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Abstract. We present an algebraic description of the concept of chemical
potential for a general compact gauge group G, as a first step in the classification
of thermodynamical equilibrium states of a given temperature. Adopting first
the usual setting of a field algebra #~ containing the observable algebra 21 as its
gauge invariant part, we establish the following results (i) the existence and
uniqueness, up to gauge, of τ-weakly clustering states φ of #" extending a given
such state ω of 2X (τ an asymptotically abelian automorphism group of !F
commuting with G) (ii) in the case of an ω faithful and β-KMS for a time
evolution commuting with τ, and of a time-invariant φ, the fact that φ is β-KMS
for a one-parameter group of time and gauge whose gauge part lies in the center
of the stabilizer Gφ of φ. (iii) a description of the general case where φ is neither
time invariant nor faithful: φ is then in general vacuum-like in directions of the
gauge space governed by an "asymmetry subgroup". We further analyze the
representations and von Neumann algebras determined by ω, φ and the gauge
average ώ of φ. The covariant representation generated by ώ is shown to be
obtained by inducing up from Gφ to G the representation generated by φ. Finally
we present, for the case where G is an ^-dimensional torus, an intrinsic
description of the chemical potential in terms of cocycle Radon-Nicodym
derivatives of the state ω w.r.t. its (quasi equivalent) transforms by localized
automorphisms of 5t. Our main result (ii) is established using two independant
techniques, the first making systematic use of clustering properties, the second
relying on the analysis of representations. Both proofs are basically concerned
with Tannaka duality—the second with a version thereof formulated in Robert's
theory of Hubert spaces in a von Neumann algebra.
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I. Introduction

The physical motivation of this study arose from the following basic question:
given an infinitely extended dynamical quantum system (an infinite medium) how
does one define its thermodynamic equilibrium states? Traditionally this question
is approached by considering first finite systems; for these one argues that an
equilibrium state may be described by an appropriate Gibbs ensemble then one
increases the size and takes the "thermodynamic limit" (infinite extension). If one
starts from a grand canonical ensemble, characterized by the inverse temperature β
and the chemical potentials μt of the various components (species of particles in the
system) then the thermodynamic limit is most simply described: one keeps μ , β
fixed and just increases the volume of the system. If the infinite volume limit of the
expectation values of local observables exists, then it defines a state φβμ. for the
infinite medium and one demonstrates that this satisfies (due to its construction
from grand canonical ensembles) the Kubo-Martin-Schwinger (KMS) condition
with parameter β for a one parameter subgroup of the symmetry group [1]. The
latter consists of time translation and gauge transformations (one parameter for
each species of particles), so it is a (k+ l)-parametric Abelian Lie group, if k is the
number of species of particles (chemical components). If we denote the generators of
time translations and gauge transformations in the Lie algebra of the symmetry
group respectively by H and Nt then the one-parameter subgroup mentioned above
is generated by

(LI)

and one may summarize the conclusion mathematically by saying that an
equilibrium state of the infinite system is a state whose modular automorphism
group [2,3] is generated by — βX, i.e. it is a KMS-state with respect to this subgroup.
The equilibrium parameters β,μi determine the selection of the subgroup.

An alternative way to characterize equilibrium states of an infinite system has
been described in [4]. It does not use Gibbs ensembles of finite systems but
characterizes the pure phase equilibrium states of an infinite medium directly as
those states which are stationary (i.e. invariant under time translation), primary (i.e.
not centrally decomposable)1 and stable against any small local2 perturbation of
the dynamics. It is then shown in [4] that such a state satisfies the KMS-condition
for the time translation group with some value of β3 (unless it is a ground state). In
other words, its modular automorphism group is generated by — βX with μ^O.
Conversely it is known that any KMS state is stable under local perturbations of the
dynamics [5] and that an extremal (pure phase) KMS state is primary (see e.g. [6]
Theorem 10.3). So the requirements on a state to be stationary, primary and locally
stable are essentially equivalent to requiring that it be an extremal KMS-state with
respect to time translation for some value of β.

1 This is taken as an expression of the "pure phase" requirement
2 The word "local" is used in the physical sense: the perturbations considered are changes of the
dynamical law in a finite space region
3 Actually in deriving the KMS condition from stability in [4] the absolute integrability of correlation
functions has been assumed
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In order to see how the chemical potentials enter one has to look at the role of
gauge in variance more closely. The setting of the problem may be described as
follows. There is a C*-algebra J^, the algebra of quasilocal operations, which we
shall also call the "field algebra" by analogy with the situation in Quantum Field
Theory. From the point of view of the physicist this algebra is thought of as being
generated by the creation operators a*(f) (and annihilators αf(/)) of the various
particle types ( i = l , ...,fc) at finite times in essentially finite space volumes (/
symbolizes the wave functions of the created particle). To remind us of this
background we denote elements of J^ by small Roman characters α, b ...

