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Abstract. In 1958 L. M. Kelly and W, O, J. Moser showed that apart from a pencil, 
any configuration of n lines in the real projective plane has at least 3n/7 ordinary or 
simple points of intersection, with equality in the Kelly-Moser example (a complete 
quadrilateral with its three diagonal lines). In 1981 S. Hansen claimed to have 
improved this to n/2 (apart from pencils, the Kelly-Moser example and the McKee 
example). In this paper we show that one of the main theorems used by Hansen is 
false, thus leaving n/2 open, and we improve the 3n/7 estimate to 6n/13 (apart from 
pencils and the Kelly-Moser example), with equality in the McKee example. Our 
result applies also to arrangements of pseudolines. 

1. Introduction 

In 1893 Sylvester posed the following problem in a column of mathematical 
problems and solutions in the Educational Times [Sy]: 

(i,1) "Prove that it is not possible to arrange any finite number of real points 
so that a right line through every two of them shall pass through a third, unless 
they all lie in the same right line." 

The following incorrect solution was advanced by a reader in a subsequent issue 
([W1]--see also [W2]): "Suppose that a set of n points are so situated as to 
fulfil the condition (but not collinear). Now abstract one of them and note its 
position; then the ~(n - 1)(n - 2) lines joining the remaining points must pass 
through the position of the abstracted point, which is absurd." The problem 

* The research ofJ.  Csima was supported in part by NSERC Grant  A4078. E. T~ Sawyer's research 
was supported in part by NSERC Grant  A5149. 



188 J. Csima and E. T. Sawyer 

remained unsolved until 1933 when it was independently raised by Erdrs and 
solved shortly after by Gallai (see [El i ,  [E2], and [E3]). Other solutions have 
been given by Melchior [Me] (where the dual (1.2) is proved), Kelly (see p. 28 of 
[C1] and p. 65 of [C2]), Robinson (see [Mot]), Steinberg [St], Coxeter [C1, 
p. 27], [C2, p. 181], Lang [L]), and others. Melchior's solution uses Euler's 
formula, and the others, while they differ slightly in character, are based on the 
same clever idea of Gallai, most transparent in Lang's proof. Before giving these 
proofs, we note that (1.1), which is the same problem in either the Euclidean or 
real projective plane, can be dualized to 

(1.2) Let there be given a finite set of lines in the real projective plane, with not 
all the lines passing through one point. Show that among all the intersection points 
of these lines, at least one is incident with exactly two of the lines. 

We remark that the principle of duality for the real projective plane was first stated 
explicitly by Gergonne in 1826 (see p. 29 of IVY]). In the following we discuss 
only (1.2) and, for convenience, we translate results on (1.t) into this dual setting. 
A point that is incident with exactly two of the lines is called ordinary (see [Mot] 
where this terminology is introduced). 

Melchior's proof of (1.2) reduces to the observation that if no point were 
ordinary, then every vertex would be of degree at least six, and so 6V < 2E. Since 
every region is bounded by at least three edges, 3F < 2E. Combining these 
inequalities yields 6(V + F - E) _< 0, contradicting Euler's formula in the projec- 
tive plane. It is interesting to note that the map dual of this observation was 
known in the Euclidean plane 14 years before Sylvester posed his problem. In his 
attempt to prove the four-colour theorem, Kempe deduced from Euler's formula 
that [K, bottom of p. 198] "every map drawn on a simply connected surface must 
have a district with less than six boundaries." (Applied to the dual map of a 
configuration in the Euclidean plane, this shows the existence of a point with less 
than six edges, i.e., an ordinary point.) 

Here is Lang's proof of (1.2) (which is the dual of Gallai's proof of (1.1)). Choose 
a line I and then a point (of intersection) P that is off I but closest to it. If P itself 
is not ordinary, then there are lines 11, 12, and 13 through P meeting 1 at points 
PI, P2, and P3 which we may assume appear left to right along the horizontal 
line I. Then P2 is necessarily ordinary as an additional line m through P2 would 
intersect either 11 or 13 at a point M closer to l than P (see Fig. 1). 

M m 

1 

11 /2 13 

Fig. 1 
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Fig. 2. Examples of B6r6czky. 

