ON THE PART OF THE
MOTION OF THE LUNAR PERIGEE
WHICH IS A FUNCTION OF THE

MEAN MOTIONS OF THE SUN AND MOON

BY

G. W. HILL

in WASHINGTON.

For wmore than sixty years after the publication of the Principia,
astronomers were puzzled to account for the motion of the lunar perigee,
gimply because they could not conceive that terms of the second and
higher orders, with respect to the disturbing force, produced more than
half of it. For a similar rcason, the great inequalities of Jupiter and
Saturn remained a long time unexplained.

The rate of motion of the lunar perigee is capable of being deter-
mined from observation with about a thirteenth of the precision of the
rate of mean motion in longitude. Hence, if we suppose that the mean
motion of the moon, in the century and a quarter which has elapsed
since BRADLEY began to observe, is known within 3”7, it follows that the
motion of the perigee can be got to within about the 500,000™ of the
whole. None of the values hitherto computed from theory agrees as
closely as this with the value derived from observation. The question
then arises whether the discrepancy should be attributed to the fault of
not having carried the approximation far enough, or is indicative of
forces acting on the moon which have not yet been considered.

' Reprinted, with som additions, {rom a paper published at Cambridge U. 8. A, 1877.
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Do

This question cannot he decisively answered until some method of
computing the quantity considered is employed, which enables us to say,
with tolerable sccurity, that the neglected terms do not exceed a certain
limit. If other forces besides gravity have a part in determining the
positions of the heavenly bodies, the moon is unquestionably that one
which will earliest exhibit traces of these actions; and the motion of the
perigee is one of the things most likely to give us advice of them.
Hence T propose, in this memoir, to compute the value of this quantity,
so far as it depends on the mean motions of the sun and moon, with a
degree of accuracy that shall leave nothing further to be desired.

L.

Denoting the potential function by £, the differential equations of
motion of the moon, in rectangular coordinates, are

dgw__i!_? (_lj_ZHdQ
(1) Tt P T v

When terms, involving the solar eccentricity, are neglected, as is dore
here, it is known that thesc equations admit an integral,' the Eulerian
multipliers for which are, respectively,

- 1z ' ly ’
11:%3"—'—-77/?/9 G:%_‘_w/x,

n' being the mean angular motion of the sun. When the equations are

multiplied by these factors and the products added, it is seen that, not

only is the resulting first member an exact derivative with respect to ¢,

but that the second is also the exact derivative of €. Hence the integral is
de® + dy® ,edy — ydz

(2) ST T

' As JacoBr was the first to announce this integral (Comptes rendus de 1’aca-
démic des scicnces de Paris, Tome IIL, p. 59), we shall take the liberty of calling
it the Jacobian integral.
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Let us now suppose that the lunar inequalitics independent of the
cceentricity, that is, those having the argument of the variation, have
alrcady been obtained, and that it is desired to get those which are
multiplicd by the simple power of this quantity. Denoting the latter by

or and gy, and, for convenience, putting

aro arg Y

=1, da:ly = W = I,

Tdat

which will be all known functions of £, we shall have the linear diffe-
rential equations '

(3) T How 1 Tay, L Koy + Jov.

The Jacobian integral also, being subjected to the operation 4, fur-
nishes another cquation. Here we notice that when the arbitrary constant
C is developed in ascending powers of e, only cven powers present them-
selves, hence we have 60 = o. In the equation, morcover, the partial
derivatives of & may be replaced by their equivalents, the second diffe-
rential quotients of the coordinates. Then, it is evident, the resulting
equation may be written ‘

Ao ddy  dF . dG
| J— ——— — =
(4) P tog —goe—qg¥==>

This is plainly an integral of equations (3) with the special value o
attributed to the arbitrary constant. For taking the derivative of it with
respect to ¢,

d*ox Ay PR azq

(5) I 4 G — gz 08— e 0 = ©-

Hence the Eulerian multipliers, for obtaining (4) from (3), are, for
the first cquation, F', and for the second, G. Making the multiplication
and comparing the result with (5), we get the conditions

d*F a*Qd

(6) e = HF +J6, S5 — KG + JF.
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On comparing these with (3), we gather at once that the system of

equations
' or = I, oy = G,

is a particular solution of equations (3); and it also satisfies (4). This
solution, being composed of terms having the same argument as the
variation, is foreign to the solution we seek, and, in consequence, the
arbitrary constant, multiplying it in the complete integrals of (3), must,
for our problem, be supposed to vanish. But advantage may be taken
of it to depress the order of the final equation obtained by elimination.
For this purpose we adopt new variables p and ¢, such that

or = Fp, oy = Go.
Relations (6) being considered, (3) and (4) then become

A dF d
Fost g dllt)'{"]G(’O_”) =

St 2" lf’ d”+ JF(o— p) = o,
dep_!_ G,rl(r

dt

Write the first equation
s <1ﬂ > + JFG(p — o) = o,

and adopt a new variable A such that

If these values arc substituted in the equation after dividing by JFG
and differentiating it, we get

N 1 RU EANUES PR
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Let us now assume a variable w such that
do
Et* == \/Jﬂ‘(x.

The second term of (7) is removed by this transformation, and the equa-
tion takes the form of the reduced linear equation of the second order,

d*
® @+ W =o,

in which, after some reductions,

I+ G | d*log(JFG) [dlog(JFG)]g
() O=—Fa  t 2@ | et |

It will be perceived that interchanging F and G produces no change
in #: hence had we eliminated p instead of ¢, the equation obtained
would have been the same; and this is true in general, — we arrive
always at the same value for @, no matter what variables may have
been used to express the original differential equations. From this we
may conclude that 6 depends only on the relative position of the moon
with reference to the sun, and that it can be developed in a periodic
series of the form

6, + 6,cos2r 4 H,cos47 + ...,

in which 7z denotes the mean angular distance of the two bodies.

It may be noted also that @, as expressed above, does not involve
the quantities H and K. It is obvious that, by means of the original
differential equations, all second and higher derivatives may be eliminated
from this expression, and that the Jacobian integral suffices for eliminating
the first derivative of one of the variables. But it is not possible to
express A as a function of the coordinates only without their derivatives.
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11.

