Skip to main content
Log in

Principles of macromolecular organization and cell function in bacteria and archaea

  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

“…The arrest of energy degradation in living nature is indeed a primary biological concept. Related to it, and of equal importance, is the concept of organization” —Some Chemical Aspects of Life,Sir Frederick Gowland Hopkins (1934).

Abstract

Structural organization of the cytoplasm by compartmentation is a well established fact for the eukaryotic cell. In prokaryotes, compartmentation is less obvious. Most prokaryotes do not need intracytoplasmic membranes to maintain their vital functions. This review, especially dealing with prokaryotes, will point out that compartmentation in prokaryotes is present, but not only achieved by membranes. Besides membranes, the nucleoid, multienzyme complexes and metabolons, storage granules, and cytoskeletal elements are involved in compartmentation. In this respect, the organization of the cytoplasm of prokaryotes is similar to that in the eukaryotic cell. Compartmentation influences properties of water in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, M. (1956) Localization of enzymes in the microbial cell.Bact. Rev. 20, 67–93.

    PubMed  CAS  Google Scholar 

  2. Norris, V., Turnock, G., and Sigee, D. (1996) TheEscherichia coli ezoskeleton.Mol. Microbiol. 19, 197–204.

    Article  PubMed  CAS  Google Scholar 

  3. Bleile, D. M., Munk, P., Oliver, R. M., and Reed, L. J. (1979) Subunit structure of dihydrolipoyl transacetylase component of pyruvate dehydrogenase complex fromEscherichia coli.Proc. Natl. Acad. Sci. USA 76, 4385–4389.

    Article  PubMed  CAS  Google Scholar 

  4. Kellenberger, E. and Ryter, A. (1958) Cell wall cytoplasmic membrane ofEscherichia coli.J. Biophys. Biochem. Cytol. 4, 323–326.

    Article  PubMed  CAS  Google Scholar 

  5. Blaurock, A. E. and Stoeckenius, W. (1971) Structure of the purple membrane.Nature New Biol. 233, 152–155.

    Article  PubMed  CAS  Google Scholar 

  6. Robinow, C. and Kellenberger, E. (1994) The bacterial nucleoid revisited.Microbiol. Rev. 58, 211–232.

    PubMed  CAS  Google Scholar 

  7. Morró, J. D., Kartenbeck, J., and Franke, W. W. (1979) Membrane flow and interconversion among endomembranes.Biochim. Biophys. Acta 559, 71–152.

    Google Scholar 

  8. Robinson, D. G. (1985) Plant Membranes: Endo- and Plasma Membranes of plant cells. Wiley & Sons, London.

    Google Scholar 

  9. Al-Habori, M. (1995) Microcompartmentation, metabolic channeling and carbohydrate metabolism.Int. J. Biochem. Cell Biol. 27, 123–132.

    Article  PubMed  CAS  Google Scholar 

  10. Srere, P. A. (1987) Complexes of sequential metabolic enzymes.Ann. Rev. Biochem. 56, 89–124.

    Article  PubMed  CAS  Google Scholar 

  11. Mayer, F. (1993a) Principles of functional and structural organization in the bacterial cell, ‘compartments’ and their enzymes.FEMS Microbiol. Rev. 104, 327–346.

    Article  CAS  Google Scholar 

  12. Mayer, F. (1993b). “Compartments” in the bacterial cell and their enzymes.ASM News 59, 346–350.

    Google Scholar 

  13. Oliver, R. M. and Reed, L. J. (1982)Electron microscopy of Proteins (Harris, R., ed.) vol. 2, Academic, London, pp. 1–48.

    Google Scholar 

  14. Mayer, F., Coughlan, M. P., Mori, Y., and Ljungdahl, L. G. (1987) Macromolecular organization of the cellulolytic enzyme complex ofClostridium thermocellum as revealed by electron microscopy.Appl. Environ. Microbiol. 53, 2785–2792.

    PubMed  CAS  Google Scholar 

  15. Wagenknecht, T., Grassuci, R., and Schaak, D. (1990) Cryoelectron microscopy of frozen-hydrated α-ketoacid dehydrogenase complexes fromEscherichia coli.J. Biol. Chem. 265, 22402–22408.

    PubMed  CAS  Google Scholar 

  16. Mattevi, A., Obmolova, G., Schulze, E., Kalk, K. H., Westphal, A. H., de Kok, A., and Hol, W. G. (1992). Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex.Science 255, 1544–1550.

    Article  PubMed  CAS  Google Scholar 

  17. Reed, L. J. (1974) Multienzyme complexes.Acc. Chem. Res. 7, 40–46.

    Article  CAS  Google Scholar 

  18. Larsen, C. N. and Finley, D. (1997) Protein translocation channels in the proteasome and other proteases.Cell 91, 431–434.

    Article  PubMed  CAS  Google Scholar 

  19. Bukau, B. and Horwich, A. L. (1998) The Hsp70 and Hsp60 chaperone machine.Cell 92, 351–366.

    Article  PubMed  CAS  Google Scholar 

  20. Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995) Crystal structure of the 20S proteasome from the ArchaeonT. acidophilum at 3.4 Å resolution.Science 268, 533–539.

    Article  PubMed  CAS  Google Scholar 

  21. Maupin-Furlow, J. and Ferry, J. G. (1995) A proteasome from the methanogenic ArchaeonMethanosarcina thermophila.J. Biol. Chem. 270, 28617–28622.

    Article  PubMed  CAS  Google Scholar 

  22. Lupas, A., Zuhl, E., Tamura, T., Wolf, S., Nagy, I., De Mot, R., and Baumeister, W. (1997) Eubacterial proteasomes.Mol. Biol. Rep. 24, 125–131.

    Article  PubMed  CAS  Google Scholar 

  23. Martin, J., Goldie K. N., Engel A., and Hartl, F. U. (1994) Topology of the morphological domains of the chaperonin GroEL visualized by immuno-electron microscopy.Biol. Chem. Hoppe-Seyler 375, 635–638.

    PubMed  CAS  Google Scholar 

  24. Sigler, P. B. and Horwich, A. L. (1995) Unliganded GroEL at 2.8 Å: Structure and functional implications.Philos. Transact. Royal Soc. Lond. B. Biol. Sci. 348, 113–119.

    Article  CAS  Google Scholar 

  25. Boisvert, D. C., Wang, J., Otwinowski, Z. Horwich, A. L., and Sigler, P. B. (1996) The 2.4 Ångstrom crystal structure of the bacterial chaperonin GroEL complexed with ATP-gamma-S.Nature Struct. Biol. 3, 170–177.

    Article  PubMed  CAS  Google Scholar 

  26. Sfatos, C. D., Gutin, A. M., Abkevich, V. I., and Shakhnovich, E. I. (1996) Simulations of chaperone-assisted folding.Biochemistry 35, 334–339.

