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ABSTRACT: The motivation for this study is to analyze the complexity of the
problems of checking whether a given feasible solution is not a local minimum,

and that of checking whether the objective function is not bounded below on the
set of feasible solutions, in continuous variable, smooth, nonconvex nonlinear
programming problems. We construct a very special instance called the simplest
nonconvex NLP in this class (this is an indefinite quadratic programming problem
with very simple objective and very simple constraints) with integer data and

show that checking either of the above problems on this instance is an NP-complete
problem. As a corollary we obtain the result that the problem of checking

whether a given integer square matrix is not copositive, is NP-complete.

KEYWORDS: Convex or nonconvex nonlinear programming problems, local minimum,
global minimum, unboundedness of the objective function, computational
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matrices, positive semidefinite matrices.
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INTRODUCTION
Consider the smooth nonlinear program (NLP)
minimize 0(x)
(1)
subject to g;(x) > 0, i =1 tom
where each of the functions is a real valued function defined on Rn, with high

degrees of differentiability. Here x = (Xq1,...,X )T ¢ R, This NLP is said to

n
be a convex NLP if o(x) is convex and gi(x) are concave for all i, nonconvex
NLP, otherwise. Without any loss of generality, we assume that the NLP is
always stated in minimization form.

For a convex NLP, under some constraint qualifications, necessary and
sufficient optimality conditions are known. See [1, 3, 5]. Given a feasible
solution satisfying the constraint qualification, it is possible to check very
efficiently, using these optimality conditions, whether that point is a
(global) optimum solution of the problem or not.

For nonconvex NLPs, under constraint qualifications, some necessary
conditions for a local minimum are known, and there are some sufficient
conditions for a point to be a local minimum. See [1, 3, 5]. But there are no
simple conditions known, which are both necessary and sufficient for a given
point to be a local minimum. The complexity of checking whether a given
feasible solution is a local minimum in a nonconvex NLP is not usually addressed
in the literature. When they discuss algorithms, many text books in NLP leave
the reader with the impression that these algorithms converge to a global
minimum in convex NLPs, and to a local minimum in nonconvex NLPs. The
documentations for many professional software packages for NLP also create the
same impression. This impression could be quite erroneous. In this paper, we
study this problem by examining the computational complexity of determining

whether a given feasible solution is not a local minimum, and that of determining



whether the objective function is not bounded below on the set of feasible
solutions, in smooth continuous variable nonconvex NLPs. For this purpose, we
analyze an indefinite quadratic program (QP) with integer data, which may be
considered as the simplest nonconvex NLP. It turns out that the questions of
determining whether a given feasible solution is not a local minimum in this
problem, and to check whether the objective function is not bounded below in
this problem, can both be studied using the discrete techniques of computational
complexity theory, and in fact these questions are NP-complete. This clearly
shows that in general, it is a hard problem to check whether a given feasible
solution in a nonconvex NLP is a local minimum or not, or to check whether the
objective function is bounded below or not on its set of feasible solutions.
This indicates the following: when a nonlinear programming algorithm is applied
on a nonconvex NLP, unless it is proved that it converges to a point satisfying
some known sufficient condition for a local minimum, claims that it leads to a
local minimum are hard to verify in the worst case. Also, in continuous
variable smooth nonconvex minimization, even the down~to~earth goal of
guaranteeing that a local minimum will be obtained by an algorithm (as opposed
to the lofty goal of finding the global minimum) may be hard to attain. We make
some more comments on this issue at the end of the paper.
FINDING A GLOBAL MINIMUM IN A SMOOTH NONCONVEX NLP IS A HARD PROBLEM

The problem of'computing a global minimum, or checking whether a given
feasible solution is a global minimum, for a smooth nonconvex NLP, may be hard
problems in general. We provide two examples.
EXAMPLE 1: FERMAT'S LAST CONJECTURE: Some of the hardest unsolved problems ;n
mathematics can be posed as problems of finding a global minimum in a smooth
nonconvex NLP. Consider the Fermat's last conjecture, unresolved since 1637
A.D. It states that there exists no positive integer solution (x, y, z) to the

