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Abstract. We propose uncertainty relations for the different coordinates of spacetime
events, motivated by Heisenberg’s principle and by Einstein’s theory of classical gravity. A
model of Quantum Spacetime is then discussed where the commutation relations exactly
implement our uncertainty relations.

We outline the definition of free fields and interactions over QST and take the first
steps to adapting the usual perturbation theory. The quantum nature of the underlying
spacetime replaces a local interaction by a specific nonlocal effective interaction in the
ordinary Minkowski space. A detailed study of interacting QFT and of the smoothing of
ultraviolet divergences is deferred to a subsequent paper.

In the classical limit where the Planck length goes to zero, our Quantum Spacetime
reduces to the ordinary Minkowski space times a two component space whose components
are homeomorphic to the tangent bundle TS2 of the 2–sphere. The relations with Connes’

theory of the standard model will be studied elsewhere.

1. Introduction

It is generally believed that the picture of spacetime as a manifold M locally mod-
elled on the flat Minkowski space M0 = R4 should break down at very short dis-
tances of the order of the Planck length

λP =

(

G~

c3

)1/2

≃ 1.6 × 10−33 cm.

Limitations in the possible accuracy of localization of spacetime events should in
fact be a feature of a Quantum Theory incorporating gravitation.

There have been investigations on possible mechanisms leading to such limi-
tations in the context of string theory [1,2], in Ashtekar’s approach to quantum
gravity [3], and, in a more formal way, in the context of Quantum Groups [4,5].
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These different approaches have led to different limitations and, more significantly,
to different pictures of spacetime where gravitational effects in the small are neces-
sarily strong (spacetime foam [6]).

Our proposal differs radically: attempts to localize with extreme precision cause
gravitational collapse so that spacetime below the Planck scale has no operational
meaning. We elaborate on this well known remark and are led to spacetime uncer-
tainty relations. In our proposal, spacetime has a quantum structure intrinsically
implying those relations. Thus the impossibility of giving an operational mean-
ing to spacetime in the small is incorporated in the mathematical structure of the
model.

Similar models can be found in the work of J. Madore [7], where, however, no
attempt was made to motivate the algebraic structure by an operational analysis
of localization.

We thus propose that spacetime ought to be described as a non–commutative
manifold , i.e. the commutative algebra C0(M) of complex continuous functions on
M vanishing at infinity should be replaced by a non–commutative algebra E , and
points of M by pure states on E . The aim of this paper is to propose an algebra E
describing Quantum Spacetime and to look for a formulation of QFT over QST.

We now formulate some criteria for the choice of E . We are interested in ele-
mentary particle physics, that is in describing idealized situations where only few
colliding particles are present. Therefore, as a first state of our project, we are
interested in a non–commutative variant of the flat spacetime M0, deviating from
M0 only at very short distances, which fulfils the following principles:

1) The commutation relations in E should be motivated by operationally meaningful
uncertainty relations between the different coordinates of spacetime events.

2) The flat spacetime M0 should appear (possibly as a factor) in the large scale limit
of E.

3) The full Poincaré group should act as symmetries on E .

Condition 3 is motivated and made possible by 2) and allows us to adopt Wigner’s
description of elementary particles in terms of irreducible representations of the
Poincaré group. Parity or time reversal symmetry breaking might be features of
specific interactions but the quantum spacetime should be, as ordinary spacetime,
reflection symmetric. Therefore, in 3) the full Poincaré group is required to yield
symmetries of the quantum spacetime.

In Sect. 2 we explore the limitations of localization measurements which are due
to the possible creation of black holes by concentration of energy.

We find the uncertainty relations

∆x0(∆x1 + ∆x2 + ∆x3) & λ2
P ,

∆x1∆x2 + ∆x2∆x3 + ∆x3∆x1 & λ2
P ,

which are implied by those limitations but do not necessarily imply them. In Sect.
3 we find algebraic relations which imply these uncertainty relations. They have
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the form
qµ = q∗µ ,

[[qµ, qν ], qρ] = 0 ,

[qµ, qν ][qµ, qν ] = 0 ,
(

1

8
[qµ, qν ][qρ, qσ]εµνρσ

)2

= λ8
P .

The resulting algebra has a centre generated by the commutators iQµν = [qµ, qν ].
The physical meaning of this centre has still to be understood. It is responsible
for the fact that in the large scale limit, performed at fixed spectral values of the
centre, the resulting classical space is M0 × Σ, where

Σ = {(σµν), σµν = −σνµ, σµνσ
µν = 0 , (1/8σµνσρσε

µνρσ)2 = 1}
≃ TS2 × {1,−1} .

In Sect. 4 we define a C∗–algebra E to which the operators qµ are affiliated. E
turns out to be isomorphic to the algebra C0(Σ,K) of continuous functions from Σ
to K vanishing at infinity, where K is the algebra of compact operators in a fixed
separable Hilbert space. States on E describe the possible localization of events.
For optimal localization in a specific Lorentz frame, in the sense that Σ(∆qµ)2

is minimal, the state must be concentrated on spectral values of the centre in a
compact submanifold Σ(1) of Σ with Σ(1) ≃ S2 × {1,−1}.

In Sect. 5 we develop calculus on E . In particular we define a spacetime integral
as a positive Poincaré invariant trace and integrals over spatial hyperplanes as pos-
itive weights. The existence of these latter integrals will be crucial for introducing
an interaction and depends on the fact that the uncertainty relations admit an
absolutely precise determination of time at the cost of complete uncertainty in at
least one spatial coordinate.

In Sect. 6 we take the first steps towards quantum field theory on the quantum
spacetime. We define free fields and show that their commutator at spacelike dis-
tances decreases like a Gaussian. We give a formal recipe for defining interaction
Hamiltonians, interacting fields and the perturbative expansion of the S–matrix.
This expansion could be derived from a specific nonlocal effective interaction on
ordinary Minkowski space where the nonlocal corrections are at least quadratic in
λP .

Gauge theories on the quantum spacetime should be formulated in the framework
of non–commutative geometry [8]. More substantial deviations from theories on
classical spacetime are to be expected; quantum electrodynamics, for example, will
be a non–Abelian gauge theory. The occurrence of the two point set {1,−1} in the
classical limit recalls Connes’ theory of the standard model [8,9]. We hope to take
up these problems elsewhere.

The quantum aspects of gravitation might, however, well lead to a more drastic
deviation from the classical structure of spacetime than is shown in our model,
which is motivated by semiclassical arguments pertaining to classical gravity.

Some of the structures discussed in this paper have already appeared in the
literature in different contexts. Thus our commutation relations occur in the theory
of charged particles is constant electromagnetic fields (see e.g. [10]). A Euclidean
version of fields on a non–commutative spacetime related to ours was proposed in
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[11]. The Schwinger model on Madore’s fuzzy sphere [7] was discussed in [12]. For
other models of quantum spacetime see e.g. [13].

A less technical version of our main results has appeared in [14].

2. Spacetime Uncertainties

We start our discussion by pointing out that combining Heisenberg’s uncertainty
principle with Einstein’s theory of classical gravity leads to the conclusion that
ordinary spacetime loses any operational meaning in the small.

Measuring a spacetime coordinate with great accuracy a causes an uncertainty
in momentum of the order 1

a (unless otherwise stated, we will use natural units

~ = c = G = 1). Neglecting rest masses, an energy of the order 1
a is transmitted to

the system and concentrated at some time in the localization region. The associated
energy–momentum tensor Tµν generates a gravitational field which, in principle,
should be determined by solving Einstein’s equations for the metric ηµν ,

Rµν − 1

2
Rηµν = 8πTµν . (2.1)

The smaller the uncertainties ∆xµ in the measurement of coordinates, the stronger
will be the gravitational field generated by the measurement. When this field
becomes so strong as to prevent light or other signals from leaving the region in
question, an operational meaning can no longer be attached to the localization.

Our task is now to investigate how localization is restricted by requiring that
no black hole is produced in the course of measurement. Since pair creation is
important in processes involving high energy transfer, the framework of quantum
field theory has to be used.

Our information on the localization of events in spacetime is obtained by using
operations which prepare a state localized in a region with sides of lengths ∆xµ,
that we take as a measure of the uncertainties in the spacetime coordinates of an
event. We will admit only those states whose associated energy–momentum tensor,
taken as a source in Einstein’s equation, does not generate closed trapped surfaces
in the sense of Penrose1.

As a consequence, the ∆xµ will be subject to some restrictions preventing them
from being simultaneously arbitrarily small. We may then pose our

Uncertainty Problem: Find the restrictions on the uncertainties ∆x0, . . . ,∆x3

valid in all admissible states.

To formulate our problem precisely, we turn to the free neutral scalar field and
use the coherent states as a model for a class of states prepared by such operations.
The corresponding state vector have the form

Φ = eiϕ(f)Ω , (2.2)

where Ω denotes the vacuum state vector and f a real smooth test function with
compact support where the state (2.2) is strictly localized [16,17]. We have to
choose the function f so that Φ differs significantly from the vacuum in the support
of f , a region whose extent is characterized by ∆xµ, µ = 0, . . . , 3. To this end we

1Cf. [15, 8.2]: we are grateful to D. Boccaletti for calling our attention to this reference.
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require the state to be significantly different from its translate through ∆xµ. This
may be expressed by the condition

|(Φ, PµΦ)| ≥ (∆xµ)−1 ,

which will be analyzed more thoroughly elsewhere.
The mean energy–momentum tensor of the state induced by (2.2) is given by

tµν(x; f) = (Φ, : Tµν(x) : Φ) , (2.3)

where : Tµν : is the normal form of the energy–momentum density of the field

Tµν(x) =
∂ϕ

∂xµ
(x)

∂ϕ

∂xν
(x) +

1

2

(

m2ϕ(x)2 − ∂ϕ

∂xλ
(x)

∂ϕ

∂xλ
(x)

)

gµν , (2.4)

: Tµν(x) := Tµν(x) − (Ω, Tµν(x)Ω) . (2.5)

The mean energy–momentum tensor (2.3) coincides with the energy–momentum
density associated with a suitable solution ψf of the Klein–Gordon equation, (� +
m2)ψf = 0, using the expression (2.4) in classical field theory. Here

ψf (x) = Im

∫

Ω+
m

e−ikxf̂(k)dΩm(k)

=

∫

∆m(x− y)f(y)d4y (2.6)

(where dΩm is the invariant measure on the positive energy mass m hyperboloid
Ω+

m and ∆m the commutator function for the free scalar field of mass m). By the
support properties of ∆m, ψf is localized at some time with the same accuracy ∆x1,
∆x2, ∆x3 as Φ; furthermore, by (2.6), ψf cannot be a positive energy solution since
f has compact support. However, ψf has the same mean energy

(ψf , hψf ) = (Φ, HΦ) , (2.7)

where h is the one particle Hamiltonian and H the free field Hamiltonian. Thus
our problem is equivalent to its variant dealing only with wave functions. We will
not try to solve this problem here; instead we propose as an ansatz the following
spacetime uncertainty relations in generic units:

∆x0

3
∑

j=1

∆xj & λ2
P (2.8)

3
∑

j<k=1

∆xj∆xk & λ2
P . (2.9)

We will motivate these relations heuristically limiting ourselves to a crude estimate,
where (2.1) is replaced by the linearized equations, the components of Tµν with
(µ, ν) 6= (0, 0) are neglected, and the total energy E, where E ∼ 1

∆x0
if ∆x0 is very
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small, is supposed to be distributed with constant density ρ(−t) at negative times
x0 = −t over a volume with sides ∆x1 + t, ∆x2 + t, ∆x3 + t.