    Article  PubMed  CAS  Google Scholar 

  27. Chan, H. S. and Dill, K. A. (1996) A simple model of chaperonin-mediated protein folding.Proteins Struct. Funct. Gen. 24, 345–351.

    Article  CAS  Google Scholar 

  28. Weissman, J. S., Sigler, P. B., and Horwich, A. L. (1995) From the cradle to the grave: ring complexes in the life of a protein.Science 268, 523–524.

    Article  PubMed  CAS  Google Scholar 

  29. Mayer, F., Rohde, M., Salzmann, M., Jussofie, A., and Gottschalk, G. (1988) The methanoreductosome: a high-molecular-weight enzyme complex in the methanogenic bacterium strain Gö1 that contains components of the methylreductase system.J. Bacteriol. 170, 1438–1444.

    PubMed  CAS  Google Scholar 

  30. Beguin, P. and Lemaire M. (1996) The cellulosome: and extracellular, multiprotein complex specialized in cellulose degradation.Crit. Rev. Biochem. Mol. Biol. 31, 201–236.

    PubMed  CAS  Google Scholar 

  31. Felix, C. R. and Ljungdahl, L. G. (1993) The cellulosome: the exocellular organelle ofClostridium.Annu. Rev. Microbiol. 47, 791–819.

    PubMed  CAS  Google Scholar 

  32. Bayer, E. A., Morag E., and Lamed R. (1994) The cellulosome—a treasure-trove for biotechnology.Trends Biotechnol. 12, 379–386.

    Article  PubMed  CAS  Google Scholar 

  33. Doi, R. H., Goldstein, M., Hashida, S., Park, J. S., and Takagi, M. (1994) TheClostridium cellulovorans cellulosome.Crit. Rev. Microbiol. 20, 87–93.

    PubMed  CAS  Google Scholar 

  34. Gol’dshtein, B. N. and Kornilov, V. V. (1988) Symmetry-regulated dynamics of multi-enzyme complexes. A model of pyruvate dehydrogenase complex fromEscherichia coli.Mol. Biol. (Mosk.) 22, 538–548.

    CAS  Google Scholar 

  35. Teissié, J., Gabriel, B., and Prats, M. (1993) Lateral communication by fast proton conduction: a model membrane study.Trends Biochem. Sci. 18, 243–246.

    Article  PubMed  Google Scholar 

  36. Gabriel, B. and Teissié, J. (1996) Proton long-range migration along protein monolayers and its consequences on membrane coupling.Proc. Natl. Acad. Sci. USA 93, 14521–14525.

    Article  PubMed  CAS  Google Scholar 

  37. Stock, J. B., Rauch, B., and Roseman, S. (1977) Periplasmic space inSalmonella typhimurium andEscherichia coli.J. Biol. Chem. 252, 7850–7861.

    PubMed  CAS  Google Scholar 

  38. Wielink, J. E. and Duine, J. A. (1990) How big is the periplasmic space?Trends Biochem. Sci. 15, 136–137.

    Article  PubMed  Google Scholar 

  39. Hobot, J. A., Carlemalm, E., Villiger, W., and Kellenberger, E. (1984) Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods.J. Bacteriol. 160, 143–152.

    PubMed  CAS  Google Scholar 

  40. Brass, J. M., Higgins, C. F., Foley, M., Rugman, P. A., Birmingham, J., and Garland, P. B. (1986) Lateral diffusion of proteins in the periplasm ofEscherichia coli.J. Bacteriol. 165, 787–794.

    PubMed  CAS  Google Scholar 

  41. Mayer, F. and Hoppert, M. (1996) Functional compartmentalization in bacteria and archaea.Naturwissenschaften 83, 36–39.

    PubMed  CAS  Google Scholar 

  42. Higgins, C. F., Gallagher, M. P., Hyde, S. C., Mimmack, M. L., and Pearce, S. R. (1990) Periplasmic binding protein-dependent transport systems: the membrane-associated components.Philos. Transact. Royal Soc. Lond. B. Biol. Sci. 326, 353–364.

    Article  CAS  Google Scholar 

  43. Beveridge, T. J. (1995) The periplasmic space and the periplasm in Gram-positive and Gram-negative bacteria.ASM News 61, 125–130.

    Google Scholar 

  44. Pooley, H. M., Merchante, R., and Karamata, D. (1996) Overall protein content and induced enzyme components of the periplasm ofBacillus subtilis.Microb. Drug Resist. 2, 9–15.

    Article  PubMed  CAS  Google Scholar 

  45. Beveridge, T. J. and Kadurugamuwa, J. L. (1996) Periplasm, periplasmic spaces, and their relation to bacterial wall structure: novel secretion of selected periplasmic proteins fromPseudomonas aeruginosa.Microb. Drug Resist. 2, 1–8.

    PubMed  CAS  Google Scholar 

  46. Hultgren, S. J. and Normark, S. (1991) Biogenesis of the bacterial pilus.Curr. Opin. Genet. Dev. 1, 313–318.

    Article  PubMed  CAS  Google Scholar 

  47. Jacob-Dubuisson, F., Kuehn, M., and Hultgren, S. J. (1993) A novel secretion apparatus for the assembly of adhesive bacterial pili.Trends Microbiol. 1, 50–55.

    Article  PubMed  CAS  Google Scholar 

  48. Pugsley, A. P., Francetic, O., Possot, O. M., Sauvonnet, N., and Hardie, K. R. (1997) Recent progress and future directions in studies of the main terminal branch of the general secretory pathway in Gram-negative bacteria: a review.Gene 192, 13–19.

    Article  PubMed  CAS  Google Scholar 

  49. Blight, M. A., Chervaux, C., and Holland, I. B. (1994) Protein secretion pathway inEscherichia coli.Curr. Opin. Biotechnol. 5, 468–474.

    Article  PubMed  CAS  Google Scholar 

  50. Wülfing, C. and Plückthun, A. (1994) Protein folding in the periplasm ofEscherichia coli.Mol. Microbiol. 12, 685–692.

    Article  PubMed  Google Scholar 

  51. Missiakas, D. and Raina, S. (1997) Protein folding in the bacterial periplasm.J. Bacteriol. 179, 2465–2471.

    PubMed  CAS  Google Scholar 

  52. Maurizi, M. R. (1992) Proteases and protein degradation inEscherichia coli.Experientia 48, 178–201.

    Article  PubMed  CAS  Google Scholar 

  53. Kohring, G. W. and Mayer, F. (1987)In situ distribution of EcoRI methylase and restriction endonuclease in cells ofEscherichia coli BS 5.FEBS Lett. 216, 207–210.