With the existence of an ordinary point established, Dirac [D1] turned to the 
question of how many. If F is a collection of nonconcurrent lines and E is the set 
of intersection points, let n be the number of lines in F and let s be the number 
of ordinary points in E. Dirac showed s >_ 3 and conjectured s > [½n] in general. 
In fact, for n even, examples by B6r6czky (see [CM]) have exactly ½n ordinary 
points. Simply consider a regular (n/2)-gon and let F consist of the n/2 lines 
containing the edges together with the n/2 lines of reflective symmetry. The 
midpoints of the edges are the only ordinary points. The cases n = 10, 12 are 
shown in Fig. 2. Thus the optimal asymptotic result is (at least for n even) Dirac's 

conjecture. In [Mot] Motzkin showed s > x / 2 n -  2 and in [KM] Kelly and 
Moser showed that s > ~n with equality occurring in the "Kelly-Moser con- 
figuration" (see Fig. 3), a complete quadrilateral with its three diagonal lines, 
having three ordinary points in a configuration of seven lines. In fact, this was the 
only known example with s < ½n until the "McKee configuration" [CM] of six 
ordinary points in a configuration of 13 lines (two of the ordinary points are at 
infinity in Fig. 4). 

In his 1981 dissertation for the habilitation, Hansen [HI claims that, except 
for pencils and the special configurations of Figs. 3 and 4, s > ½n. However, in 
both [EP, p. 6] and IBM, p. 121] the authors indicated that Hansen's argument, 
which is long (96 pp.) and difficult to read, had not yet been independently checked. 
As we show in Section 3 below, one of the main subtheorems in Hansen's thesis 
is actually false, thus leaving Dirac's conjecture open. We also mention here 
Hansen's conjecture that the configuration of 12 lines (other than the line at 

Fig. 3. The "Kelly-Moser configuration." 



190 J. Csima and E. T. Sawyer 

"N 

Fig. 4. The "McKee configuration." The 13th line is at infinity. 

infinity) shown in Fig. 4 and the examples of B6r6czky, as shown in Fig. 2, are 
the only configurations for which s = ½n. 

The purpose of this paper is to improve on the 3n/7 estimate of Kelly and Moser 
by showing that, except for pencils and the KeUy-Moser configuration (Fig. 3), 
the number s of ordinary points in a configuration of n lines is at least ~n ,  with 
equality of course occurring for the McKee configuration (Fig. 4). Our proof 
readily extends to arrangements of pseudolines, improving on the previous result 
of s > ~n, due to Kelly and Rottenberg [KR].  GriJnbaum has conjectured that 
s > ½n for n ~ 7, 13 [G] in an arrangement of pseudolines (see also the discussion 
in [H] near the end of Chapter 1). 

We now sketch the main ideas in our proof. Lang's (Gallai's) proof of (1.2) 
associates to each line l an ordinary point either on l itself or attached to l in a 
certain minimal sense (as indicated above and made precise in Definition 2.7 
below). Since any given ordinary point P is on exactly two lines and attached to 
at most four lines (the corresponding minimal triangles in Definition 2.7 must lie 
in distinct sectors at P), lower bounds on s in terms of n can be obtained by 
showing that, on average, each line is associated to some positive number of 
ordinary points. For  example, since every line is associated to at least one ordinary 
point by Lang's (Gallai's) result, we clearly have s _> ~n (compare [Mos] where it 
is shown that s > (n + 11)/6 for n even). A simple way to picture this is to imagine 
an n x s matrix whose rows are labeled by the lines l and whose columns are 
labeled by the ordinary points P. The entry in the / th  row and Pth column is 1 if 
P is on l or attached to l, and 0 otherwise. The row sums are at least 1 and the 
column sums at most 6, and so n < 6s. It is not hard to modify this approach to 
yield s > In by observing that Lang's argument actually shows that any line 
without ordinary points must have at least two at tached--one from each "side." 
With an (1, P)-entry of 2 if P is on l, 1 if P is attached to l, and 0 otherwise, the 
row sums are at least 2 and the column sums at most 8, yielding 2n < 8s. However, 
further improvements require additional geometric information about configura- 
tions of lines in the plane. 