In other words we assume uniform spreading with all speeds not exceeding the
speed of light and localization around the origin, up to ∆x1, ∆x2, ∆x3, at x0 = 0.

The gravitational potential ϕ at xµ
∼= 0 can be evaluated as the retarded poten-

tial

ϕ ∼ −
∫

ϕ(~y,−r)
r

d3~y ∼ − 1

∆x0

∫ ∞

0

1

r

r2dr

(∆x1 + r)(∆x2 + r)(∆x3 + r)
, (2.10)

and we impose the condition that photons of energy ε should not be trapped, i.e.
ε+ εϕ & 0 or −ϕ . 1.

It is easy to compute the leading behaviour of (2.10) in the three regimes: ∆x1 ∼
∆x2 ∼ ∆x3; ∆x1 ∼ ∆x2 ≫ ∆x3; ∆x1 ≫ ∆x2 ∼ ∆x3. One finds ∆x0 · ∆x1 & 1
in the first two cases, and ∆x0 · ∆x1 & ln ∆x1

∆x2
in the third. If ∆x1/∆x2 is of the

order of unity we are back to the first case, so that ∆x0 · ∆x1 & 1 is the absolute
limitation, according to (2.8), in the third case too. If ∆xj ≪ ∆x0 we must take
E ∼ 1

∆xj
and we find (2.9).

If ∆x0 is very large compared with ∆xj , j = 1, 2, 3, we can take as an extreme
idealization a static solution and the Schwarzschild and Kerr solutions motivate
(2.9). For, if ∆x1 ∼ ∆x2 ∼ ∆x3 ∼ a, we could take a spherically symmetric
solution with mass 1

a , and our condition says that a should be not smaller than the

Schwarzschild radius ∼ 1
a , i.e. a & 1.

If, say ∆x1 ∼ ∆x2 ∼ r ≫ ∆x3 ∼ a, we may take the axially symmetric Kerr
solution with mass M ∼ 1

a and angular momentum L; the limit case is L/M ∼M
and L . Mr [18, Ch. 7] which gives

a · r & 1

in accordance with (2.9). We might further argue that, in the extreme situation
considered, the energy density is actually concentrated on a thin ring region of
radius r and thickness a, so that the requirement expressed by (2.9) that at least
one space uncertainty is large is not in contradiction with the Kerr solution.

However condition (2.9) is actually weaker since it allows ∆x1 ∼ a to be arbi-
trarily small and ∆x2 ∼ ∆x3 ∼ r to be of order one.

In the next section we discuss covariant commutation relations which do imply
that the uncertainty relations (2.8) (2.9) hold in each state over the associated alge-
bra. We interpret these states as describing possible localizations of measurements.

The separation of the spacetime localization from the measurement of a local ob-
servable is due to our classical treatment of the gravitational effects of localization.
The present approach ought to be considered as a semiclassical approximation to
a theory, presently unknown, where gravity and quantum physics are truly unified.
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3. Quantum Conditions on Minkowski Space

Let A1, A2, . . . , An be elements of a complex algebra; their non–commutativity can
be measured by the quantity

[A1, . . . , An] ≡
∑

εi1...in
Ai1 . . . Ain

= det







A1 . . . An

A1 . . . An

. . .
A1 . . . An






. (3.1)

If n = 2, this is just the commutator; if n = 3 and for (j, l, k) = (1, 2, 3) and cyclic
permutations we set

[Aj , Al] = iCk ,

then
[A1, A2, A3] = i

∑

k

AkCk . (3.2)

If n = 4, we think of operators q0, . . . , q3 describing the coordinates in Quantum
Spacetime and forming a Lorentz vector and we will use covariant notation. Define

iQµν = [qµ, qν ] , µ, ν = 0, 1, 2, 3 . (3.3)

Antisymmetry of ε then gives

[q0, q1, q2, q3] = εµνλρqµqνqλqρ = −1

4
εµνλρQµνQλρ ,

so that, setting

(∗Q)µν =
1

2
εµνλρQλρ

as usual, we get

[q0, . . . , q3] = −1

2
Qµν(∗Q)µν . (3.4)

If we denote by ~e, ~m the “electric” and “magnetic” components of Q, respectively,
i.e.

Q0j = ej = (∗Q)lk

(j, l, k) = (1, 2, 3) or cyclic,

Qlk = mj = (∗Q)0j (3.5)

the two independent Lorentz invariants which can be constructed with the tensor
Qµν are given by

1

2
QµνQ

µν = ~m2 − ~e 2 , (3.6)

1

2
Qµν(∗Q)µν = −[q0, . . . , q3] = ~e · ~m+ ~m · ~e . (3.7)

These expressions are invariant under Poincaré transformations

q → Λq + a · I ,
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a ∈ R
4 , Λ ∈ L↑

+ ; (3.8)

and total reflections q → −q, but (3.7) is not separately invariant under space or
time reflections since the sign of (3.7) changes. Therefore, the natural conditions
which are Lorentz invariant and symmetric in ~e and ~m are the following:

QµνQ
µν = 0 ,

1

4
[q0, q1, q2, q3]

2 = I . (3.9)

From now on, q0, q1, q2, q3 will be always assumed to be selfadjoint operators acting
on a Hilbert space (or affiliated to a C∗–algebra, cf. [19] or Appendix A), and the
operators −i[qµ, qν ] will be assumed to have selfadjoint closures Qµν .

We will now show that the conditions (3.9) do yield the uncertainty relations
(2.8), (2.9) provided the Qµν are central , i.e. commute2 with the qµ’s

[qλ, Qµν ] = 0 ; λ, µ, ν = 0, . . . , 3 . (3.10)

We will call Eq. (3.9) and (3.10) the Quantum Conditions .
For each selfadjoint operator A on H and unit vector x ∈ H, we will say that

the vector state ω = ωx is in the domain of A if x ∈ DA, so that

ω(A2) ≡ (Ax,Ax) <∞ .

The uncertainty ∆ωA is defined by (∆ωA)2 = ω((A−ω(A)·I)2) = ω(A2)−ω(A)2

and ω is said to be definite on A if and only if ∆ωA = 0, i.e. x is an eigenvector
of A. The same applies if A is affiliated to a C∗–algebra A and ω ∈ S(A) is in the
domain of A (cf. Appendix A).

3.1 Theorem. Let the four selfadjoint coordinate operators q0, . . . , q3 fulfill the
Quantum Conditions (3.9), (3.10). For each state ω in the domain of the [qµ, qν ],
we have

∆ωq0

3
∑

j=1

∆ωqj ≥ 1

2
, (3.11)

∑

1≤j<k≤3

∆ωqj∆ωqk ≥ 1

2
. (3.12)

The proof will follow easily from the following propositions.

3.2 Proposition. Let q0, . . . , q3 fulfill (3.9) and ω be a state in the domain of the
[qµ, qν ]’s, which is definite on [q0, q1, q2, q3]. Then

∆ωq0 ·
3

∑

j=1

∆ωqj +
1

2

3
∑

j=1

∆ωej ≥ 1

2
, (3.13)

2Throughout this paper two selfadjoint operators will be said to commute if they commute
strongly, i.e. their continuous functions vanishing at infinity (or, equivalently, their spectral reso-
lutions) commute.
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∑

1≤j<k≤3

∆ωqj∆ωqk +
1

2

3
∑

j=1

∆ωmj ≥ 1

2
. (3.14)

3.3 Proposition. Let A be a C∗–algebra with unit I and ν a (regular) probability
measure on the state space S(A) with barycentre ω ∈ S(A), i.e.

ω(A) =

∫

S(A)

ϕ(A)dν(ϕ) , A ∈ A . (3.15)

For any selfadjoint elements A, B ∈ A we have

∆ω(A) ≥
∫

S(A)

∆ϕ(A)dν(ϕ) , (3.16)

∆ω(A) · ∆ω(B) ≥
∫

S(A)

∆ϕ(A)∆ϕ(B)dν(ϕ) . (3.17)

Proof of Theorem 3.1 . Let the state ω be definite on each Qµν ; then ω is definite
on [q0, . . . , q3] (cf. (3.4)) and ∆ω(ej) = ∆ω(mj) = 0, j = 1, 2, 3, so that (3.11),
(3.12) follow from (3.13), (3.14) of Proposition 3.2. If ω is any state in the domain
of the [qµ, qν ]’s, it suffices, by Proposition 3.3 and Appendix A, to write ω as the
barycentre of a (regular) probability measure carried by states definite on the Qµν ’s.

Since the Qµν are central, f(Qµν), f ∈ C0(R), will lie in the centre of the C∗–
algebra A generated by f(Qµν) and g(qµ), µ, ν = 0, 1, 2, 3, f, g ∈ C0(R). For each
state ω on A in the domain of the [qµ, qν ]’s, the central decomposition of ω [20, 4.8]
will provide a (regular) measure carried by factor states, hence definite on f(Qµν)
and in the domain of [qµ, qν ] by Appendix A. �

Proof of Proposition 3.2 . If A, B, C are selfadjoint operators with [A,B]− = iC,
then for each state ω in the domain of [A,B] we have

ω(C2) = ω(C)2 + (∆ω(C))2 ≤ (2∆ω(A) · ∆ω(B))2 + (∆ωC)2 . (3.18)

If ω is as in the statement of the proposition we have ω([q0, . . . , q3]) = ±2 and by
(3.7),

Re ω(~e · ~m) =
1

2
ω(~e · ~m+ ~m · ~e) = ±1 ,

so that |ω(~e · ~m)| ≥ 1. Since by the Schwarz inequality

|ω(~e · ~m)| ≤
∑

j

ω(e2j)
1/2ω(m2

j)
1/2

≤





∑

j

ω(e2j)





1/2 



∑

j

ω(m2
j)





1/2

,

we get
ω(~e)2 · ω(~m2) ≥ 1 .
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Since by (3.6), (3.9) ω(~e 2) = ω(~m2) we have ω(~e 2) ≥ 1, ω(~m2) ≥ 1. If we recall
definitions (3.3), (3.5) and apply (3.18), we get (3.13) and (3.14) using (a+b+ · · ·+
c)2 ≥ a2 + b2 + · · · + c2 for non–negative a, b, . . . , c. �

Proof of Proposition 3.3 . With X ∈ A, X = X∗, we have

∆ω(X)2 = ω((X − ω(X)I)2) =

∫

ϕ((X − ω(X) · I)2)dν(ϕ) .

