauss-Bonnet coupling constant. We shall use this
method to calculate the entropy to quadratic order in this coupling constant.

This paper is organized as follows. In section 2 we review the Wall and HKR algorithms.
In section 3 we explain how we calculate the IWWHKR entropy in practice using computer
algebra. Section 4 presents a classification of terms that can arise in the IWWHKR entropy,
explaining why this is necessarily gauge invariant for theories with up to 6 derivatives.
Section 5 presents the results of our calculations for EGB theory, 6-derivative theories, and
a particular 8-derivative theory. In section 6 we demonstrate gauge non-invariance of the
IWWHKR entropy for the 8-derivative theory. Section 7 contains a brief discussion.

Our conventions are a positive signature metric, Greek indices µ, ν, . . . denote spacetime
coordinate indices and (r, v, xA) refer to the Gaussian Null coordinate system defined below.
We use units such that 16πG = 1.
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2 Review of Wall and HKR procedures

Let us first review the Wall and HKR procedures for constructing a dynamical black hole
entropy that satisfies a second law. The Wall procedure is sketched in [4] and described in
more detail in [7, 8]. The HKR procedure is detailed in [5].

2.1 Gaussian Null Co-ordinates

Both procedures involve an entropy current defined on the event horizon N of a black hole,
which is a null hypersurface. We assume N is smooth and has generators that extend to
infinite affine parameter to the future. This seems reasonable for a black hole “settling
down to equilibrium”, which is the physical situation considered by Wall and HKR.

We will use Gaussian Null Co-ordinates (GNCs) defined in a neighbourhood of N as
follows. Assume all generators intersect a spacelike cross-section C exactly once, and take
xA to be a co-dimension 2 co-ordinate chart on C. Let the null geodesic generators have
affine parameter v and future directed tangent vector lµ such that l = ∂v and v = 0 on C.
We can transport C along the null geodesic generators a parameter distance v to obtain a
foliation C(v) of N . Finally, we uniquely define the null vector field nµ by n · (∂/∂xA) = 0
and n · l = 1. The co-ordinates (r, v, xA) are then assigned to the point affine parameter
distance r along the null geodesic starting at the point on N with coordinates (v, xA) and
with tangent nµ there. The metric in these GNCs is given by

g = 2dv
(
dr − 1

2r
2αdv − rβAdxA

)
+ µABdxAdxB, l = ∂v, n = ∂r (2.1)

N is the surface r = 0, and C is the surface r = v = 0. The inverse of µAB is denoted by
µAB, and we raise and lower A,B, . . . indices with µAB and µAB. We denote the induced
volume form on C(v) by εA1...Ad−2 = εrvA1...Ad−2 where d is the dimension of the spacetime.
The covariant derivative on C(v) with respect to µAB is denoted by DA. We also define

KAB ≡
1
2∂vµAB, K̄AB ≡

1
2∂rµAB, K ≡ KA

A, K̄ ≡ K̄A
A (2.2)

KAB describes the expansion and shear of the horizon generators. K̄AB describes the
expansion and shear of the ingoing null geodesics orthogonal to a horizon cut C(v).

2.2 Gauge transformations and boost weight

Our choice of GNCs is not unique. In particular, on each generator we can rescale the affine
parameter v′ = v/a(xA) and tangent vector l′ = a(xA)l, where a(xA) > 0, to obtain a new
set of GNCs (r′, v′, xA). If a(xA) is non-constant then horizon cross-sections of constant v′
differ from cross-sections of constant v, i.e., the change of coordinates changes the foliation
C(v). The exception is the surface C, i.e., v = v′ = 0, which belongs to both foliations.

This freedom in rescaling the affine parameter is essential if we wish to compare the
entropy of two arbitrary horizon cuts C, C ′ with C ′ strictly to the future of C [5]. The
reason is that the Wall and HKR procedures define an entropy associated with a particular
set of GNCs. Introducing GNCs based on C we can use the rescaling of affine parameter to
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ensure that C ′ is a surface of constant v, and then apply the second law of Wall or HKR.
However, we do not want our definition of the entropy of C to depend on the choice of
C ′ and so we want the entropy of C to be gauge invariant under the rescaling of affine
parameter. Investigating whether or not this is true for the IWWHKR entropy is one of
the aims of this paper.

In general, GNC quantities have complicated transformation laws under this rescaling.
However, we will only be concerned with how they transform on the horizon cut C, i.e. on
r = v = 0. On C, some quantities satisfy simple transformation laws [5]:

x′A = xA, v′ = 0 r′ = 0,

µ′AB = µAB, ε′A1...Ad−2 = εA1...Ad−2 , RABCD[µ′] = RABCD[µ], D′A = DA,

∂pv′K
′
AB = ap+1∂pvKAB, ∂pr′K̄

′
AB = a−p−1∂pr K̄AB, (2.3)

β′A = βA + 2DA log a

on v = r = 0

Note in particular that βA transforms inhomogeneously, in the same way as a gauge field
(this is because βA is a connection on the normal bundle of C [5]).

An important concept for both the IWW and HKR procedures is the boost weight of a
quantity. Suppose we take a(xA) to be constant, and suppose that a quantity T transforms
as T ′ = abT under the rescaling above. Then T is said to have boost weight b. See [5] for a
full definition. Some important facts are stated here:

• α, βA, and µAB have boost weight 0. KAB and K̄AB have boost weight +1 and −1
respectively.

• If T has boost weight b, then DA1 . . . DAn∂
p
v∂

q
rT has boost weight b+ p− q.

• If Xi has boost weight bi and T = ∏
iXi, then T has boost weight b = ∑

i bi.

• A tensor component Tµ1...µn
ν1...νm has boost weight given by the sum of +1 for each v

subscript and each r superscript and −1 for each r subscript and v superscript.

For non-constant a(xA), a tensor component Tµ1...µn
ν1...νm with boost weight b has a com-

plicated transformation away from C under the rescaling above. However, on C the
transformation remains T ′µ1...µn

ν1...νm = abTµ1...µn
ν1...νm

2.3 Perturbations around stationary black holes

The Wall and HKR results apply to the scenario of a black hole settling to an equilibrium
stationary state. To make this precise, we assume that our higher derivative gravitational
theories admit a family F of stationary black hole solutions for which the event horizon is a
bifurcate Killing horizon. This is equivalent to the assumption that a member of F satisfies
the zeroth law of black hole mechanics [10]. For an EFT describing vacuum gravity with
UV length scale l, a zeroth law can be proved for solutions constructed as a power series in
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l [9, 11].1 (In some cases a zeroth law can be established assuming only validity of EFT
without resorting to an expansion in l [12].) A black hole “rigidity theorem”, (showing that
the event horizon of a stationary black hole must be a Killing horizon) has also been proved
for solutions of this type [13].

The bifurcate Killing horizon assumption ensures that all positive boost weight quantities
vanish on N for a member of F . Therefore, in perturbation theory around a member of F ,
any positive boost weight quantity is of first order on N . A quantity that is of cubic or
higher order in positive boost weight quantities vanishes to quadratic order in perturbations
around a stationary black hole.

2.4 The Iyer-Wald-Wall entropy

In standard 2-derivative GR coupled to matter satisfying the null energy condition, the
second law of black hole mechanics states that the area of a black hole is non-decreasing, i.e.

A(v) =
∫
C(v)

dd−2x
√
µ (2.4)

satisfies Ȧ(v) ≥ 0 for all v. The interpretation of the area as the Bekenstein-Hawking
entropy re-expresses this law as saying the entropy of a black hole is always non-decreasing.

However, if we consider a higher derivative theory of gravity then there is no reason
why A(v) should be non-decreasing for a general black hole solution. Thus, in the hope of
preserving our interpretation of black holes as thermodynamic objects, we must come up
with a new definition of dynamical black hole entropy that does satisfy a second law.

The Iyer-Wald-Wall entropy is an attempt to do this. It satisfies a second law to linear
order in perturbations around a member of F . The starting point for this definition is the
vv component of the equations of motion, Evv, evaluated on N . In a procedure sketched by
Wall in [4]2 and made explicit by Bhattacharyya et al. [7, 8], Evv can be manipulated into
the following form on N :

Evv
∣∣∣
N

= ∂v

[
1
√
µ
∂v (√µsvIWW ) +DAs

A

]
+ . . . (2.5)

where svIWW (boost weight 0) and sA (boost weight 1) are expressions containing terms of
up to linear order in positive boost weight quantities and the ellipsis denotes terms that are
quadratic or higher in positive boost weight quantities (and therefore of quadratic or higher
order in perturbation theory around a member of F). The method to get to (2.5) is purely
off-shell (i.e. it doesn’t use any equations of motion) and applies to any theory of gravity
arising from a diffeomorphism invariant Lagrangian.

1The assumption of an expansion in l seems reasonable for stationary black holes but it would certainly
not be appropriate in a time-dependent situation, where secular terms (growing in time) typically arise in
such an expansion. A simple example of this would be a quasinormal mode of a linearly perturbed black
hole. Such a mode is proportional to e−iωt with Im(ω) < 0. Higher derivative terms will give a perturbative
shift in the quasinormal frequency, i.e., ω = ω0 + l2ω1 + . . .. Low lying quasinormal modes certainly lie
within the regime of validity of EFT, and decay exponentially in time. However if we expand in l we obtain
secular growth: e−iωt = e−iω0t(1− iω1l

2t+ . . .). We emphasize that in this paper we do not require that
dynamical black hole solutions are constructed as a power series in l.

2See [14, 15] for earlier work establishing a linearized second law in particular theories.
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The IWW entropy of a horizon cross-section C(v) is defined as3

SIWW (v) = 4π
∫
C(v)

dd−2x
√
µ svIWW (2.6)

We can then write

ṠIWW = 4π
∫
C(v)

dd−2x
√
µ

[
1
√
µ
∂v(
√
µsvIWW ) +DAs

A

]

= −4π
∫
C(v)

dd−2x
√
µ

∫ ∞
v

dv ∂v
[

1
√
µ
∂v(
√
µsvIWW ) +DAs

A

] (2.7)

where in the first line we trivially added the total derivative √µDAs
A to the integrand, and

in the second line we assumed the black hole settles to a member of F , so positive boost
weight quantities vanish on the horizon at late times. The integrand can then be swapped
for terms that are quadratic or higher in positive boost weight quantities using (2.5) and the
equation of motion Evv = 0. Thus ṠIWW = 0 up to linear order in perturbations around a
stationary black hole, and hence satisfies a second law up to this order.

svIWW is the IWW entropy density described by Wall, whilst the need for the quantity
sA was noted in [7]. These objects can be combined into a vector field (svIWW , s

A) tangent
to N , called the entropy current. How to construct svIWW and sA is briefly discussed in
section 3. svIWW has boost weight 0 and contains terms that are either linear or zero order
in positive boost weight quantities. The zero order terms are exactly the Iyer-Wald entropy
density, and hence the IWW entropy density modifies this by terms linear in positive
boost weight.

We have defined svIWW so that it includes only terms of up to linear order in positive
boost weight quantities. However, one can add terms to svIWW of quadratic or higher order
in such quantities without affecting the linearized second law. Some previous work on
the IWW entropy (e.g. [4]) implicitly makes a choice for these higher order terms. We
emphasize that our definition of svIWW does not include such terms.

HKR proved that the IWW entropy is gauge invariant under changes of GNCs [5].
More precisely, they showed that it is gauge invariant to linear order in perturbations, i.e.,
to the same order that it satisfies the second law. They also showed that it can be made
gauge invariant to all orders by adding higher order terms as discussed in the previous
paragraph. The quantity sA is not gauge invariant in general [5, 16].

2.5 Gravitational effective field theory

At linear order, the second law states that the entropy is constant. To obtain an entropy
increase it is necessary to go beyond first order perturbation theory. To do this, HKR
worked within the framework of effective field theory (EFT).

In the EFT framework for gravity, we assume the GR Lagrangian comes with arbitrary
corrections made out of any diffeomorphism invariant quantity, ordered by the number
of derivatives they contain. The coefficients of these corrections are assumed to scale as

3We use units with 16πG = 1.
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appropriate powers of some “UV length scale” l, with an n-derivative term having coefficient
proportional to ln−2. In vacuum gravity the general EFT Lagrangian is of the form

L = −2Λ +R+ l2L4 + l4L6 + l6L8 +O(l8) (2.8)

where L4 contains all independent 4-derivative terms, L6 contains all independent 6-
derivative terms, L8 contains all independent 8-derivative terms etc.4

The set of terms in each Ln can be reduced by neglecting total derivatives and using
field redefinitions. For example, let us consider L4. We can write the most general set of
independent 4-derivative terms in the above as:

L = −2Λ +R+ l2
(
k1R

2 + k2RµνR
µν + k3RµνρσR

µνρσ + k4∇µ∇µR
)

+O(l4) (2.9)

The final 4-derivative term is a total derivative, which we can neglect. We can also use
a field redefinition of the form gµν → gµν + l2(aΛgµν + bRgµν + cRµν) with appropriate
constants a, b, c to bring the remaining 4-derivative terms into the form of a single term
given by the EGB Lagrangian:5

L = −2Λ +R+ 1
16kl

2δρ1ρ2ρ3ρ4
σ1σ2σ3σ4Rρ1ρ2

σ1σ2Rρ3ρ4
σ3σ4 +O(l4) (2.10)

where the generalized Kronecker delta is

δρ1...ρn
σ1...σn = n!δρ1

[σ1
. . . δρnσn] (2.11)

For general dimension d > 4, this is as far as we can go. In this case, EGB gravity is
the leading order EFT correction to GR. Its IWWHKR entropy is calculated in section 5.1.

