Skip to main content
Log in

On the representation of integers as sums of triangular numbers

  • Survey Papers
  • Published:
aequationes mathematicae Aims and scope Submit manuscript

Summary

In this survey article we discuss the problem of determining the number of representations of an integer as sums of triangular numbers. This study yields several interesting results. Ifn ≥ 0 is a non-negative integer, then thenth triangular number isT n =n(n + 1)/2. Letk be a positive integer. We denote byδ k (n) the number of representations ofn as a sum ofk triangular numbers. Here we use the theory of modular forms to calculateδ k (n). The case wherek = 24 is particularly interesting. It turns out that, ifn ≥ 3 is odd, then the number of points on the 24 dimensional Leech lattice of norm 2n is 212(212 − 1)δ 24(n − 3). Furthermore the formula forδ 24(n) involves the Ramanujanτ(n)-function. As a consequence, we get elementary congruences forτ(n). In a similar vein, whenp is a prime, we demonstrateδ 24(p k − 3) as a Dirichlet convolution ofσ 11(n) andτ(n). It is also of interest to know that this study produces formulas for the number of lattice points insidek-dimensional spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.,Eureka! num = Δ + Δ + Δ. J. Number Theory23 (1986), 285–293.

    Google Scholar 

  2. Andrews, G.,The theory of partitions. [Encyclopedia of Math., Vol. 2]. Addison-Wesley, Reading, MA, 1976.

    Google Scholar 

  3. Conway, J. andSloane, N.,Sphere packings, lattices and groups. Springer-Verlag, 1988.

  4. Deligne, P.,Formes modulaires et representations l-adiques. In Seminaire Bourbaki [Lect. Notes in Math., No. 179], Springer-Verlag, Berlin, 1971.

    Google Scholar 

  5. Deligne, P. andSerre, J.-P.,Formes modulaires de poids 1. Ann. Scient. Ecole Norm. Sup. (4) 7 (1974).

  6. Dickson, L.,Theory of numbers, Vol. III. Chelsea, New York, 1952.

  7. Garvan, F., Kim, D. andStanton, D.,Cracks and t-cores. Invent. Math.101 (1990), 1–17.

    Google Scholar 

  8. Garvan, F.,Some congruence properties for partitions that are p-cores. Proc. London Math. Soc.66 (1993), 449–478.

    Google Scholar 

  9. Gordon, B. andRobins, S.,Lacunarity of Dedekind η-products. Glasgow Math. J.,37 (1995), 1–14.

    Google Scholar 

  10. Grosswald, E.,Representations of integers as sums of squares. Springer-Verlag, 1985.

  11. Hida, H.,Elementary theory of L-functions and Eisenstein series. [London Math. Society Student Text, No. 26]. Cambridge Univ. Press, Cambridge, 1993.

    Google Scholar 

  12. Koblitz, N.,Introduction to elliptic curves and modular forms. Springer-Verlag, Berlin, 1984.

    Google Scholar 

  13. Kolberg, O.,Congruences for Ramanujan's function τ(n). [Årbok Univ. Bergen, Mat.-Natur. Ser. No. 1]. Univ., Bergen, 1962.

    Google Scholar 

  14. Legendre, A.,Traitée des fonctions elliptiques, Vol. 3, Paris, 1828.

  15. Miyake T,Modular forms. Springer-Verlag, Berlin, 1989.

    Google Scholar 

  16. Ono, K.,Congruences on the Fourier coefficients of modular forms on Г0(N). Contemp. Math, to appear.

  17. Ono, K.,Congruences on the Fourier coefficients of modular forms on Г0(N)with number-theoretic applications. Ph.D. Thesis, University of California, Los Angeles, 1993.

    Google Scholar 

  18. Ono, K.,On the positivity of the number of t-core partitions. Acta Arithmetica66 (1994), 221–228.

    Google Scholar 

  19. Rankin, R.,Ramanujan's unpublished work on congruences. [Lect. Notes in Math., No. 601]. Springer Verlag, Berlin, 1976.

    Google Scholar 

  20. Rankin, R. A.,On the representations of a number as a sum of squares and certain related identities. Proc. Cambridge Phil. Soc.41 (1945), 1–11.

    Google Scholar 

  21. Robins, S.,Arithmetic properties of modular forms. Ph.D. Thesis, University of California, Los Angeles, 1991.

    Google Scholar 

  22. Robins, S.,Generalized Dedekind η-product. To appear in Contemp. Math.

  23. Schoeneberg, B.,Elliptic modular functions—an introduction. Springer-Verlag, Berlin, 1970.

    Google Scholar 

  24. Serre, J. P.,Sur la lacunarite' des puissances de η. Glasgow Math. J.27 (1985), 203–221.

    Google Scholar 

  25. Serre, J. P.,Quelques applications du theorme de densite de Chebotarev. [Publ. Math. I.H.E.S., No. 54]. Inst. Hautes Etudes Sci. Pub., I.H.E.S., Paris, 1981.

    Google Scholar 

  26. Serre, J. P.,Congruences et formes modulaires (d'apres H.P.F. Swinnerton-Dyer). In Seminaire Bourbaki, 24e anneé (1971/1972), Exp. No. 416. [Lect. Notes in Math., No. 317]. Springer Verlag, Berlin, 1973, pp. 319–338.

    Google Scholar 

  27. Serre, J.-P. andStark, H.,Modular forms of weight 1/2. In modular functions of one variable, Vol. VI. [Lect. Notes in Math., No. 627]. Springer Verlag, Berlin, 1971, pp. 27–67.

    Google Scholar 

  28. Shimura, G.,Introduction to the arithmetic theory of automorphic functions. [Publ. Math. Soc. of Japan, No. 11], Iwanami Shoten, Tokyo, 1971.

    Google Scholar 

  29. Swinnerton-Dyer, H. P. F.,On l-adic representations and congruences for coefficients of modular forms. [Lect. Notes in Math., No. 350]. Springer Verlag, Berlin, 1973.

    Google Scholar 

  30. Swinnerton-Dyer, H. P. F.,On l-adic representations and congruences for coefficients of modular forms II. [Lect. Notes in Math., No. 601]. Springer Verlag, Berlin, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ono, K., Robins, S. & Wahl, P.T. On the representation of integers as sums of triangular numbers. Aeq. Math. 50, 73–94 (1995). https://doi.org/10.1007/BF01831114

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01831114

AMS (1991) subject classification

Navigation