But for each ψ ∈ S(A) and λ ∈ R we have

ψ((X − λ · I)2) = ψ((X − ψ(X) · I)2) + (λ− ψ(X))2

≥ ψ((X − ψ(X) · I)2) ,

so that we also have

∆ω(X)2 ≥
∫

ϕ((X − ϕ(X) · I)2)dν(ϕ)

=

∫

(∆ϕX)2dν(ϕ) . (3.19)

Since ν is a probability measure, the constant function equal to 1 is square sum-
mable with unit L2–norm and by the Schwarz inequality

∫

∆ϕXdν(ϕ) ≤
(∫

(∆ϕX)2dν(ϕ)

)1/2

≤ ∆ωX ,

∫

∆ϕA · ∆ϕBdν(ϕ) ≤
(∫

(∆ϕA)2dν(ϕ)

)1/2

·
(∫

(∆ϕB)2dν(ϕ)

)1/2

≤ ∆ωA · ∆ωB ,

where we have used (3.19) repeatedly. �

We now want to consider realizations of (3.9) and (3.10) through operators on
Hilbert space. As we have already indicated, the qµ will be supposed to be self–
adjoint operators such that −i[qµ, qν ] have self–adjoint closures Qµν commuting
strongly with qλ for all µ, ν, λ. We wish, however, to impose a further condition
namely that the commutation relations between the qµ’s can be integrated in Weyl
form:

eiαµqµ

eiβµqν

= e−(i/2)αµQµν βνei(α+β)µqµ

; α, β ∈ R
4 . (3.20)

Such realizations will be termed regular .
We shall see in the next section that there is a well defined C∗–algebra E whose

non–degenerate representations are in one–to–one correspondence with the regu-
lar realizations. E describes our Quantum Spacetime in the sense that it may be
thought of as the space of continuous functions on the Quantum Spacetime vanish-
ing at infinity.

The situation is therefore analogous to quantum mechanics where we have a
C∗–algebra whose representations are in one–to–one correspondence with regular
realizations of the canonical commutation relations. Furthermore, just as in quan-
tum mechanics, there are other realizations and thus the possibility of defining
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C∗–algebras describing other natural classes of representations and hence other
Quantum Spacetimes. Taking quantum mechanics as our guide, these possibilities
will be ignored here.

An important role will be played by the joint spectrum of the commuting self-
adjoint operators Qµν . By (3.9) it is included in the set Σ of all antisymmetric real
2–tensors σ such that

σµνσ
µν = 0 ;

1

4
σµν(∗σ)µν = ±1 , (3.21)

i.e., writing σ = (~e, ~m); ej = σ0j , mj = σlk, where (j, l, k) is a cyclic permutation
of (1, 2, 3), such that

~e 2 = ~m2 ; (~e · ~m)2 = 1 . (3.22)

We have Σ = Σ+ ∪ Σ−, where

Σ± = {σ = (~e, ~m)/~e 2 = ~m2 , ~e · ~m = ±1} . (3.23)

We can introduce the (Lorentz frame dependent) Euclidean norm on Σ by

‖σ‖2 ≡ 1

2

∑

µ<ν

σ2
µν =

1

2
(~e 2 + ~m2) = ~e 2 = ~m2 .

Then ‖σ‖ ≥ 1 for each σ ∈ Σ and the unit sphere Σ(1) of Σ is the compact manifold

Σ(1) = {σ ∈ Σ/‖σ‖ = 1} = {σ = (~e, ~m) ∈ Σ/~e = ±~m} = Σ
(1)
+ ∪ Σ

(1)
− ,

i.e. Σ
(1)
± is homeomorphic to S2.

If the four selfadjoint operators q0, . . . , q3 obey the Quantum Conditions (3.9),
(3.10) and ω is a state in the domain of the Qµν ’s then, by the Spectral Theorem,
ω defines a regular probability measure µω on Σ s.t.

ω(f(Q)) =

∫

Σ

f(σ)dµω(σ) , f ∈ C0(Σ) .

3.4 Proposition. Under the hypothesis of Theorem 1, we have

Σµ(∆ωqµ)2 ≥
√

2

∫

Σ

(‖σ‖2 + 1)1/2dµω(σ) .

Proof . By (3.19) it sufficies to prove the above inequality for a state ω which is pure
on the centre. µω is then a Dirac measure at a point σ ∈ Σ and |ω(Qµν)| = |σµν |.
Let q′µ = πω(qµ) − ω(qµ) · I. For ~a ∈ R3 we set ~a · ~q ′ = Σ3

i=1aiq
′
i and find the

commutation relations

[q′0,~a · ~q ′] = i~a · ~e · I , [~a · ~q ′,~b · ~q ′] = i(~a×~b) · ~m · I .

Now let {~a,~b,~c} be an orthonormal basis of R3 with ~a = ~b× ~c.
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Then

∑

µ

(∆ω(qµ))2 = ω(q′
2
0 + (~a · ~q ′)2 + (~b · ~q ′)2 + (~c · ~q ′)2)

≥ 2∆ω(q′0)∆ω(~a · ~q ′) + 2∆ω(~b · ~q ′)∆ω(~c · ~q ′)

≥ |ω([q′0,~a · ~q ′])| + |ω([~b · ~q ′,~c · ~q ′])|
= |~a · ~e| + |(~b× ~c) · ~m| ≥ |~a · (~e± ~m)| ,

for σ ∈ Σ+ respectively.
The maximum over ~a is attained for ~a = ~e±~m

‖~e±~m‖ , hence

Σµ(∆ω(qµ))2 ≥ ‖~e± ~m‖ =
√

2(‖~e‖2 + 1) =
√

2(‖σ‖2 + 1) �

The last proposition sheds some light on the role of the manifold Σ. Very accurate
measurements of the qµ’s select states ω for which µω is essentially concentrated on

Σ(1). In generic units, the unit sphere Σ(1) becomes the doubled sphere of radius
λ2

P .
As we will discuss in the next section, if we consider generic states, the manifold

Σ survives in the classical limit λP → 0. But if we limit ourselves to very well
localized states, the effect of Σ will be not directly visible in that limit. In the
next section we will describe explicitly states with optimal localization where the
quantity Σµ(∆ωqµ)2 actually reaches its minimal possible value.

We collect here some easy results on the manifold Σ which are either obvious or
proved in Appendix B.

I. Σ is a homogeneous space of the full Lorentz group for the action

Λ ∈ L , σ ∈ Σ → ΛσΛT = σ′ ∈ Σ ,

σ′
µν = Λµ′

µ Λµ′

ν σµ′ν′ . (3.24)

Under the action (3.24), Σ± are L↑
+–homogeneous spaces; Σ± are connected.

If ~e = ~m, the stabilizer of σ = (~e, ~m) in L↑
+ consists precisely of boosts along

~e combined with rotations around ~e. If ~e = ~m is chosen as the third axis, the
stabilizer of σ is the image of the subgroup D of diagonal matrices under the usual

covering map SL(2,C) → L↑
+. Hence we have homeomorphisms and isomorphisms

of L↑
+–homogeneous spaces:

Σ+ ∼ Σ− ∼ SL(2,C)/D . (3.25)

II. As a topological space, Σ+ is homeomorphic to TS2, the tangent bundle of
the unit sphere in R3. The two–sphere S2, naturally embedded in TS2, corresponds

precisely to Σ
(1)
+ , the Euclidean unit sphere of Σ+. In particular, S2 is a deformation

retract of Σ+.

III. There are Borel sections for the map of L↑
+ onto Σ+ : Λ ∈ L↑

+ → Λσ0Λ
T , σ0

being a given point in Σ+; we can choose such a section

σ ∈ Σ+ → Λσ ∈ L↑
+ ,



13

Λσσ0Λ
T
σ = σ , σ ∈ Σ+ , (3.26)

to be continuous on the complement of a closed set N with zero quasi–invariant
measure. We can choose two such sections σ → Λσ, σ → Λ′

σ, such that N ∩N ′ = ∅,
each of which can be written in the form

Λσ = LσRσ , σ ∈ Σ+ , (3.27)

where Lσ is a boost, Rσ a rotation and σ ∈ Σ+ → Lσ ∈ L↑
+ is continuous.

Choosing σ0 ∈ Σ+ s.t. σ0 = (~e, ~m), ~e = ~m = (0, 1, 0), we have

(σµν
0 ) =

(

0 −I
I 0

)

≡ s , (3.28)

where I is the unit 2 × 2 matrix. Thus the symplectic form α, β ∈ R4 → αµσ
µν
0 βν

can be written as −Im(α̃, β̃), where α̃ = (α0+iα2, α1+iα3) ∈ C
2. In particular, σ0

and hence any σ ∈ Σ, induces a non–degenerate symplectic form and is an invertible
matrix.

A regular realization with Qµν = σµν
0 · I is given by the Schrödinger operators in

the plane, Qj = multiplication by sj and Pj = −i ∂
∂sj

, j = 1, 2, in L2(R2, d2s) = H ,

by setting
qσ0
0 = P1, q

σ0
1 = P2 ; qσ0

2 = Q1 ; qσ0
3 = Q2 . (3.29)

By von Neumann’s uniqueness theorem, each regular irreducible realization is a
(improper) Lorentz transform qσ of qσ0 , σ = Λσ0Λ

T = σ0Λ, for some Λ ∈ L. By
reduction theory every regular realization will be a direct integral of multiples of
qσ’s.

A Poincaré–covariant realization can be easily constructed as follows. Denoting
by x ∈ H and A the complex conjugates of an element x of a Hilbert space H and
of a linear operator A on H , i.e. Ax = Ax, define

q̃σ = qσ ⊗ I on H ⊗H ,

Pµ = −((σ−1qσ)µ ⊗ I + I ⊗ (σ−1qσ)µ) . (3.30)

It is easily checked that the Pµ are generators of a representation Uσ of R4, Uσ(a) =

eiPµaµ

, which is unitary, strongly continuous and induces translations on q̃σ:

Uσ(a)−1q̃σ
µUσ(a) = q̃σ

µ + aµ · I . (3.31)

We can now define, on the Hilbert space H =
∫

⊕H ⊗HdΛ ∼= H ⊗H ⊗ L2(L), the
operators

qµ ≡
∫

⊕
(Λqσ)µdΛ ; (3.32)

U(a, I) ≡
∫

⊕
Uσ(Λ−1a)dΛ , a ∈ R

4 ; (3.33)

U(0,Λ) : (U(0,Λ)x)(Λ′) = x(Λ−1Λ′),Λ,Λ′ ∈ L, x ∈ H ; (3.34)

U(a,Λ) ≡ U(a, I)U(0,Λ) . (3.35)
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It is easily checked that (3.35) defines a unitary strongly continuous representation
of the full Poincaré group and (3.32) a regular realization, where

U(a,Λ)−1qµU(a,Λ) = (Λq)µ + aµ · I . (3.36)

By von Neumann uniqueness and uniqueness of the quasi–invariant regular measure
class on SL(2,C)/D, every regular realization, covariant in the sense of (3.36), will
have to be quasi–equivalent to (3.32).