However, in d = 4 dimensions the 4-derivative EGB term is topological and can be
neglected.6 Therefore we can eliminate all order l2 contributions to L. We can perform a
similar procedure [17, 18] to reduce the set of 6-derivative terms to the following:

L = −2Λ +R+ l4(k1RµνκλR
κλχηRχη

µν + k2RµνκλR
κλχηRχηρσε

µνρσ) +O(l6) (2.12)

The k1 term is parity even and the k2 term is parity odd. The IWWHKR entropy of this
Lagrangian is calculated to order l4 in section 5.2. The contribution at order l6 of a specific
term in L8 is calculated in section 5.3.

Following HKR, we shall not be interested in arbitrary solutions of these EFTs but only
solutions that lie within the regime of validity of EFT. HKR define this criterion as follows.
We assume we have a 1-parameter family of dynamical black hole solutions labelled by a
length L (this could be the size of the black hole or some other dynamical length/time scale)
such that N is the event horizon for all members of the family (this is a gauge choice). We

4For even spacetime dimension or a parity-symmetric theory, only even numbers of derivatives appear in
L. In this discussion we assume we are working with such a theory.

5This process may also renormalize the values of Λ and G.
6This topological term in the action contributes a topological (constant) term to the entropy which does

not play a role in the situation we are considering of a black hole settling down to equilibrium. In fact, for
d = 4 there is another topological term of the form RµνρσRαβ

ρσεµναβ which we ignore for the same reasons.
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assume that there exist GNCs defined near N such that any quantity constructed from n

derivatives of {α, βA, µAB} is bounded by Cn/Ln for some constant Cn, and that |Λ|L2 ≤ 1.
Then the solution lies within the regime of validity of EFT for sufficiently small l/L. This
definition captures the notion of a solution “varying over a length scale L” with L large
compared to the UV scale l.

2.6 HKR procedure

A complete description of gravity in the regime of validity of EFT would require knowing
the coefficients of all terms for all orders of l in the Lagrangian (2.8). However in practice
this is not possible, and so there we will be an N for we which we only know the terms
with N or fewer derivatives. Thus the equation of motion will take the form

Eµν = O(lN ) (2.13)

where the l.h.s. denotes the known terms with up to N derivatives and the r.h.s. denotes
the unkown terms with N + 2 or more derivatives. On the r.h.s. we should really write
O(lN/LN+2) but we shall suppress the L-dependence henceforth. This dependence can be
reinstated by dimensional analysis.

Since the r.h.s. of the equation of motion is unknown, in EFT one cannot prove a
second law that holds exactly. The best one can hope for is to find a definition of entropy
that satisfies a second law to the same accuracy as the theory itself, i.e. modulo terms of
order O(lN ). HKR showed how to define an entropy S(v) containing terms with up to
N − 2 derivatives that satisfies a second law to quadratic order in perturbations around a
stationary black hole, modulo terms of order O(lN ):

δ2Ṡ(v) ≥ −O(lN ) (2.14)

where δ2 indicates a second order perturbation around a member of F and the minus
sign on the r.h.s. indicates that δ2Ṡ(v) might be negative but only by a small amount of
order O(lN ).

To do this, HKR showed that the terms that are quadratic or higher order in positive
boost weight quantities in (2.5) (i.e. the terms denoted by the ellipsis) can be brought into
the following form on N :

Evv
∣∣∣
N
− ∂v

[
1
√
µ
∂v (√µsvIWW ) +DAs

A

]
=

∂v

[
1
√
µ
∂v (√µςv)

]
+ (KAB +XAB)

(
KAB +XAB

)
+DAY

A +O(lN )
(2.15)

where ςv = ∑N−2
n=2 l

nςvn (boost weight 0) and Y A = ∑N−2
n=2 l

nY A
n (boost weight 2) are of

quadratic or higher order in positive boost weight quantities, and XAB = ∑N−2
n=2 l

nXAB
n

(symmetric, boost weight 1) is of linear or higher order in such quantities. An important
difference between this construction and the Wall procedure is that this construction requires
going on-shell by swapping some “non-allowed” terms for others using the equations of
motion Eµν = O(lN ). Details of how this is done are given in section 3.
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The IWWHKR entropy density is defined as

Sv = svIWW + ςv (2.16)

and the IWWHKR entropy of a horizon cross-section C(v) is defined by

SIWWHKR(v) = 4π
∫
C(v)

dd−2x
√
µSv (2.17)

We can perform a similar calculation to the IWW case to find

ṠIWWHKR = −4π
∫
C(v)

dd−2x
√
µ

∫ ∞
v

dv∂v
[

1
√
µ
∂v(
√
µSv) +DAs

A

]

= 4π
∫
C(v)

dd−2x
√
µ

∫ ∞
v

dv
[
(KAB +XAB)

(
KAB +XAB

)
+DAY

A +O(lN )
]

(2.18)

The first term in the integrand is a positive definite form, so must be non-negative. The
second term DAY

A need not have a definite sign. However, since Y A is quadratic in positive
boost weight quantities, it is of second order in perturbation theory when we expand around
a member of F , i.e., Y A = δ2Y A plus higher order terms. We then have∫

C(v)
dd−2x

√
µ

∫ ∞
v

dvDAδ
2Y A =

∫
C(v)

dd−2x
√
µ

∣∣∣∣
F

∫ ∞
v

dvDA

∣∣∣∣
F
δ2Y A + . . . (2.19)

where the ellipsis denotes terms of cubic or higher order in perturbation theory. Since
µAB is independent of v when evaluated on a member of F , we can exchange the order
of integrations and see the integrand is a total derivative. Hence the integral vanishes
to quadratic order in perturbations around a stationary black hole, and so ṠIWWHKR is
non-negative to quadratic order, modulo O(lN ) terms.

3 Implementation of algorithm

We shall now discuss how one calculates the IWWHKR entropy in practice. Since the
equations involved get extremely lengthy, a symbolic computer algebra program is needed
to do this. The program of choice of the authors is Cadabra [20–22] due to its ability to
split µ, ν, . . . indices into r, v and A,B,C, . . . indices, and the ease with which expressions
can be canonicalised using symmetry or anti-symmetry of indices.

We assume that we know the terms with up to N derivatives in the EFT Lagrangian.
The Lagrangian can be written L+O(lN ) where O(lN ) is the contribution from the unknown
terms with N + 2 or more derivatives and

L = −2Λ +R+ Lhigher (3.1)

where Lhigher = ∑N−2
n=2 l

nLn+2 are the known higher derivative terms. We shall break down
how to calculate the HKR entropy density for this Lagrangian into steps.
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3.1 Calculate equations of motion

First we calculate the equations of motion for this Lagrangian. This gives (2.13) with

Eµν ≡ −
1√
−g

δ(√−gL)
δgµν

= −Λgµν −Rµν + 1
2Rgµν +Hµν (3.2)

where Hµν = ∑N−2
n=2 l

nHnµν is the contribution from the known higher derivative terms.

3.2 Calculate IWW entropy current

Second we must find the IWW entropy current svIWW and sA (of equation (2.5)) for this
theory. Since they are not the main subject of this paper, we will only touch briefly on how
to calculate them. Full procedures are given in [8], but since the algorithms have many
steps there are no simple formulas for general L. However, if the Lagrangian depends only
on the Riemann tensor and not its derivatives, then there is a formula for svIWW calculated
by Wall in [4], which reproduces a formula for holographic entanglement entropy derived
previously by Dong [19]. This formula involves taking partial derivatives of the Lagrangian
with respect to Riemann components,7 and then discarding terms that are quadratic (or
higher order) in positive boost weight quantities:8

svIWW = −2
(

∂L
∂Rrvrv

∣∣∣∣
N

+ 4 ∂2L
∂RvAvB∂RrCrD

∣∣∣∣
N
KABK̄CD

)
− svquadratic (3.3)

Here svquadratic is purely there to cancel any terms that are quadratic or higher order in
positive boost weight quantities when the Riemann components are expanded out in GNCs
on N , so that overall svIWW has only linear or zero order terms.

We can apply this to our EFT Lagrangian (3.1) if Lhigher is a polynomial in Rµνρσ.
The contribution from the Einstein-Hilbert Lagrangian is 1, and so

svIWW = 1− 2
(
∂Lhigher
∂Rrvrv

∣∣∣∣
N

+ 4 ∂2Lhigher
∂RvAvB∂RrCrD

∣∣∣∣
N
KABK̄CD

)
− svquadratic (3.4)

None of the Lagrangians we consider in section 5 contain derivatives of Riemann components,
and hence (3.4) is the formula we use to calculate svIWW .

There is no simple formula for sA in general, and so we must follow the procedure
in [8] to calculate it. The method requires finding the total derivative term Θµ given by
δ(√−gL) = √−g(Eµνδgµν +DµΘµ[δg]), and the Noether charge for diffeomorphisms Qµν
given by ∇νQµν = 2Eµνζν + Θµ[∂ζ] − ζµL where we have set δgµν = ∇µζν + ∇νζµ in
the argument of Θµ. For any given theory, both of these quantities can be calculated via
theorems given in [8].

7We define ∂/(∂Rµνρσ) to have the same symmetries as Rµνρσ and to be normalised such that a first
variation of some quantity X(Rµνρσ) will give δX = δRµνρσ

∂X
∂Rµνρσ

.
8Actually, Wall does not discard these terms. As discussed in section 2.4, one can include these terms

without affecting the validity of the linearized second law. But our definition of svIWW requires that such
terms are discarded. Whether or not one includes these terms does not affect the IWWHKR entropy as we
shall discuss in section 5.2.
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3.3 Calculate remaining terms in Evv

Now that we have Evv, svIWW and sA, we proceed by expanding them out in GNCs9 on N
and calculating the terms denoted by the ellipsis in equation (2.5), which we shall denote F :

F ≡ Evv
∣∣∣
N
− ∂v

[
1
√
µ
∂v (√µsvIWW ) +DAs

A

]
(3.5)

By construction, these terms will be of quadratic or higher order in positive boost weight
quantities. For example, in standard GR (i.e. N = 2) we have svIWW = 1, sA = 0, and
Evv

∣∣∣
N

= µAB∂vKAB −KABK
AB. We can use ∂v

√
µ = √µK to obtain F = KABK

AB for
standard GR.

Let us consider what possible GNC quantities F can depend on. F is evaluated on N
which is r = 0, so there is no explicit r-dependence. It is also a scalar with respect to A,B, . . .
indices. Therefore F is a polynomial in the remaining quantities we can make out of the
GNC metric that are covariant in A,B, . . . indices: α, βA, µAB, µAB, εA1...Ad−2 , RABCD[µ]
and their ∂v, ∂r and DA derivatives. Here εA1...Ad−2 and RABCD[µ] are the induced volume
form and induced Riemann tensor10 on C(v). We can eliminate their ∂v and ∂r derivatives
in exchange for KAB and K̄AB via the formulae

∂vεA1...Ad−2 = εA1...Ad−2K,

∂rεA1...Ad−2 = εA1...Ad−2K̄,

∂vRABCD[µ] = KE
BRAECD[µ]−KE

ARBECD[µ] +DCDBKAD−

DCDAKBD −DDDBKAC +DDDAKBC ,

∂rRABCD[µ] = K̄E
BRAECD[µ]− K̄E

ARBECD[µ] +DCDBK̄AD−

DCDAK̄BD −DDDBK̄AC +DDDAK̄BC

(3.6)

Given a term of the form ∂pv∂
q
rDA1 . . . DAnϕ, we can commute the D derivatives to the left

using commutation rules:

[∂v, DA]tB1...Bn =
n∑
i=1

µCD(DDKABi −DAKDBi −DBiKAD)tB1...Bi−1CBi+1...Bn ,

[∂r, DA]tB1...Bn =
n∑
i=1

µCD(DDK̄ABi −DAK̄DBi −DBiK̄AD)tB1...Bi−1CBi+1...Bn

(3.7)

[∂v, D] commutators introduce DAKBC terms, whilst [∂r, D] commutators introduce
DAK̄BC terms.