    Article  PubMed  CAS  Google Scholar 

  54. Nakae, T. (1997) Antibiotic extrusion and multidrug resistance.Nippon Rinsho 55, 1173–1178.

    PubMed  CAS  Google Scholar 

  55. Messner, P. and Sleytr, U. B. (1992) Crystalline bacterial cell surface layers (Rose, A. H., e.) Advances in Microbial Physiology, vol. 33, Academic, London, pp. 213–275.

    Google Scholar 

  56. Toba, T., Virkola, R., Westerlund, B., Björkman, Y., Sillanpää, J., Vartio, T., Kalkkinen, N., and Korhonen, T. K. (1995) A collagen-binding S-layer protein inLactobacillus crispatus.Appl. Environ. Microbiol. 61, 2467–2471.

    PubMed  CAS  Google Scholar 

  57. Messner, P., Allmaier, G., Schäffer, C., Wugeditsch, T., Lortal, S., König, H., Niemetz, R., and Dorner, M. (1997) Biochemistry of S-layers.FEMS Microbiol. Rev. 20, 25–46.

    Article  PubMed  CAS  Google Scholar 

  58. Specka, U., Spreinat, A., Antranikian, G., and Mayer, F. (1991) Immunocytochemical identification and localization of active and inactive α-amylase and pullulanase in cells ofClostridium thermosulfurogenes EM 1.Appl. Environ. Microbiol. 57, 1062–1069.

    PubMed  CAS  Google Scholar 

  59. Matuschek, M., Burchhardt, G., Sahm, K., and Bahl, H. (1994) Pullulanase ofThermoanaerobacterium thermosulfurigenes EM 1 (Clostridium thermosulfurigenes): molecular analysis of the gene composite structure of the enzyme and a common model for its attachment to the cell surface.J. Bacteriol. 176, 3295–3302.

    PubMed  CAS  Google Scholar 

  60. Egelseer, E., Schocher, I., Sçra, M., and Sleytr, U. B. (1995) The S-layer fromBacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular weight amylase.J. Bacteriol. 177, 1444–1451.

    PubMed  CAS  Google Scholar 

  61. Peters, J., Nitsch, M., Kühlmorgen, B., Golbik, R., Lupas, A., Kellermann, J., Engelhardt, H., Pfander, J. P., Müller, S., Goldie, K., Engel, A., Stetter, K-O., and Baumeister, W. (1995) Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability.J. Mol. Biol. 245, 385–401.

    Article  PubMed  CAS  Google Scholar 

  62. Searcy, D. G. and Stein, D. B. (1980) Nucleoprotein subunit structure in an unusual prokaryotic organism:Thermoplasma acidophilum.Biochim. Biophys. Acta 609, 180–195.

    PubMed  CAS  Google Scholar 

  63. Shioda, M., Sugimori, K., Shiroya, T., and Takayanagi, S. (1989) Nucleosomelike structures associated with chromosomes of the archaebacteriumHalobacterium salinarium J. Bacteriol. 171, 4514–4517.

    PubMed  CAS  Google Scholar 

  64. Takayanagi, S., Morimura, S., Kusaoke, H., Yokoyama, Y., Kano, K., and Shioda, M. (1992) Chromosomal structure of the halophilic archaebacteriumHalobacterium salinarium.J. Bacteriol. 174, 7202–7216.

    Google Scholar 

  65. Sandman, K., Krzycki, J. A., Dobrinski, B., Lurz, R., and Reeve, J. N. (1990) DNA Binding protein HMf, from the hyperthermophilic archaebacteriumMethanothermus fervidus, is most closely related to histones.Proc. Natl. Acad. Sci. USA 87, 5788–5791.

    Article  PubMed  CAS  Google Scholar 

  66. Starich, M. R., Sandman, K., Reeve, J. N., and Summers, M. F. (1996) NMR structure confirms that HMfB, from the hyperthermophilic archaeonMethanothermus fervidus is a histone.J. Mol. Biol. 255, 187–203.

    Article  PubMed  CAS  Google Scholar 

  67. Grayling, R. A., Sandman, K., and Reeve, J. N. (1996) Histones and chromatin structure in hyperthermophilic Archaea.FEMS Microbiol. Rev. 18, 203–213.

    Article  PubMed  CAS  Google Scholar 

  68. Darcy, T., Sandman, K., and Reeve, J. N. (1995)Methanobacterium formicicum, a mesophilic methanogen, contains three HFo histones.J. Bacteriol. 177, 858–860.

    PubMed  CAS  Google Scholar 

  69. Ronimus, R. S. and Musgrave, D. R. (1996) Purification and characterization of a histone-like protein from the archaeal isolate AN1, a member of theThermococcales.Mol. Microbiol. 20, 77–86.

    Article  PubMed  CAS  Google Scholar 

  70. Dürrenberger, M., Bjornsti, M. A., Uetz T., Hobot, J. A., and Kellenberger, E. (1988) Intracellular location of the histonelike protein HU inEscherichia coli.J. Bacteriol. 170, 4757–4768.

    PubMed  Google Scholar 

  71. McGovern, V., Higgins, N. P., Chiz, R. S., and Jaworski, A. H. (1994) Over-expression induces an artificial stationary phase by silencing global transcription.Biochimie 76, 1019–1029.

    Article  PubMed  CAS  Google Scholar 

  72. Jacquet, M., Cukier-Kahn, R., Pla, J., and Gros, F. (1971) A thermostable protein factor acting on in vitro DNA transcription.Biochem. Biophys. Res. Commun. 45, 1597–1607.

    Article  PubMed  CAS  Google Scholar 

  73. Spassky, A., Rimsky, S., Garreau, H., and Buc, H. (1984) H1a, anE. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro.Nucl. Acids Res. 12, 5321–5340.

    Article  PubMed  CAS  Google Scholar 

  74. Ussery, D. W., Hinton, J. C., Jordi, B. J., Granum, P. E., Seirafi, A., Stephen, R. J., Tupper, A. E., Berridge, G., Sidebotham J. M., and Higgins, C. F. (1994) The chromatin-associated protein H-NS.Biochimie 76, 968–980.

    Article  PubMed  CAS  Google Scholar 

  75. Atlung, T. and Ingmer, H. (1997) H-NS: a modulator of environmentally regulated gene expression.Mol. Microbiol. 24, 7–17.

    Article  PubMed  CAS  Google Scholar 

  76. Tanaka, K. I., Muramatsu, S., Yamada, H., and Mizuno, T. (1991) Systematic characterization of curved DNA segments randomly cloned fromEscherichia coli and their functional significance.Mol. Gen. Genet. 226, 367–376.

    Article  PubMed  CAS  Google Scholar 

  77. Mayer, F. and Friedrich, C. (1986) Higher order structural organization of the nucleoid in the thiobacteriumThiosphaera pantotropha.FEMS Microbiol. Lett. 37, 109–112.