Kelly and Moser provided such information in their 1958 paper to prove s ~ ~n. 
They showed that any line having no ordinary points must have at least three 
attached, while any line having just one ordinary point must have at least two 
attached Isee [D2] for a correction). If we now set the (/, P)-entry of our matrix 
to be ~ if P lies on l, 1 if P is attached to l, and 0 otherwise, then the row sumS 
are at least 3 and the column sums at most 7, thus showing 3n _< 7s. 
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In this paper we first give a short and simple proof of a generalization of the 
dual of one of Hansen's results, namely, that, apart from the Kelly-Moser 
configuration (Fig. 3), if two lines intersect in an ordinary point, then at least one 
of them has three or more ordinary points associated to it. We then give a counting 
argument to show that, on average, the row sums are at least 3 when we assign 
to the (l, P)-entry of our matrix ¼ if P lies on l, 1 if P is attached to l, and 0 
otherwise. Since the column sums are at most ¼' 2 + 4 or ½~, we obtain 3n < ½3-s. 

2. The Theorems 

A common realization of the real projective plane is the two-dimensional sphere 
with antipodal points identified and where the lines are great circles. We can 
identify the projective plane, with a great circle removed, as the Euclidean plane 
via stereographic projection from the center of the sphere to a tangent plane 
parallel to the great circle removed. These "windows" into the projective plane 
allow us to describe the order relations there in terms of the familiar concepts of 
left, right, up, and down. We use the following notation when viewing the projective 
plane through one of these windows. If I is a nonvertical line containing points A 
and B, the closed segment [A, B] will denote all points on I obtained by moving 
to the right along I from A to B (see Fig. 5). For a vertical line l, replace right by 
up. To prevent confusion, vertical lines will be avoided whenever possible. Denote 
the open segment by (A, B) and the half-open, half-closed segments by [A, B) and 
(A, B]. Note that any three nonconcurrent lines determine four triangles whose 
edges are [A, B] or [B, A], [B, C] or [C, B], and [A, C] or [C, A] (the latter choice 
is determined by the first two) where A, B, and C are the intersection points of 
the lines. Finally, these windows permit the use of Euclidean distance when 
convenient in certain projective arguments. 

Definitions. Suppose PAB is a closed triangle with [A, B] on a line I. The point 
P is the/-vertex and the segment [A, B] is the/-base. 

/ 

l l l 

Fig. 5 
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Fig. 6. 
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Examples of/-wide triangles. 

/A•B 
Fig. 7. Examples of/-minimal triangles. 
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Fig. 8. (a) PAB is not /-solid. (b) PAB is/-solid. 

m 
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(2.1) PAB is/-wide if there is no line through P that meets l outside the closed 
segment [A, B], i.e., in (B, A) (see Fig. 6). 

(2.2) PAB is /-minimal if it is/-wide and contains no points off l other than P 
itself (see Fig. 7). 

(2.3) PAB is/-solid if no line through PAB separates P from the closed segment 
[A, B]. In other words, PAB fails to be/-solid if there is a line m such that PAB\m 
consists of two components, one containing P and the other [A, B] (see Fig. 8). 

Note that an/-minimal triangle is/-solid. 

(2.4) PAB is/-blemished if it contains a point off I other than P. 

Lemma 2.5. Suppose PAB is t-minimal. Then either P is an ordinary point or there 
is at least one point in the open segment (A, B) and every such point is ordinary. 

Proof If P is not ordinary, there is a line m through P meeting l at M in (A, B). 
The point M is ordinary since another line q through M would intersect either 
(A, P) or (P, B), contradicting the l-minimality of PAB (see Fig. 9). [] 

Lemma 2.6. Suppose PAB is l-solid. I f  PAB is I-blemished or l-wide, then PAB 
contains an l-minimal triangle. 

ProoJl Choose a window in which the triangle PAB is bounded. Suppose first 
that PAB is/-solid and/-blemished. Choose a point Q in PAB off I that is closest 
to 1. Then Q -¢: p. Choose C and D on / as far apart as possible so that QCD is 
/-wide. Then QCD is contained in PAB since if, for example, C is not in [A, B], 
then QC lies on a line m that separates P from [A, B], contradicting PAB is/-solid 
(see Fig. 10). Clearly, QCD is/-minimal since any point other than Q in QCD\I 
would be in PAB and closer to l than Q (see Fig. 1 l). 

Now suppose that PAB is /-solid and /-wide. If PAB is /-minimal, there is 
nothing left to prove. Otherwise PAB contains a point off I other than P, making 
PAB/-blemished, a case we have already considered. [] 

Definition 2.7. If PAB is/-minimal and P is ordinary, then P is attached to I. 
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An immediate corollary of Lemma 2.5 and Lemma 2.6 is 

Lemma 2,8. Suppose PAB is 1-solid. I f  PAB is l-blemished or l-wide, then there is 
a point Q in PAB  other than A or B that is ordinary and either on I or attached to I. 