We close this section with a remark on our Quantum Conditions (3.9), (3.10).
We could as well have required that the two invariant combinations of the central
operatorsQµν appearing in (3.9) coincide with generic real multiples of the identity,

say QµνQ
µν = 2b · I,

(

1
4 Qµν(∗Q)µν

)2
= (a2 − b2) · I, with a ≥ |b|. The above

discussion would have shown that for each state ω, the number η ≡ ω(~e 2), µ =
ω(~m2) fulfil µη ≥ a2 − b2, µ− η = 2b. Hence η ≥ a− b, µ ≥ a+ b, leading as above
to the uncertainty relations

∆q0Σ∆qj ≥ 1

2
(a− b) ,

Σ∆qj∆qk ≥ 1

2
(a+ b) .

Thus our choice b = 0, a = 1 is the obvious symmetric choice in natural units.

4. Quantum Spacetime

In this section we discuss the C∗–algebra describing Quantum Spacetime. This
part of our discussion is not hard but still rather technical, and readers who are
less mathematically minded might prefer to limit themselves to the statements of
the theorems and then proceed to the discussion of localization and the classical
limit following Theorem 4.2.

In view of the discussion towards the end of Sect. 3, we may expect that the C∗–
algebra describing the Quantum Spacetime associated with the regular realizations
of the Quantum Conditions (3.9), (3.10) (cf. Eq. (3.20)) is related to the norm–
closed algebra generated by

∫

f(α)eiαµqµd4α ; f ∈ L1(R4, d4α) , (4.1)

where qµ is the realization (3.32).
In order to nail down the appropriate algebra, it is more instructive to follow

von Neumann’s approach to uniqueness and first introduce a Banach ∗–algebra E0

associated with the regular realizations.
Let us define E0 as the Banach space of continuous functions from Σ to L1(R4, d4α)

vanishing at infinity, equipped with the product, *, and norm:

(f × g)(σ, α) =

∫

f(σ, α′)g(σ, α − α′)e(i/2)αµσµνα′
νd4α′ , (4.2)

(f∗)(σ, α) = f(σ,−α) , (4.3)

‖f‖0,1 = sup
σ

‖f(σ, ·)‖1 (4.4)
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We define the action τ of P on E0 by

τ(a,Λ)(f)(σ, α) = f(Λ−1σΛ−1T ; Λ−1α)e−iaµαµ

detΛ , (4.5)

where of course detΛ = ±1.
The commutative C∗–algebra C(Σ) of bounded continuous functions on Σ is

embedded in the multiplier algebra of E0 by

g ∈ C(Σ), f ∈ E0 → gf ∈ E0 ,

(gf)(σ, α) = g(σ)f(σ, α) . (4.6)

Every non–degenerate representation π of E0 then determines a non–degenerate
representation π̃ of C(Σ) s.t. (cf. (4.6))

π̃(g)π(f) = π(gf) = π(f)π̃(g) (4.7)

and π is irreducible only if ∃σ ∈ Σ s.t.

π̃(g) = g(σ) · I . (4.8)

By von Neumann uniqueness, the irreducible representations π fulfilling (4.8)
for a fixed σ ∈ Σ are all equivalent to one another and to the representation of E0

determined by qσ

f ∈ E0 →
∫

d4αf(σ, α)eiαµqσ
µ , (4.9)

where (cf. (3.29))

qσ = Λqσ0 if σ = Λσ0Λ
T , Λ ∈ L . (4.10)

4.1 Theorem. There exists a unique C∗–norm on E0. The completion E is the
C∗–algebra associated with a trivial continuous field of elementary algebras on Σ,
i.e. it is isomorphic to C0(Σ,K), where K is the C∗–algebra of all compact operators
on a fixed separable infinite dimensional Hilbert space.

Proof . The representations (4.9), (4.10), for σ ∈ Σ, form a separating family, hence
E0 admits a C∗–norm. Let ‖ ‖ denote the maximal C∗–norm and E the associated
completion. A non–zero representation π of E is irreducible iff π|E0 is irreducible,
and hence iff π|E0 is unitarily equivalent to the representation given by (4.9), (4.10)
for some σ ∈ Σ.

Therefore, for each σ ∈ Σ there is an irreducible representation πσ of E satisfying
(4.8) which is unique up to equivalence and we have

πσ(E) = K(Hπσ
) , σ ∈ Σ . (4.11)

If we embed E0 into the Banach ∗–algebra Ẽ0 of bounded continuous functions from
Σ to L1(R4) with product, *, and norm given by (4.2), (4.3), (4.4), then clearly

E0 ⊂ Ẽ0 ⊂ M(E0), the multiplier algebra of E0. The maximal C∗–norm ‖ · ‖ on E0
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induces a C∗–norm, still denoted by ‖ · ‖, on Ẽ0. If Ẽ is the completion of Ẽ0 in that
norm, we have

E ⊂ Ẽ ⊂M(E) (4.12)

and, for each σ ∈ Σ, πσ(E) = πσ(Ẽ) = K(Hπσ
).

We will show that the bundle {πσ(Ẽ);σ ∈ Σ} equipped with the continuous fields

{{πσ(A) : σ ∈ Σ}, A ∈ Ẽ} is a trivial continuous field of elementary algebras. E is
then the associated C∗–algebra, i.e. the C∗–algebra of continuous fields vanishing
at infinity, and is isomorphic to C0(Σ,K).

To this end it suffices to show that our bundle is locally trivial and that there is
a continuous field of one–dimensional projections (cf. [21, ch. 10, 7.6, 7.15, 8.4]).

We therefore choose the representations πσ, σ ∈ Σ in an appropriate way. For
each σ ∈ Σ, let f0(σ, ·) ∈ L1 be the von Neumann element in the fibre of E0 at
σ corresponding to the selfadjoint projection on the ground state of the harmonic
oscillator. Namely, if σ ∈ Σ → Λσ ∈ L is a section as in Sect. 3, III (cf. eq. (3.29)
and II, Appendix B), we define f0 by

f0(σ, α) =
1

(2π)4
e−

1
4 (α,α)σ , σ ∈ Σ , α ∈ R

4 , (4.13)

(α, α)σ = (Λ−1
σ α,Λ−1

σ α) = (L−1
σ α,L−1

σ α) , σ ∈ Σ, α ∈ R
4 , (4.14)

where (α, α) =
∑3

i=0 α
2
i and we used the specific form of our section Λσ = LσRσ,

where Rσ is a rotation thus leaving the Euclidean scalar product invariant.
Since the Lorentz group acts continuously on L1(R4) : f ∈ L1(R4) → fL:

fL(α) = f(L−1α), and σ ∈ Σ → Lσ is continuous (cf. Appendix B), σ → f0(σ, ·) ∈
L1 is continuous, where f0(σ, ·) = f0(σ0, ·)Lσ

.
Now πσ(f0) is a selfadjoint projection of rank 1 [22], so that {πσ(f0);σ ∈ Σ} is

a continuous field of rank one projections.
Furthermore the following relation holds for each σ ∈ Σ:

(f0 × f × f0)(σ, ·) = ωσ(f)f0(σ, ·), f ∈ Ẽ0 , (4.15)

and defines a state ωσ on Ẽ . From now on let (πσ,Hσ, ξσ) be the GNS construction
for ωσ. We have only to show that our continuous field is locally trivial.

Let Λ1, Λ2 be two sections as in III, Sect. 3, continuous on Σ1, Σ2 resp. where
Σ1, Σ2 is an open covering of Σ (cf. Appendix B). Define an isomorphism ρi of
C0(Σi, L

1) regarded as the tensor product of C0(Σi) and the fibre of E0 at σ0 (cf.
(4.2)) onto C0(Σi, L

1) regarded as a subalgebra of E by

ρi(f)(σ, α) = f(σ,Λ−1
iσ α) ; (4.16)

one checks that ρi is a ∗–isomorphism defining a trivialization of our field on Σi.
�

Remark . The triviality of our continuous field would follow directly if we could
define a map, continuous in the appropriate sense, assigning to each σ ∈ Σ a
regular solution q̃σ s.t. [q̃σ

µ , q̃
σ
ν ] = iσµν · I. We might tentatively define q̃σ as linear

combinations of the fixed choice qσ0 of Eq. (3.29) but this approach fails, because
the bundle Λ ∈ L → σΛ ∈ Σ is non–trivial and the symplectic group is not simply



17

connected. However, we have the further possibility of deforming qσ0 to Uqσ0U−1,
where U is an element of the unitary group of H using the fact that this group is
contractible (cf. [21, Chap. 10]).

It follows from the proof of Theorem 4.1 that each C∗–seminorm on E has the
form

‖f‖S = sup
σ∈S

‖πσ(f)‖ ,

for some closed subset S of Σ. Since Σ is a homogeneous space, the unique C∗–norm
is also the only non–zero τ–invariant C∗–seminorm, and τ extends to a strongly
continuous action, still denoted by τ , of the full Poincaré group by automorphisms
of E .

The quasiequivalence classes of representations of E are labelled by the regular
measure classes on Σ. A covariant representation π of E obviously yields a covariant
representation π̃ of C0(Σ) and is hence associated with a quasi–invariant regular
measure on Σ. Since there is only one invariant measure class, it follows that there
is only one quasiequivalence class of representations π of E s.t. (π,U) is a covariant
representation of (E , τ) for some representation U of the full Poincaré group.

The C∗–algebra E of Theorem 4.1 does indeed describe the Quantum Spacetime
associated with the class of regular solutions of the Quantum Conditions (3.9),
(3.10), in the sense of the previous section; namely:

4.2 Theorem. For each f1 ∈ C0(Σ) and f2 ∈ L1(R4) let f1 ⊗ f2 ∈ E0 ⊂ E be
the function σ ∈ Σ → f1(σ)f2 ∈ L1(R4). We can define selfadjoint operators qµ,
Qµν , affiliated to E with support of definition I (Appendix A), by setting, for each
nondegenerate representation π of E ,

π(f1 ⊗ f2) = f1(π(Q))

∫

f2(α)eiαµπ(qµ)d4α ,

f1 ∈ C0(Σ), f2 ∈ L1(R4) . (4.17)

These operators obey the Quantum Conditions since

[qµ, qν ]− = iQµν ,

the Qµν commute and joint spectrum of {Qµν , µ, ν = 0, . . . , 3} = Σ (cf. IV, Ap-
pendix A).
Moreover, for each element (a,Λ) of the full Poincaré group, we have

τ−1
(a,Λ)(qµ) = (Λq + a · I)µ , (4.18)

where the automorphisms of E act on selfadjoint operators affiliated to E as de-
scribed in Appendix A III.