Using these results we can express F as a polynomial in the following quantities:

µAB, µ
AB, εA1...Ad−2 , DA1 . . .DAnRABCD[µ] or DA1 . . .DAn∂

p
v∂

q
rϕ for ϕ∈{α,βA,KAB, K̄AB}

(3.8)
9Expanding out Evv in GNCs requires expanding out Riemann components and possibly their covariant

derivatives in GNCs. The appendix of [5] lists the expansions of all Riemann components, which is sufficient
for the EGB Lagrangian calculation in section 5. However, the cubic and quartic Lagrangians below have
equations of motion that depend on ∇µRνρσκ and ∇µ∇νRρσκλ, and so these must also be calculated in
terms of GNCs. Beware, even for Cadabra this is an extensive computation.

10In d = 4 dimensions, C(v) is 2-dimensional which implies that RABCD[µ] = R[µ]
2 (µACµBD − µADµBC).
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3.4 Reduce to allowed terms

The key step in the HKR algorithm is to reduce the above set of terms to a much smaller
set of “allowed” terms:

Allowed terms: µAB, µAB, εA1...Ad−2 , DA1 . . . DAnRABCD[µ],
DA1 . . . DAnβA, DA1 . . . DAn∂

p
vKAB, DA1 . . . DAn∂

q
rK̄, Λ (3.9)

In particular, the only positive boost weight allowed terms are of the form Dk∂pvKAB.
This reduction is achieved through careful inspection of the GNC expressions for Ricci
components and application of the equations of motion. Let us see how this works via an
example.

Consider the GNC expression for RvA on N :

RvA
∣∣∣
N

= 1
2∂vβA +DBKACµ

BC −DAKBCµ
BC + 1

2KBCβAµ
BC (3.10)

We can rearrange this to get ∂vβA in terms of allowed terms and the Ricci component RvA:

∂vβA = −2DBKACµ
BC + 2DAKBCµ

BC −KBCβAµ
BC + 2RvA

∣∣∣
N

(3.11)

We can rewrite the equation of motion (2.13) as Rµν = 2
d−2Λgµν − 1

d−2g
ρσHρσgµν +Hµν +

O(lN ). Since Hµν is at least O(l2), we can therefore swap Rµν for 2
d−2Λgµν plus higher order

terms in l. Thus we can use (3.11) to eliminate ∂vβA in favour of allowed terms plus terms
of higher order in l. Working order by order in l we can therefore eliminate occurrences
of ∂vβA, pushing them to higher order at each step. Eventually we reach O(lN ), at which
point we stop since we do not know the terms in the equation of motion at this order.

We can find a similar expression for ∂rβA by considering RrA
∣∣∣
N
:

∂rβA = DBK̄ACµ
BC −DAK̄BCµ

BC + K̄ABβCµ
BC − 1

2K̄BCβAµ
BC −RrA

∣∣∣
N

(3.12)

Again we can use the equations of motion to swap out RrA and push any occurrence of
∂rβA to higher order in l, eventually reaching O(lN ).

We can similarly eliminate ∂vK̄AB using RAB, and eliminate α using Rvr. We can
take D and ∂v derivatives of these expressions to eliminate further terms. We can’t take
∂r derivatives since the expressions are evaluated on r = 0, so instead we look at the ∇r
derivatives of the Ricci tensor. For example, to eliminate ∂rα, we look at ∇rRvr.

When looking at a specific theory, one will only need to calculate a finite number of
these elimination rules, as there will be only so many derivatives involved. The set we need
for the EGB, cubic and quartic Lagrangians in section 5 are given in appendix A.1.

3.5 Manipulate terms order-by-order

Once we have eliminated non-allowed terms, we proceed order-by-order in l. We can
separate terms in F :

F = F0 +
N−2∑
n=2

lnFn +O(lN ) (3.13)
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Each Fn will be quadratic in positive boost weight terms and only depend on allowed terms
by construction. F0 is the contribution from the 2-derivative GR Lagrangian calculated
previously: F0 = KABK

AB. Note F0 is of the required form (2.15) at order l0 with
ςv0 = XAB

0 = Y A
0 = 0. Hence we work inductively: let us assume we have manipulated F

into the correct form up to some order lm−2, m < N :

F =
(
KAB +

m−2∑
n=2

lnXnAB

)(
KAB +

m−2∑
n=2

lnXAB
n

)
+

∂v

[
1
√
µ
∂v

(
√
µ
m−2∑
n=2

lnςvn

)]
+DA

m−2∑
n=2

lnY A
n +

N−2∑
n=m

lnFn +O(lN ) (3.14)

with the remaining Fn quadratic in positive boost weight terms and only containing allowed
terms. Let us study Fm. As noted above, the only positive boost weight allowed terms are
of the form Dk∂pvKAB. Hence each monomial in Fm must have at least two factors of this
form, and schematically Fm takes the form

Fm =
∑

k1,k2,p1,p2

(Dk1∂p1
v K) (Dk2∂p2

v K)Ak1,k2,p1,p2 (3.15)

where the Ak1,k2,p1,p2 (boost weight −p1 − p2) are made up of allowed terms. Note that
the K’s (and D’s) above should have indices KAB but these have been dropped in the
schematic form for notational ease. They should not be interpreted as K ≡ KA

A. The
Ak1,k2,p1,p2 can in principle include more Dk∂pvK terms, so for simplicity when performing
the algorithm we always order the terms in the following priority: p1 and p2 as small as
possible, p1 ≤ p2, and then k1 and k2 as small as possible.

We now aim to manipulate this sum so that everything in it is proportional to KAB.
First we move over the Dk1 derivatives in the first factor of each term in the sum using the
product rule D(f)g = −fD(g) +D(fg). This will produce some total derivative DAY

A
m :

Fm =
∑

k,p1,p2

(∂p1
v K) (Dk∂p2

v K)Ak,p1,p2 +DAY
A
m (3.16)

Secondly we move over the ∂p1
v derivatives in each term, We do this in such a way as to

produce terms of the form ∂v
(

1√
µ∂v

(√
µςv

))
, where ςv will contribute to the IWWHKR

entropy density. It is proved in [5] that for any k ≥ 0 and p1, p2 ≥ 1, there exist unique
numbers aj such that

(∂p1
v K)(Dk∂p2

v K)Ak,p1,p2 =

∂v

 1
√
µ
∂v

√µp1+p2−1∑
j=1

aj(∂p1+p2−1−j
v K)(Dk∂j−1

v K)Ak,p1,p2

+. . .
(3.17)

where the ellipsis denotes terms of the form (∂p̄1
v K) (Dk̄∂p̄2

v K)Ak̄,p̄1,p̄2
with p̄1 + p̄2 < p1 +p2

(which can be dealt with inductively) or p̄1 = 0 (which are proportional to KAB) or p̄2 = 0
(which are proportional to Dk̄KAB and so can be made proportional to KAB by moving
over the D derivatives and adding to Y A

m as above). How to calculate the aj is described in
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appendix A.2. The new Ak̄,p̄1,p̄2
include terms like ∂vAk,p1,p2 which will involve non-allowed

terms. These must be swapped out using the elimination rules and equations of motion,
and so will generate O(l2) terms.

Thus we can repeat this procedure until we have manipulated Fm into the form

Fm = 2KABX
AB
m + ∂v

[
1
√
µ
∂v (√µςvm)

]
+DAY

A
m +O(l2) (3.18)

We take XAB
m to be symmetric. It will be linear in positive boost weight quantities, and

ςvm and Y A
m will be quadratic in positive boost weight quantities. The O(l2) terms are also

quadratic in positive boost weight quantities, and so can be incorporated into ∑N−2
n=m+2 l

nFn.
Substituting this into (3.14) gives

F =
(
KAB +

m−2∑
n=2

lnXnAB

)(
KAB +

m−2∑
n=2

lnXAB
n

)
+ 2lmKABX

AB
m +

∂v

[
1
√
µ
∂v

(
√
µ

m∑
n=2

lnςvn

)]
+DA

m∑
n=2

lnY A
n +

N−2∑
n=m+2

lnFn +O(lN ) (3.19)

We then complete the square with the first two terms, generating more higher order
quadratic terms which get incorporated into ∑N−2

n=m+2 l
nFn. This leaves the desired form of

F up to order lm and completes the induction. We perform this procedure through each
order of l until all terms have been dealt with up to O(lN ):

F =
(
KAB +

N−2∑
n=2

lnXnAB

)(
KAB +

N−2∑
n=2

lnXAB
n

)
+

∂v

[
1
√
µ
∂v

(
√
µ
N−2∑
n=2

lnςvn

)]
+DA

N−2∑
n=2

lnY A
n +O(lN ) (3.20)

The IWWHKR entropy density is then defined as

Sv = svIWW +
N−2∑
n=2

lnςvn (3.21)

4 Classification of possible terms in the IWWHKR entropy density

Before we display calculations of the HKR entropy density for specific Lagrangians, we
discuss what possible terms can appear in lnςvn, which is the addition to svIWW at order ln.

We will be interested in the number of derivatives associated with a quantity on
N . We can write GNC quantities on N as derivatives of the metric: α = −1

2∂
2
rgvv

∣∣
N ,

βA = −∂rgvA
∣∣
N and µAB = gAB . Hence α, βA, µAB are associated with 2, 1 and 0 derivatives

respectively. This motivates a definition of “dimension” to count derivatives from [5]:

Definition. The “dimension” of α, βA and µAB are 2, 1, 0 respectively. Taking a derivative
w.r.t. v, r or xA increases the dimension by 1. Dimension is additive under products.
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Note KAB and K̄AB both have dimension 1. εA1...Ad−2 has dimension 0. We also define
the dimension of l and Λ to be −1 and +2 respectively so that Eµν = −Λgµν − Rµν +
1
2Rgµν + ∑

n l
nHnµν has consistent dimension 2 on N . This also means the elimination

rules for non-allowed terms are dimensionally consistent. A quantity with boost weight b
must involve at least |b| derivatives, and so has dimension at least |b|.

Now, ςvn arises from manipulating Fn, which in turn comes from varying the (n+ 2)-
derivative Lagrangian Ln+2. Thus Fn has dimension n + 2. ςvn appears with two extra
derivatives in Fn:

Fn = ∂v

[
1
√
µ
∂v (√µςvn)

]
+ . . . (4.1)

Therefore ςvn has dimension n. It is also boost weight 0 since Fn is boost weight +2.
By construction ςvn is a sum of terms of the form (∂pvK) (Dk∂p

′
v K)An,k,p,p′ with k, p, p′ ≥

0 and where An,k,p,p′ is made exclusively out of allowed terms. Suppose An,k,p,p′ has
dimension dn,k,p,p′ and boost weight bn,k,p,p′ . To match the dimension and boost weight of
ςvn, we have two conditions:

dn,k,p,p′ = n− 2− p− p′ − k
bn,k,p,p′ = −2− p− p′

(4.2)

But dn,k,p,p′ ≥ |bn,k,p,p′ | which we can rearrange to give

2p+ 2p′ + k ≤ n− 4 (4.3)

If n = 2 then the r.h.s. is negative, which is impossible for k, p, p′ ≥ 0. Thus ςv2 = 0,
and so Sv necessarily agrees with svIWW at order l2 [5].

If n = 4 then the r.h.s. is 0, and so we must have k = p = p′ = 0. Hence ςv4 must be
a sum of terms of the form KABKCEA

ABCE
4,0,0,0 . We have d4,0,0,0 = −b4,0,0,0 = 2 so AABCE4,0,0,0

must contain two r derivatives and no other derivatives. The only combinations of allowed
terms that have this are K̄FGK̄HIT

ABCEFGHI and ∂rK̄FGT
ABCEFG, where TABCEFGHI

and TABCEFG are any combination of the 0-dimension quantities µAB and εA1...Ad−2 . In
other words, ςv4 is a sum of terms of the form KABKCEK̄FGK̄HI or KABKCE∂rK̄FG with
their indices completely contracted in some way with µAB or εA1...Ad−2 . The transformation
laws (2.3) imply that such terms are gauge invariant on C, so the IWWHKR entropy
density is gauge invariant up to and including order l4 terms, i.e., it is gauge invariant for a
Lagrangian with up to 6 derivatives.

If n ≥ 6 then the above conditions don’t rule out gauge non-invariant terms appearing
in ςvn. For example the term KKK̄K̄βAβ

A has dimension 6, boost weight 0 and is quadratic
in positive boost weight quantities so might appear in ςv6 . But due to the occurrence of βA,
which transforms inhomogeneously, this term is not gauge invariant on C.