equation



when n is an integer 2 3 (here, X, y, 2 € R1). Eventhough this conjecture has
been shown to be true for several individual values of n, in general, it remains
open. Obviously, Fermat's last conjecture is true iff the global minimum
objective value in the following NLP is > 0, where o is a positive penalty
parameter, and II is the length of the circumference of the circle of diameter 1
in R2.
minimize (x% + y1 = zM)2 + o <(1 ~ Cos(2mx ) + (1 - Cos(?ny))2
+ (1 - Cos(2]Iz))2 + (1 - Cos(2Hn))2>
subject to x, y, z 21, n 2 3.
EXAMPLE 2: SUBSET~SUM PROBLEM: To establish mathematically that the problem of
computing a global minimum in a nonconvex NLP is a hard problem, we consider the
subset«sum problem, a hard problem in discrete optimization, which is known to

be NP-complete (see [2]): given positive integers dys dyy ey dp; is there a

n’
solution to

n
L diys = dO
j=1rJ7J (2)

yj =0 or 1 for all j
Now consider the following quadratic programming problem

e . n v 2 n
minimize ( L d.y;~d )< + I y.(1-y.)

subject to 0 £ yj £ 1, J =1ton,
Because of the second term in the objective function, (3) is a nonconvex
quadratic programming problem. Clearly (2) has a feasible solution iff the
global minimum objective value in (3) is zero. Since the problem of checking
whether (2) has a feasible solution is NP-complete, computing the global minimum
in (3), a very special and simple case of a smooth nonconvex NLP, is an NP<hard
problem. This shows that in general, the problem of computing a global minimum

in a smooth nonconvex NLP may be a hard problem.



CAN WE AT LEAST COMPUTE A LOCAL MINIMUM FOR A SMOOTH NONCONVEX NLP, EFFICIENTLY?
Since the problem of computing a global minimum in a nonconvex NLP is a
hard problem, we will now study the question of whether it is at least possible
to compute a local minimum, or check whether a given feasible solution for such
a problem is not a local minimum, by efficient algorithms. We review the known
optimality conditions for a given feasible solution x to (1) to be a local
minimum. Let A = {i: gi(f) = 0}. Optimality conditions are derived under the
assumption that some constraint qualifications (CQ, see [1, 3, 5]) are satisfied
at x, which we assume.
FIRST ORDER NECESSARY CONDITIONS FOR x TO BE A LOCAL MINIMUM FOR (1)
There must exist a uy = (u;: 1 € A) such that

vo(x) - % iiV8i(;) =0
ieA (4)

u; 20, for all i € A

Here WXE),»Vgi(f) are the gradient vectors (row vectors) of these functions
evaluated at Xx. Given the feasible solution f, it is possible to check whether
(4) holds, efficiently, using Phase I of the simplex method for 1linear
programming.
SECOND ORDER NECESSARY CONDITIONS FOR x TO BE A LOCAL MINIMUM FOR (1)

These conditions include (4). Given EA satisfying (4) together with x, let
L(x, HA) = 0(x) = igA ﬁigi(x). In addition to (4) these conditions require

yTHy‘; 0, for all y ¢ {y: Vgi(;)y = 0 for each i ¢ A} (5)

where H is the Hessian matrix of L(x, ﬁA) with respect to x at x = x. Condition
(5) requires the solution of a quadratic program involving only equality
constraints, which can be solved efficiently. It is equivalent to checking the
positive semidefiniteness of a matrix which can be carried out efficiently using

Gaussian pivot steps (see [5]).



SUFFICIENT CONDITIONS FOR X TO BE A LOCAL MINIMUM FOR (1)

Given the feasible solution x, and EA which together satisfy (4), the most

general known sufficient optimality condition states that if

. yTHy > 0 for all y € T, (6)
where T, = {y: y 4 0 and Vgi(;)y =0 for each i € {i: 1 ¢ A and Ei >0}, and
Vg,(X)y 2 0 for each i e {i: ie¢Aandy; =0}}. Unfortunately, when His not
positive semidefinite, the problem of checking whether (6) holds leads to a
nonconvex QP, which, as we will see later, may be hard to solve.

Aside from the question of the difficulty of checking whether (6) holds, we
can verify that the gap between conditions (5) and (6) is very wide,
particularly when the set {i: 1 ¢ A and Ei = 0} + p. In this case, condition
(5) may hold, and even if we are able to check (6), if it is not satisfied, we
are unable to determine whether x is a local minimum for (1) with present
theory.

Now we will use a simple indefinite QP, related to the.problem of checking
whether the sufficient optimality condition (6) holds, to study the following
questions.

i) Given a smooth nonconvex NLP and a feasible solution for it, can we
check whether it is a local minimum or not efficiently?

ii) At least in the simple case when the constraints are linear, can we
check efficiently whether the objective function is bounded below or not on the
set of feasible solutions?

