Skip to main content
Log in

Molecular phylogeny of the free-living archezoanTrepomonas agilis and the nature of the first eukaryote

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We have sequenced the small ribosomal subunit RNA gene of the diplozoanTrepomonas agilis. This provides the first molecular information on a free-living archezoan. We have performed a phylogenetic analysis by maximum likelihood, parsimony, and distance methods for all available nearly complete archezoan small subunit ribosomal RNA genes and for representatives of all major groups of more advanced eukaryotes (metakaryotes). These show Diplozoa as the earliest-diverging eukaryotic lineage, closely followed by microsporidia.Trepomonas proves to be much more closely related toHexamita, and, to a lesser degree, toSpironucleus, than toGiardia. The close relationship between the free-livingTrepomonas on our trees and the parasitesHexamita inflata andSpironucleus refutes the idea that the early divergence of the amitochondrial Archezoa is an artefact caused by parasitism. The deep molecular divergence between the three phagotrophic genera with two cytostomes (Hexamita, Trepomonas, Spironucleus) and the saprotrophicGiardia that lacks cytostomes is in keeping with the classical evidence for a fundamental difference in the symmetry of the cytoskeleton between the two groups. We accordingly separate the two groups as two orders: Distomatida for those with two cytostomes/cytopharynxes and Giardiida ord. nov. forGiardia andOctomitus that lack these, and divide each order into two families. We suggest that this fundamental divergence in manner of feeding and in the symmetry of the cytoskeleton evolved in a free-living diplozoan very early indeed in the evolution of the eukaryotic cell, possibly very soon after the origin of the diplokaryotic state (having two nuclei linked together firmly by the cytoskeleton) and before the evolution of parasitism by distomatids and giardiids, which may have colonized animal guts independently. We discuss the possible relationship between the two archezoan phyla (Metamonada and Microsporidia) and the nature of the first eukaryotic cell in the light of our results and other recent molecular data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bhattacharya D, Elwood HJ, Goff LJ, Sogin ML (1990) Phylogeny ofGracilaria lemaneiformis (Rhodophyta) based on sequence analysis of its small subunit ribosomal RNA coding region. J Phycol 26:181–186

    Google Scholar 

  • Branke J, Berchtold M, Breunig A, König H, Reimann J (1996) 16S-like rDNA sequence and phylogenetic position of the diplomonadSpironucleus muris (Lavier 1936). FEBS Lett (in press)

  • Brugerolle G (1975) Contribution a l'étude cytologique et phyletique des diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910). VI. Caracteres généraux des diplozoaires. Protistologica 6:111–118

    Google Scholar 

  • Brugerolle G (1995)Trimastix convexa, a free-living amitochondriate flagellate without close relationships with Percolozoa, retortamonad or trichomonad flagellates. Eur J Protistol 31:410

    Google Scholar 

  • Cavalier-Smith T (1983) A 6-kingdom classification and a unified phylogeny. In: HEA Schenk, Schwemmler W (eds) Endocytobiology II. De Gruyter, Berlin, pp 1027–1034

    Google Scholar 

  • Cavalier-Smith (1987a) The origin of eukaryote and archaebacterial cells. Ann NY Acad Sci 503:17–54

    Google Scholar 

  • Cavalier-Smith T (1987b) The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann NY Acad Sci 503:55–71

    Google Scholar 

  • Cavalier-Smith T (1987c) The origin of cells, a symbiosis between genes, catalysts and membranes. Cold Spring Harb Symp Quant Biol 52:805–824

    Google Scholar 

  • Cavalier-Smith T (1991a) The evolution of cells. In: Osawa S, Honjo T (eds) Evolution of life. Springer-Verlag, Tokyo, pp 271–304

    Google Scholar 

  • Cavalier-Smith T (1991b) Evolution of prokaryotic and eukaryotic cells. In: Bittar GE (ed) Foundations of medical cell biology, vol. 1. JAI Press, Greenwich, CT, pp 221–278

    Google Scholar 

  • Cavalier-Smith T (1991c) Cell diversification in heterotrophic flagellates. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Oxford University Press, Oxford, pp 113–131

    Google Scholar 

  • Cavalier-Smith T (1992a) Origins of secondary metabolism. In: Chadwick DJ, Whelan J (eds) Secondary metabolites, their function and evolution. Wiley, Chichester, pp 64–87

    Google Scholar 

  • Cavalier-Smith T (1992b) The number of symbiotic origins of organelles. Biosystems 28:91–106

    Google Scholar 

  • Cavalier-Smith T (1992c) Origin of the cytoskeleton. In: Hartman H, Matsuno K (eds) The origin and evolution of the cell. World Scientific, Singapore, pp 79–106

    Google Scholar 

  • Cavalier-Smith T (1993a) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57:953–994