The gauge group G is represented by a strongly continuous automorphism
group on # \ In the example envisaged so far G is the /c-dimensional torus; an
element geG is parametrized by k angles 0rg<^<2π and the action of the
corresponding automorphism is explicitly

yβ(aΐ(f)) = eiφiaf(f) yfafj)) = e~ίφ%(f). (1.2)

We shall, however, consider in the sequel also more general gauge groups.
On $F we have also an action of the groups of time translation and space

translation by automorphisms αf, respectively αx. These automorphism groups
commute with the gauge transformations:

° V y g = % α t ; ctxyg = ygoίx; (1.3)

and #" is asymptotically Abelian in the sense4

lim || [α, «,(&)] || = 0 lim || [α, αx(fe)] || = 0. (1.4)
|ί|->oo \x\-κx)

Actually we shall use in the following only asymptotic Abelianness with respect to
some subgroup τ" of automorphisms and one may then interpret τn either as a
sequence of space translations or time translations moving to infinity.

The set of all gauge invariant elements of J^ is a C*-subalgebra of 3F which we
denote by 21 and call the algebra of obserυables. For its elements we use capital
Roman letters Λ, B ...

Because of (1.3) the automorphisms α f,αx,τw of #" define corresponding
automorphisms of 2X, the restrictions of the former to 21. Ultimately the physical
information contained in an equilibrium state φβμ. concerns only the expectation
values for observables i.e. it concerns only the state ωβ μ. which is the restriction of
Φβ,μi

 t 0 2I Since the gauge transformations act trivially on 21 a KMS state of 3F with
respect to the generator (1.1) will become in restriction to 21 a KMS state with
respect to time translation and parameter β.

Thus, irrespective of whether one starts with grand canonical ensembles and
performs the thermodynamic limit to obtain the states φβμ. of J^ and restricts them
again to the states ωβμι of 21 or whether, alternatively, one considers the dynamical
system (21, αf) and singles out equilibrium states by the stability requirement under
local perturbations (from 21) of the dynamics, one reaches the same conclusion: the
equilibrium states ω are KMS states of 2ί with respect to αί5 and parameter β; in
short they are (αt, β)-KMS states.

4 In (1.4) the bracket [,] denotes the generalized commutator. If J* contains Fermi-type elements then
the bracket between two such elements means the anticommutator
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However, since the μt have observable significance, the ωβμί are different states
of 31 for different values of the μt i.e. there is a /c-parametric family of extremal {oct,β)-
KMS states of 31. In the traditional approach they are distinguished by looking at
their extensions to <F which correspond to different modular automorphisms
(different directions of the generator (1.1) in the Lie algebra of the symmetry group).

We shall therefore study the relation between (αf, β)-KMS states of 3ϊ and their
extensions to &*. The setting will be more general than in the above discussion in so
far as we allow for G an arbitrary compact group. The case where G is not just a
torus group may be of some physical interest in connection with (exact) non-
Abelian internal symmetries and their spontaneous symmetry breaking.

In carrying out the analysis it appears that the essential structural requirement is
asymptotic Abelianness of <F under some subgroup of automorphisms τn (for its
interpretation see above). One then restricts the attention to states which are
extremal invariant (weakly clustering) with respect to τn. The results of Section II
which for simplicity we state here in a specialized form are:

i) Any τ"-extremal invariant state of 91 has at least one extension to a τM-extremal
invariant state of 3F. If φγ and φ2 are two such extensions then φ1 =φ2 °yg i.e. φλ

and φ2 differ by a fixed gauge transformation.

This means in particular that the restrictions of states φβ μ. belonging to
different generators (1.1) cannot coincide on 31 i.e. the ωβ μ. are different states of 31
for different μv

ii) Let φ be an extremal invariant state with respect to time translation5 of 3F
whose restriction to 31 is an (ατ5 β)-KMS state ω. Denote by Gφ the greatest closed
subgroup of G under which φ is invariant. There may exist a closed, normal
subgroup NφOΪGφ for which φ is a "ground state" i.e. the spectrum of the generators
of Nφ in the representation of $F induced by φ is one-sided. If we divide that part out
by considering only the restriction of φ to the algebra J r N φ (the subalgebra of 3F
which is iV^-invariant) then φ\^Nφ is a KMS state with parameter β for a modified
one-parameter group α~ = atβt where βt is a one-parameter subgroup in the center of
GΦINΦ.

In the statistical mechanics of a fe-component system the subgroup Nφ has no
great practical significance. It arises if some of the μf tend to— oo which means that
the density of these components is zero. So we may forget these components
together with the part Nφ of the gauge group. Let us assume now that Nφ is trivial. If
Gφ has no central one-parameter subgroup (for instance if Gφ is trivial i.e. if the
gauge symmetry is completely broken or if Gφ is a semi simple group) then φ is an
(αί? jβ)-KMS state and, since it is extremal α^invariant it is also an extremal KMS
state; hence it is primary and strongly clustering (mixing). If Gφ has a central one-
parameter subgroup (e.g. when G is a torus and φ does not completely break the
gauge symmetry) then there is the possibility that φ may not be extremal KMS (with
respect to α~t). In that case each of the extremal (cCv β)-KMS states into which φ may
be decomposed is again an extension of the state ω but these extensions are no
longer o^-invariant the application of αf to such a state will produce the rotation of

5 This corresponds to the specialization of Theorem II.4 obtained by choosing τ" to be time
translations (in which case the αj of Section II coincides with αt)
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some phase angle in the gauge group6. This case may again be considered as a
breaking of the gauge invariance but one which becomes visible only when we look
at the strongly clustering extensions of ω.