We will refrain from spelling out the easy proof of this theorem and limit ourselves
to the remark that, by the relations defining qµ and Qµν , if two representations π1,
π2 of E fulfill π1(qµ) = π2(qµ), then π1(Qµν) = π2(Qµν), and π1, π2 agree on a total
subset of E0, hence π1 = π2 on E .
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In view of Theorem 4.1 we can rewrite Eq. (4.17) as an identity in E involving
the selfadjoint operators qµ, Qµν affiliated to E :

f1 × f2 = f1(Q)

∫

f2(α)eiαµqµ

d4α . (4.19)

We next discuss briefly the physical meaning of the state space S(E). We inter-
pret each state ω ∈ S(E) as specifying the localization of events. Positivity of ω and
the commutation relations prevent absolute precision in the localization, but there
are states ω having optimal localization properties compatible with Proposition 3.4.
The associated measure µω on Σ will be concentrated on the unit sphere Σ(1), i.e.
on the base S2 ×{±1} of TS2 ×{±1} ∼ Σ. The associated operators qσ

µ, σ ∈ Σ(1),

will be obtained from the solution (3.29), associated to σ0 : σµν
0 =

(

0 −I
I 0

)

, by

an (improper) rotation.
As is well known from elementary Quantum Mechanics, the minimum of the

quantity (cf. (3.29))

Σµ(∆qσ
µ)2 = (∆Q1)

2 + (∆P1)
2 + (∆Q2)

2 + (∆P2)
2

is actually 2, and is attained on states which are translates of the ground state of
the Hamiltonian H of the harmonic oscillator in 2 dimensions,

H =
1

2
(P 2

1 +Q2
1 + P 2

2 +Q2
2) =

1

2
Σµ(qσ

µ)2 .

Therefore, we can parametrize the states on E with optimal localization by a vector
x in Minkowski space and a measure µ on Σ carried by Σ(1) and define the associated
state ω by its restriction to E0:

ω(f) =

∫

d4αdµ(σ)f(σ, α)eiαµxµ− 1
2 Σµα2

µ ,

f ∈ C0(Σ, L
1(R4)) = E0 , (4.20)

so that ω is specified by the values of its normal extension ω̃ to the multiplier algbra
through

ω̃(f(Q)eiαµqµ

) = eiαµxµ− 1
2 Σµα2

µ

∫

f(σ)dµ(σ) , α ∈ R
4, f ∈ C(Σ) . (4.21)

We close this section with a remark on the classical limit λP → 0.
In generic units, the twisting factor in the product (4.2) of E0 takes the form

e
i
2 λ2

P αµσµνα′
ν , (4.22)

so that, as λP → 0, our algebra E deforms to

C0(R
4) ⊗ C0(Σ) = C0(R

4) ⊗ C({±1})⊗ C0(Σ+) ,

that is our non–commutative space deforms to the (commutative) space

R
4 × {±1} × Σ+ .



19

The factor (4.22) corresponds to writing the Quantum Conditions on qµ, in generic
units, in the form

[qµ, qν ] = iλ2
P Q̃µν ,

Q̃µν(σ) = σµν , σ ∈ Σ , (4.23)

where the Q̃µν defined this way are selfadjoint operators affiliated to C0(Σ).

Equation (4.23) implies that the large dilation limit and the classical limit coin-
cide. If we were prepared to violate this condition we could write

1

4
[q0, . . . , q3]

2 = λ8
P · I , QµνQ

µν = 0

in place of (4.23) and the λP → 0 limit would give a dilation covariant Quantum
Spacetime, defined by

[qµ, qν ] = iRµν ,

Rµν(σ) = σµν , σ ∈ Σ0 .

Σ0 is the set of all real antisymmetric 2–tensors such that

σµνσ
µν = σµν(∗σ)µν = 0 .

Now Σ0 is connected and is a single orbit under L↑
+ of any σ ∈ Σ0; for each σ ∈ Σ0,

σ = (~e, ~m) with ~e 2 = ~m2, ~e · ~m = 0. For each λ > 0, an appropriate boost along
~e× ~m will change σ = (~e, ~m) to λσ. The symplectic form defined by σ ∈ Σ0 is now

degenerate, σ ∼=
(

0 −1
1 0

)

⊕
(

0 0
0 0

)

.
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5. Calculus on the Quantum Spacetime

Let Ẽ denote, as before, the C∗–algebra of continuous bounded functions from
Σ to K, and Z ⊂ M(Ẽ) the Abelian C∗–algebra of bounded complex continuous
functions on Σ.

With f ∈ L1(R4) let f̂ = Ff ≡ g and f = Fg = ǧ denote the Fourier transform
and its inverse.

For each f ∈ FL1(R4) we can define the function f(q) of the quantum coordi-

nates qµ as an element of Ẽ by

f(q) ≡
∫

f̌(α)eiqµαµ

d4α , f ∈ FL1(R4) . (5.1)

Spacetime translations act as automorphisms τa, a ∈ R4, such that (cf. Sect. 3,4)

τa(f(q)) = f(q − a · I) , a ∈ R
4 . (5.2)

We can now define spacetime derivatives as in Minkowski space as minus the infin-
itesimal generator of translations, i.e.

∂µf(q) ≡ ∂

∂aµ
f(q + a · I)|a=0 . (5.3)

If we take the product of n operators f1(q), . . . , fn(q) defined as in (5.1), we get
another function of q which on the one side is distinct from the pointwise product
f1 . . . fn evaluated on q and on the other is no longer C–valued but Z–valued in
general. Both facts are apparent from the explicit formula which is an immediate
consequence of (5.1):

f1(q) . . . fn(q) = (f̌1 × · · · × f̌n)∧(q) , (5.4)

where the twisted convolution × depends on Qµν :

(h× h′)(α) =

∫

h(α′)h′(α− α′)ei/2αQα′

d4α ,

αQα′ ≡ αµQ
µνα′

ν ; h, h′ ∈ L1(R4) , (5.5)

so that

(f̌1 × · · · × f̌n)(k) =

∫

d4k1 . . . d
4knδ

(4)(k − Σkj) · ei/2Σj<lkjQkl

×f̌(k1) . . . f̌(kn) . (5.6)

In order to develop Quantum Field Theory on the Quantum Spacetime and to apply
the conventional perturbation methods, it will be important to define the quantum
analogues of the positive linear functional on L1(R4) ∩FL1(R4) given by the total
integral and the integral over space at a fixed time t:

f ∈ L1 ∩ FL1 →
∫

f(x)d4x = f̌(0) , (5.7)
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f ∈ L1 ∩ FL1 →
∫

x0=t

f(t, ~x)d3x =

∫

eitk0 f̌(k0,~0)dk0 . (5.8)

Define the Z–valued trace Tr on Ẽ by

(Tr(X))(σ) = trX(σ) , σ ∈ Σ , (5.9)

where tr is the usual trace on L1(B(H)) ⊂ K(H).
If f ∈ L1(R4, Z)∩FL1(R4, Z) the formal analogue of (5.7), (5.8) can be defined

by
∫

d4qf(q) ≡
∫

f(x)d4x = f̌(0) = Trf(q) , (5.10)

∫

q0=t

f(q)d3q ≡
∫

eik0tf̌(k0,~0)dk0

= lim
m
Tr(fm(q)∗f(q)fm(q)) . (5.11)

Note that (5.10), (5.11) are consistent since

∫

dt

∫

q0=t

f(q)d3q =

∫

f(q)d4q .

Positivity can be established either directly, using the first line of (5.11) as a defi-
nition and (5.5) to show that

∫

q0=t

f(q)∗f(q)d3q ≥ 0 ,

where of course f(q)∗ = f(q) as a consequence of the definition (5.1); or else by
showing that the second equality in (5.11) does hold for an appropriate sequence
fm. To this end it suffices to choose real functions fm such that f2

m approximates
the constant function one on space times the Dirac measure at time t. Then, using
(5.6) for n = 3, we get

Trfm(q)∗f(q)fm(q) = Trfm(q)fm(q)f(q) = (f̌m × f̌m × f)(0)

=

∫

d4k1d
4k2d

4k3δ
(4)(Σkj) · e(i/2)Σj<lkjQkl f̌m(k1)f̌m(k2)f̌(k3)

=

∫

d4k1d
4k2e

(i/2)k1Qk2 f̌m(k1)f̌m(k2)f̌(−(k1 + k2)) , (5.12)

where f̌m ∗ f̌m approximates δ(3)(~k) · e−ik0t, so that e(i/2)k1Qk2 can be replaced by

I in the limit, since Q00 = 0, and the expression (5.12) approximates
∫

dk0f̌(k0,~0)

e−ik0t, as desired. The positivity of the weight (5.11) can be interpreted in the
light of our spacetime uncertainties which must hold for any positive functional
and are compatible with absolute precision in the measurement of time together
with complete lack of knowledge of the space coordinates. On the contrary, the
functional f(q) → f(x), x ∈ R4, for instance, is not positive on Ẽ .

In order to obtain a C–valued functional we must integrate over Z too. If the
result is to agree with the classical definition for functions taking values in C ·
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I ⊂ Z, we must use a normalized state on Z. Unfortunately there is no obvious

Lorentz invariant choice since L↑
+ is not amenable. Motivated by our discussion of

localization, we will choose the state defined by integration over the unit sphere Σ(1)

with the normalized Lebesgue measure dσ. Of course the result will be rotation
but not Lorentz invariant.

We first analyze the Z–valued weight
∫

q0=t
d3q in more detail. In fact, in order

be able to define an interaction Hamiltonian we will need expressions like

∫

q0=t

f1(q) . . . fn(q)d3q . (5.13)

Combining (5.6) with (5.11) we see that (5.13) is given by

∫

Dn(x1, . . . , xn; t)f1(x1) . . . fn(xn)d4x1 . . . d
4xn , (5.14)

where the Z–valued kernel Dn is given by

Dn(x1, . . . , xn; t) =

∫

dk0d
4k1 . . . d

4kne
−iΣjkjxjeik0tδ(1)(k0 − Σki0)·

δ(3)(Σ~ki)e
(i/2)Σj<lkjQkl . (5.15)

The explicit expressions are (cf. Appendix C):

D2n+1(x1, . . . , x2n+1; t) = π−4ne2iΣj≤l≤n(x2j−x2j−l)Q
−1(x2l+1−x2l)·

δ





2n+1
∑

j=1

(−1)j(x0
j − t)



 ,

and

D2n+2(x1, . . . , x2n+2; t) = π−4n 1

2π

∫

dηeiηΣ2n+1
j=1

(−1)j(x0
j−t)·

e2iΣj≤l≤n(x2j−x2j−1)Q−1(x2l+1−x2l)δ(4)





n+1
∑

j=1

(x2j − x2j−1) −
1

2
Q(η,~0)



 .