As the reduction of 6, in the form just given, presents some diffi-
culties, we will derive another from differential equations in terms of
codrdinates expressing the relative position of the moon to the sun.

Let the axes of rectangular codordinates have a constant velocity of
rotation, so that the axis of x constantly passes through the centre of
the sun, and adopt the imaginary variables

w=2x+yJj—-1, S=x—YJ—1,

Iy . . d ——
and put ¢V7' = £ In addition, let D denote the operation — V=1

50 that
D(al”) = val?,

and m denote the ratio of the synodic month to the sidereal year, or

and g being the sum of the masses of the earth and moon,

b

z::m_;.

Lastly, putting
(10) “(J:;/%+§3§m2(2‘ + 8)%,

the differential equations of motion are

. 1
l D + 2mDu - 2%’?: o,

(11)

de

du

l D% — 2mDs -+ 2 0.
Multiplying the first of these by Ds, the sccond by Du, adding the
products and integrating the resulting equation, we have the Jacobian
integral

DuDs + 28 = 20,
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When' the last three cquations are subjected to the operation &, the
results are '

' 4 49
D*uw -+ 2mDéu + 2; dg u ZF(% = 0,

(12) D*os

DuDos + DsDou -+ 2 —'Qou + 2 dQ 0s = 0.

If, in these equations, the symbol ¢ is chnnged into D, they evidently
still hold, since they then become the derivatives of the preceding equa-
tions. Hence the system of equations

ou = Du, 0s = Ds,

forms a particular solution of them. For a like purpose as before, let
us adopt new variables v and w, such that

ouw= Du.v, 0s = Ds.w.

In terms of these, equations (12) become
Du. Do+ 2[Du+mDu] Do+ [D w4 2mDy - 2 Du v 2 — Ds./w:o,

d!.?

Ds.D?w~}—2[D?s——mDs]Dw—|—|: s-zmI)s—I—z J +2 Du.vzo,

DuDs.D(v -+ w) + LDsD“’u + 2 Z—fl)u]v +- [DuD’s 4+ 2 %Ds] w =0.

If the second and third derivatives of # and s are eliminated from
these cquations by means of equations (11), we get

Du.D — 2 [ s mDuJDv — 2 dl“?])s.(v — ) = 0,
(13) | Ds.Dw — 2[2%2——- mDs]])w—z%ﬁDu.(w——v) = 0,

DuDs.D(v + w) — 2[ Ds ——ﬂg])u + mDuDsI(v — w) = O.
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If the first of these equations is multiplied by Ds, the second by
Du, and the products added, the resulting equation will evidently be
the derivative of the third; but if the products are subtracted, the second
from the first, we get

DuDs.D*(v — w) — 2D . D(v — w)

—Du+ szoDs] D+ w)— 2[2 = Du® 4 d{ f Ds J(lv—w):

., [d QD d.2
ds

For brevity we will write

dQ dg
A —ED8~—%DM + mDuDs,
and put
p=v+w, oc=v— W,

then the last two equations, which will be those employed for the solution
of the problem, become

' DuDs.Dp — 2A.6 = 0,
(14)

124
(;t f]) +rll{2 o = O.

‘ D{DuDs. Do} — 2A . Dp — 2 [

Eliminating Dp between these equations, a single equation, invelving
only the unknown ¢, is obtained,

(13) D[J)uz)s» Dol — 2| S + 28

A""
Ds* +1) Dile=o

In order to remove the term involving Ds, a last transformation
will be made; we put
w
VDuDs

Then the differential equation, determining w, is

D’w = 6w,
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in which
2 [@@ ., ., 49 2] ( 2A \? D*(DuDs) [D(Dups)]?
" DubDs [W Du” + ds* Ds . + \DuDs> + 2DuDs 2DuDs .

2 [ 2] 2A >? D0 [D!J T
" Dubs [d Du? + l" Ds* | + <DuDs " DuDs | DuDsl|’

But we have

C
D@ =% pu + 2 ps,

d !2 d2 d8

2

5* + 2mA — 2m’DuDs —

in which, from the latter equation, have been eliminated the second
derivatives of w and s," by means of their values obtained from equations
(11). From these is obtained

D20+ P8 = pe 4 2 22 pups + 22 et 4 A mepubs,

on substitution of which in the value of @, there results

] +3 (nfpf + .

The partial derivatives of &, involved in this expression, have the values

_r w? —

a9 % 3

dw = TaFs tmts)
%.? =—> Zu +3m2(u+8),

Acta mathematica. 8, Impriré le 8 Février 1886, 2
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where, for us, has been written #?, the square of the moon’s radius vector.
After the substitution of these, it will be found that we can write

2 [uDs — sDul* + m*(Du — Ds)* ‘ L
¥ 3 A m?
C—Q +Z-(;'—.Q,, +m,

in which

A = [——1 %+ imz] [uDs — sDu] —im’(ul)u — 5Ds) + 2m(C — Q).

2 7r?

This expression for @, from which all derivatives of u and s; higher
than the first, have been eliminated whenever they presented themselves,
is suitable for development in infinite series, when the method of special
values is employed. 'The quadrant being divided into a certain number
of equal parts with reference to r, we compute the values of the four
variables #, s, Du, and Ds of which @ is a function, for these special
values of 7, and by substitution ascertain the corresponding values of 6.
From the last, by the wellknown process, are derived the several coef-
ficients of the periodic terms of §. A discussion of the lunar inequalities,
which are independent of every thing but the parameter m, shows that
the values of # and s have the form

w = ZiaiC’?i-H, § = Ziai:_w—l}

where i receives all integral values from — o0 to 4 oo, zero included,
and the coefficients a, are constant, being equivalent each to the same
constant multiplied by a function of m which is of the 2™ order with
respect to this parameter.

By taking the derivatives

Dy = Zi(%‘ + l)ai(?i“, Ds = — 21(27/ + I>aic—2i‘1-

It will be scen from these equations that, in the terms where ¢ is large,
we will be subjected to the inconvenience of having the errors, with which
the cocfficients a, are necessarily affected, ultiplied by large numbers.
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This will be avoided by employing, in the computation of 6, the for-
mula

uDs — sDu = 2mr® — —23- m* D" (u® — %),

where D' denotes the inverse operation of D. This does not give the
constant term of wDs — sDu, but this can be obtained from the ex-
pression

— 22, (2i 4 1)a},

which is not subject to the difficulty mentioned above. Wherever Du
and Ds occur elsewhere in the formula for @, they are multiplied by
the small factor m? and, in consequence, the given formulac suffice.