    Article  CAS  Google Scholar 

  78. Kellenberger, E. and Kellenberger-Van-der-Kamp, C. (1994) Unstained and in vivo fluorescently stained bacterial nucleoids and lasmolysis observed by a new specimen preparation method for high-power light microscopy of metabolically active cells.J. Microsc. 176, 132–42.

    PubMed  CAS  Google Scholar 

  79. Bermudes, D., Hinkle, G., and Margulis, L. (1994) Do prokaryotes contain microtubules?Microbiol. Rev. 58, 387–400.

    PubMed  CAS  Google Scholar 

  80. Lotz, W. (1976) Defective bacteriophages: The phage tail-like particles, inProgress in Molecular and Subcellular Biology, vol. 4, Springer, Berlin, pp. 53–102.

    Google Scholar 

  81. Walter-Mauruschat, A., Mayer, F. (1978) Isolation and characterization of polysheaths, phage tail-like defective bacteriophages ofAlcaligenes eutrophus H16.J. Gen. Virol. 41, 239–254.

    Article  Google Scholar 

  82. Nanninga, N. (1991) Cell division and peptidoglycan assembly inEscherichia coli.Mol. Microbiol. 5, 791–795.

    Article  PubMed  CAS  Google Scholar 

  83. Donachie, W. D. and Robinson, A. C. (1987) Cell division: parameter values and the process, inEscherichia coli andSalmonella typhimurium (Neidhard, C., ed.) Vol 2. American Society for Microbiology, Washington D. C. pp. 1578–1593.

    Google Scholar 

  84. Bi, E. and Lutkenhaus, J. (1991) FtsZ ring structure associated with division inEscherichia coli.Nature 354, 161–164.

    Article  PubMed  CAS  Google Scholar 

  85. Lutkenhaus, J. (1993) FtsZ ring in bacterial cytokinesis.Mol. Microbiol. 9, 403–409.

    Article  PubMed  CAS  Google Scholar 

  86. Zhang, C. C., Huguenin, S., and Friry, A. (1995) Analysis of genes encoding the cell division protein FtsZ and a glutathione synthetase homologue in the cyanobacteriumAnabaena sp. Pcc 7120.Res. Microbiol. 146, 445–455.

    Article  PubMed  CAS  Google Scholar 

  87. Pedro, M. A., Quintela, J. C., Höltje, J.-V., and Schwarz, H. (1997) Murein segregation inEscherichia coli.J. Bacteriol. 179, 2823–2834.

    PubMed  Google Scholar 

  88. Baumann, P. and Jackson, S. P. (1996) An archaebacterial homologue of the essential eubacterial cell division protein FtsZ.Proc. Natl. Acad. Sci. USA 93, 6726–6730.

    Article  PubMed  CAS  Google Scholar 

  89. Margolin, W., Wang, R., and Kumar, M. (1996) Isolation of an FtsZ homolog from the archaebacteriumHalobacterium salinarium: implications for the evolution of FtsZ and tubulin.J. Bacteriol. 178, 1320–1327.

    PubMed  CAS  Google Scholar 

  90. Wang, X., Lutkenhaus, J. (1996) FtsZ ring: the eubacterial division apparatus conserved in archaebacteria.Mol. Microbiol. 21, 313–320.

    Article  PubMed  CAS  Google Scholar 

  91. Suzuki, K., Ehara, T., Osafune, T., Kuroiwa, H., and Kawano, S. (1994) Behaviour of mitochondria, chloroplasts and their nuclei during the mitotic cycle in the ultramicroalgaCyanidioschyzon merolae.Eur. J. Cell. Biol. 63, 280–288.

    PubMed  CAS  Google Scholar 

  92. Osteryoung, K. W. and Vierling, E. (1995) Conserved cell and organelle division.Nature 376, 473–474.

    Article  PubMed  CAS  Google Scholar 

  93. de Boer, P. A. J., Crossley, R., and Rothfield, L. (1992) The essential bacterial cell-division protein FtsZ is a GTPase.Nature 359, 254–256.

    Article  PubMed  Google Scholar 

  94. RayChaudhuri, D. and Park, J. T. (1992)Escherichia coli cell-division geneftsZ encodes a novel GTP-binding protein.Nature 359, 251–254.

    Article  PubMed  CAS  Google Scholar 

  95. Mukherjee, A., Dai, K., and Lutkenhaus, J. (1993)Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein.Proc. Natl. Acad. Sci. USA 90, 1053–1057.

    Article  PubMed  CAS  Google Scholar 

  96. Bramhill, D. and Thompson, C. M. (1994) GTP-dependent polymerization ofEscherichia coli FtsZ protein to form tubules.Proc. Natl. Acad. Sci. USA 91, 5813–5817.

    Article  PubMed  CAS  Google Scholar 

  97. Mukherjee, A. and Lutkenhaus, J. (1994) Guanine nucleotide-dependent assembly of FtsZ into filaments.J. Bacteriol. 176, 2754–2758.

    PubMed  CAS  Google Scholar 

  98. Tormo, A., Ayla, J. A., de Pedro, M. A., Aldea, M., and Vicente, M. (1986) Interaction of FtsA and PBP3 proteins in theEscherichia coli septumJ. Bacteriol. 166, 985–992.

    PubMed  CAS  Google Scholar 

  99. Tormo, A. and Vicente, M. (1984) TheftsA gene product participates in formation on theEscherichia coli septum structure.J. Bacteriol. 157, 779–784.

    PubMed  CAS  Google Scholar 

  100. Pla, J., Dopazo, A., and Vicente, M. (1990) The native form of FtsA, a septal protein ofEscherichia coli, is located in the cytoplasmic membrane.J. Bacteriol. 172, 5097–5102.

    PubMed  CAS  Google Scholar 

  101. Dai, K. and Lutkenhaus, J. (1992) The proper ratio of FtsZ to FtsA is required for cell division to occur inEscherichia coli.J. Bacteriol. 174, 6145–6151.

    PubMed  CAS  Google Scholar 

  102. Dewar, S. J., Begg, K. J., and Donachie, W. D. (1992) Inhibition of cell division initiation by an imbalance in the ratio of FtsA and FtsZ.J. Bacteriol. 174, 6314–6316.

    PubMed  CAS  Google Scholar 

  103. Guzman, L. M., Barondess, J. J., and Beckwith, J. (1992) FtsL, an essential cytoplasmic membrane protein involved in cell division inEscherichia coli.J. Bacteriol. 174, 7716–7728.

    PubMed  CAS  Google Scholar 

  104. Ueki, M., Wachi, M., and Jung, H. K. (1992)Escherichia coli mraR gene involved in cell growth and division.J. Bacteriol. 174, 7841–7843.