The kernel Dn describes the non–locality introduced by the quantum nature of
spacetime as a deviation of (5.13) from the classical expression

∫

f1(~x, t) . . . fn(~x, t)d3x.
We limit ourselves to the explicit expressions for n = 2, 3, which will be of particular
importance in the next section. For n = 2 we get

∫

q0=t

f1(q)f2(q)d
3q = (2π)−1

∫

f1(x)f2(x+Q(η,~0))e−iη(t−x0)d4xdη . (5.16)

Note that integrating over t gives

∫

dt

∫

q0=t

f1(q)f2(q)d
3q ≡

∫

f1(q)f2(q)d
3q =

∫

f1(x)f2(x)d
4x ,
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so that there is no nonlocal effect in the spacetime integral when n = 2.
The nonlocal effects also disappear from the space integral at fixed time if we

restrict f1, f2 to be solutions of the Klein–Gordon equation (� + m2)f = 0 and
evaluate the usual scalar product

(f, g) ≡
∫

x0=t

f(x)
↔
∂0 g(x)d

3x

=

∫

x0=t

(

∂f

∂x0
(x)g(x) − f(x)

∂g

∂x0
(x)

)

d3x .

Indeed we have for any such f and g and for each t,

∫

q0=t

f(q)
↔
∂0 g(q)d

3q = (f, g) · I . (5.17)

To prove (5.17) it suffices to note that, by (5.16), the l.h.s. can be written as

(2π)−1/2

∫

dx0dηe
−iη(t−x0)

∫

d3xf(x)
↔
∂0 gη(x) , (5.18)

where gn(x) ≡ g(x + Q(η,~0)) is again a solution of the Klein–Gordon equation.
Therefore the

∫

d3x does not depend on x0 and integrating over x0 gives the Dirac
measure in the variable η. Integrating over η replaces gη by g0 = g and (5.17)
equals (f, g) · I as desired.

The calculation for n = 3 gives

D3(x1, x2, x3; t) =

(

1

π

)4

δ(t− x30 − (x10 − x20))e
2i(x2−x1)Q

−1(x3−x2) , (5.19)

so that

∫

q0=t

f1(q)f2(q)f3(q)d
3q =

(

1

π

)4 ∫

d4ad4b

∫

x0=t+(b−a)0

f1(x+ a)f2(x+ b)f3(x)

×e2iaQ−1bd3x . (5.20)

Thus the non–local effects are now visible in the full spacetime integral, too, as we
see by integrating (5.20) over t:

∫

f1(q)f2(q)f3(q)d
4q =

(

1

π

)4 ∫

d4ad4bd4xf1(x+ a)f2(x + b)f3(x)e
2iaQ−1b . (5.21)

It is instructive to write (5.20) in generic units . To this end we must replace aµ

by λPaµ, bµ by λP bµ and Q−1 by λ−2
P K, where aµ, bµ and K : σ ∈ Σ → K(σ) =

((σµν)µ,ν=0,...,3)
−1 are dimensionless.

We get
∫

q0=t

f1(q)f2(q)f3(q)d
3q =
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1

π4

∫

d4ad4b

∫

x0=t+λP (b−a)0

f1(x+ λP a)f2(x+ λP b)f3(x) · e2i(a,Kb)d3x . (5.22)

Integrating over the t variable and setting

β = 2λ−1
P Kb ; b = λ−1

P

1

2
Qβ ,

we get
∫

f1(q)f2(q)f3(q)d
4q =

1

(2π)2

∫

d4βd4xf̂1(β)f2

(

x+
1

2
λ−1

P Qβ

)

f3(x)e
−iβx .

Note that, by the Lebesgue Dominated Convergence Theorem (recall that fi ∈
L1 ∩ FL1), the limit of the last expression as λP → 0 is

1

(2π)2

∫

d4βd4xf̂1(β)f2(x)f3(x)e
iβx =

∫

d4xf1(x)f2(x)f3(x)

as expected. The correct λP → 0 limit is also evident in (5.22) or more generally
in (5.15).

Note that in (5.22) the non–local corrections to the classical formula are at least
quadratic in λP : the linear term vanishes since

∫

aµe
2i(a,Kb)d4ad4b = −

∫

bµe
2i(a,Kb)d4ad4b

=
(2π)4

24

∫

aµδ
(4)(a)d4a = 0 .

This is a general feature: for each n, λP appears in Dn only through Q (cf. (5.15))
and, in generic units,

Qµν(σ) = λ2
Pσµν .

Therefore the lowest order corrections to QFT on the usual Minkowski space will
be at least quadratic in λP . Linear terms in λP might appear only if we introduce
gravitational interactions explicitly in the theory.

Finally we discuss the C–valued weight analogous to the classical space integral
at fixed time, defined by

∫

Σ(l)

dσ

∫

q0=t

f1(q) . . . fn(q)d3q . (5.23)

This expression is easily obtained from (5.14), (5.13) evaluating the state
∫

Σ(l) dσ
over Z. A similar comment applies to the explicit formula (5.22) for n = 3. Note
that, for σ ∈ Σ(1), we have K(σ) = −σ. For this holds when σ = σ0, (σµν

0 ) =

s =

(

0 −I
I 0

)

, and Σ(1) is a single orbit under the improper rotation group. A

standard computation gives

δ(a, b) ≡
∫

Σ(1)

dσe−2iaµσµν bν

= −1

2

(

sin γ+(a, b)

γ+(a, b)
+

sin γ−(a, b)

γ−(a, b)

)

, (5.24)

γ±(a, b) = 2‖a0
~b− b0~a± ~a×~b‖ . (5.25)

Thus replacing the exponential in (5.22) by δ(a, b) we get the desired explicit ex-
pression for (5.23) in the case n = 3.
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6. Towards Quantum Field Theory on the Quantum Spacetime

In this section we will lay down our basic philosophy and take the first steps towards
QFT on QST. A more thorough analysis will be deferred to a subsequent paper.

As required from the outset, the Poincaré group acts as a symmetry group on our
QST (cf. Sect. 3 and 4). This fact allows us to retain Wigner’s notion of elementary
particles as being described by irreducible representations of the covering group of
the Poincaré group.

In accordance with one of our principles, the large scale limit of our QST agrees
with its classical limit and yields the classical Minkowski space times an unobserved
ghost manifold. This asymptotic behaviour is expected to allow one to describe
causality for QFT over QST as an asymptotic property corresponding to the locality
principle [17] in the large scale limit.

The usual construction of asymptotic scattering states, which also involves a
large scale limit, should likewise carry over.

When attempting a perturbative study of the S–matrix for QFT over QST, the
first steps are to define free fields and interaction Hamiltonians.

Starting from Wigner’s definition of particles, the usual Fock space construction
yields a free field associated with an irreducible representation of the covering group
of the Poincaré group.

There is no difficulty in evaluating this field on the QST, at least formally, as
a function with values in the algebra spanned by the creation and destruction
operators. For simplicity we consider a neutral scalar free field φ(x). Evaluating
on qµ according to the rule (5.1) gives

φ(q) =
1

(2π)3/2

∫

(eiqµkµ ⊗ a(~k) + e−iqµkµ ⊗ a(~k)∗)dΩ+
m(~k) , (6.1)

where dΩ+
m(~k) = d3~k

2
√

~k2+m2
is the usual invariant measure over the positive energy

hyperboloid of mass m:

Ω+
m = {k ∈ R

4/kµk
µ = m2 , k0 > 0} .

In order to give a precise mathematical meaning to the formal expression (6.1) we
may think of a quantum field over QST acting on a Hilbert space H as a linear
map, continuous in the appropriate topology, assigning to test functions f linear
operators affiliated to the C∗–tensor product E ⊗ B(H) and formally denoted by

f →
∫

φ(q + aI)f(a)d4a .

It would be possible, and perhaps even natural, to define a different notion of
free field over QST, by letting φ depend of q and σ ∈ Σ.

This would amount to choosing the creation and annihilation operators a in the
CCR algebra over L2(R3 × Σ), where Σ is equipped with the Lorentz invariant
measure dσ induced by a Haar measure on L. Thus

∫

Σ

f(σ)dσ ≡
∫

L

f(Λσ0Λ
T )dΛ ,
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where σ0 is a reference point in Σ. This approach would be closer in spirit to
quantizing wave functions over QST and will be pursued elsewhere.

As a first simpler choice we will ignore here the possible σ–dependence of free
fields.

From the expression (6.1) for our free field over QST and from the definition
(5.3) of derivatives, it is clear that the Klein–Gordon equation holds

(� +m2)φ(q) = 0 . (6.2)

Let L→ U(L) be the unitary representation of the Poincaré group over H defined
by the Fock construction and αL ≡ AdU(L) the induced action on linear operators
acting on H. The relativistic covariance of our free field takes the form

τL ⊗ αL(φ(q)) = φ(q) , (6.3)

as a consequence of (4.19) and (6.1). In order to define “local obsevables” in this
model, we will consider states ω over the C∗–algebra E of QST as the analogues
of test functions defining localization data in spacetime. Pure states (with good
localization properties) should play a role analogous to points in classical space.

The free field defines a map from states ω ∈ S(E) to operators on H by

φ(ω) ≡ 〈ω ⊗ id, φ(q)〉 , ω ∈ S(E) . (6.4)

Introducing the test function ψω associated to ω ∈ S(E) by

ψω(x) =

∫

e−ikµxµ

ω(eikµqµ

)
d4k

(2π)4
, (6.5)

we can write the field operator φ evaluated at ω ∈ S(A) as the usual free field
smeared out with ψω:

φ(ω) = 〈φ, ψω〉 =

∫

φ(x)ψω(x)d4x . (6.6)

Relations (6.5), (6.6) allow us to explore the locality properties of the free field over
QST. The commutator of two “values” (6.4) of the field takes the form

[φ(ω), φ(ω′)] = i

∫

∆(x − y)ψω(x)ψω′(y)d4xd4y . (6.7)

If we specialize ω, ω′ to translates of a given pure state with optimal localization
of the form (4.20), say ω = ωa, ω′ = ωb, we can compute the commutator (6.7)
and study its asymptotic properties. In this case, one easily sees that ψω, takes the
form

ψωc
(x) = (2π)−2e−

1
2 Σµ(x−c)2µ . (6.8)

The computation for the case m = 0 can be carried out explicitly and exhibits those
aspects of causality which are essential in the massive case, too.

We get, in generic units,
[φ(ωa), φ(ωb)] =
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−i 1

4π‖~a−~b‖
· (8πλ2

P )−1/2

(

e
− 1

8λ2
P

(‖~a−~b‖−(a−b)0)
2

− e
− 1

8λ2
P

(‖~a−~b‖+(a−b)0)
2
)

I .

(6.9)
There are two important features of the expression (6.9). In spacelike directions
it falls off like a Gaussian, hence faster than an exponential. If a, b are kept
fixed and we look at the limit λP → 0, the expression (6.9) converges in the sense
of distributions to the usual commutator function of the massless free field, as
expected.

We next discuss interaction Hamiltonians, briefly. It is important to note before–
hand that the free Hamiltonian of a scalar free field of mass m over QST can be
written as the space integral of a “quantum density” using the calculus of Sect. 5,

H =

∫

q0=t

H(q)d3q . (6.10)

To this end, note that the Hamiltonian of the ordinary neutral scalar free field can
be written as

H =

∫

x0=t

d3x :
1

2

(

∂φ

∂x0
(x)2 + (~∇φ(x))2 +m2φ(x)2

)

:

=
1

2

∫

x0=t

d3x :

(

∂φ

∂x0
(x)2 − ∂2φ

∂x2
0

(x)φ(x)

)

: ,

where the double dots indicate Wick ordering. Here the Klein Gordon equation
and integration by parts have been used. The relation (5.17), applied to the last
integral, shows that (6.10) holds.