Definition 2.9. A line t has type T(/) = (/~, v) if there are exactly p ordinary points 
on l and v ordinary points attached to I. 

Definition 2.10. If a line I has type (#, v) and 1 _<_ ~ < 2, the a-weight of 1, denoted 
w~(l), is ~/~ + v. 

The following corollary of Lemma 2.8 is used repeatedly in the next theorem. 

Lemma 2.11. Suppose Q is an ordinary point on a line 1. Suppose T 1 and T 2 are 
l-solid triangles with at most one point in common, neither containing Q except 
possibly as a vertex. Suppose moreover that T~ is either l-wide or l-blemished, and 
that T 2 is either l-wide or 1-blemished. Then l cannot have type (2, 0). 

Proof By Lemma 2.8, wl(/) > 3. [] 

The next theorem is a slight generalization of the dual of subtheorem 19 of 
[HI (where the lines are more restricted than type (2, 0)). 

Theorem 2.12 Suppose F is a finite configuration of  lines in the real projective 
plane having two lines of type (2, 0) that intersect in an ordinary point. Then F is 
the Kelly-Moser configuration (Fig. 3). 

Proof First observe that F cannot be a near-pencil, i.e., a configuration in which 
all lines but one pass through a single point. Indeed, if n = 3, then each line has 
type (2, 1), while if n _> 4, one line has type (n - 1,0) and the rest have type (l, 2). 
Suppose 11 and I z are horizontal lines of type (2, 0) that intersect in an ordinary 
point Q at infinity. Let A and B (resp. C and D) be the extreme left and right 
points on 11 (resp. 12). We have A :/: B and C # D since F is not a near-pencil. By 
applying an appropriate projective transformation, we may assume that ABCD is 
a rectangle (see Fig. 12). We now complete the proof in four steps by eliminating, 
with the aid of Lemmas 2.8 and 2.11, successively more and more configurations 
until only (Fig. 3) remains. 

Step 1. None of the extreme points A, B, C, D is ordinary. 

Proof Suppose on the contrary that A is ordinary, m is the other line through 
A, and that m meets 12 at P. If T is the triangle bounded by [A, P], [A, Q], and 
[P, Q], then T is/l-solid and/1-wide since no line can intersect the open segment 
(Q, A). Lemma 2.8 now shows that t 1 cannot have type (2, 0), a contradiction (see 
Fig. 13). 

We may now assume that A, B, C, D are not ordinary points. 
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Fig. 12 

m 

Fig. 13 

Step 2. A line contains either none of the extreme points A, B, C, D or exactly 
two of them. 

Proof. Suppose on the contrary that l passes through A but not through C or 
D. Let m and n be lines through C and D respectively but not through A (which 
exist since C and D are not ordinary). Then if ! intersects m, n, and 12 at O, P, and 
R, respectively, the triangles OCR and PRD are/2-solid and/2-wide. For example, 
any separating line of OCR would have to intersect one of the forbidden segments 
[Q, A) or [Q, C) (drawn dashed in Fig. 14), and similarly for any line through O 
that meets 12 outside [C, R]. Lemma 2.11 now yields a contradiction (see Fig. 14). 

We may now assume that there are lines /3 through A and C, 14 through B 
and D, I s through B and C, and 16 through A and D, and that no lines other than 
l 1 . . . . .  t 6 pass through A, B, C, or D. Let P be the intersection of Is and 16. Note 
that 13 and 14 are vertical (see Fig. 15). 

Step 3. All additional lines are vertical. 

Proof. Suppose on the contrary that there is an additional nonverticai line. Then 
there is at least one point o n  13 not at infinity and other than A or C. Let E be 
such a point with the property that either (E, C) or (A, E) is empty of points. There 
is then a similar such point F on 14. We now derive a contradiction. Suppose E 
lies below 12. Then (E, C) is empty of points since (A, E) already contains a point 
at infinity. If there is a line I through E passing above P, and if ! intersects f6, / t ,  
and 14 at O, R, and S, respectively, then OAR and SRB are/l-solid and/t-wide. 
For example, any separating line of OAR would have to intersect one of the 
forbidden segments [Q, A), [Q, C), or (E, C], and similarly for any line through O 
meeting I l outside [A, R]. Lemma 2.11 now yields a contradiction (see Fig. 16). 

m 

,~.-Q 
,, [ I 

/ n 

Fig. 14 



196 J. Csima and E. T. Sawyer 

]5 

Ii 

12 

16 
13 14 

s 

/3 

Q 

l / ~ E  14 

Fig. 15 Fig. 16 

On the other hand, if l passes below P and is chosen to intersect 12 at M as 
far to the right as possible (so that ECM is /2-wide), and if l intersects 16 at O, 
then, as above, triangles ECM and OMD are/2-solid and/2-wide and again Lemma 
2.11 yields a contradiction (see Fig. 17). 