The above discussion focuses solely on vacuum gravity EFTs. However, [5] also proved
that scalar-tensor EFTs (i.e. the EFT of a metric coupled to a scalar field φ) have a
corresponding IWWHKR entropy that satisfies a second law to the same order. We can
perform a similar classification of terms for this case. The procedure is very similar to the
above. There are additional terms of the form DA1 . . . DAn∂

p
v∂

q
rφ that can appear in F . We
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can eliminate terms with both p, q ≥ 1 via the equation of motion for φ, in a similar fashion
to eliminating non-allowed GNC terms. We must therefore add to the set of allowed terms
DA1 . . . DAn∂

p
vφ and DA1 . . . DAn∂

q
rφ. The scalar field has dimension 0 and boost weight

0 so DA1 . . . DAn∂
p
vφ is a new allowed term with positive boost weight. The classification

above can be repeated with KAB replaced with ϕ ∈ {KAB, ∂vφ} and K̄AB replaced with
ϕ̄ ∈ {K̄AB, ∂rφ}. We again find that ςv2 = 0 and that ςv4 is gauge invariant on C.

5 Examples of IWWHKR entropy density

5.1 Einstein-Gauss-Bonnet

For our first example, we shall consider Einstein-Gauss-Bonnet (EGB) theory. Recall
that this describes the leading 4-derivative EFT corrections to Einstein gravity in d >

4 dimensions. Specifically, we argued that using field redefinitions and dropping total
derivatives, the Lagrangian for the EFT for vacuum gravity can be brought to the form
LEGB +O(l4) where

LEGB = −2Λ +R+ 1
16kl

2δρ1ρ2ρ3ρ4
σ1σ2σ3σ4Rρ1ρ2

σ1σ2Rρ3ρ4
σ3σ4 (5.1)

The equation of motion is (2.13) with N = 4 and

Eµν = −Λgµν −Gµν + 1
32kl

2gµτδ
τρ1ρ2ρ3ρ4
νσ1σ2σ3σ4Rρ1ρ2

σ1σ2Rρ3ρ4
σ3σ4 (5.2)

If we view this theory as an EFT with N = 4 then, as explained above, the IWWHKR
entropy coincides with the IWW entropy (as for any N = 4 theory). However, EGB has
the special property of possessing second order equations of motion, despite arising from
a 4-derivative Lagrangian. This property means EGB gravity can be considered as a self-
contained classical theory rather than just the N = 4 truncation of an EFT. The IWWHKR
procedure can be used to define an entropy for this classical theory as an expansion in l2.
The idea is to treat this EGB theory as a very special EFT for which the coefficients of the
terms with more than 4 derivatives are exactly zero (i.e. the Lagrangian is exactly LEGB)
and use the IWWHKR procedure to define an entropy order by order in l2. We shall show
explicity how this works to order l4.

Let us proceed with the HKR procedure for this theory. We have calculated the
equations of motion above. The next step is to find the IWW entropy current. It is given
in [8] with a different normalisation. In our units it is11

svIWW = 1 + 1
2kl

2R[µ], sA = kl2
(
DAK −DBKA

B

)
. (5.3)

11For a stationary black hole, the IWW (or IWWHKR) entropy reduces to the EGB entropy defined in
ref. [23] (which is reproduced by the method of [1]). For EGB, the IWW entropy density involves only terms
of vanishing boost weight and so, for a non-stationary EGB black hole, the IWW entropy is the same as the
Iyer-Wald entropy.
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We then calculate the remaining quadratic terms in Evv:

F ≡Evv−∂v

[
1
√
µ
∂v (√µsvIWW )+sA

]

=KABK
AB+kl2

[
DAKDAK−2DAKD

BKB
A+DAKABD

CKC
B−DAKBCDAKBC+

DAKBCDBKAC+KAB

(
∂vKCEK̄

ABµCE−∂vKCEK̄µ
ABµCE−2∂vKCEK̄

BCµAE+

∂vKCEK̄µ
ACµBE+∂vKCEK̄

CEµAB+DAKβB−DCKβCµ
AB−DCKA

Cβ
B+

DCKC
EβEµ

AB+DCKABβC−DAKBCβC+DADCKB
C−DADBK−DCDCK

AB+

DCDAKB
C+DCDCKµ

AB−DCDEKCEµ
AB+ 1

2K
ABR[µ]−KABKCEK̄CE−

2KACRB C [µ]− 1
2K

CEβCβEµ
AB+ 1

4Kβ
CβCµ

AB+ 1
2K

ACβBβC−
1
4K

ABβCβC−

KCERAC
B
E [µ]+KCERCE [µ]µAB+KCEKCEK̄µ

AB+2KACKBEK̄CE−

KACKB
CK̄−KCEKC

F K̄EFµ
AB
)]

(5.4)

It happens that no non-allowed terms appear in F for this Lagrangian, so we do not yet
need to use equations of motion to eliminate such terms. We proceed to move one of
the D derivatives over in the terms of the form (DK)(DK), producing a total derivative
DA(l2Y A

2 ). We find that all remaining terms are proportional to KAB , and we can express
F in the desired form

F =
(
KAB + l2X2AB

) (
KAB + l2XAB

2

)
+DA(l2Y A

2 )− l4X2ABX
AB
2 (5.5)

where

XAB
2 = 1

8k
(
4∂vKCEK̄

ABµCE − 4∂vKCEK̄µ
ABµCE − 4∂vKCEK̄

BCµAE+

4∂vKCEK̄µ
ACµBE + 4∂vKCEK̄

CEµAB + 2DAKβB − 4DCKβCµ
AB−

2DCKA
Cβ

B + 4DCKC
EβEµ

AB + 4DCKABβC − 2DAKBCβC + 2DADBK−
4DCDEKCEµ

AB + 2KABR[µ]− 4KABKCEK̄CE − 4KACR[µ]B C−
2KCEβCβEµ

AB +KβCβCµ
AB +KACβBβC −KABβCβC − 4KCER[µ]A C

B
E+

4KCER[µ]CEµAB + 4KCEKCEK̄µ
AB + 8KACKBEK̄CE − 4KACKB

CK̄−
4KCEKC

F K̄EFµ
AB − 4K̄AC∂vKCEµ

BE + 2DBKβA − 2DCKB
Cβ

A−

2DBKACβC + 2DBDAK − 4KBCR[µ]A C +KBCβAβC
)
, (5.6)

Y A
2 = k

(
DAKK − 2DBKK

AB +DBKBCK
AC −DAKBCK

BC +DBK
A
CK

BC
)
(5.7)

As expected from section 4, we find ςv2 = 0, i.e., the IWWHKR entropy coincides with the
IWW entropy to O(l2) [5].

– 17 –



J
H
E
P
0
5
(
2
0
2
3
)
0
0
6

In completing the square in (5.5) we have produced O(l4) terms, namely −l4X2ABX
AB
2 .

We denote these as l4F4. We can expand these out and proceed with the HKR algorithm
at order l4. We find

F4 = ∂v

[
1
√
µ
∂v (√µςv4 )

]
+ 2KABX

AB
4 +DAY

A
4 +O(l2) (5.8)

where12

ςv4 = 1
8k

2
[

(6− d)KKK̄K̄ −KKK̄ABK̄AB + 4KKABK̄A
CK̄BC+

(−14 + 2d)KKABK̄K̄AB − 2KABKA
CK̄B

EK̄CE − 2KABKCEK̄ACK̄BE+

(6− d)KABKCEK̄ABK̄CE + 4KABKA
CK̄K̄BC −KABKABK̄K̄

] (5.9)

and XAB
4 and Y A

4 are very lengthy expressions of boost weight +1 and +2 respectively.
Non-allowed terms do appear at this order after extracting ςv4 , and swapping them out using
the equations of motion produces the O(l2) terms in (5.8).

We then group like terms together and complete the square to write F in the desired
form:

F = ∂v

[
1
√
µ
∂v
(√

µl4ςv4

)]
+
(
KAB+l2X2AB+l4X4AB

)(
KAB+l2XAB

2 +l6XAB
4

)
+DA(l2Y A

2 +l4Y A
4 )+O(l6)

(5.10)

The IWWHKR entropy density is then

Sv = svIWW + l4ςv4 +O(l6) (5.11)

To this order, Sv is gauge invariant as expected (section 4), as it only contains µAB, R[µ],KAB

and K̄AB which transform homogeneously under a change of GNCs on C.
We can continue the algorithm to the next order by expanding out all the O(l6) terms.

We find that the O(l6) part of Sv is extremely lengthy. It is also not gauge invariant,
however since it is so unwieldy we leave the discussion of gauge non-invariance to the
considerably shorter expression arising from the quartic Lagrangian below.

5.2 Cubic order Riemann Lagrangians

Let us now specialise to d = 4. As mentioned above, the EGB term is purely topological in
this dimension so we shall ignore it, and we can eliminate all other 4-derivative corrections
through field redefinitions and total derivatives. At 6-derivative order, we can similarly
reduce the number of corrections to just two [17, 18]. The Lagrangian is L+O(l6) where

L = −2Λ +R+ l4(k1Leven + k2Lodd) (5.12)
12For d = 4 the GB term is topological. In this case one can show that ζv4 vanishes, using special identities

satisfied by 2× 2 matrices.
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where Leven and Lodd are even and odd parity terms respectively, given by

Leven =RµνκλRκλχηRχη µν

Lodd =RµνκλRκλχηRχηρσεµνρσ
(5.13)

Let us follow our implementation of the HKR algorithm to find the entropy density at order
l4. The equation of motion for this Lagrangian is (2.13) with N = 6 and

Eµν =−Λgµν−Gµν+

l4
[
k1

(1
2R

κλαβRκλ
ρσRαβρσgµν−3Rµ καβRνκ ρσRαβρσ−3Rµ αβρ∇α∇σRνσβρ−

6∇αRµα βρ∇σRνσβρ−6∇αRµ βρσ∇βRναρσ−3Rµ αβρ∇σ∇αRνσβρ−

3Rν αβρ∇α∇σRµσβρ−3Rν αβρ∇σ∇αRµσβρ
)

+

k2

(
−Rµ η κλRνη αβRαβρσεκλρσ−

1
2Rµη

κλRαβ
ρσRκλρσε

ηαβ
ν−Rµ κ λαελαβρ∇κ∇σRνσβρ−

2εκλαβ∇ρRµρκλ∇σRνσαβ−2εκλαβ∇ρRµ σ κλ∇σRνραβ−Rµ κ λαελαβρ∇σ∇κRνσβρ+
Rκλ

αβεκλρ ν∇σ∇ρRµσαβ+2εκλα ν∇κRµ βρσ∇βRλαρσ+2εκλα ν∇βRµβ ρσ∇κRλαρσ+
Rµ

κλαεβρσ ν∇κ∇βRλαρσ+Rκλ αβεκλρ ν∇ρ∇σRµσαβ+Rµ κλαεβρσ ν∇β∇κRλαρσ−

Rµ
ηκλRνηαβRκλρσε

αβρσ− 1
2Rνη

κλRαβ
ρσRκλρσε

ηαβ
µ−Rν κ λαελαβρ∇κ∇σRµσβρ−

Rν
κ
λαε

λαβρ∇σ∇κRµσβρ+Rκλ αβεκλρ µ∇σ∇ρRνσαβ+2εκλα µ∇κRν βρσ∇βRλαρσ+
2εκλα µ∇βRνβ ρσ∇κRλαρσ+Rν κλαεβρσ µ∇κ∇βRλαρσ+Rκλ αβεκλρ µ∇ρ∇σRνσαβ+

Rν
κλαεβρσ µ∇β∇κRλαρσ

)]
(5.14)

We now must find the IWW entropy current for this theory. L depends only on the Riemann
tensor and not its derivatives up to and including order l4, and hence we can calculate
the IWW entropy density svIWW using the formula (3.4). Splitting this into the individual
contributions from Leven and Lodd we get

svIWW = 1 + l4(k1s
v
even + k2s

v
odd)− svquadratic (5.15)

where

sveven =−6RrvABRrvCDµACµBD−24RrvrARrvvBµAB+12RrvrvRrvrv−24RrAvBKACK̄B
C

svodd =−4RABCERrvFGεABµCFµEG−8RrABCRrvvDεBCµAD−8RrvrARvBCDεCDµAB−
16RrvrARrvvBεAB+16RrvABRrvrvεAB+16RrAvBKACK̄CDε

BD+
16RrAvBKA

CK̄
B
Dε

CD−16RrAvBKCDK̄
BDεAC (5.16)

and where svquadratic is there to cancel any terms that are quadratic or higher in positive
boost weight quantities when the Riemann components above are expanded out in GNCs,
so that svIWW is only linear or zero order in positive boost weight. After expanding, we find

svquadratic = l4
[
k1(12KABKCDK̄ACK̄BD − 36KABKA

CK̄B
DK̄CD)+

k2(32KA
BKB

CK̄E
F K̄CF ε

AE − 16KA
BKCEK̄BEK̄CF ε

AF )
] (5.17)
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The quantities sveven, svodd and svquadratic are separately gauge invariant. This is because each
of them is a zero boost weight quantity depending only on Riemann components, µAB , εAB ,
KAB and K̄AB, all of which transform homogeneously on C. Hence svIWW is also gauge
invariant without the need to add terms of quadratic or higher order in positive boost
weight quantities (discussed at the end of section 2.4). The gauge invariance of sveven and
svodd follows from the gauge invariance of the first part of (3.3). What is perhaps surprising
here is that svquadratic is also gauge invariant. We shall discuss this further in section 6.