This situation may appear in the superfluid or superconducting state (though
not in the Bose-Einstein condensation of the free gas). In the example of chemical
potentials (Ga torus) the normal situation is the one where Gφ = G and the extension
φ is already extremal KMS with respect to α~.

In Section III the representation of ^ and 91 generated by the states described
above are studied. This gives a more detailed and deeper insight into the
mathematical structure of the extension problem and also provides an alternative
way for deriving the results of Section II. A description of these questions and
results is given at the beginning of Section III.

The general setting studied in the present paper (involving #", G, 91, αf, their
properties and relations) is very similar to the one arising in the study of
superselection rules and charge numbers in Quantum Field Theory [7]. There the
structure is, of course, tighter due to relativistic invariance, locality etc. but in some
respects one may regard the present analysis as an adaptation of the questions
treated in [7] to the case of equilibrium states with finite temperature. In that spirit
one may replace the field algebra JF by localized morphisms acting on 91 as done in
[7]. The difference is now that while in [7] these morphisms are applied to the
ground state representation of 91 where they produce inequivalent representations
of 91 and thereby lead to the charge quantum numbers and associated super-
selection rules, in the present case, where we apply them to thermodynamic states
coβfflι, they lead to quasiequivalent representations. This is intuitively easily
understood since these morphisms change the charge (or in our case the particle
number) by a finite amount and this will have no drastic effect if the mean particle
number of the state is already infinite. Instead of a discrete set of superselection
rules labeled by charges we have here a continuous set, labeled by the μf. But in order
to change μt we would need an infinite change in particle number i.e. an infinite
product of the localized morphisms mentioned. This will not be considered here.
However we shall see in Section IV that localized morphisms of 91 may be used to
describe directly the significance of the chemical potentials in the observable
algebra (without considering the extension of the state to 3F\

This work arose from a coalescence of independent efforts to understand the
algebraic background of the chemical potential [8,9]. The problem had been
initially approached through a conditional stability assumption (sketched in [8]). It
was later realized that the chemical potential can be inferred merely by looking at
extensions of (αί5 β)-KMS states of 91 to the field algebra, as is shown in [9] and here
using different assumptions and techniques7.

6 Note that Theorem II.4 in its general formulation affords a direct treatment of such states non
invariant in time but homogeneous in space (by taking τ" to be space translations)

7 The "conditional stability" requires the states of the field algebra to be stable under local gauge-
invariant perturbations. Since this entails the (αf,/?)-KMS property in restriction to ^l (cf. [4])
conditional stability is a priori stronger than our present requirements. However the latter imply in turn
conditional stability as an easy consequence of Theorem II.4
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II. Extension of States

ILL Assumptions and Results

(a) Assumptions. We consider a C*-algebra £F (the algebra of fields), a continuous8

one-parameter group

teR-+octe Aut^

of *-automorphisms of !F (the time evolution), a compact group G (gauge group), a
continuous representation y of G by *-automorphisms of $F

geG->yge AutJ*

and a ^-automorphism

such that α^ίei?), γg(geG) and τ mutually commute and 3F is asymptotically
Abelian9 relative to τ : For any a,be^,

lim||[τ"α,b]||==0. (II. 1.1)
n

(The case where Fermion operators are present will be treated in Section Π.8.)
The G-fixed point subalgebra of $F (the algebra of observables) is denoted by 91:

ygA = A for all geG}. (II.1.2)

Then 91 is a C*-subalgebra of #" globally invariant under oct{teR) and τ.

Definition ILL A state φ of ^ is said to be weakly τ-clustering if φ(τα) = φ(α) for all
ae^ (τ-invariance) and if

Mn{φ{aτnn)} = φ{a)φφ) (II.1.3)

for all α, be 3F^ where the (Cesaro) mean Mn(fn) of a function fn of ne iV is defined by

-1 ΣMπ{/J=limiV

ffej Uniqueness of Weakly Clustering Extensions

Theorem Π.l. (1) // φx and φ2 are weakly τ-clustering states of 3F and if their
restrictions to 91 are equal:

then there exists geG such that for all a

φ2(a) = φ1(y a).

8 We assume that, for each αe ̂ , the function αt(α) of ί is continuous relative to the norm topology of
3F (the strong continuity)
9 For the sake of definiteness, we have chosen the asymptotic Abelian property relative to a group
{τn nZ}. All our results and proofs remain valid if the group {τ"} is replaced by an amenable group of *-
automorphisms of 3* [10]. For example, for a one-parameter group τΛ, our proofs remain valid if Mn{fn}
in (II. 1.4) is replaced by

T

MA{/λ}= l im(2Γ)- 1 \ fxdλ
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(2) // 3F is asymptotically Λbelian relative to τ and if the state ω of 9ί is weakly
τ-clustering, then there exists an extension of ω to a weakly τ-clustering state of 3F.