Let D be an integer square symmetric matrix of order n. D is said to be
positive semidefinite (PSD) if x1Dx 2 0 for all x € RM. So checking whether D
is not PSD involves the question "is there an x ¢ R satisfying xIDx < O, It
is well known that this question can be settled by performing at most n Gaussian

pivot steps along the main diagonal of D, requiring a computational effort of at

most 0(n3). (For example, see [5 or 6]).



The matrix D is said to be copositive if x I Dx 2 0 for all x> 0. All PSD
matrices are copositive, but a matrix which is not PSD may be copositive.
Testing whether the given matrix D is not copositive involves the question "is
there an x > 0 satisf&ing xIDx < O". If D is not PSD, no efficient algorithm
for this question is known (some enumerative methods are available for this
problem, see [5], but the computational effort required by these methods grows
exponentially with n in the worst case). In fact we show later that this
question is NP~complete. To study this question, we are naturally led to the

NLP

T

minimize Q(x) = x'Dx

(7)
subject to x > 0
We will show that this problem is an NP-~hard problem.
We assume that D is not PSD. So Q(x) is nonconvex and (7) is a nonconvex

NLP. It can be considered the simplest nonconvex NLP. We consider the
following decision problems.

Problem 1: Is x = 0 not a local minimum for (7)?

Problem 2: Is Q(x) not bounded below on the set

of feasible solutions of (7)?

Clearly, the answer to problem 2 is in the affirmative iff the answer to problem
1 is. We will show that both these problems are NP~complete. To study problem
1, we canreplace (7) by the NLP
Tp

minimize Q(x) = x'Dx

(8)
subject to 0 < x; <1, j=1¢ton

LEMMA 1: The decision problem "is there an X feasible to (8) which satisfies
Q(x) < 0", is in the class NP.

PROOF: Given an x feasible to (8), to check whether Q(x) < 0, can be done by
computing Q(x) which takes 0(n) time. Also, if the answer to the problem is in

the affirmative, an optimum solution x of (8) satisfies Q(X) < 0. There is a



linear complementarity problem (LCP) corresponding to (8) and an optimum
solution for (8) must correspond to a basic feasible solution (BFS) for this
LCP. Since there are only a finite number of BFSs for an LCP, and they are all
rational vectors, a nondeterministic algorithm can find one of them satisfying
Q(x) < 0, if it exists, in polynomial time. Hence, this’problem is in the class
. |
LEMMA 2: The optimum objective.value in (8) is either 0 or ¢ -27L where L is
the size of D.
PROOF: Since the set of feasible solutions of (8) is a compact set and Q(x) is
continuous, (8) has an optimum solution.

By well known results, the necessary optimality conditions for (8) lead to

the following linear complementarity problem (LCP), see [5 or 6].

u D : I X 0
o0 - ..cno . = (9)
\'4 "I: 0 y e
u X
20, (... ] 20, (10)
v y
u T X
LY e e 0 =0 (11)
v y

where y is the column vector of Lagrange multipliers associated with the
constrainis "xj £ 1 forall j", and u, v are the column vectors in R of dual

and primal slack variables. For every optimum solution x of (8), there exist
vectors u, v, y such that (u, v, x, y) solves (9), (10) and (11). Also, it can
be verified that whenever (u, v, x, y) satisfies (9), (10) and (11), x1Dx = —eTy,
a linear function, where e is the column vector of all 1's in R™. S0, there
exists an optimum solution of (8) which is a basic feasible solution (BFS) of

(9), (10). By the results under the ellipsoid algorithm (see, for example [4,

51), in every BFS of (9), (10), each Y; is either 0 or 2 2"k, 1f the optimum



objective value in (8) is not zero, it must be < 0, and this together with the
above facts implies that an optimum solution x of (8) corresponds to a BFS (u,
v, X, y) of (9), (10) in which “eTy < 0. All these facts clearly imply that the
optimum objective valAue in (8) is either 0 or ¢ ~2°L, .
We now make a list of several decision problems, some of which we have
already seen, and some new ones which we need for establishing our results.
Problem 3: Is there an x 2 0 satisfying Q(x) < 0?
Problem 4: For any positive integer ays is there an
x ¢ R? satisfying e'x = a,, X 2 0 and Q(x) < 02
Now consider a subset sum problem with data do; d1, eeey dn, which are all
positive integers. Let Y be a positive integer > M(doggd.))z n3. Let.l be the
size of this subset sum problem, that is, the total number of digits in all the
data for the problem. Let € be a positive rational number < 2“n2% The subset
sum problem is:
Problem 5: Subset sum problem: Is there ay = (yj) e RP
satisfying jg1 djyj = do, 0 é_yj £1,3=1¢ton,
and y integer vector.