We can expand out the Riemann components in GNCs on N using the expressions in
the appendix of [5] to get

svIWW = 1+

l4
[
k1
(
12α2 − 3DAβBDAβB + 3DAβBDBβA + 6αβAβA + 3

4β
AβAβ

BβB+

24DAβBKB
CK̄AC − 12DAβCKA

BK̄CB − 12µAB∂rβA∂vβB−

12KABβA∂rβB + 6K̄ABβA∂vβB + 12KABK̄A
CβBβC + 24KABK̄A

C∂vK̄BC

)
k2
(
− 4DAβBR[µ]εAB + 16DAβBαε

AB + 4DAβBβ
CβCε

AB+

8DAβBKACK̄BEε
CE + 8DAK̄B

CεAB∂vβC + 8DAK̄B
CKC

EβEε
AB−

4K̄A
BβCε

AC∂vβB + 16DAKB
CεAB∂rβC + 8KA

BβCε
AC∂rβB−

8DAKB
CK̄C

EβEε
AB − 8KA

BK̄B
CβCβEε

AE − 8εAB∂rβA∂vβB+
8KA

BβBε
AC∂rβC + 4K̄A

BβBε
AC∂vβC − 8KA

BK̄C
EβBβEε

AC−
8KA

BK̄BCR[µ]εAC − 16DAβBKBCK̄AEε
CE + 32KA

BK̄BCαε
AC+

8KA
BK̄BCβ

EβEε
AC − 8DAβ

BKB
CK̄CEε

AE + 16KABK̄ACε
CE∂vK̄BE−

16KA
BK̄C

EεAC∂vK̄BE + 8DAβBKC
EK̄AEε

BC − 16KA
BK̄B

CεAE∂vK̄CE

)]
(5.18)

In this expression, the terms involving only boost-weight 0 quantities give the Iyer-Wald
entropy. The other terms, which are linear in positive boost weight quantities, are the Wall
terms. We can calculate sA using the method in [8]. The expression is very lengthy and is
given in appendix B.1.

Proceeding with the HKR algorithm, we calculate F ≡Evv−∂v
[

1√
µ∂v

(√
µsvIWW

)
+DAs

A
]

in GNCs on N , swap out any non-allowed terms using the equations of motion and then
manipulate the order l4 terms into the required form:

F = ∂v

[
1
√
µ
∂v
(√

µl4ςv4

)]
+
(
KAB + l4X4AB

) (
KAB + l4XAB

4

)
+DA(l4Y A

4 )+O(l6) (5.19)

where we find

ςv4 = k1
(
− 36KABKA

CK̄B
EK̄CE + 6KKABK̄A

CK̄BC + 6KABKA
CK̄K̄BC

)
+

k2
(
32KA

BKB
CK̄E

F K̄CF ε
AE − 8KKA

BK̄C
EK̄BEε

AC + 8KA
BKCEK̄BF K̄CEε

AF−

8KA
BKB

CK̄K̄CEε
AE
)

(5.20)
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and XAB
4 and Y A

4 are very lengthy expressions. The IWWHKR entropy density is then

Sv = svIWW + l4ςv4 (5.21)

As expected (section 4), ςv4 is gauge invariant since it involves only µAB, εAB, KAB and
K̄AB. Thus, the leading order (6-derivative) EFT corrections to vacuum gravity in four
dimensions produce a Sv that is gauge invariant on C. It can be written in a manifestly
gauge invariant way by re-instating the Riemann components in svIWW :

Sv = 1+l4
[
k1
(
−6RrvABRrvCDµACµBD−24RrvrARrvvBµAB+12RrvrvRrvrv−

24RrAvBKACK̄B
C−12KABKCDK̄ACK̄BD+6KKABK̄A

CK̄BC+6KABKA
CK̄K̄BC

)
k2
(
−4RABCERrvFGεABµCFµEG−8RrABCRrvvDεBCµAD−8RrvrARvBCDεCDµAB−

16RrvrARrvvBεAB+16RrvABRrvrvεAB+16RrAvBKACK̄CDε
BD+

16RrAvBKA
CK̄

B
Dε

CD−16RrAvBKCDK̄
BDεAC−8KKA

BK̄C
EK̄BEε

AC+

8KA
BKCEK̄BF K̄CEε

AF−8KA
BKB

CK̄CEK̄ε
AE+16KA

BKCEK̄BEK̄CF ε
AF
)]
(5.22)

This satisfies the second law, to quadratic order, modulo terms of order l6.
We have followed a “strict” definition of the IWW entropy density, in which it contains

terms only of up to linear order in positive boost weight quantities. An alternative definition
might allow terms of quadratic or higher order in such quantities (which do not affect the
linearized second law). For example, Wall defines the entropy for the above theory to be
svIWW + svquadratic, corresponding to the just the first part of (3.3). Adopting this alternative
definition for the IWW entropy would not affect our final answer for Sv because adding
a quantity to svIWW and then running the HKR algorithm simply results in subtracting
the same quantity from ∑

n l
nςvn and so this quantity cancels out in the definition of Sv,

equation (3.21).

5.3 An example quartic Riemann theory

We can go beyond 6-derivative, i.e. O(l4), terms in our EFT Lagrangian in d = 4 and
consider the next order, 8-derivative terms, i.e. O(l6). To do this in the most general case,
we should include all possible 8-derivative terms in the Lagrangian, up to field redefinitions
and topological terms. We should also be aware that the algorithm used to construct
ςv4 above produces higher order terms via two sources: (a) swapping non-allowed terms
using the higher order equations of motion and (b) the remainder, −l8X4ABX

AB
4 , from

completing the square in (5.19). However since there are no O(l2) terms in our theory, both
of these sources produce terms of order at least (l4)2 = l8. Therefore, the O(l6) terms in
the entropy arise only from the 8-derivative terms in the Lagrangian.

The minimal set of 8-derivative terms in EFT after field redefinitions and neglecting total
derivatives is discussed in [17]. Here we will restrict our attention to just one term since this
is enough to demonstrate that the IWWHKR entropy can be gauge non-invariant. Therefore
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let us consider adding to our d = 4 EFT Lagrangian (5.12) the following 8-derivative term

l6L8 = kl6RµνρσR
µνρσRκλχηR

κλχη (5.23)

This contributes the following to the equation of motion:

E(6)
µν = kl6

[1
2R

χηκλRχηκλR
αβρσRαβρσgµν − 4Rµ ηκλRνηκλRαβρσRαβρσ−

4RκλαβRκλαβ∇ρ (∇σRµρνσ)− 16Rκλαβ∇ρRµρν σ∇σRκλαβ−
8Rµ κ ν λRαβρσ∇κ (∇λRαβρσ)− 16Rµ κ ν λ∇κRαβρσ∇λRαβρσ−
4RκλαβRκλαβ∇ρ (∇σRµσνρ)− 16Rκλαβ∇ρRµ σ νρ∇σRκλαβ−

8Rµ κ ν λRαβρσ∇λ (∇κRαβρσ)
]

(5.24)

We can calculate the contribution to the IWW entropy current:

E(6)
vv = ∂v

[
1
√
µ
∂v
(√

µs
(6)v
IWW

)
+DAs

(6)A
]

+ . . . (5.25)

where the ellipsis denotes terms at least quadratic in positive boost weight quantities. The
lengthy expression for s(6)A is given in appendix B.2. For s(6)v

IWW we find

s
(6)v
IWW = kl6

(
128RrvrARrvrvRrvvBµAB − 8RABCERFGHIRrvrvµAFµBGµCHµEI−

64RrABCRrvrvRvEFGµAEµBFµCG − 64RrAvBRrCvERrvrvµAEµBC−
64RrArBRrvrvRvCvEµACµBE + 32RrvABRrvCERrvrvµACµBE−
32RrvrvRrvrvRrvrv − 8RABCERFGHIKJP K̄JPµ

AFµBGµCHµEI−
64RrABCRvEFGKHIK̄HIµ

AEµBFµCG − 64RrAvBRrCvEKFGK̄FGµ
AEµBC−

64RrArBRvCvEKFGK̄FGµ
ACµBE − 64RrArBRvCvEKABK̄CE+

32RrvABRrvCEKFGK̄FGµ
ACµBE + 128RrvrARrvvBKCEK̄CEµ

AB−

32RrvrvRrvrvKABK̄AB

)
− s(6)v

quadratic

(5.26)

where we cancel the terms that are of quadratic or higher order in positive boost weight
quantities with

s
(6)v
quadratic = kl6

(
− 32KABKABK̄

CEK̄CEα− 8KABKABK̄
CEK̄CEβ

FβF−

32KABKCEK̄ABK̄CEα+ 64KABKA
CK̄B

EK̄CEα+
16KABKA

CK̄B
EK̄CEβ

FβF − 128KABKCEK̄ACK̄BEα+
64KABKA

Cα∂rK̄BC + 16KABKA
CβEβE∂rK̄BC + 32KKBCK̄BCK̄R[µ]−

32KABKCEK̄ABK̄CER[µ]− 32KABKABK
CEK̄CEK̄

FGK̄FG−
32KABKCEKFGK̄ABK̄CEK̄FG + 64KABKA

CKEF K̄B
GK̄CGK̄EF−

128DAKBCDAK̄BCK
EF K̄EF + 128DAKBCDBK̄ACK

EF K̄EF+
64DAK̄BCKBCK

EF K̄EFβA − 64DAK̄BCKABK
EF K̄EFβC−
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64DAKBCKEF K̄BCK̄EFβA + 64DAKBCKEF K̄ABK̄EFβC−
32KABKCEK̄ABK̄C

FβEβF + 128DAβBKA
CKEF K̄BCK̄EF+

128KABKCEK̄ABK̄C
F∂vK̄EF − 128KABKCEKFGK̄ABK̄CF K̄EG−

64KABK̄ABµ
CEµFG∂rK̄CF∂vKEG + 64KABKA

CKEF K̄EF∂rK̄BC+
64KABK̄ABK̄

CEK̄C
F∂vKEF − 64KABK̄CE∂rK̄AB∂vKCE+

64KABKA
CKEF K̄BC∂rK̄EF + 64KABK̄A

CK̄BCK̄
EF∂vKEF−

64KABKA
CKEF K̄BCK̄E

GK̄FG − 64DAβBKB
CKEF K̄ACK̄EF+

64KABK̄ABµ
CE∂rβC∂vβE + 64KABKCEK̄ABβC∂rβE−

32KABK̄ABK̄
CEβC∂vβE − 32KABKCEK̄ACK̄BEβ

FβF

+ 24KABKCEK̄ABK̄CEβ
FβF

)
(5.27)

We shall prove that s(6)v
IWW is gauge invariant in the next section. Proceeding with the HKR

algorithm once again with l6F6 = E
(6)
vv − ∂v

[
1√
µ∂v

(√
µs

(6)v
IWW

)
+DAs

(6)A
]
, we find

F6 = ∂v

[
1
√
µ
∂v (√µςv6 )