Consider now a more than bilinear interaction Hamiltonian density

HI(x) = λ : ψ1(x) . . . ψn(x) : , (6.11)

where ψ1, . . . , ψn are free field multiplets and summation over spin and internal
degrees of freedom is implicit, λ being a matrix of coupling constants.

It is natural to define an interaction Hamiltonian for QFT over QST associated
with the interction (6.11) by the integral defined in Sect. 5 of the expression (6.11)
evaluated over the variables qµ:

HI(t) ≡
∫

Σ(1)

dσ

∫

q0=t

d3qλ : ψ1(q) . . . ψn(q) : . (6.12)

By the results in Sect. 5 the expression (6.12) can be calculated and agrees with
an effective nonlocal Hamiltonian defined by

HI(t) =

∫

G(x1, . . . , xn; t)λ : ψ1(x1) . . . ψn(xn) : d4x1 . . . d
4xn ,

G(x1, . . . , xn; t) =

∫

Σ(1)

dσDn(x1, . . . , xn; t) , (6.13)

where the kernel Dn is given by (5.15). In the important case of a trilinear inter-
action, we get (cf. (5.22))

HI(t) =
1

π4

∫

d4ad4b

∫

x0=t+λP (b−a)0

λ : ψ1(x+λP a)ψ2(x+λP b)ψ3(x) : δ(a, b)d3x ,

(6.14)
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where the kernel δ has been calculated in (5.24) and we have used generic units.
Leaving out the integration over d3x in Eq. (6.14) we get, of course, the effective
nonlocal Hamiltonian density.

Interacting fields can be tentatively defined in the following way: since φ is a
solution of the Klein–Gordon equation, the form

〈φ, f〉t =

∫

Σ

dσ

∫

q0=t

d3q(φ(q)∂0f(q, σ) − ∂0φ(q)f(q, σ))

is independent of t for any solution f ∈ M(E) of the Klein–Gordon equation. If
U(t, s) is the unitary evolution operator with

U(t, s)U(s, r) = U(t, r) ,

U(t, t) = 1 ,

d

dt
U(t, s) = iHI(t)U(t, s) ,

we define the interacting field φint by

〈φint, f〉t = U(t, 0)〈φ, f〉0U(0, t) .

Since φint is not a solution of the wave equation, in general, the lefthand side
depends on t.

By choosing suitable solutions of the wave equation for every t and integrating
over t we determine φint on the whole state space of E .

Finally, we may follow the usual procedure and postulate LSZ asymptotic con-
ditions which then lead to the ordinary perturbation expansion of the S–matrix.

As usual the nth order contribution can be calculated from the nth order contri-
bution to the time–ordered function obtained substituting HI(t) in the formula

in

n!

∫

dt1 . . . dtn(Ω, T (A(x1) . . . A(xm)HI(t1) . . . HI(tn))Ω) , (6.15)

where the ordering now refers to the x10 , . . . , xm0 , t1, . . . , tn variables rather than to
the integration variables in (6.13). This modifies the usual Feynmann rules. Due to
the non–local character of our effective interaction, for renormalizable theories, the
renormalized perturbative expansion should agree with the classical one for λP = 0
and contain corrections of order λ2

P due to the quantum nature of spacetime. We
intend to give a more thorough discussion of these points elsewhere.
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7. Outlook

The choice of our QST was motivated by our principle that spacetime should have
an operational meaning; we observed that this meaning would be destroyed by the
gravitational collapse caused by preparing a very sharply localized state.

We wish to point out that our uncertainty relations (2.8) and (2.9) appear as
necessary but not a priori sufficient conditions to prevent gravitational collapse in
such a process. Hence the Quantum Structure of our spacetime might reflect only
part of the necessary restrictions.

The very first steps to QFT over QST outlined in Sect. 6 show that the quan-
tum structure of our model of spacetime does lead to a smoothing of ultraviolet
divergences. A more thorough analysis of the surviving divergences and their renor-
malization in specific models is required (see [23] for related results).

Properties of the resulting theory which can be tested at a perturbative level
(cluster properties, convergence of asymptotic states) can be a guide to explore
properties of QFT over QST.

We wish to point out several other open problems.
Causality in QST has been mentioned here as an asymptotic property in the

limit of vanishing Planck length. However, there might be an exact form, related
to the causality properties of the free field over QST, expressing the propagation
of wave functions over QST. But even if such a tighter condition existed, it is not
obvious whether we can expect any stability under interactions.

We note that the Σ–dependence of interactions has been removed by a proce-
dure which is not Lorentz invariant. Other approaches are possible, of course, e.g.
one could treat the variables σ ∈ Σ as random variables. Or one could adopt a
dynamical treatment introducing σ–dependent fields. We believe that a satisfac-
tory understanding of the role of Σ should be possible if one were to incorporate
gravitation in the theory. Our QST ought to offer a more suitable basis for the
formulation of Quantum Gravity, as it embodies part of the limitations on the
structure of spacetime determined by gravity, at least at a semiclassical level.

More generally, we could use the gauge principle as a natural way of introducing
interactions between fields over the QST and Connes’ non–commutative geometry
[8] should provide the right framework here. The quantum nature of spacetime
has the effect of making QED into a non–commutative gauge theory, so that even
the theory of electro–magnetic fields without matter should become an interacting
theory.

The large scale structure of the univese and the microstructure of spacetime
relate to quite distinct asymptotic regimes. Yet it would be interesting and instruc-
tive to generalize our quantization procedure to a general curved spacetime. The
methods of deformation and geometric quantization could well apply here [24–26].
In this context, it is quite clear that our formalism is not at all intended to exclude
black hole formation at scales which are larger than the Planck length.

Finally, it would be important to investigate whether a version of the Euclidean
approach to QFT is possible for QFT over QST.

We hope to come back to these and related questions in a continuation of the
present paper.
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Appendix A

Let A be a C∗–algebra with unit I. A selfajdoint operator A affiliated to A is defined
by a ∗–homomorphism (with unbounded support if A is unbounded) of C0(R) into
A, denoted

f ∈ C0(R) → f(A) ∈ A ,

whose support projectionE ∈ A∗∗ is central. Equivalently, if {fn;n = 0, 1, 2, . . . , } ⊂
C0(R)+ is a sequence in the unit ball converging pointwise to I, then, for eachB ∈ A,

‖[fn(A), B]‖n→∞ → 0 .

We will refer to E as the support of definition of A (or just support, if no confusion
is possible).

If A has no unit, A is said to be affiliated to A if it is affiliated to the multiplier
algebra M(A).

A state ω (a representation π) of A is in the support of A if ω̃(E) = 1 (resp.
π̃(E) = I), where ω̃, π̃ denote the normal extensions to A∗∗.

The normal extension of f → f(A) ∈ A to bounded Borel functions f on R will
be also denoted f ∈ B(R) → f(A) ∈ A∗∗. If E(λ) ≡ χ(−∞,λ](A), λ ∈ R, E is the
strong limit of E(λ) as λ → ∞ and λ ∈ R → π̃(E(λ)) is a spectral family for each
π in the support of A. For such π, π(A) will denote the selfadjoint operator with
spectral resolution π̃(E(λ)).

We will say that the selfadjoint operator A affiliated to A is central if f(A) is in
the centre of A (or of M(A), if A has no unit) for each f ∈ C0(R), i.e. if, for each
representation in the doman of A,

π(A) η π(A)′ ∩ π(A)′′ .

Since π(A) is anyway affiliated to π(A)′′, π(A) η π(A)′ would suffice.
A state ω ∈ S(A) will be said to be in the domain of A if it is in the support of

A and

sup{ω(f(A)); f ∈ C0(R)+ , f(λ) ≤ λ2 , λ ∈ R} ≡ ω(A2) <∞ .

In this case we may and will write

ω(A) =

∫ +∞

−∞
λdω̃(E(λ)) .

We can now state some easy facts.

I. A state ω ∈ S(A) is in the support of definition of A if and only if if the same
applies to the GNS representation πω.

Furthermore, ω is in the domain of A if and only if ξω is in the domain of πω(A),
in which case we have

ω(A) = (ξω , πω(A)ξω) .

If ω is in the domain of A we may define

(∆ωA)2 = ω(A2) − ω(A)2 = ‖(πω(A) − ω(A)I)ξω‖2 .
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Of course we will say that ω is definite on A if ω(A2) = ω(A)2, i.e. if πω(A)ξω =
ω(A)ξω .

II. Let ν be a regular probability measure on S(A) with barycentre ω ∈ S(A).
Then ω is in the support of A iff ν is carried by the states in the support of A.

Moreover, ω is in the domain of A if and only if ν is carried by the states in
the domain of A and ϕ → ϕ(A2) is ν–integrable. This implies that ϕ → ϕ(A)
is ν–square integrable since ϕ(A)2 ≤ ϕ(A2), hence ϕ → ϕ(A) is integrable and
ϕ→ ∆ϕA is square integrable.

If ω is also in the domain of another selfadjoint operator B affiliated to A, we
have as in Proposition 3.3,

∆ωA ≥
∫

∆ϕAdν(φ) ,

∆ωA∆ωB ≥
∫

∆ϕA∆ϕBdν(ϕ) .

III. If α is an automorphism of A and A a selfadjoint operator affiliated to A,
we can define α(A) affiliated to A by the homomorphism

f ∈ C0(R) → f(α(A)) ∈M(A)

s.t. f(α(A)) = α̃(f(A)), where α̃ ∈ Aut M(A) is the extension of α defined by

α(BC) = α̃(B)α(C) , B ∈M(A) , C ∈ A .

IV. If A1, . . . , An are selfadjoint operators affiliated to A, we say that they com-
mute if the fi(Ai) commute with one another for each fi ∈ C0(R), i = 1, 2, . . . , n. In
this case, the map f1 ⊗ · · · ⊗ fn ∈ C0(R

n) → f1(A1) . . . fn(An) ∈ M(A) extends to
a ∗–homomorphisms C0(R

n) into M(A) whose support is called the joint spectrum
of A1, . . . , An.

V. If A is a selfadjoint operator affiliated to a C∗–algebra A and ω is a state on A

in the domain of A, the state of A induced by the vector ω(A2)−1/2πω(A)ξω in the
representation πω will be denoted by ωA. If A, B are selfadjoint operators affiliated
to A, we will say that ω is in the domain of their commutator if ωA is in the domain
of B and ωB in the domain of A, i.e. if ξω is in the domain of [πω(A), πω(B)]. If A,
B, C are selfadjoint operators affiliated to A with the same support E such that,
for each representation π in that support (π̃(E) = I), the commutator [π(A), π(B)]
has closure iπ(C), we will write

[A,B]− = iC .
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Appendix B

I. The manifold Σ+ is homeomorphic to TS2, the tangent bundle to the two–
dimensional sphere.

Let {~n,~v} denote the generic point in TS2, where ~n ∈ S2 is a unit vector in R3

and ~v ∈ R
3 is s.t. ~v · ~n = 0.