    PubMed  CAS  Google Scholar 

  105. Dai, K., Xu, Y., and Lutkenhaus, J. (1993) Cloning and characterization offtsN, an essential cell division gene inEscherichia coli isolated as a multicopy suppressor offtsA12 (Ts).J. Bacteriol. 175, 3790–3797.

    PubMed  CAS  Google Scholar 

  106. Khattar, M. M., Begg, K. S., Donachie, W. D. (1994) Identification of FtsW and characterization of a newftsW division mutant ofEscherichia coli.J. Bacteriol. 176, 7140–7147.

    PubMed  CAS  Google Scholar 

  107. Burton, P. and Holland, I. B. (1983) Two pathways of division inhibition in UV-irradiatedE. coli.Mol. Gen. Genet. 190, 128–132.

    Article  PubMed  CAS  Google Scholar 

  108. Huismann, O., D’Ari, R., and Gottesman, S. (1984) Cell-division control inEscherichia coli: specific induction of the SOS functionsfiA protein is sufficient to block septation.Proc. Natl. Acad. Sci. USA 81, 4490–4494.

    Article  Google Scholar 

  109. Hisgashitani, A., Hisgashitani, N., and Horiuchi, K. (1994) A cell division inhibitor SulA ofEscherichia coli directly interacts with FtsZ through GTP hydrolysis.Biochem. Biophys. Res. Commun. 209, 198–204.

    Article  Google Scholar 

  110. Jones, N. C. and Donachie, W. D. (1973) Chromosome replication, transcription and control of cell division inE. coli.Nature 243, 100–103.

    Article  CAS  Google Scholar 

  111. Hiraga, S., Niki, H., Ogura, T., Ichinose, C., Mori, H., Ezaki, B., and Jaffé, A. (1989) Chromosome partitioning inEscherichia coli: Novel mutants producing anucleate cells.J. Bacteriol. 171, 1496–1505.

    PubMed  CAS  Google Scholar 

  112. Schlaeppi, J.-M. and Karamata, D. (1982) Cosegregation of cell wall and DNA inBacillus subtilis.J. Bacteriol. 152, 1231–1240.

    PubMed  CAS  Google Scholar 

  113. Wheeler, R. T. and Shapiro, L. (1997) Bacterial chromosome segregation: Is there a mitotic apparatus?Cell 88, 577–579.

    Article  PubMed  CAS  Google Scholar 

  114. Webb, C. D., Teleman, A., Gordon, S., Straight, A., Belmont, A., Chi-Hong Lin, D., Grossman, A. D., Wright, A., and Losick, R. (1997) Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells ofB. subtilis.Cell 88, 667–674.

    Article  PubMed  CAS  Google Scholar 

  115. Chi-Hong Lin D., Levin, P. A., and Grossman, A. D. (1997) Bipolar localization of a chromosome partition protein inBacillus subtilis.Proc. Natl. Acad. Sci. USA 94, 4721–4726.

    Article  Google Scholar 

  116. Niki, H., Jaffe, A., Imamura, R., Ogura, T., and Hiraga, S. (1991) The new genemukB codes for a 177 kD protein with coiled-coil domains involved in chromosome partitioning ofE. coli.EMBO J. 10, 183–193.

    PubMed  CAS  Google Scholar 

  117. Niki, H., Imamura, R., Kitaoka, M., Yamanaka, K., Ogura, T., and Hiraga, S. (1992) E. colimukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities.EMBO J. 13, 101–5109.

    Google Scholar 

  118. Barnett, L. A. and Cunningham, M. W. (1992) Evidence for actinlike proteins in an M protein-negative strain ofStreptococcus pyogenes.Infect. Immun. 60, 3932–3936.

    PubMed  CAS  Google Scholar 

  119. Mayer, F., Vogt, B., and Poc, C. (1998) Immunoelectron microscopic studies indicate the existence of a cell shape preserving cytoskeleton in prokaryotes.Naturwissenschaften 85, 278–282.

    Article  PubMed  CAS  Google Scholar 

  120. Condeelis, J. (1995) Elongation factor 1a, translation and the cytoskeleton.Trends Biochem. Sci. 20, 169–170.

    Article  PubMed  CAS  Google Scholar 

  121. Shively, J. M. (1974) Inclusion bodies of prokaryotes.Ann. Rev. Microbiol. 28, 167–187.

    Article  CAS  Google Scholar 

  122. Mayer, F. (1986) Cytology and morphogenesis of bacteria (Encyclopedia of plant anatomy VI/2), Bornträger, Berlin.

    Google Scholar 

  123. Golecki, J. R. and Heinrich, U. R. (1991) Ultrastructural and electron spectroscopic analyses of cyanobacteria and bacteria.J. Microsc. 162, 147–154.

    PubMed  CAS  Google Scholar 

  124. Jensen, T. E. (1993) Cyanobacterial ultrastructure, inUltrastructure of Microalgae (Berner, T., ed.), CRC Press, Boca Raton, Florida, pp. 7–51.

    Google Scholar 

  125. Steinbüchel, A., Aerts, K., Babel, W., Föllner, C., Liebergesell, M., Madkour, M., Mayer, F., Pieper-Fürst, U., Pries, A., Valentin, H. E., and Wieczorek, R. (1995) Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions.Can. J. Microbiol. 41 (Suppl. 1), 94–105.

    PubMed  Google Scholar 

  126. Griebel, R., Smith, Z., and Merrick, J. M. (1968) Metabolism of poly-β-hydroxybutyrate, and properties of native poly-β-hydroxybutyrate granules fromBacillus megaterium.Biochemistry 7, 3676–3681.

    Article  PubMed  CAS  Google Scholar 

  127. Stuart, E. S., Lenz, R. W., Fuller, R. C. (1995) The ordered macromolecular surface of polyester inclusion bodies inPseudomonas oleovorans.Can. J. Microbiol. 41 (Suppl. 1), 84–93.

    Article  CAS  Google Scholar 

  128. de Koning, G. J. M. and Maxwell, I. A. (1993) Biosynthesis of poly-(R)-3-hydroxyalkanoate: An emulsion polymerization.J. Environ. Polym. Degrad. 1, 223–226.

    Article  Google Scholar 

  129. Mayer, F., Madkour, M. H., Pieper-Fürst, U., Wieczorek, R., Liebergesell, M., and Steinbüchel, A. (1996). Electron microscopic observations on the macromolecular organization of the boundary layer of bacterial PHA inclusion bodies.J. Gen. Appl. Microbiol. 42, 445–455.

    CAS  Google Scholar 

  130. Mayer, F. and Hoppert, M. (1997) Determination of the thickness of the boundary layer surrounding bacterial PHA inclusion bodies, and implications for models describing the molecular architecture of this layer.J. Basic Microbiol. 37, 45–52.