]
+ 2KABX

AB
6 +DAY

A
6 +O(l2) (5.28)

where

ςv6 = k

3
[
−64KABK̄CE∂rK̄AB∂vKCE+64KABK̄A

CK̄BCK̄
EF∂vKEF−

64KABK̄ABµ
CEµFG∂rK̄CF∂vKEG+64KABK̄ABK̄

CEK̄F
E∂vKCF+

96DADAKK
BC∂rK̄BC−96DADAKK

BCK̄B
EK̄CE−96DADAK

BCK∂rK̄BC+
96DADAK

BCKK̄B
EK̄CE−96DAKBCKEF K̄BCK̄EFβA+48DAKKBCK̄B

EK̄CEβA−

192DAKBCDAK̄BCK
EF K̄EF +192DAKBCDBK̄ACK

EF K̄EF−48DAKKBCβA∂rK̄BC+
96DAKBCKEF K̄ACK̄EFβB−96DAKA

BKCEK̄BF K̄CEβ
F +96DAKKBCK̄AEK̄BCβ

E−

48DAKBCKβA∂rK̄BC+48DAKBCKK̄B
EK̄CEβA−192DAKA

BDCK̄BCK
EF K̄EF+

192DAKA
BDBK̄K

CEK̄CE+96DAKA
BKCEK̄K̄CEβB+192DAKDBK̄ABK

CEK̄CE−

192DAKDAK̄K
BCK̄BC−96DAKKBCK̄K̄BCβA+96DAKA

BDB

(
∂rK̄CE

)
KCE−

192DAKA
BDBK̄CEK

FCK̄F
E+96DAKDA

(
∂rK̄BC

)
KBC−192DAKDAK̄BCK

EBK̄E
C+

96DAK
BCDE

(
∂rK̄BC

)
KAE−192DAK

BCDEK̄CFK
AEK̄B

F−48DAK
BCKAEβE∂rK̄BC−

48DAKA
BKCEβB∂rK̄CE+48DAK

BCKAEK̄B
F K̄CFβE+48DAKA

BKCEK̄C
F K̄EFβB−

96DAKBCDA

(
∂rK̄BC

)
K+192DAKBCDAK̄CEKK̄B

E−16KKABR[µ]∂rK̄AB−

16DAβBK
ABKCE∂rK̄CE+16KABKCEβAβB∂rK̄CE+32KKABΛ∂rK̄AB+

16KKABK̄A
CK̄BCR[µ]+16DAβBK

ABKCEK̄C
F K̄EF−16KABKCEK̄A

F K̄BFβCβE−

32KKABK̄A
CK̄BCΛ−48DAβAKK

BC∂rK̄BC+48DAβAKK
BCK̄B

EK̄CE+
216KABKCEK̄ABK̄CER[µ]−60KKABK̄K̄ABR[µ]+48DAK̄BCK

BCKEF K̄EFβ
A−

64DAK̄BCK
ABKEF K̄EFβ

C+28KABKCEK̄ABK̄CEβ
FβF−48KKABK̄ABK̄CEβ

CβE−

112DAβBK
BCKEF K̄ACK̄EF +112DAβ

BKACKEF K̄BCK̄EF +8DAβBK
ABKCEK̄K̄CE−
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304KABKCEK̄ABK̄CEΛ+104KKABK̄K̄ABΛ−96DAK̄ABKK
CEK̄CEβ

B+
96DAK̄KK

BCK̄BCβ
A+48KKABK̄K̄ABβ

CβC+64DAK̄ABK
CBKEF K̄EFβC−

48DAK̄K
BAKCEK̄CEβB−28KABKCEK̄K̄ABβCβE−16DADAK̄BCK

BCKEF K̄EF+
16DADBK̄ACK

BCKEF K̄EF−8DAβAK
BCKEF K̄BCK̄EF−16DAD

BK̄BCK
ACKEF K̄EF+

16DADBK̄K
ABKCEK̄CE−48DA

(
∂rK̄BC

)
KKBCβA+96DAK̄BCKK

EBK̄E
CβA−

96KABKA
CR[µ]∂rK̄BC+96DADB

(
∂rK̄CE

)
KABKCE−192DADBK̄CEK

ABKFCK̄F
E−

192DAK̄B
CDEK̄CFK

AEKBF +192KABKCEK̄ACK̄BER[µ]+48KABKABK̄
CEK̄CER[µ]−

96KABKA
CK̄B

EK̄CER[µ]−48DA

(
∂rK̄BC

)
KBCKEAβE+96DAK̄BCK

EAKFBK̄F
CβE

]
(5.29)

and XAB
6 and Y A

6 are (also) very lengthy expressions. The IWWHKR entropy for this
8-derivative theory is given by adding s(6)v

IWW + l6ςv6 to the result for the general 6-derivative
theory in the previous section. The main reason for performing this calculation is to
investigate whether or not the result is gauge invariant. This will be done in the next
section.

6 Gauge (non-)invariance

6.1 Introduction

In order to define our dynamical black hole entropy, we took a spacelike cross-section C of
the horizon N and chose Gaussian Null Co-ordinates (r, v, xA) with r = v = 0 on C. This
choice defines a foliation C(v) of N . The entropy of C(v) is then given by the integral

SIWWHKR(v) = 4π
∫
C(v)

dd−2x
√
µSv (6.1)

If we fix C then there are two freedoms in our choice of GNCs: (a) picking a different
set of co-ordinates x′A on C, and (b) rescaling the affine parameter on each generator
v′ = v/a(xA) with a(xA) > 0. The procedure for calculating Sv is manifestly covariant in
A,B,C, . . . indices and so (a) will not change SIWWHKR(v). If instead we make the rescaling
(b) then in general our foliation will change C ′(v′) 6= C(v). Therefore SIWWHKR(v) and
S′IWWHKR(v′) calculate the entropy of different surfaces, so we do not expect them to be
the same. However, we should hope that SIWWHKR(v) is gauge invariant at v = v′ = 0,
since C(0) and C ′(0) are the same surface C.

Hence we concern ourselves with how quantities change under the rescaling (b)
when evaluated on C. The transformation laws of tensorial components and all allowed
GNC quantities on C are given in section 2.2. Most terms transform homogeneously:
Tµ1...µn
ν1...νm , µAB, εAB, RABCD[µ], DA, ∂

p
vKAB and ∂pr K̄AB just gain a factor of ab, where b is

their boost weight. However, βA transforms as

β′A = βA + 2DA log a (6.2)
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and so the presence of βA is a warning sign of gauge non-invariance. Also note that a
quantity such as DAKBC transforms as

D′AK
′
BC =DA(aKBC)

=a(DAKBC +DA(log a)KBC)
(6.3)

which is also inhomogeneous. This will be the case for all D derivatives of ∂pvKAB or ∂pr K̄AB .
We can get round this by swapping DA derivatives for gauge covariant derivatives DA
defined by [5]

DAT = DAT − (b/2)βAT (6.4)

for T = DA1 . . .DAn∂pvKAB or DA1 . . .DAn∂pr K̄AB with boost weight b. This can be shown
to transform homogeneously as D′AT ′ = abDAT on C.

6.2 IWW entropy

We shall start by discussing how the IWW entropy behaves under a gauge transformation.
For EGB theory, the IWW entropy is the same as the Iyer-Wald entropy, which is manifestly
gauge invariant. For the cubic and quartic Riemann Lagrangians, the IWW entropy is
determined by equation (3.3). The first part of this equation is manifestly gauge invariant.
Hence svIWW +svquadratic must be gauge invariant, as confirmed by equations (5.16) and (5.26).
For the cubic theories we found that svquadratic is also gauge invariant, and hence so is svIWW .
The same is true for the quartic theory considered above. This can be shown as follows.
In s(6)v

quadratic (equation (5.27)) we swap out non-allowed terms for allowed terms plus Ricci
components using the elimination rules in appendix A. Here we do not eliminate the Ricci
components using equations of motion, we are simply working with Ricci components since,
as tensor components, they transform homogeneously under gauge transformations. We
also swap D derivatives for D derivatives on KAB and K̄AB terms. Of the terms that are
left, the only ones that can transform inhomogeneously under a gauge transformation are
those involving DA1 . . . DA2βA. We find that

s
(6)v
quadratic = 192kl6KABKCEK̄ABK̄C

FD[EβF ] + terms independent of βA (6.5)

But D[AβB] is clearly gauge invariant (it is the “field strength” of the connection βA). Hence
s

(6)v
quadratic is gauge invariant. In summary, for both the cubic and quartic Lagrangians, we
have found that svquadratic, and hence also svIWW , is gauge invariant.

This is puzzling. HKR proved that, without modification, the IWW entropy is gauge
invariant to linear order in perturbation theory. Since the IWW entropy is of at most
linear order in positive boost weight quantities, one might think that this automatically
implies that is gauge invariant to all orders. That this is not true can be seen as follows.
The easiest way to perform a gauge transformation of an expression involving (derivatives
of) α, βA etc is to rewrite it in terms of a new set of quantities (e.g. Ricci components)
that transform nicely under gauge transformations. In general, this rewriting does not
preserve the property of being “linear in positive boost weight quantities.” (For example the
linear term DA∂vβB can be eliminated in favour of ∇ARvB but this introduces nonlinear
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terms of the schematic form K2K̄.) Hence after applying a gauge transformation, when we
transform back to the original set of quantities, the difference sv′IWW − svIWW will involve
not just terms of linear order in positive boost weight quantities, but also possibly terms of
higher order. The former must vanish by the linear argument of [5] but the latter may not.
This problem is what the “improvement” terms of [5] are designed to fix. But surprisingly,
in the cases we have studied, such terms are not required, and svIWW is gauge invariant
without improvement.

To solve this puzzle, we shall now show that this result holds for any Lagrangian that
depends only on the Riemann tensor (and not its derivatives). For such a Lagrangian,
svIWW is given by (3.3), which involves the Riemann tensor but not its derivatives. Since
the Riemann tensor has dimension 2, this implies that svIWW depends only on quantities
with dimension of 2 or less. Any such quantity is built from “primitive factors” (in
the terminology of [5]) belonging to one of the following sets, where the subscript refers
to the boost weight: S2 = {∂vKAB}, S−2 = {∂rK̄AB}, S1 = {DAKBC ,KAB, ∂vβA},
S−1 = {DAK̄BC , K̄AB, ∂rβA} and

S0 = {µAB, µAB, εAB, α, βA, DAβB, R[µ]ABCD, ∂v∂rµAB}. (6.6)

Furthermore, svIWW depends at most linearly on elements of S2 and S1. We can write
svIWW = sv0 + sv1 where sv0 is built only from terms of zero boost weight and sv1 is a sum of
terms, each containing exactly one primitive factor of positive boost weight. Now, sv0 is
simply the Iyer-Wald entropy density, which is gauge-invariant by definition. So we just
need to understand how sv1 transforms.

Using a formula from appendix A.1, ∂vβA can be eliminated in favour of RvA and
other elements of the above sets. Importantly, ∂vβA depends linearly on RvA and other
quantities with positive boost weight so when we eliminate it, we do not introduce any
nonlinear dependence on positive boost weight quantities (unlike what happens for a
term like DA∂vβB, mentioned above, which might arise from a more general Lagrangian
involving derivatives of the Riemann tensor). Similarly we can eliminate ∂rβA in favour
of RrA and other quantities listed above. We can also eliminate DAKBC and DAK̄BC

in favour of DAKBC and DAK̄BC respectively. The result is to replace S1 and S−1 with
S′1 = {DAKBC ,KAB, RvA} and S′−1 = {DAK̄BC , K̄AB, RrA} respectively. So now sv1 is a
sum of terms built from quantities belonging to S±2, S′±1 and S0, and each term in sv1
contains exactly one element of S2 or S′1. We can write

sv1 =
∑
i

PiNiZi (6.7)

where Pi is an element of S2 or S′1, with boost weight bi ∈ {2, 1}, Ni has boost weight −bi
and is either an element of S−2 or S′−1 or a product of two elements in S′−1. Zi has boost
weight 0 and is a product of elements of S0. Now Pi and Ni are quantities that transform
homogeneously under a gauge transformation and PiNi has boost weight zero so it is gauge
invariant. Hence, under a gauge transformation the change in sv1 is

∆sv1 =
∑
i

PiNi∆Zi (6.8)
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where ∆Zi is the change in Zi, which arises from the dependence of Zi on the quantities
α, βA, DAβB and ∂v∂rµAB which do not transform homogeneously under a gauge trans-
formation. Importantly, the transformation laws for these quantities involve only other
quantities of boost weight 0 and not, say, quantities like KK̄. This is obvious for βA and
DAβB . We can write ∂v∂rµAB in terms of RAB (appendix A.1) to deduce how it transforms.
The result is that ∆(∂v∂rµAB) depends only on the first and second derivatives of log a,
and on βA. By writing α in terms of Rvr and RAB one sees that the same is true for13 ∆α.
Thus ∆Zi depends only on elements of S0 and on the first and second derivatives of log a.

We can now rewrite Pi and Ni of (6.8) in terms of our original basis, i.e., in terms
of S±1 instead of S′±1. Recall that this does not spoil the property of having exactly one
primitive factor of positive boost weight. This rewriting may generate extra factors (e.g.
βA) belonging to S0. The result is that we have shown

∆sv1 =
∑
i

P̂iN̂iẐi (6.9)

where P̂i is an element of S2 or S1, with boost weight bi, N̂i has boost weight −bi and is
either an element of S−2 or S−1 or a product of two elements of S−1, and Ẑi depends only
on elements of S0 and on the first and second derivatives of log a.