Remark ILL This theorem shows the existence and uniqueness of a weakly
clustering extension up to gauge. Assuming the asymptotic τ-Abelian property is
not needed for the part (1) of Theorem II. 1. For this theorem, the dynamical group at

is irrelevant.

Remark 11.2. If ω is an extremal KMS state of 21, then it is primary [6]. If ω is
τ-invariant in addition, it is (strongly and hence) weakly τ-clustering.

Definition IL2. The subgroup

Gφ = {geG; φ(yga) = φ(a) for all ae^} (IL1.5)

is called the stabilizer of φ. The subgroups

and

Z(Gφ, G) = {geG; gh = hg for all he Gφ)

are respectively called the normalizer and centralizer of Gφ.

Theorem Π.2. Assume that G is separable. If φ is a weakly τ-clustering state of 3F and
if its restriction to 21 is invariant under time translations :

φ(ott(A)) = φ(A), AeSΆ, teR

then there exists a continuous one-parameter subgroup

such that φ is invariant under (the modified time translation)

Remark. 11.3. The asymptotic Abelianness is not needed for this Theorem. If G is not
separable, one finds εt in N(Gφ, G)/Gφ.

(c) Spectrum. In the cyclic representation (ξ>φ, πφ, Ωφ) associated with φ, (GNS-
construction), a continuous unitary representation of Gφ is canonically defined by

Uφ{g)πφ(a)Ωφ = πφ(γga)Ωφ, ae &, geGφ. (II. 1.9)

The restriction of Uφ to a subgroup H of Gφ is denoted by Uφ.

Theorem IL3. Let H be a closed subgroup of the stabilizer Gφ of a weakly τ-clustering
state φ of $F. Then Uφ has the following semi-group property: if the finite
dimensional continuous unitary representations Uί and U2 are contained in Uφ, then
U\®U2 is also contained in Uφ.

Definition 11.3. For a closed subgroup H of Gφ9 the set Σφ of all irreducible
representations p of H contained in Uφ is called the H-spectrum of φ. The H-
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spectrum of φ is said to be one-sided if it is contained in a set Σ which has the
following two properties:

(i) lfp1 and p2 are in Σ, then any irreducible component oΐp1 ®p2 is in Σ (semi-
group property).

(ii) The simultaneous occurence of p and its conjugate representation p in Σ
implies that p is the identity representation: p = l. (Total asymmetry.)

(d) Extensions of KMS States. The following is the main theorem in Section II.

Theorem Π.4. Assume that G is separable. Let φbea weakly τ-clustering state of 3F,
whose restriction to 21 is an extremal (αt, β)-KMS state. Then there exists a closed
normal subgroup Nφ of Gφ, a continuous one-parameter subgroup εt of Z(Gφ) and a
continuous one-parameter subgroup ζt of Gφ such that

(i) the Nφ-spectrum of φ is one-sided,
(ii) the restriction of φ to the fixed point algebra under Nφ :

^N* = {ae&Ίyga = a for all geNφ} (II.1.10)

is an (oΓt,β)-KMS state10 for oc~=oιtγEtζt, and

(iii) the image ξt = ζtNφ of ζt in Gφ/Nφ is in the center of Gφ/Nφ.

Remark 11.4. Nφ is called the asymmetry subgroup of φ. It is trivial if φ is faithful on
21. If Nφ is trivial, then (ii) implies that φ is separating [i.e. Ωφ separates the weak
closure of

Remark II.5. Let ξt and ηt be commuting continuous one-parameter subgroups of G
such that there exists a β-KMS state φμ>λ of 3F relative to

for all λ>λ0 and aμ. Let φμ be any accumulation point of φμΛ at λ = + GO. Then it is
easily seen that the H-spectrum of φμ is one-sided for H = {ηtι telR} and the
restriction of φ to ̂ H is (atγξ t, /?)-KMS. This remark indicates the physical meaning
of Nφ: the latter determines the directions where the infinite components of the
(vector) chemical potential are concentrated. The finite components of the chemical
potential appear in the εtζt part.

Remark II.6. If G is not assumed to be separable, and if φ is assumed to be
αΓinvariant, then Theorem II.4 holds with the change that ζt will be a one-param-
eter subgroup of the center of Gφ/Nφ, instead of being in Gφ. The separability of
G in Theorems II.2 and II.4 is used only in applying a result quoted in Appendix B
for lifting one-parameter subgroups.

(e) Strategy of Proof. For the proof of Theorem II. 1 (Section II.2), we first consider
the "one-point function" φ{yha\ ae^, as a (continuous) function of heG. The
uniform closure of the set of all one-point functions is shown to be the.C*-algebra of
left Gφ-invariant continuous functions over G (Lemma II. 1). It is shown that the
map associating φ2(yha)t0 ΦiOv) ^s given by a left translation by an element geG,
ifφ1 and φ2 have the same restriction to 21. This proves Theorem II. 1 (1). Theorem
II.2 then follows as a Corollary. Theorem II. 1 (2) is more or less known.