The case when E lies above ll is symmetrical. Thus E must be ordinary and 
the other line through E must pass through P. Since the same holds for F, we 
may now assume that both E and F are ordinary points and that there is a line 
through E, P, and F. 

Suppose E lies below 12. Since T(12)  = (2, 0), E cannot be attached t o  l 2 and 
since no additional lines intersect (E, C], there is a line m through both (E, M) 
and (C, M) and so also (A, P). Thus PAN is/1-solid and/l-blemished while FNB 
is/l-solid and/i-wide.  Lemma 2.11 now yields a contradiction (see Fig. 18). 

Step 4. F is the Kelly-Moser configuration (Fig. 3). 

Proof The previous steps show that F contains the lines 11 . . . . .  16 and that any 
additional lines are vertical. Since II and l 2 have type (2, 0) and every additional 
vertical line meets both 11 and lz in an ordinary point, there must be exactly one 
additional vertical line in F and it must pass through P. Then F is the Kelly-Moser 
configuration (see Fig. 19). [] 

Fig. 17 
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We will need the following dual of Theorem 3.3 of [KM] .  

Theorem 2.13 [KM] .  Apart from pencils, if T(1) ~: (2, 0), then wl(l ) >_ 3. 

An immediate corollary of Theorem 2.12 and Theorem 2.13 is 

Corollary 2.14. f f  I, and 12 have ordinary intersection in an), confiquration other 
than pencils and (Fig. 3), then wl(ll) + wl(12) > 5. 

Theorem 2.15. Except for pencils and the Kelly-Moser configuration, s > ~n. 

Proof. We part i t ion the ordinary points into the sets 

tr = {ordinary points that  tie on a line of  type (2, 0)}, 

z = {ordinary points that  do not  lie on a line of type (2, 0)}, 

and we parti t ion the lines into sets of bad, good, and fair lines, 

= {lines l of type (2, 0)}, 

f¢ = {lines 1 that contain a point in a but I¢ ~},  

?T = {lines l that do not contain a point  in a}. 

We further part i t ion ff into the sets 

ffj = {lines l in c5 that contain exactly j points of a}. 

Suppose the intersection P of l and m is in a. Then one of / or  m is in ;~ with 
t-weight 2 and so by Corol lary 2.t4, the other  has 1-weight at least 3 and lies in 
ft. Thus each point  in tr appears on exactly one line from ~ and exactly one line 
from ~. Thus if B = ~:~', G = #f#,  F = # ~ ,  and G~ = #f#j ,  we have 

= Y.  (2.1) 
J 

jG~ = 4t= a = 2B. (2.2) 
j>_l 
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N o w  i f /~  c~ 1, then T(/) = (/~, v) _> (1, 0) and wl(/) = # + v >_ 3 (by Theorem 2.13) 
and  since at > 1, we have w~(/) = 0t/~ + v > ~ + 2. If  l ~ c~ 2, then T(l) > (2, 0) 
and wl(/) > 3 and  so w~(/) > 2~ + 1. If  l~ (¢j for j > 3, then of  course w~(/) >jet. 
Finally, i f / ~  ~',  then w~(/) = 2~ and if l ~ ~ ,  then w~(/) > wl(/) > 3 by Theorem 2.13. 
Thus  

2 w,(O = Z w.(l) + y 2 
l e t  le.~ j meC~ 

w,(m) + ~ w~(l) 

>_ 2~B + (ct + 2)G~ + (2ct + 1)G2 + ~ j~Gj + 3F 
j > 3  

) 

= ( 4 e - 2 ) B + 3 G 1  + 3 G z +  ~ j G j + 3 F  
j > 3  

>_ (4~ -- 2)B + 3G + 3F (by (2,1)). 