    Article  Google Scholar 

  131. Haywood, G. W., Anderson, A. J., and Dawes, E. A. (1989) The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis byAlcaligenes eutrophus.FEMS Microbiol. Lett. 57, 1–6.

    Article  CAS  Google Scholar 

  132. Gerngross, T. U., Reilly, P., Stubbe, J., Sinskey, A. J., and Peoples, O. P. (1993) Immunocytochemical analysis of the poly-β-hydroxybutyrate (PHB) synthase inAlcaligenes eutrophus H16: localization of the synthase enzyme at the surface of PHB-granules.J. Bacteriol. 175, 5289–5293.

    PubMed  CAS  Google Scholar 

  133. Liebergesell, M., Sonomoto, K., Madkour, M., Mayer, F., and Steinbüchel, A. (1994) Purification and characterization of the poly(hydroxyalkanoic acid) synthase fromChromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules.Eur. J. Biochem. 226, 71–80.

    Article  PubMed  CAS  Google Scholar 

  134. Steinbüchel, A., Hustede, E., Liebergesell, M., Pieper, U., Timm, A., and Valentin, H. (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids.FEMS Microbiol. Rev. 103, 217–230.

    Google Scholar 

  135. Schembri, M. A., Bayly, R. C., and Davies, J. K. (1994) Cloning and analysis of the polyhydroxyalkanoic acid synthase gene from anAcinetobacter sp.: evidence that the gene is both plasmid and chromosomally located.FEMS Microbiol. Lett. 118, 145–152.

    Article  PubMed  CAS  Google Scholar 

  136. Hippe, H. and Schlegel, H. G. (1967) Hydrolyse von PHBs durch intrazelluläre Depolymerase vonHydrogenomonas H16.Arch. Mikrobiol. 56, 278–299.

    PubMed  CAS  Google Scholar 

  137. Griebel, R. and Merrick, J. M. (1971) Metabolism of poly-β-hydroxybutyrate: effect of mild alkaline extraction on poly-β-hydroxybutyrate granules.J. Bacteriol. 108, 782–789.

    PubMed  CAS  Google Scholar 

  138. Saito, T., Saegusa, H., Miyata, Y., and Fukui, T. (1992) Intracellular degradation of poly(3-hydroxybutyrate) granules ofZoogloea ramigera 1–16M.FEMS Microbiol. Rev. 103, 333–338.

    Article  CAS  Google Scholar 

  139. Timm, A. and Steinbüchel, A. (1992) Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus ofPseudomonas aeruginosa.Eur. J. Biochem. 209, 15–30.

    Article  PubMed  CAS  Google Scholar 

  140. Jendrossek, D., Backhaus, M., and Andermann, M. (1995) Characterization of the extracellular poly(3-hydroxybutyrate) depolymerase ofComamonas sp. and of its structural gene.Can. J. Microbiol. 41 (Suppl. 1), 160–169.

    PubMed  CAS  Google Scholar 

  141. Tomasi, G., Scandola, M., Briese, B. H., and Jendrossek, D. (1996) Enzymatic degradation of bacterial poly(3-hydroxybutyrate) by a depolymerase fromPseudomonas lemoignei.Macromolecules 29, 507–513.

    Article  CAS  Google Scholar 

  142. Huang, A. H. C. (1992) Oil bodies and oleosins in seeds.Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 177–200.

    Article  CAS  Google Scholar 

  143. Murphy, D. J. (1993) Structure, function and biogenesis of storage lipid bodies and oleosins in plants.Prog. Lipid Res. 32, 247–280.

    Article  PubMed  CAS  Google Scholar 

  144. Pieper-Fürst, U., Madkour, M., Mayer, F., and Steinbüchel, A. (1994) Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules inRhodococcus ruber.J. Bacteriol. 176, 4328–4337.

    PubMed  Google Scholar 

  145. Pieper-Fürst, U., Madkour, M., Mayer, F., and Steinbüchel, A. (1995) Identification of the region of a 14-kilodalton protein ofRhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules.J. Bacteriol. 177, 2513–2523.

    PubMed  Google Scholar 

  146. Wieczorek, R., Pries, A., Steinbüchel, A., and Mayer, F. (1995) Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules inAlcaligenes eutrophus.J. Bacteriol. 177, 2425–2435.

    PubMed  CAS  Google Scholar 

  147. Maddock, J. R., Alley, M. R., and Shapiro, L. (1993) Polarized cells, polar actions.J Bacteriol. 175, 7125–7129.

    PubMed  CAS  Google Scholar 

  148. Shapiro, L. and Losick, R. (1997) Protein localization and cell fate in bacteria.Science 276, 712–718.

    Article  PubMed  CAS  Google Scholar 

  149. Brun, Y. V., Marczynski, G., and Shapiro, L. (1994) The expression of asymmetry duringCaulobacter cell differentiation.Annu. Rev. Biochem. 63, 419–450.

    Article  PubMed  CAS  Google Scholar 

  150. Gober, J. W. and Marques M. V. (1995) Regulation of cellular differentiation inCaulobacter crescentus.Microbiol. Rev. 59, 31–47.

    PubMed  CAS  Google Scholar 

  151. Marczynski, G. T. and Shapiro, L. (1992) Cellcycle control of a cloned chromosomal origin of replication fromCaulobacter crescentus.J. Mol. Biol. 226, 959–977.

    Article  PubMed  CAS  Google Scholar 

  152. Lukat, G. S. and Stock, J. B. (1993) Response regulation in bacterial chemotaxis.J. Cell Biochem. 51, 41–46.

    Article  PubMed  CAS  Google Scholar 

  153. Parkinson, J. S. (1993) Signal transduction schemes of bacteria.Cell 73, 857–871.

    Article  PubMed  CAS  Google Scholar 

  154. Alley, M. R. K., Maddock, J. R., and Shapiro, L. (1992) Polar localization of a bacterial chemoreceptor.Genes Dev. 6, 825–836.

    Article  PubMed  CAS  Google Scholar 

  155. Alley, M. R. K., Maddock, J. R., and Shapiro, L. (1993) Requirement of the carboxyl terminus of a bacterial chemoreceptor for its targeted proteolysis.Science 259, 1754–1757.

    Article  PubMed  CAS  Google Scholar 

  156. Meyer, O. and Schlegel, H. G. (1983) Biology of aerobic carbon monoxide-oxidising bacteria.Annu. Rev. Microbiol. 37, 277–310.

    Article  PubMed  CAS  Google Scholar 

  157. Meyer, O. and Rohde, M. (1984) Enzymology and bioenergetics of carbon-monoxide oxidizing bacteria, inMicrobial Growth on C1 Compounds (Crawford, R. L., Hanson, R. S., eds.), pp. 26–33. American Society for Microbiology, Washington DC.