    Google Scholar 

  • Cavalier-Smith T (1993b) Percolozoa and the symbiotic origin of the metakaryote cell. In: Ishikawa H, Ishida M, Sato S (eds) Endocytobiology V. Tübingen University Press, pp 399–406

  • Cavalier-Smith T (1993c) Evolution of the eukaryotic genome. In: Broda PMA, Oliver SG, Sims PFG (eds) The eukaryotic genome, organization and regulation. Cambridge University Press, London, pp 333–385

    Google Scholar 

  • Cavalier-Smith T (1995a) Membrane heredity, symbiogenesis, and the multiple origins of algae. In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. The National Science Museum Foundation, Tokyo, pp 75–114

    Google Scholar 

  • Cavalier-Smith T (1995b) Cell cycles, diplokaryosis, and the archezoan origin of sex. Arch Protistenkunde 145:189–207

    Google Scholar 

  • Cavalier-Smith T (1996a) A revised 6-kingdom system of life. Biol Rev (submitted)

  • Cavalier-Smith T (1996b) Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms Eozoa and Neozoa. Arch Protistenkunde 147:(in press)

  • Cavalier-Smith T, Chao EE (1995) The opalozoanApusomonas is related to the common ancestor of animals, fungi, and choanoflagellates. Proc R Soc Lond [Biol] 261:1–6

    Google Scholar 

  • Cavalier-Smith T, Allsopp MP, Chao EE, Boury-Esnault N, Vacelet J (1996) Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. Can J Zool (in press)

  • Clark G, Roger A (1996) Direct evidence for secondary loss of mitochondria inEntamoeba histolytica. Proc Natl Acad Sci USA 92:6518–6521

    Google Scholar 

  • Dangeard PA (1910) Etudes sur la structure et le développement des organismes inférieurs. Botaniste 11:1–311

    Google Scholar 

  • Doolittle WF, Brown JR (1994) Tempo, mode, the progenote, and the universal root. Proc Natl Acad Sci USA 91:6721–6728

    Google Scholar 

  • Embley TM, Hirt RP, Williams DM (1995) Biodiversity at the molecular level: the domains, kingdoms and phyla of life. In: Biodiversity: measurement and estimation. Chapman & Hall, London, pp

    Google Scholar 

  • Farmer MA (1993) Ultrastructure ofDitrichomonas honigbergii N.G., N.sp. (Parabasalia) and its relationship to amitochondrial protists. J Euk Microbiol 40:619–626

    Google Scholar 

  • Felsenstein J (1992) Phylip manual (Version 3.5). University of Washington, Seattle

    Google Scholar 

  • Felsenstein J, Churchill GA (1996) A hidden Markov model approach to variation among sites in rate of evolution. Mol Biol Evol 13:93–104

    Google Scholar 

  • Galtier N, Gouy M (1995) Inferring phylogenies from the DNA sequences of unequal base composition. Proc Natl Acad Sci USA 92:11317–11321

    Google Scholar 

  • Germot A, Philippe H, Le Guyader H (1996) Mitochondrial endosymbiosis in eukaryotic evolution has occurred very early, before the emergence of trichomonads. (submitted)

  • Gleeson T, Hillier L (1991) A trace display and editing program for data from fluorescence-based sequencing machines. Nucleic Acids Res 19:6481–6483

    Google Scholar 

  • Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K, Oshida M (1989) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86:6661–6685

    Google Scholar 

  • Golding GB, Gupta RS (1995) Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol Biol Evol 12:1–6

    Google Scholar 

  • Grassé P-P (1952) Ordre des distomatinés ou diplozoaires. In: Grassé P-P (ed) Traité de zoologie, vol 1, fasc 1. Masson, Paris, pp 963–982

    Google Scholar 

  • Gupta RS (1995) Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11

    Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Hinkle G, Leipe DD, Nerad TA, Sogin ML (1994) The unusually long small subunit ribosomal RNA ofPhreatamoeba balamuthi. Nucleic Acids Res 22:465–469

    Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of Archaebacteria, Eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359

    Google Scholar 

  • Jefferies RS (1979) The origin of chordates: a methodological essay. In: House MR (ed) The origin of major invertebrate groups. Academic Press, London, pp 443–477

    Google Scholar 

  • Jin L, Nei M (1990) Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol 7:82–102

    Google Scholar 

  • Klebs (1892) Flagellatenstudien. Z Wiss Zool 55:322–353

    Google Scholar 

  • Kuhner MK, Felsenstein J (1994) A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol 11:459–468

    Google Scholar 

  • Leipe DL, Gunderson JH, Nerad TA, Sogin ML (1993) Small subunit ribosomal RNA ofHexamita inflata and the quest for the first branch in the eukaryotic tree. Mol Biochem Parasitol 59:41–48