This mode of proceeding will give only a numerical result: if we
wish to have m left indeterminate in the development of 6, it will be
advantageous to give the latter another form. In this case there is no
objection to the appearance of second and third derivatives of # and s
in the expression of 6.

From the value of D&, previously given, it is easy to conclude that

2 [d '?Dw? -+ (is?Dng

DuDs Ldu
. a0 A \? .  D*(DuDs) I[Dwups)]?_
= A4 7 <l)uDs) oM — s Tz Duns

If this is substituted in the expression first given for 6, and we notc that
are % .
Yduds T + 3m’
A = %[Du]fs — DsD’w] — mDuDs,

the latter being obtained by substituting in the previously given value of A,
the values of the partial derivatives of £ given by equations (11), we get

) o= ]S —00) ¢ m|

1 /D D%\ 1 /D% D2\~
-3 (m + ‘D")J - Dlla (’1‘)17 + 7)'
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For the development of the first term of this cxpression, we can emplay
either of the following equations which result from equations (11),

5 3
D"M + 2mDu + 5mzs

=) x
+
3&0
|

N (o
3

D*s — 2mDs +%m‘“’u 5
2
= s ~+5m,

which, if one studies symmetry of expression, may be written

2 ) [ 2] 4]
e

and if half the sum of the second members is substituted for the first
term in (18) we shall have a singularly symmetrical expression for 6.

If the values of w and s in terms of ¢ are substituted in the first
of these equations, we get

Zi [47:@' + 1 4+ m)a; + ;m"’a-m} C?i
Ziai\;w .

%+m2=1+2m+§m2+

Let the last term of the second member of this equation be denoted by
the series

ziRi(n;

since r is a series of cosines, we must have, in consequence of the equa-
tions of condition which the a;, satisfy, B_, = R,, and the equations,
which determine these coefficients, can be obtained from the formula

28R = 4i(i + 1 + m)a, + 2 m a_; ,,

when we attribute to ¢, in succession, all integral values from i = o to
{ = 00, or which is preféfable, from i = 0 to i=— o0, The following
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are all the equations and terms which need be retained when it is pro-
posed to neglect quantities of the same order of smallness as m'’;

3

2
'2'm a_y,

aR, + (a, +a_ )R, + (a, +a_,)R =
a,R,+ (a, +a_,)R + aR, = — 4ma_, + gm”ao,
a R + (@, ,+a )R +ak +al = 8(1—ma_,+ gmgal,
a R 4+ a R, + aR, | = 12(2 —m)a_, + -gm“‘az,

a B+ a B, + a_ I + aR, = 16(3 — m)a_, +gm233-

For the purpose of illustrating the present method, we content
ourselves with giving the following approximate formula: —
L=

k4
~ + m’

r

3
2

3

=14 2m4 gm“—« m?a, + 4ma_;(a, 4 a_)) + [5 m’ — 4ma41J &4

+ [8(1 —m)a_, + gmﬁ(al —a_,) + 4ma\2_1](é’4 + ¢,

where, for convenience in writing, it has been assumed that a, = 1, and
conscquently that a, dcnotes here the ratio to a,, which, as has been
mentioned above, is a function of m. The absolute term and the coef-
ficient of {* 4+ ¢* are affected with errors of the eighth order, while
the cocfficient of ¢? 4+ 2 is affected with one of the sixth order.

We attend now to the remaining terms of 8. If we put

Dy . Z (2t + I)gaifm

- S
Du Z(2i + Dac® - U™
it is plain that we shall have
D3 — Z (20 + 1)'a ™ _ ini:-m"

Ds T T+ nal
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and in consequence,
(M__Ef> =X, 2(U, + U_)¢,

I <D2u D?s

I 24
b D_S) =%, LU — v ).

.. . D . .
From this it will be seen that the development of ﬁ'if will suffice

for obtaining all the remaining terms of . Let us put

b, = (2i 4+ 1)a,.
The cquations which determine the coefficients U; are given by the formula
2 h U = (20 + 1)k,

but, in order to exhibit some of their proper‘tlea, I write a few, in extenso,
thus:

AU+ h U by (Uy— 1)+ b U b Uy o = — 20,
AU+ by U+ b (Uy— )+ b U+ 1 Uy oo = — 20,
(19) Looo+0U_y+ 0y U_j+0y (Uy—1)+0 U+ U+ ...= o
AU 0 U+ 0y (Uy—1)+hy Uy+0_ U+ ...= 2k, ,

)
e U by Uy by (Uy— 1)+l U4y Up+ ... 4hy

When the subscripts of both the & and U in these equations are
negatived, and the signs of the right-hand members reversed, the system
of equations is the same as before. Hence, if we have found the value
of U, which is a function of the %, the value of U_; will be got from
it by simply negativing the subscripts of all the % involved in it and
reversing the sign of the whole expression. When this operation is ap-
plied to the particalar unknown U, — 1, we get the condition

Uy —1 = — (U, — 1);

0
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whence we have, rigorously,

U =1.

0

This result can also be established by the aid of a definite integral.
' Dy«}—l/’

. 2/ . .
The absolute term, in the development of o in powers of £ is given
K1
by the definite integral
2T _,
or Ad
1 ("D 1 a7t
— — AT = ———= —dr.
2 Du 2Ty — 1 o d'u
0
o dr’

The indefinite integral of the expression under the sign of integra-
tion 1is

X d’ dy —
log &% log[—d—gi—l— 4 /—IJ,
- T N

Sar de Y

and if, for the moment, we take p and ¢ such that

v (l‘)y .
5 = preosye, L, = psing,
d7 dr

this integral takes the shape
logp + ¢y—T.

The first term of this has the same value for r = 0 and 7 = 2=,
and consequently contributes nothing to the value of the definite integral.

Thus we have
27
f'Dy+1

I w _____I_ T=27
2| Ty =oleEr

i
.