1 ° The notation in this paper is adapted to a non-zero β. I f β = 0, ζβt is to be replaced by a one-parameter
family: the conclusion (ii) of Theorem II.4 is that the restriction of φ to ̂ rNφ is a (γζt, 1)-KMS state
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The proof of Theorem II.3 given in Section II.3 is a more or less standard
argument.

The proof of Theorem II.4 is split into 4 parts. In Section II.4, the asymmetry
subgroup Nψ is introduced in connection with the set of "two point functions"
φ(aγgb) as functions of geGφ. [Because of the definition (II. 1.5), Φ((ygίa)γg2b)
= φ(aygb)) with g = gΐ1g2 if 0ieG ψ .] In Section IL5, we derive the (a'v β)-KMS
condition for the restriction of φ to J^G φ from the (av β)-KMS condition for the
restriction of φ to $FQ — 91. In Section II.6, we derive the (α~ /?)-KMS condition for
the restriction of φ to άFNφ from the (αj, jS)-KMS condition for the restriction of φ to
^Gφ. Finally in Section II.7, we prove that the iV^-spectrum is one-sided, the proof
depending on the (α~ β)-KMS condition for the restriction of φ to N

II.2. Uniqueness up to Gauge of a Weakly Clustering Extension

Let left and right translations be defined by

for h,geG and / belonging to L2(G) (square integrable functions over G relative to
the Haar measure) or #(G) (continuous functions over G). For a closed subgroup H
of G, %(H\G) can be identified with the set of all / in #(G) which are λ{H)-
invariant: λ(h)f = f for all heH.

Lemma Π.l. If φ is a weakly τ-clustering state of J^, then the norm closure Cψ~ of

C1

φ(G) = {geG^f?(g) = φ(yga) α e J ^ C ^ G ) (IL2.2)

coincides with %>(Gφ\G).

Proof Let a,be^ and let c be a complex number. Since / / + fb

φ = ff+ b and cff = fc

φ

a,
Cι

φ{G) is a linear subset of #(G). Since {ff)*=f£, Cι

φ{G) is stable under complex
conjugation.

For each geG,

MΛfaUo)}=fa

φ(g)fb

φ(g) (π.2.3)

by the weak τ-clustering property of φ. Since f£nb, neN, is an equicontinuous
family, the convergence is uniform. Hence fffb

φeCφ~(G) and Cφ~(G) is a
C*-subalgebra of #(G).

Since ρ(h)fa

φ = fγ

φ

ha for all ae^ and heG, Cι

φ{G) is (globally) right translation
invariant: ρ(fc)CJ(G) = CJ(G), heG. By Lemma A.I of Appendix A, C^(G)
= <g(Gφ\G) where Gφ is the set of heG such that f(g) = f(hg) for all feCι

φ(G\
namely Gφ defined by (II. 1.5).

Proof of Theorem IΙ.ί(ί). Let Gj = Gφj and j{(g) = φj(ygal αeJ% geG. Since

Λ(a, τnb) = J γg(a*τnb)dgeVί, (Π.2.4)

we have
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By the weak τ-clustering property of φj and by equicontinuity

Mn{φμ(a, τnb))} = \ flig) %\g)dg = <fj, φG .
G

Hence

<faJb

1>G = <fa2Jb

2>β- (Π.25)

This shows that

(H-2.6)

defines an isometric operator P£, whose closure V is a unitary map from ^(G
onto L 2(G 2\G). By (II.2.3),

which implies for fJeC(G>\G) acting as a multiplication operator on L2(Gj\G)

= }fa

1V* = fa

2. (Π.2.7)

Hence (AdF) induces a *-isomorphism of ^(G/XG) onto %>(G2\G). Furthermore V
commutes with the right translations:

Hence (Ad V) also commutes with the right translations.
By Lemma A.3 of Appendix A, AdF = A(^~1) for some #eG, a n d g " 1 Gίg = G2.

In particular

(l) = /α1to) = ̂ i M . Q.E.D.

Proo/ 0/ Theorem II.2. Since φt(α) = # ^ 0 ) is a weakly clustering state of J% whose
restriction to 91 coincides with φ due to the assumed αt-invariance of φ|9I, Theorem
II. 1 implies the existence of vteG such that φt(a) = φ(yVta).

Since αf commutes with G, Gφt = Gφ. Since Gφt = v~1Gφυv υt must be in the
normalizer N(G^) of Gφ in G. Since ι;r is unique up to Gφ, the cosets vt = vtGφ in
N(Gφ)/Gφ form a continuous one-parameter subgroup.

By Lemma B of Appendix B, there exist a continuous one-parameter subgroup
εteZ(G) such that εtNφ=ϋ-t. Then φ(yε_ta) = φt(a) = φ(ata), αeJ^, and hence φ
is invariant under oc't = atyεt.