    Google Scholar 

  158. Meyer, O. (1982) Chemical and spectral properties of carbon monoxide: methylene blue oxidoreductase. The molybdenum-containing iron-sulfur flavoprotein fromPseudomonas carboxydovorans.J. Biol. Chem. 257, 1333–1341.

    PubMed  CAS  Google Scholar 

  159. Meyer, O. (1985) Metabolism of aerobic carbon monoxide-utilizing bacteria, inMicrobial Gas Metabolism—Mechanistic, Metabolic and Biotechnological Aspects (Poole, R. K., Dow, C. S., eds.), Academic Press, London, pp. 131–151.

    Google Scholar 

  160. Meyer, O. (1989) Aerobic carbon-monoxide oxidizing bacteria, inAutotrophic Bacteria Schlegel, H. G., Bowien, B., eds.), Springer, Berlin, pp. 331–350.

    Google Scholar 

  161. Rohde, M., Mayer, F., and Meyer, O. (1984) Immunocytochemical localization of carbon monoxide oxidase inPseudomonas carboxydovorans. The enzyme is attached to the inner aspect of the cytoplasmic membrane.J. Biol. Chem. 259, 14788–14792.

    PubMed  CAS  Google Scholar 

  162. Rohde, M., Mayer, F., Jacobitz, S., and Meyer, O. (1985) Attachment of CO dehydrogenase of the cytoplasmic membrane is limiting the respiratory rate ofPseudomonas carboxydovorans.FEMS Microbiol. Lett. 28, 141–144.

    Article  CAS  Google Scholar 

  163. Jacobitz, S. and Meyer, O. (1989) Removal of CO dehydrogenase fromPseudomonas carboxydovorans cytoplasmic membranes, rebinding to depleted membranes, and restoration of respiratory activities.J. Bacteriol. 171, 6294–6299.

    PubMed  CAS  Google Scholar 

  164. Gerberding, H. and Mayer, F. (1988) Localization of the membrane-bound hydrogenase inAlcaligenes eutrophus by electron microscopic immunocytochemistry.FEMS Microbiol. Lett. 50, 265–270.

    Article  CAS  Google Scholar 

  165. Eismann, K., Mlejnek, K., Zipprich, D., Hopper, M., Gerberding, H., and Mayer, F. (1995) Antigenic determinants of the membrane-bound hydrogenase inAlcaligenes eutrophus are exposed to the periplasm.J. Bacteriol. 177, 6309–6312.

    PubMed  CAS  Google Scholar 

  166. Friedrich, B. and Schwartz, E. (1993) Molecular biology of hydrogen utilization in aerobic chemolithotrophs.Annu. Rev. Microbiol. 47, 351–383.

    Article  PubMed  CAS  Google Scholar 

  167. Bernhard, M., Benelli, B., Hochkoeppler, A., Zannoni, D., and Friedrich, B. (1997) Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex ofAlcaligenes eutrophus H 16.Eur. J. Biochem. 248, 179–186.

    Article  PubMed  CAS  Google Scholar 

  168. Ossmer, R., Mund, T., Hartzell, P. L., Konheiser, U., Kohring, G. W., Klein, A., Wolf, R. S., Gottschalk, G., and Mayer, F. (1986) Immunocytochemical localization of component C of the methylreductase system inMethanococcus voltae andMethanobacterium thermoautotrophicum.Proc. Natl. Acad. Sci USA 83, 5789–5792.

    Article  PubMed  CAS  Google Scholar 

  169. Aldrich, H. C., Beimborn, D. B., Bokranz, M., and Schönheit, P. (1987) Immunocytochemical localization of coenzyme M-reductase inMethanobacterium thermoautotrophicum.Arch. Microbiol. 174, 190–194.

    Article  Google Scholar 

  170. Bonacker, L. G., Baudner, S., Mörschel, E., Böcher, R., and Thauer, R. K. (1993). Properties of the two isoenzymes of methyl-coenzyme M reductase inMethanobacterium thermoautotrophicum.Eur. J. Biochem. 217, 587–595.

    Article  PubMed  CAS  Google Scholar 

  171. Hoppert, M. and Mayer, F. (1990) Electron microscopy of native and artificial methylreductase high-molecular-weight complexes in strain Gö1 andMethanococus voltae.FEBS Lett. 267, 33–37.

    Article  PubMed  CAS  Google Scholar 

  172. Bach, T. J. (1995) Some new aspects of isoprenoid biosynthesis in plants: a review.Lipids 30, 191–202.

    Article  PubMed  CAS  Google Scholar 

  173. Malaisse, W. J. (1996) Regulation, perturbation, and correction of metabolic events in pancreatic islets.Acta Diabetologica 33, 173–179.

    PubMed  CAS  Google Scholar 

  174. Velot, C., Mixon, M. B., Teige, M., and Srere, P. A. (1997) Model of a quinary structure between Krebs TCA cycle enzymes: A model for the metabolon.Biochemistry 36, 14271–14276.

    Article  PubMed  CAS  Google Scholar 

  175. Clegg, J. S. (1984) Properties and metabolism of the aqueous cytoplasm and its boundaries.Am. J. Physiol. 15, R133-R151.

    Google Scholar 

  176. Mastro, A. and Keith, A. D. (1984) Diffusion in the aqueous compartment.J. Cell Biol. 99, 180S-187S.

    Article  PubMed  CAS  Google Scholar 

  177. Legrain, C., Demarez, M., Glansdorff, N., and Pierard, A. (1995) Ammonia-dependent synthesis and metabolic channeling of carbamoyl phosphate in the hyperthermophilic archaeonPyrococcus furiosus. Microbiology 141, 1093–1099.

    CAS  Google Scholar 

  178. Mitchell, C. G. (1996) Identification of a multienzyme comple of the tricarboxylic acid cycle enzymes containing citrate synthase isoenzymes fromPseudomonas aeruginosa.Biochem. J. 313, 769–774.

    PubMed  CAS  Google Scholar 

  179. Mowbray, J. and Moses, V. (1976) The tentative identification inEscherichia coli of a multienzyme complex with glycolytic activity.Eur. J. Biochem. 66, 25–36.

    Article  PubMed  CAS  Google Scholar 

  180. Gorringe, D. M. and Moses, V. (1980) Organization of the glycolytic enzymes inEscherichia coli.Int. J. Biol. Macromol. 2, 161–173.

    Article  Google Scholar 

  181. Freudenberg, W., Mayer, F., and Andreesen, J. R. (1989) Immunocytochemical localization of proteins P1, P2, P3 of glycine decarboxylase and of the selenoprotein PA of glycine reductase, all involved in anaerobic glycine metabolism ofEubacterium acidaminophilum.Arch. Microbiol. 152, 182–188.