Given an arbitrary dynamical black hole with metric gµν , ref. [5] explains (section 3.3)
how to construct a “background” black hole metric g̃µν (not necessarily satisfying any
equations of motion) such that, on C, all background quantities of positive boost weight
vanish whereas background quantities of non-positive boost weight agree with those of
gµν . Let δgµν = gµν − g̃µν , for which all quantities of non-positive boost weight vanish
on C. Consider the 1-parameter family of metrics gµν(λ) = g̃µν + λδgµν , for which all
quantities of non-positive boost weight agree with the corresponding quantities of g̃µν and
gµν on C and hence N̂i[g(λ)] = N̂i[g̃] = Ni[g] and Ẑi[g(λ)] = Ẑi[g̃] = Zi[g]. Since P̂i is
an element of S2 or S1 we have P̂i[g(λ)] ∝ λ, i.e., the linear approximation to P̂i[g(λ)] is
exact: there are no terms of order λ2 or higher. Hence we have P̂i[g(λ)]N̂i[g(λ)]Ẑi[g(λ)] ∝ λ
so ∆sv1[g(λ)] ∝ λ. However, ref. [5] proved that the IWW entropy is gauge invariant
to linear order in perturbations around any background solution defined as above, i.e.,
∆sv1[g(λ)] = O(λ2). Combining these results we have ∆sv1[g(λ)] = 0. Setting λ = 1 we
obtain ∆sv1[g] = 0 and we have proved that the IWW entropy is nonperturbatively gauge
invariant for this class of theories.

6.3 IWWHKR entropy

Now we shall discuss gauge invariance of the IWWHKR entropy. In section 4, we explained
why the IWWHKR entropy density Sv must be gauge invariant up to and including order

13An alternative way of obtaining these results is to observe that ∆(∂v∂rµAB) and ∆α are of boost weight
0 and dimension 2 and are a sum of terms, each of which involves at least one factor of a (first or second)
derivative of log a. A derivative of log a has boost weight 0 and dimension at least 1, and so must multiply a
boost weight 0 term of dimension at most 1. A term with boost weight 0 that contains primitive factors
with non-zero boost weight must have dimension at least 2. So primitive factors of non-zero boost weight
cannot appear in these quantities.
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l4 terms, simply because there are no gauge-noninvariant terms that can appear at this
order. This is confirmed by our calculations for the EGB and cubic Lagrangians. We shall
now discuss the quantities calculated at order l6 for the quartic Lagrangian above. As
just discussed, the IWW part of the entropy is gauge invariant so we just need to discuss
the transformation of the quantity ςv6 given in equation (5.29). This quantity is made out
of allowed terms, so we already know how all the terms transform. We again swap all D
derivatives for D derivatives on KAB and K̄AB terms. We then find

ςv6 = k

3

[
D(AβB)

(
−48KKHI∂rK̄HIµ

AB+48KKHJK̄H
P K̄JPµ

AB−112KABKHI∂rK̄HI+

112KABKHJK̄H
P K̄JP

)
+240D[AβB]K

AIKJP K̄B
IK̄JP+

βA
(
−48KHIDAK∂rK̄HI+48KHJDAKK̄H

P K̄JP−48KDAKHI∂rK̄HI+

48KDAKHJK̄H
P K̄JP−32KGHKJP K̄GHDAK̄JP +32KGHKIP K̄GHDIK̄A

P−
32KAJKGHK̄GHDP K̄JP +32KAIKGHK̄GHDIK̄−144KHIDGKA

G∂rK̄HI−

144KAGKHIDG
(
∂rK̄HI

)
+144KHJDGKA

GK̄H
P K̄JP +288KAIKGJK̄G

PDIK̄JP−

48KKHIDA
(
∂rK̄HI

)
+96KKGJK̄G

PDAK̄JP−144KAEDEKHI∂rK̄HI+

144KAEDEKHJK̄H
P K̄JP

)
+

βAβB
(
16KABKHI∂rK̄HI−16KABKHJK̄H

P K̄JP

)]
+homogeneous terms (6.10)

The βA-dependence strongly suggests that this is not gauge invariant. To confirm this, we
apply a gauge transformation and find

ς ′v
′

6 = ςv6 + k

3

[
2DADB loga

(
−48KKHI∂rK̄HIµ

AB+48KKHJK̄H
P K̄JPµ

AB−

112KABKHI∂rK̄HI+112KABKHJK̄H
P K̄JP

)
+

2DA loga
(
−48KHIDAK∂rK̄HI+48KHJDAKK̄H

P K̄JP−48KDAKHI∂rK̄HI+

48KDAKHJK̄H
P K̄JP−32KGHKJP K̄GHDAK̄JP +32KGHKIP K̄GHDIK̄A

P−
32KAJKGHK̄GHDP K̄JP +32KAIKGHK̄GHDIK̄−144KHIDGKA

G∂rK̄HI−

144KAGKHIDG
(
∂rK̄HI

)
+144KHJDGKA

GK̄H
P K̄JP +288KAIKGJK̄G

PDIK̄JP−

48KKHIDA
(
∂rK̄HI

)
+96KKGJK̄G

PDAK̄JP−144KAEDEKHI∂rK̄HI+

144KAEDEKHJK̄H
P K̄JP

)
+

4(βADB loga+DA logaDB loga)
(
16KABKHI∂rK̄HI−16KABKHJK̄H

P K̄JP

)]
(6.11)

The IWWHKR entropy involves the above expression integrated over the horizon cross-
section C. Integration by parts can be used to simplify the dependence on a(xA) in this
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integral:

S′IWWHKR = SIWWHKR + 4π
∫
C
d2x

kl6

3
√
µ

[
2DAlog a

(
− 32KCEDBKA

B∂rK̄CE−

32KABDBK
CE∂rK̄CE − 32KABKCEDB

(
∂rK̄CE

)
+

32KCEDBKA
BK̄C

F K̄EF + 32KABDBK
CEK̄C

F K̄EF+
64KABKCEK̄C

FDBK̄EF − 32KBCKEF K̄BCD
AK̄EF−

16βAKBCKEF K̄BCK̄EF + 32KCEKBF K̄CEDBK̄
A
F+

16βBKB
CKEF K̄A

CK̄EF − 32KACKEF K̄EFD
BK̄CB−

16βFKABKCEK̄FBK̄CE + 32KABKCEK̄CEDBK̄+
16βBKA

BK
CEK̄CEK̄ + 32βBKA

BK
CE∂rK̄CE−

32βBKA
BK

CEK̄C
F K̄EF

)
+ 4DAlog aDBlog a

(
16KABKCE∂rK̄CE − 16KABKCEK̄C

F K̄EF

) ]
(6.12)

For gauge invariance to hold the coefficients of the terms linear and quadratic in DA log a
must vanish independently. However, these coefficients depend in a complicated way on
expressions of quadratic order in positive boost weight quantities. There is no reason
why they will vanish for a generic perturbation. Therefore the IWWHKR entropy of this
8-derivative theory is not gauge invariant at order l6.

This statement concerns non-perturbative gauge invariance. However, since the
IWWHKR satisfies the second law only to quadratic order in perturbation theory, modulo
terms of order l8, it is natural to demand gauge invariance in the same sense, i.e., only to
quadratic order in perturbation theory, modulo terms of order l8. Positive boost weight
quantities are of at least linear order in perturbation theory so, to quadratic order, we can
evaluate the negative boost weight quantities above in the unperturbed stationary black
hole geometry. This might lead to extra cancellations. To investigate this, we shall focus
on the DA log aDB log a term above. It has coefficient proportional to l6KABKCDRrCrD
(using the expression for RrCrD in [5]). To quadratic order, we can evaluate RrCrD in
the stationary black hole geometry. Gauge invariance in the sense just discussed would
require that RrCrD = O(l2) on C. Using the equation of motion Rrr = O(l2), this gives
CrCrD = O(l2) on C, where the l.h.s. is a component of the Weyl tensor. This is the
statement that n = ∂/∂r is a principal null direction of the unperturbed black hole, modulo
terms of order l2. Recall that, by definition, n is orthogonal to C. For a generic choice of C
there is no reason why n should be close to being a principal null direction (although it
can be in special cases e.g. a spherically symmetric cross-section of a spherically symmetric
black hole). In particular, for a rotating black hole, one would expect an “ingoing” principal
null direction to have non-zero rotation at the horizon (e.g. this is true for a Kerr black
hole), whereas n has vanishing rotation by definition. We conclude that, in general, the
DA log aDB log a term above is generically non-vanishing, of order l6, to quadratic order in
perturbation theory. Thus, for this 8-derivative theory, the IWWHKR entropy is not gauge
invariant in the desired sense.
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7 Discussion

We have explained why the IWWHKR entropy is gauge invariant to order l4, i.e., up to
an including 6-derivative terms in the Lagrangian. But we have seen that it is not gauge
invariant at order l6 for a specific 8-derivative term in the Lagrangian. It is conceivable that
if we allowed all possible 8-derivative terms then demanding gauge invariance might lead to
non-trivial relations between their coefficients, i.e., it might function as a selection rule for
such theories. However we think this is unlikely, and that the lack of gauge invariance is a
flaw of the HKR prescription. Nevertheless, we repeat that the IWWHKR entropy is gauge
invariant for terms with up to 6 derivatives in the Lagrangian, i.e., for the leading order
EFT corrections to 4d vacuum gravity (and next to leading order for higher dimensional
gravity). It is only for the next to leading order corrections that the problem arises so this
is probably not a serious issue for practical applications.

We shall end by mentioning possibilities for future work. HKR highlighted the issue
of how the IWWHKR entropy transforms under EFT field redefinitions, and possible
non-uniqueness of dynamical black hole entropy. This remains an interesting open question
that we intend to return to. It would also be interesting to generalize the HKR algorithm
beyond vacuum gravity, or gravity plus a scalar field, to include EFTs with more general
matter content e.g. a Maxwell field.
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A Details of HKR algorithm

A.1 Elimination rules for non-allowed terms

In our GNC expansion of F ≡ Evv − ∂v
[

1√
µ∂v

(√
µsvIWW

)
+DAs

A
]
on N , we want to

reduce the set of terms that appear up to O(lN ) from the set given in (3.8) to the set of
“allowed terms” given in (3.9). To eliminate non-allowed terms we study Ricci components
and their covariant derivatives evaluated on N . For the EGB, cubic and quartic Lagrangians
above, we need the following:

∂vβA =−2DBKAB+2DAK−KβA+2RvA

∂rβA =DBK̄AB−DAK̄+K̄A
BβB−

1
2K̄βA−RrA

∂vK̄AB = 1
2RAB[µ]+KB

CK̄AC+KA
CK̄BC−

1
2KK̄AB−

1
2KABK̄−

1
4DBβA−

1
4βAβB−

1
4DAβB−

1
2RAB

α=−1
2D

AβA−µAB∂vK̄AB+KABK̄AB−
1
2β

AβA−Rrv (A.1)
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∂rrβA = 2
3D

B
(
∂rK̄AB

)
− 4

3D
BK̄A

CK̄BC+2DAK̄
BCK̄BC−2DBK̄B

CK̄AC+ 4
3D

BK̄K̄AB−
2
3DA

(
∂rK̄BC

)
µBC− 2

3K̄∂rβA+K̄K̄A
BβB−

2
3βAµ

BC∂rK̄BC−
10
3 K̄A

BK̄B
CβC+

4
3β

B∂rK̄AB+2K̄A
B∂rβB+K̄BCK̄BCβA−∇rRAr

∂rvK̄AB = 1
2DBD

CK̄AC−
1
2DBDAK̄−

1
2D

CDCK̄AB+ 1
2D

CDAK̄BC+ 3
4D

CβAK̄BC−
1
4DBβAK̄+ 1

4DBβ
CK̄AC+ 3

4D
CβBK̄AC+2K̄A

C∂vK̄BC+KB
C∂rK̄AC+

2K̄B
C∂vK̄AC+KA

C∂rK̄BC+ 1
4DAβ

CK̄BC−
1
2D

CβCK̄AB−
1
2K̄ABµ

CE∂vK̄CE−
1
2K∂rK̄AB−

1
2K̄∂vK̄AB−

1
2KABµ

CE∂rK̄CE−
1
4DAβBK̄+ 1

2KB
CK̄K̄AC+

KK̄A
CK̄BC−2KCEK̄ACK̄BE−3KB

CK̄A
EK̄CE+ 1

4D
CK̄BCβA−

1
4DBK̄βA+

K̄B
CβAβC−

1
4K̄βAβB−3KA

CK̄B
EK̄CE+KCEK̄ABK̄CE+KABK̄

CEK̄CE−
3
2D

CK̄ABβC+DBK̄A
CβC−K̄ABβ

CβC+K̄A
CβBβC−

1
2K̄B

CRAC [µ]+
1
2KA

CK̄K̄BC+ 1
4D

CK̄ACβB−
1
4DAK̄βB−

1
2K̄

CERACBE [µ]+DAK̄B
CβC−

1
2DB (∂rβA)−K̄ABα−

3
4βA∂rβB−

3
4βB∂rβA−

1
2DA (∂rβB)− 1

2∇rRAB

∂rα= 1
3D

AβBK̄AB−
1
4K̄β

AβA−
1
3D

A (∂rβA)+ 1
2D

AK̄A
BβB−

1
3D

AK̄βA−
1
3K̄α−

1
3µ

AB∂rvK̄AB+K̄AB∂vK̄AB+ 1
3K

AB∂rK̄AB−
4
3K

ABK̄A
CK̄BC+ 5

6K̄
ABβAβB−

7
6β

A∂rβA+ 1
3∇rRvr (A.2)

We also need elimination rules for ∂vvβA, ∂vrβA, ∂vvvβA, ∂vvrβA, ∂vvK̄AB and ∂vvα, but
these can be found by taking ∂v derivatives of the above. We can then use the equation of
motion Rµν = 2

d−2Λgµν − 1
d−2g

ρσHρσgµν +Hµν +O(lN ) to exchange Rµν for 2
d−2Λgµν plus

terms that are at least O(l2). We can repeat this process until all non-allowed terms are of
order lN , at which point we can neglect them for our calculation of the HKR entropy.

