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Preface

The oldest part of group theory is that which deals with finite
groups of permutations. One of the newest is the theory of infinite
permutation groups. Much progress has been made during the last
two decades, but much remains to be discovered. It is therefore an
excellent research area: on the one hand there is plenty to be done;
on the other hand techniques are becoming available. Some research
takes as its goal the generalisation, extension or adaptation of classi-
cal results about finite permutation groups to the infinite case. But
mostly the problems of interest in the finite and infinite contexts are
quite different. In spite of its newness, the latter has already deve-
loped a momentum and an ethos of its own. It has also developed
strong links with logic, especially with model theory.

To bring this lively and exciting subject to the attention of mathe-
maticians in Assam—both students and established scholars—a course
of sixteen lectures was presented in August and September 1996 at the
Indian Institute of Technology, Guwahati. In the available time it was
not possible to explore more than a fraction of the area. The lectures
were therefore conceived with restricted aims: firstly, to expound a
useful amount of general theory; secondly, to introduce and survey
just one of the rich areas of recent research in which considerable
progress has been made, namely, the theory of Jordan groups. That
limited aim is reflected in this book. Although it is a considerable
expansion of the lecture notes (and we have included many exercises,
which range in difficulty from routine juggling of definitions to sub-
stantial recent research results), it is not intended to introduce the
reader to more than a small—though important and inieresting—part
of the subject.

A course at this level can only succeed if it is a collaboration bet-
ween lecturers and audience. That was so in this case and although
the four speakers are those listed as authors of this volume, credit
would be spread much more widely if title-page conventions permit-
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ted. In particular, we record our very warm thanks to the audience for
being so enthusiastic and alert, and especially to the three note-takers
Dr.B. K. Sharma, Ms. Shreemayee Bora and Ms. Shabeena Ahmed.

We are very grateful to Dr.S. Ponnusamy and Dr. K. S. Venkatesh
for help with typesetting and with the figures. We wish to thank
Prof. Moloy Dutta for help with typing and editing, and, Shabeena
and Shreemayee, a second time, for help with proof-reading. We also
thank the Editors of the TRIM series, specially Professors R. Bhatia
and C. Musili, for accepting the book for publication in the series.

MB (Guwahati), HDM (Leeds), RGM (Rey'kja.vfk). IIMN (Oxford):
April 1997

Some more acknowledgements:

The three of us who came from overseas have warm thanks to
record to various institutions that provided support: to the Royal So-
ciety of London (Macpherson and Neumann); to the Indian National
Science Academy (Neumann); to the Indian Institute of Technology
Guwabhati (Macpherson, Moller and Neumann) for a very kind wel-
come, for academic facilities and for help with travel within India.
Our warmest thanks and congratulations, however, are reserved for
our colleague and co-author Dr Meenaxi Bhattacharjee. She con-
ceived and organised the whole project, she provided delightful com-
pany and hospitality in Assam, and, with characteristic energy she
has brought this book project to a satisfactory conclusion.

HDM (Leeds), RGM (Reykjavik), TMN (Oxford): April 1997



About the lecture course:

This book is based on lectures delivered by the four authors at
the ‘Lecture Course on Infinite Permutation Groups’ that
was held at the Indian Institute of Technology (IIT) Guwahati, India
from 6th August to 19th September, 1996. The course was originally
conceived as an informal series of lectures coinciding with the visits of
Dr. Neumann, Dr. Macpherson and Dr. Mdller to the Institute during
that period.

The lectures were aimed at graduate students, research scholars,
teachers and research workers of mathematics drawn from the col-
leges, universities, research institutes and other academic institutions
in this region. The lectures (each lasting 90 minutes) were held twice
a week. The course generated a tremendous amount of interest and
as many as 60 participants attended the lectures.

The first speaker was Dr. Moller who introduced the participants
to the basics of permutation group theory. I spoke next on wreath
products of groups. In his lectures, Dr. Neumann explained the gen-
eral theory of Jordan groups. Dr. Macpherson delivered the conclud-
ing lectures in which he developed the theory further, leading to the
classification of infinite primitive Jordan groups. He also introduced
the audience to the basic concepts of model theory, and illustrated
the connections between model theory and Jordan groups using the
Hrushovski construction. The sixteen chapters of this book corres-
pond roughly to the sixteen lectures delivered at the course.

We wish to record our thanks to Professors M.S.Raghunathan
and 5. G. Dani of the National Board of Higher Mathematics for ex-
tending financial support, and to the faculty and staff of IIT Guwa-
hati for their help in organising the course. We are particularly grate-
ful to the Director of IIT Guwahati, Prof. D. N. Buragohain, for pro-
viding all infra-structural facilities and for his kind encouragement
and support. We are also grateful to the Head of the Department
of Mathematics at IIT Guwahati, Prof. P. Bhattacharyya, for giving
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us his whole-hearted help and guidance. On a personal note, my son
Amlan deserves a special word of thanks for patiently tolerating my
total preoccupation with the course last summer and then with the
preparation of this book over the past few months.

I extend my warm and sincere thanks to each of my three co-
authors—my teacher and guru Dr. Peter M. Neumann, my friend and
collaborator Dr.Dugald Macpherson, and, my friend and gurubhai
Dr. Rognvaldur G. Moller—on my own behalf as well as on behalf
of everyone else involved in the project, for accepting our invitation
to visit Guwahati (and smilingly putting up with many odds during
their Indian sojourn), for agreeing to speak at the course, for de-
livering such superb lectures and for being readily available to the
participants for consultation at other times. By doing so they have
given a rare opportunity to the participants to benefit from their ex-
pertise in the subject. Co-ordinating the course was both thrilling as
well as challenging—and I have gained a lot from the experience.

MB (Guwahati): April 1997
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