Skip to main content
Log in

Defect chemistry and intrinsic carrier concentration for Hg1−x Cdx Te(s) for x = 0.20, 0.40, and 1.0

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The theoretical equations governing the crystal-vapor equilibrium for Hg1−x Cdx Te(s) are summarized for a model with doubly-ionized native defects and applied to the data for x = 0.20, 0.40, and 1. The basic equations (Eq. (1) or (19)) are shown to contain those used elsewhere as special cases. Allowing the intrinsic carrier concentration, n1, to vary, but under constraints, to obtain an optimum fit and assuming a non-degenerate semiconductor, the hole con-centration-mercury pressure isotherms can be fitted satis-factorily and better than before with standard deviations between 22 and 24% for x = 0.20 and 0.40. A number of sets of model parameters give these fits, some of which give values as large as 10/cm at 500δC for the square root of the Schottky constant for ionized vacancies. In agreement with experiment, each of these parameter sets for x = 0.20 and 0.40 predicts a negligible dependence of the 77 and 192 K Hall mobilities upon equilibration temperature and predicts that metal saturation between 250 and 300δC with foreign donors in the 1015/cm3 range will result in elec-tron concentrations in the same range and dependent on saturation temperature to less than 26%. The enthalpy to create a “Hg-vacancy” and two holes is an invariant of the fits and is 2.00 ± 0.04 eV for x = 0.40 and 1.94 ± 0.02 eV for x = 0.20. Then ni is calculated independently assuming a parabolic valence band and a Kane conduction band. With an exact density of states for the latter obtained here, the momentum matrix element, P = 8.5 × 10−8 eV-cm, the spin-orbit splitting, Δ = 1 eV, and E (x, T) from Hansen et al., the experimental values below 300 K for 0 ≤x = 0.3 and at high temperature for x = 1 are fitted well with m h /m = 0.70. With these independently calculated values for ni the electron concentration-cadmium pressure isotherms for CdTe can be fitted to about 7% for either of two incon-sistent data sets assuming 2 × 1016 /cm3 foreign donors. However data for x = 0.40 can be fitted to only 42% and that for x = 0.20, which is degenerate, to only 28%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. O. Kane, J. Phys. Chem. Solidsl1, 249 (1957).

    Article  Google Scholar 

  2. J. L. Schmit, J. Appl. Phys.41, 2876 (1970).

    Article  CAS  Google Scholar 

  3. J. L. Schmit and E. L. Stelzer, J. Electron. Mater.7, 65 (1978).

    CAS  Google Scholar 

  4. J. P. Schwartz, Tse Tung, and R. F. Brebrick, J. Electrochem. Soc.128, 438 (1981).

    Article  CAS  Google Scholar 

  5. R. F. Brebrick and J. P. Schwartz, J. Electron. Mater.9, 485 (1980).

    Article  CAS  Google Scholar 

  6. W. Scott, E. L. Stelzer, and R. J. Hager, J. Appl. Phys.47, 1408 (1976).

    Article  CAS  Google Scholar 

  7. H. R. Vydyanath, J. C. Donovan, and D. A. Nelson, J. Electrochem. Soc.128, 2625 (1981).

    Article  CAS  Google Scholar 

  8. H. R. Vydyanath, J. Electrochem. Soc.128, 2609 (1981).

    Article  CAS  Google Scholar 

  9. R. A. Reynolds, M. J. Brau, H. Kraus, and R. T. Bate, “The Physics of Semimetals and Narrow Gap Semiconductors” Eds. D. L. Carter and R. T. Bate, Pergamon Press, Oxford (1971).

    Google Scholar 

  10. F. T. J. Smith, Met. Trans.1, 617 (1970).

    CAS  Google Scholar 

  11. S. S. Chern, H. R. Vydyanath, and F. A. Kroger, J. Solid State Chem.14 33 (1975).

    Article  CAS  Google Scholar 

  12. R. F. Brebrick in “Progress in Solid State Chemistry” Vol. 3, Editor, H. Reiss, Pergamon Press, Oxford (1966).

    Google Scholar 

  13. R. F. Brebrick, J. Solid State Chem.1, 88 (1969).

    Article  CAS  Google Scholar 

  14. T. C. Harman and A. J. Strauss, J. Electron. Mater.5, 621 (1976).

    CAS  Google Scholar 

  15. R. F. Brebrick, J. Electron. Mater.6, 659 (1977).

    CAS  Google Scholar 

  16. R. F. Brebrick, J. Phys. Chem. Solids40, 177 (1979).

    Article  CAS  Google Scholar 

  17. G. L. Hansen, J. L. Schmit, and T. N. Casselman, J. Appl. Phys.53, 7099 (1982).

    Article  CAS  Google Scholar 

  18. M. H. Weiler, Vol. 16 of “Semiconductors and Semimetals,” Eds. R. K. Willardson and A. C. Beer, Academic Press, New York, (1981).

    Google Scholar 

  19. G. L. Hansen and J. L. Schmit, J. Appl. Phys.54, 1639 (1983).

    Article  CAS  Google Scholar 

  20. W. Ehrenberg, Proc. Phys. Soc.(A) 63, 75 (1950).

    Google Scholar 

  21. J. Singer, “Elements of Numerical Analysis,” p. 273, Academic Press, N.Y. (1964).

    Google Scholar 

  22. Tse Tung, Ching-Hua Su, Pok-Kai Liao, and R. F. Brebrick, J. Vac. Sci. and Tech.21, 117 (1982).

    Article  CAS  Google Scholar 

  23. J. A. Neider and R. Mead, Computer J.7, 308 (1965).

    Google Scholar 

  24. H. Rodot, M. Rodot, and M. Triboulet, Compte Rend.256, 5535 (1963).

    CAS  Google Scholar 

  25. J. Stankiewicz and W. Giriat, Phys. Rev.B13, 665 (1976).

    Google Scholar 

  26. E. Z. Dzuiba, Phys. Stat. Sol.62, 307 (1974).

    Article  Google Scholar 

  27. C. Verie, Phys. Stat. Sol.17, 889 (1966).

    Article  CAS  Google Scholar 

  28. H. B. Bebb and C. R. Ratliff, J. Appl. Phys.42, 3189 (1971).

    Article  CAS  Google Scholar 

  29. H. Ehrenreich, J. Phys. Chem. Solids2, 131 (1957).

    Article  Google Scholar 

  30. R. Dornhaus and G. Nimtz, Springer Tracts in Modern Physics, Vol. 78, Springer-Verlag, Berlin (1976).

    Google Scholar 

  31. C. Z.van Doom and D. de Nobel, Physica22, 338 (1956).

    Article  Google Scholar 

  32. R. F. Brebrick, J. Electrochem. Soc.118, 2014 (1971).

    Article  CAS  Google Scholar 

  33. T. N. Casselman, J. Appl. Phys. ul52, 848 2619.

  34. H. R. Vydyanath,J. Electrochera. Soc. 128, 2619 1981.

    Article  CAS  Google Scholar 

  35. Y. Nemirovsky and E. Finkman, J. Appl. Phys.50, 8107 (1979).

    Article  CAS  Google Scholar 

  36. C. T. Elliott, J. Phys.D 4, 697 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, CH., Liao, PK. & Brebrick, R.F. Defect chemistry and intrinsic carrier concentration for Hg1−x Cdx Te(s) for x = 0.20, 0.40, and 1.0. J. Electron. Mater. 12, 771–826 (1983). https://doi.org/10.1007/BF02655295

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655295

Key Words:

Navigation