Skip to main content
Log in

Molecular systematics of theDrosophila hydei subgroup as inferred from mitochondrial DNA sequences

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The phylogeny of theDrosophila hydei subgroup, which is a member of theD. repleta species group, was inferred from 1,515 base pairs of mitochondrial DNA sequence of the cytochrome oxidase subunits I, II, and III. Four of the seven species in the subgroup were examined, which are placed into two taxonomic complexes: theD. bifurca complex (D. bifurca) andD. nigrohydei) and theD. hydei complex (D. hydei and (D. eohydei). Both complexes appear to be monophyletic, although theD. bifurca complex is only weakly supported. The evolution of chromosomal change, interspecific crossability, sperm gigantism, and divergence times of the subgroup is discussed in a phylogenetic context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckenbach AT, Wei YW, Liu H (1993) Relationships in theDrosophila obscura species group, inferred from mitochondrial cytochrome oxidase II sequences. Mol Biol Evol 10:619–634

    CAS  PubMed  Google Scholar 

  • Beverley SM, Wilson AC (1984) Molecular evolution inDrosophila and the higher Diptera. II. A time scale for fly evolution. J Mol Evol 21:1–13

    Article  CAS  PubMed  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    Article  CAS  PubMed  Google Scholar 

  • Casanova J-L, Pannetier C, Jaulin C, Kourilsky P (1990) Optimal conditions for directly sequencing double-stranded PCR products with Sequenase. Nucleic Acids Res 18:4028

    CAS  PubMed  Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule ofDrosophila yakuba: nucleotide sequence, gene organization and genetic code. J Mol Evol 22:252–271

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn MHL (1983)Drosophila melanogaster mitochondrial DNA, a novel gene organization and genetic code. Nature 304:234–241

    PubMed  Google Scholar 

  • DeSalle R, Freedman T, Prager EM, Wilson AC (1987) Tempo and mode of sequence evolution in mitochondrial DNA of HawaiianDrosophila. J Mol Evol 26:157–164

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1993) PHYLIP: Phylogeny inference Package (ver 3.5c). University of Washington, Seattle

    Google Scholar 

  • Grimaldi DA (1987) Amber fossil Drosophilidae (Diptera), with particular reference to the Hispaniolan taxa. Am Mus Nov 2880:1–23

    Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    CAS  PubMed  Google Scholar 

  • Hendy MD, Penny D (1982) Branch and bound algorithms to determine minimal evolutionary trees. Math Biosci 59:277–290

    Article  Google Scholar 

  • Hihara F, Kurokawa H (1987) The sperm length and the internal reproductive organs ofDrosophila with special references to phylogenetic relationships. Zool Sci (Tokyo) 4:167–174

    Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Jin L, Nei M (1990) Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol 7:82–102

    CAS  PubMed  Google Scholar 

  • Joly D, Bressac C (1994) Sperm length in Drosophilidae (Diptera): estimation by testis and receptacle lengths. Int J Insect Morphol Embryol 23:85–92

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules, In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–123

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Lachaise D, Carion M-L, David JR, Lemeunier F, Tsacas L, Ashburner M (1988) Historical biogeography of theDrosophila melanogaster species subgroup. Evol Biol 22:159–225

    Google Scholar 

  • Lake JA (1994) Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc Natl Acad Sci USA 91: 1455–1459

    CAS  PubMed  Google Scholar 

  • Liu H, Beckenbach AT (1992) Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol Phyl Evol 1:41–52

    CAS  Google Scholar 

  • Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612

    CAS  Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution (ver 3.05). Sinauer, Sunderland, MA

    Google Scholar 

  • Margush T, McMorris FR (1981) Consensus n-trees. Bull Math Biol 43:239–244

    Article  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich HA (1987) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273

    Google Scholar 

  • Pitnick S (1996) Investment in testes and the cost of making long sperm inDrosophila. Am Nat 148:57–80

    Article  Google Scholar 

  • Pitnick S, Markow TA (1994) Large-male advantages associated with costs of sperm production inDrosophila hydei, a species with giant sperm. Proc Natl Acad Sci USA 91:9277–9281

    CAS  PubMed  Google Scholar 

  • Pitnick S, Markow TA, Spicer GS (1995a) Delayed male maturity is a cost of producing large sperm inDrosophila. Proc Natl Acad Sci USA 92:10614–10618

    CAS  Google Scholar 

  • Pitnick S, Spicer GS, Markow TA (1995b) How long is a giant sperm? Nature 375:109

    Article  CAS  Google Scholar 

  • Rohlf FJ (1982) Consensus indices for comparing classifications. Math Biosci 59:131–144

    Google Scholar 

  • Russo CAM, Takezaki N, Nei M (1995) Molecular phylogeny and divergence times of Drosophilid species. Mol Biol Evol 12:391–404

    CAS  PubMed  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491

    CAS  PubMed  Google Scholar 

  • Saitou N, Imanishi M (1989) Relative efficiencies of the Fitch-Margolish, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor joining methods of phylogenetic tree reconstruction in obtaining the correct tree. Mol Biol Evol 6:514–525

    CAS  Google Scholar 

  • Schäfer U (1978) Sterility inDrosophila hydei ×D. neohydei hybrids. Genetica 49:205–214

    Article  Google Scholar 

  • Simon C, Franke A, Martin A (1991) The polymerase chain reaction: DNA extraction and amplification. In: Hewitt GM (ed) Molecular techniques in taxonomy. NATO Advanced Studies Institute, H57, Springer Berlin, pp 329–355

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  • Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. W.H. Freeman, San Francisco

    Google Scholar 

  • Spicer GS (1988) Molecular evolution among someDrosophila species as indicated by two-dimensional electrophoresis. J Mol Evol 27: 250–260

    Article  CAS  PubMed  Google Scholar 

  • Spicer GS (1995) Phylogenetic utility of the mitochondrial cytochrome oxidase gene: molecular evolution of theDrosophila buzzattii species complex. J Mol Evol 41:749–759

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (1996) PAUP*Star (test ver 4.0). Sinauer, Sunderland, MA

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Villela CR (1983) A revision of theDrosophila repleta group (Diptera: Drosophilidae). Rev Bras Entomol 27:1–114

    Google Scholar 

  • Wasserman M (1954) Cytological studies of the repleta group. Univ Texas Publ 5422:130–152

    Google Scholar 

  • Wasserman M (1962) Cytological studies of the repleta group of the genus Drosophila. IV. The hydei subgroup. Univ Texas Publ 6205: 73–84

    Google Scholar 

  • Wasserman M (1982) Evolution of therepleta group. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology ofDrosophila, vol 3B. Academic Press, London, pp 61–139

    Google Scholar 

  • Wasserman M (1992) Cytological evolution of theDrosophila repleta species group. In: Krimbas CB, Powell JR (eds)Drosophila inversion polymorphism. CRC Press, Boca Raton, pp 455–552

    Google Scholar 

  • Wharton LT (1944) V. Interspecific hybridization in the repleta group. Univ Texas Publ 4445:175–193

    Google Scholar 

  • Wheeler MR (1949) XIII. Taxonomic studies on the Drosophilidae. Univ Texas Pub 4920:157–195

    Google Scholar 

  • Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: G. Spicer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spicer, G.S., Pitnick, S. Molecular systematics of theDrosophila hydei subgroup as inferred from mitochondrial DNA sequences. J Mol Evol 43, 281–286 (1996). https://doi.org/10.1007/BF02338836

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02338836

Key words

Navigation