Proof of Theorem 11.1.(2). Let ω be a weakly τ-clustering state of 91. The weak
τ-clustering property of ω implies that ω is an extremal τ-invariant state of 91 ([10]
Theorem 4). The τ-invariant state ω of 91 has an extention to a τ-invariant state.
(For any extension φ0 of ω, the mean of φ0 °τ" over neZ will give a τ-invariant
extension.) By the Krein-Milman Theorem, there exists an extremal element φ in the
non-empty convex compact set of all τ-invariant states of J^, whose restriction to 91
is the given state ω. If φ = λφί + (1 — λ)φ2,0 < λ < 1, and iϊφί and φ 2 are τ-invariant
states of #", the restrictions ω1 and ω 2 of φ 1 and φ2 are τ-invariant states of 91. By
the extremality of ω, ω1 =ω2 = ω , and hence by the extremality of φ, φί=^φ2 = φ.
This shows that φ is an extremal τ-invariant state of # \ Since J^ is asymptotically
τ-Abelian, φ is weakly τ-clustering [11].
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Π.3. Semi-Group Property of Spectrum

Lemma Π.2. // a continuous unitary representation U of H on a finite dimensional
space V is contained in Uφ, then there exists a linear map j u from V into 3F such that

(i) the map veV-^>πφ(ju(v))Ωφ is isometric and
(ii) f is intertwining: f(U(h)v) = yh(ju(v)\ heH.

Proof Let p be any irreducible representation of H with χp(h) the corresponding
character and define

ί XP(h)*yh(a)dh9 E»= f χp{hγυH

φ{h)dh. (II.3.1)
P χp{

H H

Then the E^ for different p are orthogonal and ε^(S^)Ωφ is dense in Epξ)φ. The latter
implies that Epξ>φ = εp(^')Ωφ whenever the dimension of εp(άF)Ωφ is finite. Hence
the Lemma follows from a counting of multiplicities of irreducible representations.

Proof of Theorem 113. Let the continuous representations Uk of H on finite-
dimensional spaces Vk(k=l, 2) be contained in UH. Let jVk=jk. Since
πφ(jι(vί)τnj2(υ2))Ωφ is bilinear in vx e Vί and v2e V2, and has a bound IL/JX^)!! ||i/2(ϋ2)ll
independent of n, we conclude that there is a linear map Ωn from V1 ® V2 to § 0 , such
that

( Λ = X cmπφ(/Ί(^)τπJ2(^))^, (Π.3.2)
n

s u P | | ί 2 J < o o . (II.3.3)
n

If ker ΩΠ = {0} for some n, Ω~x exists on Qjy^ ® K2), and Ω" x C/f (Λ)ΩΠ - U^h)
®U2(h\ showing that Uφ contains U1®U2.

Hence it is enough to show that the assumption ker Ωn Φ {0} for all n leads to a
contradiction. Let vne ker Ωn, \\ vn \\ = 1. Then there is a subsequence n(p) with a limit v
in the sense that lim \\v — vnip)\\ =0. This implies

lim ! | Ω Π ( » | | =lim \\Ωn{p)(v-vn(p))\\ = 0 ,

where we have used ί2B(p)(t;Π(p)) = 0 and (II.3.3). However, the asymptotic
Abelianness, weak τ-clustering property of φ and the isometric property of Lemma
11.2 (i) imply

Q.E.D.

lim | |Ω» | | 2 = |M|2
n

which contradicts with (Π.3.4) and (Π.3.5).

Π.4. Asymmetry Subgroup of a Weakly Clustering State

Let φ be a weakly τ-clustering state of #", which is assumed to be asymptotically
Abelian with respect to τ. Let
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Let C~φ(Gφ) be the uniformly closed linear hull of Cφ(Gφ) and C~φ(Gφ)* denote the
set of complex conjugates of functions in C~φ(Gφ).

Lemma Π.3. There exists a closed normal subgroup Nφ of Gφ such that

C-φ(Gφ)nC-φ(Gφr = %(GΦ/Nφ). (IL4.2)

Proof. By the asymptotic τ-Abelianness of J* and weakly τ-clustering property of φ,
we obtain

Mn{fLa>M»»-}=faΦA (Π.4.3)

M J / Λ ^ ' + A ^ + ̂ ' W =fa*b+f£f (Π.4.4)

where A is an element of 91 with non vanishing φ(A 2) and complex numbers λ and μ
are chosen to satisfy

λμφ(A2) + λ{φ(Ab) + φ(A)φ(b')} + μ{φ(aA) + φ(a')φ(A)}

We also have

Hence C~φ(Gφ) is a norm closed subalgebra oϊ^{Gφ), globally invariant under left
and right translations, which implies that C~φ(Gφ)nC~φ(Gφ)* is a C*-subalgebra of
^(Gφ), globally invariant under left and right translations. By Lemma A.I of
Appendix A, we obtain (II.4.2) for some closed normal subgroup Nφ of Gφ.