For each σ ∈ Σ+ let σ = (~e, ~m) be the parametrization by electric and magnetic
components, so that ~e 2 = ~m2, ~e · ~m = 1. Hence ~e+ ~m 6= 0 and we can define

~nσ ≡ ‖~e+ ~m‖−1(~e+ ~m) .

If σ ∈ Σ+, σ = (~e, ~m) with ~e = ~m, let h(σ) ∈ TS2 be defined by

h(σ) = {~nσ,~0} = {~e,~0} = {~m,~0} .

If ~e 6= ~m, let ~uσ = ‖~e× ~m‖−1~e× ~m, and let Lσ be the boost along ~uσ with speed
β > 0 s.t.

~e 2 = ~m2 =
1 + β2

1 − β2
.

Then Lσ takes σ′ = (~nσ, ~nσ) ∈ Σ+ to σ = (~e, ~m) ∈ Σ+:

Lσσ
′LT

σ = σ . (B.1)

Choose χ ∈ [0,+∞) s.t. ~e2 = ~m2 = cosh 4χ, i.e. γ = (1 − β2)−1/2 = cosh 2χ. We
can define a homeomorphism h : σ ∈ Σ+ → h(σ) ∈ TS2 by setting

h(σ) = {~nσ, ~vσ} ; ~vσ = χ~uσ . (B.2)

II. For each point ~nσ ∈ S2 there is a Borel section for the action of L↑
+ on Σ+:

σ ∈ Σ+ → Λσ ∈ L↑
+ , (B.3)

Λσσ0Λ
T
σ = σ , σ ∈ Σ+ ,

where σ0 = (~e0, ~e0), ~e0 = (0, 1, 0), s.t.

Λσ = LσRσ ; Lσa boost, Rσ a rotation, (B.4)

σ → Lσ is continuous on Σ+ , (B.5)

σ ∈ Σ+\{σ/~nσ = ~n0} → Rσ is continuous. (B.6)

We let Lσ be defined as in I; it suffices to choose a continuous map ~n ∈ S2\{~n0} →
R(~n) from the 2–sphere minus one point to the rotation group such thatR(~n)~e0 = ~n.
We can take R(~n0) to be an arbitrary rotation taking ~e0 to ~n0 and set

Rσ = R(~nσ) .

If ~n0 6= −~e0, the map R(~n) can be defined as the identity if ~n = ~e0 or as the rotation
around ~e0 × ~n which takes ~e0 to ~n if ~n 6= ~e0. If ~n0 is arbitrary, replacing ~e0 by −~n0
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in the above construction yields a map R′(~n) and, for any fixed choice of a rotation
R which takes ~e to ~n0, R(~n) ≡ R′(~n)R meets the desired requirements.

If P denotes the space reflection, σP = (−~e, ~m) ∈ Σ∓ if σ = (~e, ~m) ∈ Σ±; we
can define Λσ ≡ PLσP

RσP
, σ ∈ Σ, thus extending our section to Σ and letting it

take values in the full Lorentz group.
Finally we point out yet another picture of Σ which might turn out to be useful.

Associate to σ ∈ Σ, σ = (~e, ~m), the vector ~u = ~e + i~m ∈ C3. Then v2 = Σjv
2
j =

e2 −m2 + 2i~e · ~m, so that the image of Σ is the manifold {v ∈ C3/v2 = ±2i}. The

action of L↑
+ on Σ corresponds to the action of O(3,C) on that manifold, the space

or time reflection to complex conjugation, and the Euclidean norm ‖σ‖, σ ∈ Σ to

the norm ‖v‖ = 1√
2

(v, v)1/2 =
(

1
2 Σj |vj |2

)1/2
.

Appendix C

The goal of this appendix is to calculate the kernel Dn and we begin by calculating
the kernels describing the multiplication in E .

Let f(q) =
∫

d4kf̂(k)eikq . The function f(x) =
∫

d4kf̂(k)eikx is called the
symbol of f(q). We formulate the multiplication in E in terms of these symbols.
The symbol of a product is

(f1 . . . fn)(x) =

∫

d4x1 . . . d
4xnf1(x1) . . . fn(xn)Cn(x1 − x, . . . , xn − x) , (C.1)

where the distribution Cn is given by

Cn(x1, . . . , xn) = (2π)−4

∫

d4k1 . . . d
4kne

−iΣkjxj+
i
2 Σj<lkjQkl . (C.2)

The quadratic form in the exponential can be written in the form

∑

j<l

kjQkl =
1

2
(k,B ⊗Qk) , (C.3)

where k = (k1, . . . , kn) ∈ Rn ⊗ R4 and B is an n× n–matrix with entries Bjl = 1,
j < l, Bjl = 0, j = l, Bjl = −1, j < l. If n is even, the matrix B has an inverse
B−1, with entries (B−1)jl = (−1)j+lBjl. Hence in this case we obtain

Cn(x1, . . . , xn) = π−2ne−2iΣj<l(−1)j+lxjQ−lxl , n even, (C.4)

where we have used the fact that B and Q have determinant one.

For later convenience we introduce coordinates yj =
∑j

l=1(−1)lxl. In these
coordinates the quadratic form in the exponential assumes the simple form

∑

j<l

(−1)j+lxjQ
−1xl =

n−1
∑

j=1

yjQ
−1yj+1 . (C.5)

If n is odd the matrix B is not invertible. In this case we set f1, . . . , fn =
f1, . . . , fnfn+1 with fn+1 = 1.
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Since the symbol of the unit is the function fn+1(x) = 1 we obtain Cn from Cn+1

by integrating over the last variable. Hence

Cn(x1, . . . , xn) =

∫

d4xn+1Cn+1(x1, . . . , xn+1)

= π−2(n+1)e−2iΣn−1
j=1

yjQ−1yj+1

∫

d4yn+1e
−2iynQ−1yn+1

= π−2(n+1)e−2iΣn−1
j=1

yjQ−1yj+1(2π)4δ(4)(2Q−1yn)

= π−2(n−1)e−2iΣn−2
j=1

yjQ−1yj+1δ(4)(yn)

= Cn−1(x1, . . . , xn−1)δ
(4)





n
∑

j=1

(−1)jxj



 , n odd. (C.6)

If we replace xj by xj −x the coordinates yj with j even remain unchanged whereas
for j odd yj is replaced by yj + x. We have

2n
∑

j=1

yjQ
−1yj+1 =

n
∑

j=1

y2jQ
−1(y2j+1 − y2j−1) , (C.7)

hence this expression will remain invariant.
Therefore we find

C2n(x1 − x, . . . , x2n − x) = π−4ne−2iΣ2n−1
j=1 yjQ−1yj+1e−2ixQ−1y2n (C.8)

and

C2n+1(x1 − x, . . . , x2n+1 − x) = π−4ne−2iΣ2n−1
j=1

yjQ−1yj+1e−2ixQ−1y2nδ(4)(y2n+1 + x)

= π−4e−2iΣ2n
j=1yjQ−1yj+1δ(4)(y2n+1 + x) . (C.9)

The integral over a spatial hyperplane x0 = t can now be easily performed. We
obtain
∫

x0=t

d3xC2n+1(x1−x, . . . , x2n+1−x) = π−4ne−2iΣ2n
j=1yjQ−1yj+1δ(y0

2n+1+t) (C.10)

in the odd case and
∫

x0=t

d3xC2n+2(x1 − x, . . . , x2n+2 − x)

=
1

2π

∫

dη

∫

d4xeiη(x0−t)C2n+2(x1 − x, . . . , x2n+2 − x)

=
1

2π

∫

dη

∫

d4xπ−4(n+1)e−2iΣ2n+1
j=1

yjQ−1yj+1e−2ixQ−1(y2n+2− 1
2 Q(η,~0))e−iηt

=
1

2π

∫

dηπ−4e−2iΣ2n
j=1yj+1e−i(y0

2n+1+t)δ(4)
(

y2n+2 −
1

2
Q(η,~0)

)

(C.11)

in the even case. Using (C.7) and the formulas

y2j =

j
∑

l=1

(x2l − x2l−1) , y2j+1 − y2j−1 = x2j − x2j+1 ,
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y0
2n+1 + t =

2n+1
∑

j=1

(−1)j(x0
j − t) , (C.12)

we obtain the kernels

Dn(x1, . . . , xn; t) =

∫

x0=t

d3xCn(x1 − x, . . . , xn − x)

in the form

D2n+1(x1, . . . , x2n+1; t) = π−4ne2iAn(x1−x2,...,x2n−x2n+1) · δ





2n+1
∑

j=1

(−1)j(x0
j − t)





(C.13)
and

D2n+2(x1, . . . , x2n+2; t) = π−4ne2iAn(x1−x2,...,x2n−x2n+1)·

· 1

2π

∫

dηeiηΣ2n+1
j=1

(−1)j(x0
j−t)δ(4)





n+1
∑

j=1

(x2j − x2j−1) −
1

2
Q(η,~0)



 , (C.14)

where An is the quadratic form on R2n × R4 given by

An(u1, . . . , u2n) =
∑

j≤l≤n

u2j−1Q
−1u2l . (C.15)
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Note added in proof: The model of QST proposed here is the simplest but not
the unique one implementing our Uncertainty Relations (2.8), (2.9). In other models
with this property the commutators of the q’s are no longer central, the associated
algebras admit representations where the stronger uncertainty relations deduced in
Section 2 are satisfied, namely inf(∆qj ; j = 1, 2, 3) · sup(∆qk, k = 1, 2, 3) & 1 holds
too in these representations, however, translation invariance at the Planck scale is
spontaneously broken [27].
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H.: Quantum κ–Poincaré in any Dimension. Phys. Lett. B, to appear

14. Doplicher, S., Fredenhagen, K., Roberts, J.E.: Spacetime Quantization Induced
by Classical Gravity. Phys. Lett. B 331, 33–44 (1994)

15. Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime. Cam-
bridge: Cambridge U.P., 1973

16. Knight, J.M.: Strict localization in Quantum Field Theory. J. Math. Phys. 2,
439–471 (1961); Licht, A.L.: Strict localization. J. Math. Phys. 4, 1443 (1963)

17. Haag, R.: Local Quantum Physics. Berlin, Heidelberg, New York: Springer
TMP, 1993

18. Straumann, N.: General Relativity and Relativistic Astrophysics. Berlin–Heidel-
berg–New York: Springer, 1984

19. Woronowicz, S.L.: Unbounded elements affiliated with C∗–algebras and non–
compact Quantum Groups. Commun. Math. Phys. 136, 399–432 (1991).
Woronowicz, S.L.: C∗–Algebras Generated by Unbounded Elements. Preprint
1994; Baaj, S.: Multiplicateur non borné. Thèse, Université Paris VII 1980
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