0

When 7= o, let ¢ be assumed between o and 2z: it will be found

that ¢ has the value o or 5 or w or %7: according as v is of the form
4pr or 4pu+ 1 or 4u -+ 2 or 4u + 3. Moreover, when raugments, ¢ also
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augments, and when 7 has passed over one circumference; ¢ has also
augmented by a circamference. Hence

It follows, therefore, that v denoting zero or a positive integer, the

v+1
L. . .
absolute term of the development of —— in integral powers of ¢ is r.
" >
V+Is'—
And, in like manner, the absolute term of D"Q is — 1.
’ S .

Equations (19) are readily solved by successive approximations, and
when terms of the tenth order are neglected, we can write

Il))‘zqf:1+2[ by — hoyhy + Iy by b )8

—ao[ hy— Ty by b ko hy ]E

+2(2hy, — by by —2h_ by A+ aly B By —2hy By By h)E
—2{2h_y— h_yh_—2k; h_y, + 4k By h_y—2h_ kb ik )
+ 2[3hy — 3l by + By By By ]E°

—2[3h_y—3h_ h o+ B h_ b JE°

+ 2{4hy —ahy by + 4hy By By —2hy By — By Ry By By JEF
—o{ah_,—4h  h_y+ 4h_ b _y—2h ok, — h_jh_ kR )E

where we have supposed again that ) = a, = 1.

. . . X
With the same degree of approximation we have used for 5 4+ m?
”

O can be written

0 =1+ 2m -—;me + gm?al + 5481 4- (12 — 4m)a,a_; + (6 — 4m)a’,
+[(6 + r2m)a, + (6 + 8m)a_, —3m?| (& + £
+ [2oma? + (16 + 20m)a_, — (9 + 4om)a; 4 Gaa_,

+ (7 + amat, —3m(a, — )] ¢+ £,

2
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In the determination of the terms of the lunar codrdinates which
depend only on the parameter m, it has been found ' that, with errors
of the sixth order,

364 12m + 9m’

=16 6-—4m + m* m’,

3 38+ 28m + ogm®
m
T 16 6 —4m + m?

a;, =

b

and, with errors of the eighth order,

_ 27 2+ 4m 4 jm® . g—35m 4
a2~_256 [6—4m + m*|[30—4m+ mg}[238+4om+9m 325 = 4m+m]m ’
27 24 4m+ 3m? 7—m 4
—_ —— - i D O - =Im-, .
= 64 E—am + mY30—4m + m*][ 28 7"'1+ 246 —am + M“]

No use will be made of these formulz in the sequel of this memoir:
they are given only that we may at need easily deduce an approximate
literal expansion for the important function 6.

HIL

In the preceding discussion it has been established that the deter-
mination of the lunar inequalities, which have the simple power of the
eccentricity as factor, depends on the mtecfmtlon of the linear differential
equation

D’w = 6w;
to the treatment of which we accordingly proceed. We assume that the
development of @, in a series of the form

G = Zi@éﬂi;

hag been obtained. Here we have the condition 8_, = 0,. If 8,, 0,, ete.,

! These expressions sre established in another memoir. Sce American Journal
of Mathematics, Vol. I, p. 138,

Acta mathematica. 8. Imprimé le 16 Février 1886,
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are, to a considerable degree, smaller than 6,, an approximate statement
of the equation is
D’w = 6,w;

the complete integral of which is
w= K+ K'¢°,

K and K’ being the arbitrary constants and ¢ being written for /6,.
When the additional terins of @ are considered, the effect is to modify
this value of ¢, and also to add to w mew terms of the general form
A=, Tt is plain, therefore, that we may suppose

w = Kf(¢, o) + K'f(2, — ),

and may take, as a particular integral
~C4-2i
W = zz bz( * ) )

b, being a constant coefficient. If this equivalent of w is substituted in
the differential equation, we get the equation

(20> ‘ [c + 2j]2bj — zi@j—ibi = 0,

which holds for all integral values for j, positive and negative. These
conditions determine the ratios of all the coefficients b, to one of them,
as by, which may then be regarded as the arbitrary constant. They also
determine ¢, which is the ratio of the synodic to the anomalistic month.
For the purpose of exhibiting more clearly the properties of the equa-
tions represented generally by (20), I write a few of them in exfenso:
for convenience let

[i] = (¢ + 20 — 6,;

then
cooF[—2]by;—6,b_, — 6,by — 6;b; — 6,b, — ... =0,
c..— 6,b, + [—1]b_,— 6,b, — H,b, — Bb, —... =0,
(21) o.— 6,b, — 6,b_, + [o]b, — 6,b, — 6,b, — ... = 0O,

e — ;b 0,b_, — 6,b, + [1]b; — 6,b, — ... = o,
co.—6b, —6b, —8b —a6b +[2]b,—...=0,
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If, from this group of equations, infinite in number, and the number
of terms in each equation also infinite, we eliminate all the b except
one, we get a symmetrical determinant involving ¢, which, equated to
zero, determines this quantity. This equation we will denote thus: —

(22) D(c) = o.

If, in (20), we put.— ¢ for ¢; —y for j, ‘and suppose that b, ‘is
now deroted by ‘b_,, the equation is the same as at first; hence the
determinant just mentioned remains unchanged, when for ¢ in it we sub-
stitute — ¢, and

‘ b("__ 0) ZD(O)a

or, in other words, D(c) is a function of ¢ Again, in the same cqua-
tion, let ¢ 4 2y be substituted for ¢, v being any positive or negative
integer, and write j—yp for j, and suppose that b, is now denoted by
b,,,. The equation is. again the same as at first, and hence the deter-
minant suffers ho.ﬁ@hange when .¢+k.2y is written in it for ¢. That is,

Die + 2) = D(c).

It follows from all this that if (22) is satisﬁed by a root ¢ Q:'co,'
it will also have, as roots, all the quantities contained in the expression

+ ¢, + 21,

where i denotes any positive or negative integer or zero. And these are
all the roots the equation admits; for each of the expressions denoted by
[#] is of two dimensions in ¢, and may be regarded as introducing into
the equation the two roots 2¢ + ¢, and 2¢ —¢,. Consequently the roots
arc either all real or all imaginary, and it is impossible that the equa-
tion should have any equal roots unless all the roots are integral. But
in the last case the inequalities we treat would evidently coalesce with
thosc having the argument of the variation, and could not be separated
from them; hence this case may be set aside as practically not occurring.