Q.E.D.
We now consider &*+ defined by (II. 1.10). For a state φλ of ^Nφ we define

Cφί(Gφ) in a way similar to (Π.4.1):

Cφl(Gφ) = {geGφ-+f+h{g) = φ(aygb)) ;a,

Lemma Π.4. Let φx be the restriction of φ to ^Nφ defined by (II. 1.10.). Then

C-φl(Gφ) = C~φί(Gφr = V(Gφ/Nφ). (II .4.6)

Proof If be^Nφ, then ygb = b for all geNφ and hence

Hence

C-φSGJcViGφ/Nφ). (Π.4.7)

Let peGφ and

eN«= \Q{g)dg= J λ(g)dg, (Π.4.8)
Nφ Nφ

eNφ(a)= \lg{a)dg. (Π.4.9)
Nφ

Then eNφ is an orthogonal projection in L2(Gφ) and

eN*f*b =&M, ao=e»*{a), b0 =
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Since sNφ(^) = ̂ Nφ, we have

φGφ) = Crφi(Gφ). (Π.4.10)

By (II.4.2) we have

eN*C~φ(Gφ) D eN*V(Gφ/Nφ) = V(Gφ/Nφ). (ΠA11)

Equations (II.4.7), (Π.4.10), and (II.4.11) prove

Q.E.D.

11.5. Extension from 91 to ^Gφ

Lemma Π.5. Let a't be given by Theorem 2. If the restriction of a weakly τ-clustering
state φ of έF to Wί is an (αf, β)-KMS state, then the restriction of φ to

;yga = a for all geGφ} (Π.5.1)

is an (a'v β)-KMS state.

Proof Let a,a',b,b'e!F. Let k(E) be any C™-function of EeWi with a compact
support and

00

Γ y (ί)= f k(E)Qxp{iEt + yE}dE. (11.5.2)
— oo

Since ocf

tΛ == ontA for AeVl, the assumed KMS condition implies

J φ(A(a, τna')a'tA(τmb, τnb'))k~β(t)dt

= J φ({oc'tA(τmb, τnb')} A(a, τna'Woif)dt (Π.5.3)

where we have used the notation (II.2.4).
By applying the average Mn first and the average Mm next, we obtain

= <fa

Φ®fb

φ,G(a\bf ;ko)}GxG

where // and fb

φ are defined as in (Π.2.2),

F{a\ V k~β)(gl9g2) = jφ({yga')*'tyg2V)k~β{t)dte^{G x G),

and the inner product in (II.5.4) is in L2(G x G).
By Lemma 1, //®fφ for a,b is dense in

L\Gφ x Gφ\G x G) = {eGφ®eGφ)L2{G x G)

where e G *= j λ(g)dg is an orthogonal projection. Hence (II. 5.4) implies
Gφ

{eGφ®eGφ)F{a\ V k~β) - (



110 H. Arakietal.

Since

(eGφ®eGφ)G(a',b'; fc~0)(l, l) = μ({af

tε
Gφ(b')}εGφ(afW

the equality (IL5.5) for a\b'e^Gφ implies

J φ{a'a'tb')k~β{t)dt = J φ{{a'tV}a')k~0(t)dt

which is the (α;,β)-KMS condition for the restriction of φ to #"G*. Q.E.D.

11.6. Extension from ^Gφ to ^Nφ

Proof of Theorem II.4 (ii) and (iii)

By Theorem II.2 and Lemma II.5, φ is ^-invariant, <x't commutes with every
and the restriction of φ to ^Gφ is an (αj, β)-KMS state.

Let a, b, a\ and V be αj-entire elements of $F. (It is known that the set of entire
elements is dense.) By the αj-invariance of φ, we have

φ(εG^(α*τ"α/)α;εG^(fo*Λ/)) = φ{a*τna'a't&
Gφ{b*τnbf)).

Hence the (αj, /?)-KMS condition implies

φ{a*τnafκ'iβε
Gφ{b*τnb')) = φ(ε G ^(b*τ n b')^*τV).

By applying the average Mn we obtain

<sfί-ipb,a> fί,aifib'>Gφ = <fa% ̂ ,b'>Gφ (Π 6.1)

where f£b is as in (Π.4.1) and

We have used following relations:

φ((ygb)a) = φ(byg_ia) = sf+a{g), (geGφ).

By Lemma II.4, the set oϊf*b as well as the set oϊsf*b = (fbia*)* for α, fte^* are
dense in %(Gφ/Nφ) and hence in L2(Gφ/Nφ).

Let 5 be temporarily defined by

Then (Π.6.1), with V replaced by <x'iβb', becomes

<Sf*» f$,f> = <fa

φ

b, Sf*ίb.}. (11.6.2)

If ΣcJ*M=Q, then (H.6.2) implies that

for all a',b'e&N* and hence ΣctSf*M=0. Therefore

SΣcJib=ΣcJ$_iβbuai (I

defines a symmetric linear operator on a dense linear subset of L2(Gφ/Nφ).
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Because of

Q(9)fa,b = fa,ygb> Kβ)fatb = fy9a,b , ( Π 6.4)

the definition (Π.6.3) implies that the domain of S is invariant under right and left
translations and that S commutes with them.