    Google Scholar 

  • Lichtenstein CP, Draper J (1985) Genetic engineering of plants. In: Glover DM (ed) DNA cloning: a practical approach. IRL Press, Oxford, pp 102–103

    Google Scholar 

  • Medlin L, Elwood HJ, Stickel S, Sogin M (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499

    Google Scholar 

  • Morin L, Mignot J-P (1995) Are Archamoebae true Archezoa? The phylogenetic position ofPelomyxa sp. as inferred from large subunit ribosomal RNA sequencing. Eur J Protistol 31:402

    Google Scholar 

  • Müller M (1992) Energy metabolism of ancestral eukaryotes: a hypothesis based on the biochemistry of amitochondriate parasitic protists. Biosystems 28:33–40

    Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889

    Google Scholar 

  • Nei M (1991) The relative efficiency of different methods of phylogenetic reconstruction. In: Miyamoto MM, Cracraft J (eds) Phylogenetic analyses of DNA sequences. Oxford University Press, Oxford, pp 90–128

    Google Scholar 

  • Nerad TA (ed) (1993) Catalogue of Protists. American Type Culture Collection, Rockville, MD

    Google Scholar 

  • Olsen GJ (1987) Earliest phylogenetic branchings: comparing rRNA-based evolutionary talrees inferred with various techniques. Cold Spring Harb Symp Quant Biol 52:825–837

    Google Scholar 

  • Olsen GJ, Woese CR (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6

    Google Scholar 

  • Olsen GL, Matsuda H, Hagstrom R, Overbeek R (1994) FastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48

    Google Scholar 

  • Patterson DJ (1994) Protozoa, evolution and systematics. In: Hausmann K, Hulsmann N (eds) Progress in protozoology. Fischer, Stuttgart, pp 1–14

    Google Scholar 

  • Philippe H, Adoutte A (1995) How reliable is our current view of eukaryotic phylogeny? Protist Actual 1:17–33

    Google Scholar 

  • Roger AJ, Graham Clark C, Doolittle WF (1996) Loss of mitochondria by trichomonads, members of an ancient protist lineage. (submitted)

  • Siddall ME, Hong H, Desser SS (1992) Phylogenetic analysis of the Diplomonadida (Wenyon, 1926) Brugerolle, 1975: evidence for heterochrony in Protozoa and againstGiardia lamblia as a “missing link.” J Protozool 39:361–367

    Google Scholar 

  • Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet PM (1994) The genetic data environment and expandable GUI for multiple sequence analysis. Comput Appl Biosci 10:671–675

    Google Scholar 

  • Sogin ML, Edman U, Elwood H (1989a) A single kingdom of eukaryotes. In: Fernholm F, Bremer K, Jörnval H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 133–143

    Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989b) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA fromGiardia lamblia. Science 243:75–77

    Google Scholar 

  • Soltys B, Gupta RS (1994) Presence and cellular distribution of a 60-kDa protein related to mitochondrial hsp60 inGiardia lamblia. J Parasitol 80:580–590

    Google Scholar 

  • Van De Peer Y, Neefs J-M, De Rijk P, De Wachter R (1993) Evolution of eukaryotes as deduced from small ribosomal subunit RNA sequences. Biochem Syst Ecol 21:43–55

    Google Scholar 

  • Van Keulen H, Gutell RR, Gates MA, Campbell SR, Erlandsen SL, Jarroll EL, Kulda J, Meyer EA (1993) Unique phylogenetic position of Diplomonadida based on the complete small subunit ribosomal RNA sequence ofGiardia ardeae, G. muris, G. duodenalis andHexamita sp. FASEB J 7:223–231

    Google Scholar 

  • Vickerman K (1990) Phylum Zoomastigina class Diplomonadida In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones & Bartlett, Boston, pp 200–210

    Google Scholar 

  • Vossbrinck CR, Woese CR (1986) Eukaryotic ribosomes that lack a 5.8S rRNA. Nature 320:287–288

    Google Scholar 

  • Vossbrinck CR, Maddox JR, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414

    Google Scholar 

  • Wenyon CM (1926) Protozoology. Baillière, Tindall & Cox, London

    Google Scholar 

  • Winnepenninckx B, Backeljau T, Mackey L, Brooks JM, De Wachter RD, Kumar S, Garey JR (1995) 18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Mol Biol Evol 12:1132–1137

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Google Scholar 

  • Wolters J (1991) The troublesome parasites—molecular and morphological evidence that Apicomplexa belong to the dinoflagellateciliate clade. Biosystems 25:75–83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalier-Smith, T., Chao, E.E. Molecular phylogeny of the free-living archezoanTrepomonas agilis and the nature of the first eukaryote. J Mol Evol 43, 551–562 (1996). https://doi.org/10.1007/BF02202103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02202103

Key words

Navigation