It is evident from the foregoing remarks that, in an analytical point
of view, it is indifferent which of the roots of (22) is taken as the value
of ¢; in every case we get the same value for w. For denoting the
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mean anomaly of the moon by &, we have the infinite series of argu-
ments
ceey E— 41y E§—21, &, £ 21, §-4 47, .

each of which can be made to play the same rile as &, and analysis
knows no distinction between them. Hence the equation, which determines
the motion of &, must, of necessity, also give the motions of all the ar-
guments of the series above, as well as of their negatives.’ One has,
however, been in the habit of taking for ¢ the root which approximates
to \/8,.

It may be well to notice here the modifications which the addition
to the investigation of terms of higher orders produces in equation (22).
This may be written

Il (z + ¢, + 2i) = o,

where # is ‘the unknown quantity and 11 :is' a symbol denoting the
product of the infinite number of factors obtained by attributing to i
all integral values positive and negative; zero included, and taking in
succession the ambiguous sign in both significations. Had the terms,
involving higher powers of ‘¢, been included in the investigation, the equa-
tion would have been

H(x + je, + 2i) = o,

where 7 receives all integral values positive and negative. If, furthermore,
we had included all terms involving the argument 7z and its odd mul-
tiples, the equation would have been

II(z + je, + i) = o.
If to these we had added all terms depending on the solar eccentricity,
the equation would have been

II(x + je, + i + km) = o,

where % is also to receive all integral values positive and negative.

! A similar condition of things occurs in many less complex problems; for instance,
in the determination of the principal axes of rotation of a rigid bedy. Although there
is but one set of such axes, yet the final equation, solving the guestion, is of the third
degree, all because upalysis knows no distinction between the axes of z, y and z.
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A similar thing is true in the general planetary problem. Professor
NewcoMs says,' »The quantities by, where b is of similar signification
with ¢, above, »ought, perhaps, to appear as the roots of an equation of
the 3n™ degree». DBut it is plain, from the foregoing remarks, that not
only does this equation contain the 3n roots by, by, ..., b;,, but also
every root given by the general integral linear function of the b

b, ‘I" b, + ... 4 igby,,

for which, in the analysis, the corresponding argument
il)‘l + 2’2A2 + ¢ + iSn)‘Bn

can play the same réle as any one of the individual arguments 2. Hence
this equation, in all cases but the problem of two bodies, must be re~
garded as transcendental or of ‘infinite degree. - :

~The equations’ which determine  the coefficients b, and the quantity
¢, having the form:of normal equations in the method of least squares,
can be solved. by the process usnally adopted for the latter. ‘Let two
of these equations be written

[]] bj _ Zl gj—i b, =0,
i.[V}bxg - 2, 6, b, = o,

where, in the first, the summation. does not include the value i = j, or
in the second the value ¢ = y. The result of the elimination of b, from
these is

(1=t ]n =S [0+ 2= o -,

where, in the summation, ¢ does not receive the values j and y. 'This
equation may be written

[/]9b, — X,62.b, = o.

' On the general .integrals of planetary motion, Smithsonian Contributions
to Knowledge, No. 281, p. 31,
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In like manner we may eliminate from the system of cquations a
second unknown b]. And the general form of equation obtained may
be written

[/1*b, — 2,682b, = o,

i Yj—i

where, in the summation, ¢ receives neither of the values y, v and v'.
This process may be continued until all the b, having sensible values
but by, are eliminated; and the single equation remaining, after division

by b,, may be written
[O](...-——Q,—l,],‘l, [0 — 0.

This determines c; when we pursue the method of numerical sub-
stitutions, it will be the most advantageous course to perform the pre-
ceding elimination twice, using two values for ¢, slightly different, but
each quite approximate. The last equation will then, in neither case,
be exactly satisfied, but, by a comparison of the errors, one will discover
the value of ¢ which makesthe left imember sensibly zero. By a si-
milar: ‘interpolation between . the values of the b, given.severally by the
first and second eliminations, we get the sensibly exact values of these
quantities.

When it is proposed to neglect terms of the same order as m° the
equation for ¢ may be written

[— 1)e)(1] — & |[— 1] + [1]] = o;
or, when we substitute for the symbols their significations,
[(e* + 4 — 6)" — 160°)[6* — 6] — 26i[c” + 4 — 6,] ='0.

But, as ¢*— 6, is a 'qua-ntity of the third order, we may neglect
the cube of it in the first term, and the product of it by #} in the second.
Thus reduced, the equation becomes

[* — 60" + 26, — 1][e* — 6] + 6} = o3

whose solution gives

c = \/1 + V(0 — 1) — @

This is a remarkably simple expression for obtaining an approxi-
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mate value of the motion of the lunar perigee. The actual numerical
\alues of the two elements entering 1nto this formula are

6, = 1.1588439, . 6, = — 0.0570440.

6, is therefore more than one third of 6, — 1, Whlch explains why such
an- erroneous value is obtained for the motion of the lunar perigee, when
we mneglect it and take ¢ = \/g,. The numbers being substituted in the
formula, we get ¢ = 1.0715632; and as the ratio of the motion of the
perigee to the sidereal mean motion of the moon is given by the equation

1 dw ! ¢

wodb 14+ m’
we get

1 dw — 0.008 ‘

n dt 591

This is about % in excess of the value 0.008452 given by obser-

- vation. The difference is caused, in the main, by our neglect of the in-
clination of the lunar orbit. The solar force is less effective in producing
motion in the perigee than it would be if the moon moved in the plane
of the ecliptic.