    Article  CAS  Google Scholar 

  182. Andreesen, J. R. (1994) Glycin metabolism in anaerobes.Antonie van Leeuwenhoek 66, 223–237.

    Article  PubMed  CAS  Google Scholar 

  183. Aldrich, H. C., McDowell, L., Barbosa, M. F., Yomano, L. P., Scopes, R. K., and Ingram, L. O. (1992) Immunocytochemical localization of glycolytic and fermentative enzymes inZymomonas mobilis.J. Bacteriol. 174, 4504–4508.

    PubMed  CAS  Google Scholar 

  184. Goodsell, D. S. (1991) Inside a living cell.Trends Biochem. Sci. 16, 203–206.

    Article  PubMed  CAS  Google Scholar 

  185. Beeckmans, S., Van Driessche, E., and Kanarek, L. (1993) Immobilized enzymes as tools for the demonstration of metabolon formation. A short overview.J. Mol. Recognit. 6, 195–204.

    Article  PubMed  CAS  Google Scholar 

  186. Israelachvili, J. N. and Adams, G. E. (1978) Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm.J. Chem. Soc. Faraday Trans. I 74, 975–1001.

    Article  CAS  Google Scholar 

  187. Israelachvili, J. and Wennerström, H. (1996) Role of hydration and water structur in biological and colloidal interactions.Nature 379, 219–225.

    Article  PubMed  CAS  Google Scholar 

  188. Wiggins, P. M. (1990) Role of water in some biological processes.Microbiol. Rev. 54, 432–449.

    PubMed  CAS  Google Scholar 

  189. Hoppert, M., Braks, I., and Mayer, F. (1994) Stability and activity of hydrogenases ofMethanobacterium thermoautotrophicum andAlcaligenes eutrophus in reversed micellar systems.FEMS Microbiol. Lett. 118, 249–254.

    Article  PubMed  CAS  Google Scholar 

  190. Hoppert, M., Seiffert, B., Mlejnek, K., and Mayer, F. (1997) Compartmentation of enzymes in microorganisms—enzyme function is influenced by the structure of water adjacent to biological membranes, inInstruments, Methods and Missions for the Investigation of Extraterrestrial Microorganisms (Hoover, R. B., ed.), Proceedings of SPIE, vol. 3111, The International Society for Optical Engineering, Bellingham, WA, pp. 501–509.

    Google Scholar 

  191. Bianucci, M., Maestro, M., and Walde, P. (1990). Bell-shaped curves of the enzyme activity in reverse micelles: a simplified model for hydrolytic reactions.Chem. Phys. 141, 273–283.

    Article  CAS  Google Scholar 

  192. Khmelnitsky, Y. L., Neverova, I. N., Polyakov, V. I., Grinberg, V. Y., Levashov, A. V., and Martinek, K. (1990). Kinetic theory of enzymatic reactions in reversed micellar systems. Eur. J. Biochem.190, 155–159.

    Article  PubMed  CAS  Google Scholar 

  193. Levashov, A. V., Klyachko, N. L., Bogdanova, N. G., and Martinek, K. (1990) Fixation of a highly reactive form of α-chymotrypsin by micellar matrix.FEBS Lett. 268, 238–240.

    Article  PubMed  CAS  Google Scholar 

  194. Tsujii, K., Sunamoto, J., and Fendler, J. H. (1983) Microscopic viscosity of the interior water pool in dodecylammonium propionate reversed micelles.Bull. Chem. Soc. Jpn. 56, 2889–2893.

    Article  CAS  Google Scholar 

  195. Walde, P., Peng, Q., Fadnavis, N. W., Battistel, E., and Luisi, P. L. (1988) Structure and activity of trypsin in reverse micelles.Eur. J. Biochem. 173, 401–409.

    Article  PubMed  CAS  Google Scholar 

  196. Khmelnitsky, Y. L., Kabanov, A. V., Klyachko, N. L., Levashov, A. V., and Martinek, K. (1989) Enzymatic catalysis in reversed micelles. In:Structure and Reactivity in Reverse Micelles (Pileni, M. P., ed.), Elsevier Scientific, Amsterdam, pp. 230–261.

    Google Scholar 

  197. Luisi, P. L. and Magid, L. J. (1986) Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions.Crit. Rev. Biochem. 20, 409–474.

    CAS  Google Scholar 

  198. Krepinsky, K., Seiffert, B., Mayer, F., and Hoppert, M. (1998) Influence of biological membranes on enzyme activity.Biospektrum Sonderausgabe (special edition) 1998, 52.

  199. Gunning, B. E. S. and Steer, M. W. (1986) Bildatlas zur Biologie der Pflanzenzelle. Gustav Fischer Publ., Stuttgart.

    Google Scholar 

  200. Acker, G. (1977) The arrangement of lipo-polysaccharides on the outer membrane ofYersinina enterolitica: an electron microscopic study.Zbl. Bakt. Hyg., I. Abt Orig. A 237, 504–522.

    CAS  Google Scholar 

  201. Nolte, A. and Mayer, F. (1989) Localization and immunological characterization of the cellulolytic enzyme system inClostridium thermocellum.FEMS Microbiol. Lett. 61, 65–72.

    Article  CAS  Google Scholar 

  202. Pfüller, U. (1986). Anleitung für die chemische Laboratoriumspraxis22; Mizellen-Vesikel-Mikroemulsionen. Springer, Berlin.

    Google Scholar 

  203. Matuschek, M. (1995) Molekularbiologische Charakterisierung extrazellulärer Glycosidasen vonThermoanaerobacterium thermosulfurigenes EM1: Homologie einer Enzymdomäne zur Struktur von Surface-Layer-Proteinen. Cuvillier, Göttingen.

    Google Scholar 

  204. Erickson, H. P., Taylor, D. W., and Taylor, K. A. (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers.Proc. Natl. Acad. Sci. USA 93, 519–523.

    Article  PubMed  CAS  Google Scholar 

  205. Rothfield, L. I. and Justice, S. S. (1997). Bacterial cell division: The cycle of the ring.Cell 88, 581–584.

    Article  PubMed  CAS  Google Scholar 

  206. Rohde, M. (1983) Immunelektronenmikroskopische Untersuchung derin situ Lokalisierung von Kohlenmonoxid-Oxidase ausPseudomonas carboxydovorans mit Hilfe der Immunferritin- und der Protein A-Gold-Technik. Thesis, University of Göttingen.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hoppert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoppert, M., Mayer, F. Principles of macromolecular organization and cell function in bacteria and archaea. Cell Biochem Biophys 31, 247–284 (1999). https://doi.org/10.1007/BF02738242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738242

Index Entries

Navigation