(by (2.2)) 

(2.3) 

N o w  choose • = ~ so that  (4~t - 2) = 3. Then (2.3) becomes 

ws/4(I ) > 3B + 3G + 3F = 3n. (2.4) 

However ,  an ord inary  point  P lies on exactly two lines, say k and m, and there 
are at  mos t  four minimal  triangles with vertex P having sides on k and m. Thus 
P is a t tached to at  most  four lines. If we assign to the (l, P)-entry of our n × s 
matr ix  (see the end of  Section I) ¼ if P lies on l, 1 if P is a t tached to l, and 0 
otherwise, then the co lumn sums are at most  2(¼) + 4 = ~ .  F r o m  (2A) we now 
obta in  

3n __< ~ ws/,(I) _< ~s, 
tEF 

and this completes  the p roof  of  T h e o r e m  2.15. [] 

3. The Counterexamples 

In this section we show that  one of  the main  results in Hansen ' s  thesis, subtheorem 
17 [H] ,  is false, thus leaving Dirac 's  n/2 conjecture open.  In order  to discuss our 
counterexamples  to sub theorem 17, we need to introduce a not ion o f " t y p e "  more 
refined than that  in Definition 2.9 above.  We say tha t  two lines are followers (of 
each other)  if no pair  of  lines separates  them. Suppose  that  P is an ordinary point 
not  on a line I and not a t tached to I. We say that  P is semiat tached to l if there 
is a line m th rough  P such that  l and m are followers and  one of the open segments 
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J / 

J 

Fig. 20. P is semiattached to L 

from Q = lm to P is empty of points (see Fig. 20). In Hansen's terminology the 
duals of "at tached" and "semiattached" are "genuinely associated" and "un- 
genuinely associated" respectively. A line I in F is said to have Hansen-type (/~, v, p) 
if there are exactly p ordinary points on l, v ordinary points attached to l, and p 
ordinary points semiattached to I. 

As subtheorem 17 involves further definitions that are awkward to introduce 
here, it will be convenient to exhibit an infinite family of counterexamples to the 
following simply stated consequence of subtheorem 17: 

(.) If ll and l 2 are followers, they cannot both have Hansen-type (2, 0, 0). 

We remark that (,) constitutes the main step in the proof of subtheorem 17 
and Hansen's argument for (.) runs from the bottom of p. 85 to the top of p. 91 
of [HI. The error occurs at the top of p. 88 where it is falsely assumed that a 
certain hexagon can be projectively transformed into a regular hexagon. 

The configuration of 14 lines in Fig. 21 is the smallest counterexample to (*). 
The two horizontal lines I 1 and 12 are followers (since there is no horizontal line 
above I l and below tz) and yet both have Hansen-type (2, 0, 0). The configuration 

t 2 

Ii 

1 /  i 

Fig. 21. E14--the smallest counterexample to subtheorem 17. The 14th line is at infinity. 



200 J. Csima and E. T. Sawyer 

12 

Fig. 22. Ezo. The 20th line is at infinity. 

in Fig. 21 is easily seen to exist by requir ing that  the ratio PR/QS be ~ where 
ct 3 + ct 2 = 1, i.e., • m 0.754877666. Fo r  every n of the form n = 8 + 6k, where k is 
a positive integer, there is a configurat ion E n of n lines having a pair  of followers 
each with Hansen- type  (2, 0, 0). The  configurat ions E2o and E26 are given in Figs. 
22 and  23. 

Finally, we remark  that  up to k(2k + 1) addi t ional  lines can be added to the 
conf igura t ion  En, n = 8 + 6k, to obta in  even more  counterexamples .  For  instance, 
in Fig. 22, any line joining Pi and  Qj with 4 > i _> j > 1 can be added without 
altering the Hansen- type  of  11 and 12. It  can be shown that  s > n/2 in all such 
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Fig. 23. E26. The 26th line is at infinity. 

examples.  T h e r e  is s o m e  ev idence  to  sugges t  t h a t  these  a r e  the  o n l y  c o u n t e r -  
examples.  
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Note added in proof. Theorem 2.15 can be proved more simply as follows. 
By Theorem 2.12, s > 2B, where B denotes the number of type (2,0) lines. 
Since an ordinary point is associated to at most six lines, Theorem 2.13 yields 
6s > 2B + 3(n - B). Thus s >_ max{2B, (3n - B)/6} > 6n/13. 