It will occur immediately to every one that the propertles we have
stated of the roots of (c) = o are precisely those of the transcendental
equation

cos(w) — a = 0o;

of which, if z, is one of the roots, the whole series of roots is repre-
sented by '
+ x, + 21,

Hence we must necessarily have, identically,
D(c) = A[cos(me) — cos(ze,)],

A being some constant independent of ¢. As is the general custom, we
assume that the positive sign is given to the element of the determinant
formed by the product of the diagonal line of constituents containing c.
When, therefore, the determinant. D(¢) is developed in powers of ¢,
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using only a finite number of constituents in it, the coefficient of the
highest power of ¢ in it is always positive unity: hence we may assume
that this is the value of the coefficient when the number of constituents
is increased without limit. But from the well-known equation

cos(me) = (I —‘%c*)(l —30“’)(1 —:24—5 02) Ceey

/

we gather that the coefficient of the highest power of ¢, in the develop-
ment of cos(zc) in powers of ¢, may be regarded as represented by the
infinite product '

If then the row of constituents of D (c), containing [0], is multiplied

, the rows con-

by — 4, the rows containing [— 1] and [1] by e

taining [— 2] and [2] by 8—2—4_:—;, and, in general, the row containing {i]

by (—4;.)—?:?, we shall have the constituents of a second determinant, which

may be designated as V(c), And the eguation
V(e) == o,

having the same roots as Y (¢) = o, will serve our purposes as well as
the latter. We evidently now have

V(c) = cos(zc) — cos (z¢,).

As this is an identical equation, it holds when any special value is
attributed to ¢, and we are thus furnished with an elegant method of
obtaining the value of the absolute term of the equation cos(ze,). For

e . . I —
example, substituting for ¢, in succession, the values o, 50 L Vo, we
have our choice between the values
cos(me,) = 1 — V(o)
, N
-~}
2
= —1— V(1)
= eos (=y7,) — V(@).
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As the determinant V(o) appears the simplest, we retain the first
expression. Then, dropping the now wuseless subscript (), the equation
which determines ¢ may be written

cos (z¢) = 1 — V/(0).

This is certainly a remarkable equation: it virtually amounts to a
general solution of the equation D(c) = o. It also affords us immediately
the criterion for the reality of the roots of the latter. Using the phrase
of Cauchy, if the modulus of the quantity 1 — V(o) does not exceed
unity, the roots are all real; in the contrary case, they are all imaginary.
The criterion for deciding whether the variable w is always contained
between definite limits, or is capable of increasing or diminishing beyond
every limit, is the same. In the first case, it is developable in a series
of circular cosines; in the second, in a series of potential cosines.

As, in the particular case, where 6,, 6,, &c., all vanish, the proper
value of ¢ is /@, it follows that the element of the determinant V(o),
formed by the product of the diagonal line of constituents involving 6,, is

1 — cos(w\/@,) == 2sin’ G V?O—;> .

If therefore each row of constituents of the determinant V(o) is divided
by the constituent of it which lies in the just-mentioned diagonal line,
we shall have a set of constituents forming a third determinant [](0),
such that

N

V(d) = 2sin? (; \75;)1_'(0)

In consequence the equation, determining ¢, can be put in the form

. 7
sin® | = c)
2

———— = Do),
sin® ('—2‘ v 00>

For the sake of exhibiting more clearly the significance of this

Acta mathematica. 8. Imprimé le 18 Février 1886. 4
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equation, I write a few of the central constituents of the determinant
[J(0), from which the rest can be easily inferred.

+ ! *4“—8-—‘ 00_42€{0 _—4“—0}(7/0—4"’—0—‘00
| _2'91()1—*— ! —-22-6-):6)0 2"3900'_2”—0—;9u
[J(o):: _—o‘—ojlf')o_—o‘—’fi (-lo+ ! _o'-‘—QAl @u—_o‘—(}ﬁ0
|
5 ﬁf%@*ﬁﬁﬂ_fﬁﬂ+ ! fﬁm
| f, f, 0, o4

The question of the convergence, so to speak, of a determinant,
consisting of an infinite number of constituents, has nowhere, so far as
I am aware, been discussed. All such determinants must be regarded
a3 having a central constituent; when, in computing in succession the
determinants formed from the 3% 5% 7* &ec., constituents symmetrically
situated with respect to the central constituent, we approach, without
limit, & determinate magnitude, the determinant may be called convergent,
and the determinate magnitude is its value,

In the present case, there can scarcely be a doubt that, as long as
the series X,0,&% is a legitimate expansion of #, the determinant V(o)
must be regarded as convergent.

We will give another equation for determining ¢. We have

cos (70) = cos (7, F,) — V(&)

The diagonal line of constituents in V(@) is represented in general by
the formula
16i(i + \ @,) .

)

4" —1
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and when the factor corresponding to i = o is omitted, the product

iﬁ 16i(i + \O,) _ wsin(zy6,)
P Y Sy 5V0,

Consequently if we put

(] G, o 6
S S T TS
8(2—y/ 90) 3(2-—y HU) 3(2—y, UO) 82—y 00)
. N S . S
4(1—\/00) 4("‘-,\'; 60> 4(1—\’: Qu) 4(1—\"}90)
D(\’/Uo): -t » b, + 0, + o + 0, + 0, s
i p ) N
. — s — — 9, — — i — 4 I __ 9 —— ...
4(I +v 90) 4<I +\/00) 4(1 +v (-)o) 4(1 +v 90)
6, o, 6, 0,
— I

TUU8(+vE,) 8(2+yV6) 8E+V6) 8(2+y6)

a determinant, which, having o for its central constituent, presents some
facilities in its computation, we shall have, for determining ¢, the equation

sin® (75 c) weoty I—T\‘/E
2 S\aV7 —
=L+ =—L1(y9,).
sin® <3 Vo ) 2V,
2

In the lunar theory 6, is a quantity of the 2/ order, and 1 — /g,
a quantity of the first order; hence it is clear that, if we are willing to
admit an error of the seventh order in ¢, the determinant

o
O —1

1]

e, = —

(SR

If, neglecting then quantities of the seventh order, we put

) A
8\/@:(80 - I)

= tg 4,
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# will be a small angle, and ¢ will result from the equation

. (T
sin <5¢90——ﬁ>.

. [z
sin (~ c)=
2 ) cosf

This formula, although it involves the same coefficients 6§, and 6,
as the approximate formula previously given, is two orders more exact.
A greater degree of approximation can be arrived at only by including
the additional coefficient 6,. Ewmploying the numerical values already
attributed to. 6, and @,, we find

do

0 = 25" 41.”393, ¢ = 1.0715815, 7—2 = 0.008574.

It is better, however, to employ the equations

T6; 9 — 8
Tr______ — tg 0’ COSs (77.'0) f— @mw_)’
4 6,(6, — 1) cos
which give
P 1 do
0 == 51’ 22".6185, ¢ = 1.0715837863, 7 0.0085721020.