We now défine several functions involving nonnegative variables y = (y1, veey

yn)T and s = (s1, eeey S )T, related to the subset sum problem.
- - 2 n PRY
£y, 8) = ( z 4595 = do)” Y <j§1(yj vy =) > ' J§1yjsj
_ 2 n n 2
= (, E1dJ J) J§1yjsj + Yj£1 (yj + sj)

~2d (% diy.) = 20 8 (y, *+8.) +ny + o2
0321959 FERRA TS RO 0
fo(y, 8) = f1(y, s) + 2d ( L dyy;(1 = j)>
_.n 5 n 5 n
- (j£1djyj) * Yj§1(yj v SJ) * j§1yjsj

Zdo(j£1djyj) 2Yj£1(yj + sj) +nY + dg



. 2 2., %
£3(y, 8) = ( z dJyJ) + Y Z (yJ *+85) j§1yjsj

- 2 .
2doJZ1dJyJ + dO ny.

_ 2 n 2 n
fyly, s) = ( Z dJYJ) + Yj§1(yj + Sj) + j£1yjsj
2 .
03549 3 2 =17 T
€ n 2
f , 8) =« (= p) . + 8.

Let P = {(Yl 8): Yy ; 0, S__>= 0,

n~Ms

; 1(yj + sj) = n}. Consider the following
additional decision problems

Problem 6: 1Is there a (y, s) ¢ P satisfying f1(y, s) £ 0?

Problem 7: 1Is there a (y, s) ¢ P satisfying fz(y, s) £ 0?

Problem 8: Is there a (y, s) e P satisfying f)(y, s) £ 0?

Problem 9: Is there a (y, s) € P satisfying f‘5(y, s) < 0?
THEOREM 1: Problem 4 is an NP<hard problem.
PROOF: Since f1(y, s) is a sum of nonnegative terms whenever (y, s) € P, if (y,
s) € P satisfies f‘1(37, s) £ 0, then we must have f1 (37, s) = 0, thisclearly
implies from the definition of f‘1(y, s), that the following conditions must
hold.

it 1 JyJ = dg, 'fjgj =Oand37j+§j =1, forall j =1ton
These conditions clearly imply that 37 is a solution of the subset sum problem
and that the answer to problem 5 is in the affirmative. Conversely if § = (9 )

is a solution to the subset sum problem, define § = (’éj) where §; = 1 = 93’ for

J
each j =1 ton, and it canbe verified that f,(§, §) = 0. This verifies that
problems 5 and 6 are equivalent.

Whenever ¥ is a 0~1 vector, we have yj = §§ for all j, and this implies

that f,(y, s) = f5(y, s) for any s. So, from the above arguments, we see that

if (y, s) € P satisfies f (y, s) 0, then f, (y, s) =f (y, 5) =0, IfO éyj <1,



Y 2
we have 2dodjyj(1 yj) 2 0. If (y, s) e P, and, Y > 1, then 2(yj 85 1)

j) 2 0, since Y is large (from the definition of Y). Using this

and the definitions ef f(y, s), f,(y, s), it can be verified that for (y, s) ¢ P,

+ 2dodjyj(1 -y

if f‘2(y, s) < 0 then f‘1(y, s) <0 too. These facts imply that problems 6 and 7
are equivalent.

Clearly, problems 7 and 8 are equivalent.

From the definition of ¢ (since it is sufficiently small) and using Lemma
2, one can verify that problems 8 and 9 are equivalent.

Problem 9 is a special case of problem 4, Since problem 5 is NP-complete,
from the above chain of arguments we conclude that problem 4 is NP<hard. .
THEOREM 2: Problem 4 is NP-complete.
PROOF: The answer to problem 4 is in the affirmative iff the answer to the
decision problem in the statement of Lemma 1 is in the affirmative. So, from
Lemma 1 we conclude that problem 4 is in NP. From Theorem 1, this shows that
problem 4 is NP<complete. .
THEOREM 3: Problem 3 is NP-complete.
PROOF: Problems 3 and 4 are clearly equivalent, this result follows from
Theorem 2. .
THEOREM 4: Both problems 1 and 2 are NP«complete.
PROOF: Problems 1 and 2 are both equivalent to problem 3, so this result
follows from Theorem 3. .
THEOREM 5: Given an integer square matrix D, the decision problem "is D not
copositive?" is NP~complete.
PROOF: The decision problem "is D not copositive?" is equivalent to problem 1,