A.2 Calculation of ςv
n terms

The HKR algorithm involves finding numbers aj such that

(∂p1
v K) (Dk∂p2

v K)Ak,p1,p2 =

∂v

 1
√
µ
∂v

√µ p1+p2−1∑
j=1

aj(∂p1+p2−1−j
v K) (Dk∂j−1

v K)Ak,p1,p2

+ . . . (A.3)

where the ellipsis denotes terms of the form (∂p̄1
v K) (Dk̄∂p̄2

v K)Ak̄,p̄1,p̄2
with p̄1 + p̄2 < p1 +p2

or p̄1 = 0 or p̄2 = 0.
How to calculate the aj for any k, p1, p2 is given in [5], and is as follows. When the

derivative term on the r.h.s. is expanded out we get a set of p1 + p2 − 1 linear equations on
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the aj in order to satisfy the required conditions. The linear equations can be written in
matrix form as

Mp1+p2−1a = vp2 (A.4)

where

Mp1+p2−1 =


2 1 0 0 . . . 0
1 2 1 0 . . . 0
0 1 2 1 . . . 0
. . . . . . . . . . . . . . . . . .

0 . . . . . . 0 1 2

 , a =


a1
a2
. . .

ap1+p2−1

 , vp2 =



0
. . .

0
1
0
. . .

0


(A.5)

where (vp2)p2 = 1 and (vp2)j = 0 for j 6= p2. Mp1+p2−1 can be shown to have non-vanishing
determinant, and so the system of equations has a unique solution.

When performing the HKR algorithm for specific Lagrangians in practice, one should
investigate for which values of k, p1, p2 do terms of the form on the l.h.s. of (A.3) appear in
F , and pre-calculate the corresponding r.h.s. of (A.3). For the EGB, cubic and quartic La-
grangians above, the only relevant terms that appear are ∂vKAB∂vKCD, ∂vKABDC∂vKDE ,
∂vKABDCDD∂vKEF which have (p1, p2) = (1, 1) and a1 = 1, and ∂vKAB∂vvKCD which
has (p1, p2) = (1, 2) and (a1, a2) = (−1

3 ,
2
3).

B Results for sA

B.1 sA for cubic Riemann Lagrangians

sA = l4(k1s
A
even + k2s

A
odd) (B.1)

where

sAeven = −18DBKACDBβC + 12DBKACDCβB + 9DBβCK
ACβB − 6DBβCK

ABβC+
12DBKA

CK
CEK̄BE − 12DBK

ACKBEK̄CE − 12KABKB
CK̄CEβ

E+
6KABKCEK̄BEβC − 24µABµCE∂rβC∂vKBE + 12KABKB

C∂rβC+
12K̄B

Cβ
CµAE∂vKBE − 6DAβB∂vβB − 12µABµCE∂vK̄BC∂vβE+

6KBCK̄A
C∂vβB + 6KBCKB

EK̄A
EβC − 3βAβB∂vβB − 12αµAB∂vβB−

12KABαβB − 3βBβBµAC∂vβC − 6DBKB
CDAβC − 12DBKB

CµAE∂vK̄CE−

3DBKB
CβAβC − 6DBDBβCK

AC − 12DB
(
∂vK̄BC

)
KAC − 3DBβBK

ACβC−

12DBKAC∂vK̄BC − 3DBKACβBβC + 12KABβC∂vK̄BC − 6DBD
AβCK

BC−

12DB

(
∂vK̄CE

)
KBCµAE − 3DBβCK

BCβA − 3DBβ
AKCBβC (B.2)

sAodd = −8DBβCε
BCµAE∂vβE − 12DBβCK

AEβEε
BC − 8KB

CK̄CEε
BEµAF∂vβF−

8KB
CKAEK̄CFβEε

BF − 16εBCµAE∂rβB∂vKCE − 8KB
CKA

Cε
BE∂rβE+

8K̄BCβ
BεCEµAF∂vKEF + 8KB

CKA
CK̄EFβ

EεBF − 4DAβBε
BC∂vβC−
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8εBCµAE∂vK̄BE∂vβC + 4KB
CK̄A

Cε
BE∂vβE + 4KB

CKE
F K̄A

CβF ε
BE−

2βBβAεBC∂vβC + 16DBKC
AαεBC + 8KB

AαβCε
BC + 4DBKC

AβEβEε
BC−

12DBKC
EDBβEε

AC + 8DBKC
EDEβBε

AC + 6DBβCKE
CβBεAE−

4DBβCKE
BβCεAE + 8DBKCEK

CF K̄BF ε
AE − 8DBKC

EKBF K̄EF ε
AC−

8KB
CKC

EK̄EFβ
F εAB + 4KB

CKEF K̄CFβEε
AB − 16εABµCE∂rβC∂vKBE+

8KB
CKC

EεAB∂rβE + 8K̄B
Cβ

CεAE∂vKBE − 4DBβ
CεAB∂vβC−

8εABµCE∂vK̄BC∂vβE + 4KBCK̄CEε
AE∂vβB + 4KBCKB

EK̄EFβCε
AF−

2βBβCεAB∂vβC − 8αεAB∂vβB − 8KB
CαβCε

AB − 2βBβBεAC∂vβC−
8DBKC

AR[µ]εBC − 4KB
AR[µ]βCεBC − 8DBKA

CKE
CK̄BF ε

EF+
8DBK

ACKE
BK̄CF ε

EF − 4KB
CKAEK̄EFβCε

BF + 16DBK̄C
EεBCµAF∂vKEF−

8DBK̄CEK
AFKF

CεBE − 8K̄B
CβEε

BEµAF∂vKCF + 4KABKB
CK̄CEβF ε

EF+
4DBKC

EDAβEε
BC + 8DBKC

EεBCµAF∂vK̄EF − 8DBKCEK
CF K̄A

F ε
BE−

4KB
CKC

EK̄A
EβF ε

BF + 2DBKC
EβAβEε

BC + 4DBKBCD
AβEε

CE+
8DBKBCε

CEµAF∂vK̄EF + 2DBKBCβEβ
AεCE − 4DBDBβCKE

AεCE−

8DB
(
∂vK̄BC

)
KE

AεCE + 2DBβBKC
AβEε

CE + 2DBβCKE
AβCεBE+

4DBKC
ADBβEε

CE + 8DBKC
AεCE∂vK̄BE + 2DBKC

AβBβEε
CE−

8KB
AβCεBE∂vK̄CE − 4DBD

AβCKE
BεCE − 8DB

(
∂vK̄CE

)
KF

BεCFµAE−

2DBβCKE
BβAεCE + 2DBβ

AKC
BβEε

CE − 4DBDCβEK
AEεBC−

6DBβCK
ACβEε

BE − 4DBK
ACDEβCε

BE − 8DBK
ACεBE∂vK̄CE−

2DBK
ACβCβEε

BE + 8KABβCε
CE∂vK̄BE − 4DBD

AβCKE
CεBE−

8DB

(
∂vK̄CE

)
KF

CεBFµAE − 2DBβCKE
CβAεBE − 2DBβ

AKC
EβEε

BC−

8DBKC
EεAC∂vK̄BE − 2DBKC

EβBβEε
AC + 8KB

CβEεAB∂vK̄CE−

4DBDCβEK
BEεAC − 8DB

(
∂vK̄CE

)
KBCεAE − 2DBβCK

BCβEε
AE−

2DBβCK
EBβEε

AC − 4DBKB
CDEβCε

AE − 8DBKB
CεAE∂vK̄CE−

2DBKB
CβCβEε

AE − 4DBDBβCKE
CεAE − 8DB

(
∂vK̄BC

)
KE

CεAE−

2DBβBKC
EβEε

AC − 8DB

(
∂vK̄CE

)
KACεBE (B.3)

B.2 sA
6 for quartic Riemann Lagrangian

sA6 = kl6
[
8µAB∂vβBR[µ]2−16KK̄R[µ]µAE∂vβE+16KBCK̄BCR[µ]µAE∂vβE−

16KABKK̄R[µ]βB+16KABKCEK̄CER[µ]βB+16KBCKBCK̄
EF K̄EFµ

AG∂vβG+

16KABKCEKCEK̄
FGK̄FGβB+16KBCKEF K̄BCK̄EFµ

AG∂vβG+

16KABKCEKFGK̄CEK̄FGβB−32KBCKB
EK̄C

F K̄EFµ
AG∂vβG−

32KABKCEKC
F K̄E

GK̄FGβB+64DBKCEDBK̄CEµ
AF∂vβF−

64DBKCEDCK̄BEµ
AF∂vβF−32DBK̄CEK

CEβBµAF∂vβF+
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32DBK̄CEK
BCβEµAF∂vβF +64DBKCEDBK̄CEK

AFβF−64DBKCEDCK̄BEK
AFβF−

32DBK̄CEK
AFKCEβFβ

B+32DBK̄CEK
AFKBCβFβ

E+32DBKCEK̄CEβBµ
AF∂vβF−

32DBKCEK̄BEβCµ
AF∂vβF−16KBCK̄BCβ

EβEµ
AF∂vβF +16KBCK̄CEβBβ

EµAF∂vβF+

32DBKCEKAF K̄CEβBβF−32DBKCEKAF K̄BEβCβF−16KABKCEK̄CEβBβ
FβF+

16KABKCEK̄EFβBβCβ
F +32µABµCEµFG∂rK̄CF∂vKEG∂vβB−

32KBCKB
EµAF∂rK̄CE∂vβF +32KABβBµ

CEµFG∂rK̄CF∂vKEG−

32KABKCEKC
FβB∂rK̄EF−32K̄BCK̄E

Cµ
AF∂vKBE∂vβF−32KABK̄CEK̄F

EβB∂vKCF−

16DBβCDBβCµ
AE∂vβE+32DBβCDCβBµ

AE∂vβE+32DBβCK
CEK̄BEµ

AF∂vβF+

32DBβCK
AEKCF K̄BFβE−64DBβ

CKBEK̄CEµ
AF∂vβF−64DBβ

CKAEKBF K̄CFβE+

64KBCKEF K̄BEK̄CFµ
AG∂vβG+64KABKCEKFGK̄CF K̄EGβB+64DBβCµAE∂vK̄BC∂vβE+

16DBβCβ
BβCµAE∂vβE+64µABµCEµFG∂vK̄CF∂vK̄EG∂vβB−64KBCK̄B

EµAF∂vK̄CE∂vβF−

64KABKCEK̄C
FβB∂vK̄EF +32βBβCµAE∂vK̄BC∂vβE+6βBβBβCβCµAE∂vβE−

32µABµCE∂rβC∂vβB∂vβE−32KBCβBµ
AE∂rβC∂vβE−32KABβBµ

CE∂rβC∂vβE−

32KABKCEβBβC∂rβE+16K̄B
CβBµAE∂vβC∂vβE+16KABK̄C

EβBβ
C∂vβE+

32µAB∂vβBα2+16αβBβBµAC∂vβC+8DBKA
BR[µ]2−16DBKA

BD
CβEDCβE+

32DBKA
BD

CβEDEβC+64DBKA
BD

CβE∂vK̄CE+16DBKA
BDCβEβ

CβE+

64DBKA
Bµ

CEµFG∂vK̄CF∂vK̄EG+32DBKA
Bβ

CβE∂vK̄CE+6DBKA
Bβ

CβCβ
EβE+

32DBKA
Bα

2+16DBKA
Bαβ

CβC+16DBR[µ]KABR[µ]−32DBDCβED
CβEKAB+

64DBDCβED
EβCKAB+64DBD

CβEKAB∂vK̄CE+16DBDCβEK
ABβCβE+

64DBβCDE

(
∂vK̄BC

)
KAE+128DB

(
∂vK̄CE

)
KABµCFµEG∂vK̄FG+

32DB

(
∂vK̄CE

)
KABβCβE+16DBβ

CDCβEK
ABβE+64DBβ

CKABβE∂vK̄CE+

24DBβCK
ABβCβEβ

E+16DBβ
CDEβCK

ABβE+64DBαK
ABα+

16DBαK
ABβCβC+32DBβCK

ABαβC
]

(B.4)
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