The determinants [J(0) and [J(y,) can be replaced by infinite series
proceeding according to ascending powers and products of the coefficients
6, 8, &c.

 Let us take the first, as being in more respects the simpler. It is
plain that the element of the determinant formed by the product of the
diagonal line of constituents is the only term of the zero order in it.
Then one exchange always produces terms of the 4™ or higher orders,
two exchanges terms of the 8™ or higher orders, three exchanges terms
of the 12" or higher orders, and so on. Now let 4, #, ", ... be po-
sitive or negative integers, of which no two are identical, written in the
order of their algebraical magnitude, and let {¢} stand for (2¢)* — 6,.
Then all the terms of [J(o), which are obtained by o, 1, 2, and 3 ex-
changes, are contained in the following expression, which is, consequently
affected with an ecrror of the 16™ order,
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Particularizing the summations in this expression, and retaining only
terms which are of lower orders than the 16", we get
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The functions of #,, which are represented by the summations, can
all be replaced by finite expressions. For brevity, let us put 6, = 46?,
then resolving the expression into partial fractions, ¢ being taken as the
variable, we have, for instance,

Yol iy

o] A+ )l — B+ i+ 0 —i— k)

1 A B ¢ D J
“'i‘ézi[tTﬂJr(T—f{'aJm+L-+0--1:—/; ’

where 4, B, C and D are determined by the equations
2k0(20 — k)4 = 1, — 2k0(20 + k)B = 1,
— 2k@(20 + k) C = 1, 2k0(20 — k) D = 1.

But, as is well known,

Z }: z,—;fzziﬂ—_—;'_—ﬁzzcof‘gnﬁ.

g + ) W40+ k
Consequently
b \
Z {}‘b-*-]f 6(4’1+b+()+1))u(40t“
_ meotgml
= 3640 — 1Y)
7 coty ( /0 )

4\/6)0((90—'/” )

In like manner will be found

Y,

T

36, — (k" — ki + 1)

! by Qp—
T TF T4 - coto <~ v
16 \6,(6, — k*)(6, — k)6, — (k ——75)] glzv °>’

E ) I

{L”L-{-I"L-l—]s z+k+1}

—_ 56)0 e (!‘:~ + I) , 7_[ N .
32 V;yo(go _ I)(Qo - _]‘72)[90 — (k + I>2][90 - (k - I)ﬂ WLOtg <2 \/95})

f
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By attributing, in these equations, special integral values to %, will
be obtained the values of all the single summations appearing in the
preceding expression for [J(o). With regard to the double summations,
we may proceed as follows: substitute ¢ 4 & for #, then resolve the ex-
pression under consideration into partial fractions with respect to i as
variable, and sum between the limits — oo and 4 oco; the fractions
oceurring in the result thus obtained are next resolved into partial frac-
tions with reference to k, and the summations, with reference to this
integer, are taken between the limits 2 and 4 oc; or which is the same
thing, between the limits o and - oo, and the terms corresponding to
k= o and k = 1 subtracted from the result. The single triple summa-
tion may be treated in an analogous manner. Thus we get

Z 1

U

zeoto (5@ _
. T COtg <2\ 00> [ﬂ' Cotg(ﬂ\/g‘))_i + ) + 9 ]
32¢6,(1— 8, L 6, O, T =6, T 24— 6)F

I
it Iz}% + I}’z l{z + 2'

7 cotg (g \/‘-8_0)

_ ‘nootg(zyB,) 1 5 J
166,01 — 64— 6,1 V6, 6, "= 9 e 9 HEETA
2 [
. 3'700tg<5 v 9") [‘zcotg(zv’@—o) P, 2 4z, 20
64y0,(1 — 64— 6L VB, B, 1 1—6, T 4—6, T 39—6)]

I
7; {’IUL -+ I}’@ '{L + ‘“1’ }]L” T I}
‘7 cotg (5 vV 90> 1 5 9 ]Ti'cotg (ﬁvf‘_g_‘))

=~ el wm et 76,

25 1 2 4 9 9 4 7]
90+9§+1—-90+(1—90)” 8(4-——80)+(4—-00)“ 9— 6, 3@0|'
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From which it follows that

e COtg (\5 \ Qo) 0: + 0:; + 03
[ 4 — G 9 — 00]

do)=14+ nER
VY%

37 cotg C—: \E>
b2 gy
8\" B, (1 — 6,)(4 — 6,)

9 7 cotg (r:\/@:)
3 R

7 cotg ( 5 V@j) . )
et Rt

128\/6,(1 — 6, b,

25 1 2 4 9
“%‘é}+@€+1~90+(1—90)* 8(4 — 6,)
i ___2_.«,‘__.,,._ ‘iwm___i o
‘ (4—86,) 9—46, 361"
(24)§.
37 cote (f '_9—) —
ST 5 V% Iﬂzcotg<ﬂ\A902~_i~+ 2
32V6,(1— 6,4 —6,)1- V6, 6, " 1—86,
2 20 -
A6,
+4-— o, + 3(0 — HO)J v
5
ooty (546) reotg(w@g L
16y 6,(1 — 6,04 — 6,) VO, o, 18
2 10 T oy
+4_'- 90 +9_' HOJ nglz
.
(7 — 38, cotg (ZVA)
— L §,6,6,
4\/ 90<I " 90)<4 - @0)(9 - 90)
-_— .\
57 cotg <2 Ve,
) 96,

+ 16y 6,(1.— 6,)(4 — 6,9 — 6,)
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This is the same result as would be obtained if, setting out with
the equation D (c) = o, and assuming that ¢ = /@, is an approximate

value, we should expand the function sin® <gc> in ascending powers and

products of the coefficients 6, 6,, &e.

1V.

In order to obtain a numerical result from the preceding investiga-
tion, we assume ‘

’

n = 17325594".06085, n = 1295977".41516
whence

m = 0.08084 89338 08311.6.