hence this result follows from Theorem U4. -

10



CAN WE CHECK LOCAL MINIMALITY EFFICIENTLY IN UNCONSTRAINED MINIMIZATION PROBLEMS?
Let O(x) be a real valued smooth function defined on R, Consider the
unconstrained problem

minimize 0(x). (12)
A necessary condition for a given point x € R" to be a local minimum for (12) is
ve(x) = 0, H(8(x)) is PSD (13)

where H(9(x)) is the Hessian matrix (the matrix of second order partial
derivatives) of 0(x) at x. A sufficient condition for x to be a local minimum for
(12) is

Vo(x) = 0, H(0(x)) is positive definite (14)

Both conditions (13) and (14) can be checked very efficiently. If (13) is
satisfied, but (14) is violated, there are no simple conditions known to check
whether or not x is a local minimum for (12). Here, we investigate the complexity
of checking whether .or not a given point x is a local minimum for (12), and that of
checking whether 0(x) is bounded below or not over R,

As before, let D = (dij) be an integer square symmetric matrix of order n.

Consider the unconstrained problem,

minimize h(w) = (u2, ..., v})p(u?, ..., ud)T (15)

Clearly, (15) is an instance of the general unconstrained minimization problem

(12). Consider the following decision problems.

Problem 10: Is u = O not a local minimum for (15)?

Problem 11: Is h(u) not bounded below on R?

11



We have, for i, j =1 ton

3h(u) (

= Hu; (u?, ug)D‘j))

= 8uiqulj, i + j

- (2 2yp 2
= u<U1’ o0 0y un)D'j + 8Udej

th

where D . is the j column vector of D. So, u = 0 satisfies the necessary

J
conditions for being a local minimum for (15), but not the sufficient condition
given in (14),

Using the transformation x. = ul j =1 ton, we see that (15) is equivalent

J J’
to (7). So problems 1 and 10 are equivalent. Likewise, problems 2 and 11 are
equivalent. By Theorem 4, we conclude that both problems 10 and 11 are NP-hard.
Thus, even in the unconstrained minimization problem, to check whether the
objective function is not bounded below, and to check whether a given point is not
a local minimum, may be hard problems in general. This also shows that the problem

of checking whether a given smooth nonlinear function (even a polynomial) is or is

not locally convex at a given point, may be a hard problem in general.

12



WHAT ARE SUITABLE GOALS FOR ALGORITHMS IN NONCONVEX NLP?

Much of nonlinear programming literature stresses that the goal for
algorithms in nonconvex NLPs should be to obtain a local minimum. Our results
here show that in genéral, this may be hard to guarantee.

Many nonlinear programming algorithms are iterative in nature, that is,
beginning with an initial point x°, they obtain a sequence of points {x'+ r =
0, 1, ..}. For some of the algorithms, under certain conditions, it can be
shown that the sequence converges to a KKT point for the original problem, (a
KKT point is a feasible solution at which the first order necessary conditions
for a local minimum, (4), hold). Unfortunately, there is no guarantee that a
KKT point will be a local minimum, and our results point out that in general,
checking whether or not it is a local minimum may be a hard problem.

Some algorithms have the property that the sequence of points obtained is
éctually a descent sequence, that is, either the objective function, or a
measure of the infeasibility of the current solution to the problem, or some
merit function or criterion function which is a combination of both, strictly

r

decreases along the sequence. Given x', these algorithms generate a yr + 0

such that the direction x" + Ay", A > 0, is a descent direction for the

P+ is usually taken

functions discussed above. The next point in the sequence x
to be the point which minimizes the objective or criterion function on the half-
line {x" + Ay": A 2 0}, obtained by using a line minimization algorithm. On
general nonconvex problems, these methods suffer from the same difficulties,
they cannot theoretically guarantee that the point obtained at termination is
even a local minimum. However, it seems reasonable to expect that a solution
obtained through a descent process is more likely to be a local minimum, than a

solution obtained purely based on necessary optimality conditions. Thus a

suitable goal for algorithms for nonconvex NLPs seems to be a descent sequence

13



converging to a KKT point. Some recently developed algorithms, such as the

sequential quadratic programming methods, reach this goal.
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