From an investigation' of the corresponding values of the a,, we
have
2k, = + 0.00909 42448 77375.5
4h, = 4 0.00011 75731 31569.1
6h, = -+ 0.00000 12613 28523.8
8h, = + 0.00000 00126 19314.9
10k, = -4 0.00000 00001 21722.9
== 4~ 0.00000 00000 01147.9
14h, = 4 0.00000 00000 00010.6

— 2h_, = —0.01739 14939 23079.4
— 4h_y, = 4+ 0.00000 19654 85829.2
— 6h_, = 4 0.00000 00738 11780.8
— 8h_, = + 0.00000 00006 8§7885.7
— 10h_; = 4 0.00000 00000 05777.1
— 12h_g = 4 0.00000 00000 00047.5

— 14h_; = 4+ 0.00000 00000 0OO0O0.4

' See American Journal of Mathematics, Vol. I, p. 247.

Acta mathematica. 8. Imprimé le 19 Février 1886. 5
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The values of the U, derived fromn these are

+ 0.00909 40932 76038.2 U_, = —o0.01739 21860 78260.6
U -+ 0.00007 62192 02104.5 -U_§ — + 0.00015 32094 08075.6
4 0.00000 06474 24628.8 U_, = — 0.00000 12670 56302.6
+ 0.00000 00055 23086.8 U_, = + 0.00000 00115 67648.9
-+ 0.00000 00000 47209.0 = — 0.00000 00000 95049.5
+ 0.00000 00000 00403.9 + 0.00000 00000 00867.3

+ 0.00000 00000 00003.4 = — 0.00000 00000 00007.2

=
I

ll

5

I

6

S S S
l

I

SScs8d
|

7

In combination with the values of the R,, which has been given
elsewhere,’ these afford the following periodic series for §: —

0 = 1.15884 3939596583
— 0.11408 80374 93807 cos 27
4 0.00076 64759 95109 CO8 47T
— 0.00001 83465 77790 cos 67
4+ 0.00000 01088 95009 cos 87
~— 0.00000 00020 98671 cos 10T
-+ 0.00000 00000 12103 cos 127
— 0.00000 00000 00211 COS 14T

The values -of the coefficients 6,, 6,, 6,, &c., are the halves of
these coefficients, except 6§, which is equal to the first coefficient.

On cubstituting the numerical values of these quantities in (24),
and separating the sum of the terms into groups according to their order
for the sake of exhibiting the degree of convergence, we get

Term of the zero order, 1.00000 00000 00000 O
Term of the 4™ order, + 0.00180 46110 93422 7
Sum of the terms of the 8™ order, 4 0.00000 01808 63109 9
Sum of the terms of the 12" order, -+ 0.00000 00000 64478 6

(I(o) = 1.00180 47920 21011 2

As far as we can judge from induction, the value of [J(0) would
be affected, only in the 14" decimal, by the neglected remainder of the

' Sce American Journal of Mathematics, Vol. I, p. 249.
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series, which is of the 16" order. An error in (J(o) is multiplied by
2.8 nearly in c.
The value, which is derived thence for ¢, is

¢ = 1.07158 32774 16016.

In order that nothing may be wanting in the exact determination
of this quantity, we will employ the value just obtained as an approxi-
matce value in the elimination between equations (21). The coefficients
[¢], as many of them as we have need for, have the following values: —

[—4]= 463, [1] = 8.27577 98905 1,
[—3]= 23.13045, [2] = 24.56211 3,
[—2]= 741678056151, [3] = 48.85.

[— 1] = — 0.29688 63288 2300,

If the quantities b, are eliminated from equations (21) in the order b_,,
b,, b_,, b,, b_,, b, and b_,, it will be found that the coefticient of b,,
in the principal equation, undergoes the following successive depressions,

[0] = — 0.01055 32191 58933,
[0] = - 0.00040 72723 11650,
[o]—" = -4 0.00001 50888 08423,
[O]wz, -LD = -+ 0.00000 00253 21700,
[O]<—2, =1,1,9) = -} 0.00000 00009 20420,
[O]Ps,wz,;-l,l,?) = - 0.00000 00000 03941,
[o](‘3’ -2,-1,1,2,% = -} 0.00000 00000 00155,

[o]=*—%-5"1L39 — L 0.00000 00000 00008.

The last number is not sensibly changed by the elimination of any
of the b,, beyond b_, on the onc side, or b, on the other. This residual
is so small that it will not be necessary to repeat the computation with
another value of c: it will suffice to subtract half of it from the assumed
value of ¢. Thus we have as the final result

¢ = 1.07158 32774 16012}

and, consequently,
0 6008 30 0486
—d?—-—0.00 57 2570004 4

ERN
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Let us compare this value with that obtained from DprLaunay’s literal
expression '

lTdw 3 o 225 5, 4071 4 26549_§ 5 12822631
ndt 4" + 32 " + 5 + 2048 + 24576 "
1273925965 ., | 71028685580  32145882707741

— M ——— I} m

T 589824 T 70778388 T 679477243 ’

where m denotes the ratio of the mean motions of the sun and moon.
On the substitution of the numerical values we have employed for these
quantitics, this series gives, term by term,

%% = 0.00419 6429 4 0.00294 2798 4 0.00099 5700 4 0.00030 3577

+ 0.00009 1395 + 0.00002 8300 4 0.00000 9836

+ 0.00000 3468 = 0.0085% 1503.

From- the comparison, it appears that the sum of the remainder of
DELAUNAY’S series is 0.00000 1070, somewhat less than would be inferred
by induction from the terms of the series itself. And, although DeravNay
has been at the great pains of computing 8 terms of this series, they do
not suffice to give correctly the first 4 significant figures of the quantity
sought. On the other hand, the terms of the highest order, computed
in the expression for [J(0), were of the 12" order only; and yet, as we
have seen, they have sufficed for giving ¢ exact nearly to the 15" de-
cimal. As well as can be judged from induction, it would be nccessary
to prolong the series, in powers of m, as far as m*", in order to obtain
an equally precise result. Allowing that the two last figures of the

. I do . . i
foregoing value of — —; may be vitiated by the accumulation of error
v d ¢

arising from the very numerous operations, we may, I think, assert that
13 decimals correctly correspond to the assumed value of m. It m“ay
be stated that all the computations have been made twice, and no iu-
considerable portion of them three times.

! Comptes rendus de l'académie des sciences de Paris, Tome LXXIV,
p. 19.