Let p be a continuous irreducible unitary representation of Gφ/Nφ and let

e{p)= ί Q(g)xP(g)*dg (π.6.5)
Gφ/Nφ

where χp is the character for p. Then S commutes with e(p). Since left and right
translations together are irreducible on the range of e(p) (which is of finite
dimension), Se(p) = S(p)e(p) for a function S(p). (The range oϊe(p) is actually in the
domain of S.)

Since the f*b span %(Gφ/N% there exists f*h with e(p)f*bή=0. Then bp

= ί y0Φ)χp{g)*dg satisfies e(p)fab = faJ)p and hence φ(b*bp)Φθ. Since α' com-

mutes with Gφ, we can find an appropriate / for which the αj-entire element
S Ξ \ΦP)f{t)dt fulfils φ ( α χ ) + 0. Then / β J f β p is in e(pMGφ/Nφ) and hence

K * . p > α p (1)

= S(p)φ(α*αp).

Since

we obtain
If we make the same argument with p, we obtain an αj-entire ap with

φ{a$ap)*0. Then a = aίβ/2a~p satisfies fa*jaee(p)<g(Gφ/Nφ) and hence

α| S -) = (S/β,(β) (1) - S(p)0(α*, α)

This proves S(p) φ 0.
Therefore S is a positive self-adjoint operator and hence Sιt = Γ(t) is a con-

tinuous one-parameter group of unitary operators commuting with left and right
translations.

By the weak τ-clustering, we obtain

This implies S(p)S(q) = S(r) whenever r is contained in p®q. Hence

nt)(fa,bfa;b')=(

which implies that

Γ{t)TUhΓ{t)* =

where 7} denotes the multiplication operator by / on L2(Gφ/Nφ).



112 H. Arakietal.

Hence AdΓ(ί) is a continuous one-parameter group of automorphisms of
^(Gφ/Nφ) commuting with right and left translations. Hence there exists a
continuous one-parameter subgroup ξt such that AdΓ(t) = λ(ξβt) ( = Q(ζ-βt) due to
Lemma A.2 of Appendix A; and ξt must lie in the center of Gφ/Nφ.

By Lemma B of Appendix B, ξt can be lifted to a continuous one-parameter
subgroup ζt of G. Q.E.D.

Π.7. Implications of KMS-Condition for Asymmetry Subgroup

Proof of Theorem II.4 (i)

The following technical Lemma is due to Rishimoto [9].

Lemma Π.6. Let φbe a weakly τ-clusterίng state of 3F. Assume that the restriction of
φ to ^Nφ is an (oΓt, β)-KMS state for a continuous one-parameter subgroup cCt of
AutJ^ commuting with τ and satisfying oΓtNφoΓ_t = Nφ. Let p be an irreducible con-
tinuous unitary representation of Nφ such that p and p are both contained in Uφ. Let
εp be defined by εξ of (Π.3.1) with H = Nφ. Then for any aeεp{^), φ{a*a) = 0 is
equivalent to φ(αα*) = 0.

Proof Let α, a\ b, b' be in $F. Since

bn = εΉ*(b*τnb')e &Nφ, ( I L 7 1)an = εN^τnaf

we have x l an Fn(z), holomorphic for 0 < I m z / β < l , continuous and bounded for
0 < I m z / β < l and satisfying

Fn(t) = φ{ana~tbn), Fn(t + iβ) = φ((a~tbn)an)

for real t. Both Fn{t) and Fn(t + iβ) are equicontinuous families of uniformly
continuous functions of t and hence there exists a uniform limit F(z) = Mn{Fn(z)}
which is holomorphic for 0 < Im t/β < 1, bounded and continuous for 0 < Im t/β ^ 1
and satisfies for real t

= Mn{Φ(ana~tbn)}

= ί ί Φ(Kyg2b)ygia)*φ({γgίa')a~tγgb')dgιdg2,

iβ) = Mn{φ({a~tbn)an)}

= ί ί Φi(yβι

a)cι"'t7βIb)*Φi(«'"tyβlV)yβι^)dg1dg2.
Nφ Nφ

In the following we use the implication that F{t + iβ) = 0 for all t implies F(0) = 0.
From the assumption Epφ0, there exists apeεp(^) such that φ(a^ap)φθ, as in

the proof of Lemma 5. For a = γhap and b = a*(he Nφ)9 we have

= (Uφ(h)πφ(aβ)Ωφ, Uφ(g;1g2)Uφ(h)πφ(a,)Ωφ

If iff = 0, then Fn(z) is defined for Imz =
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If/,/!, and/ 2 are positive type functions in ep%(Nφ) with ep = J Q{g)lp{g)*dg,
Nφ

then the vanishing of j / ^ / i " 1gh)*f2(g)dg for all freiV^ implies either^ = 0 or f2 =0.
Hence

ί J Φ((yg2b)ygidrf2(gl1g2)dg1dg2=o
Nφ Nφ

for all heNψ implies / 2 = 0 for all positive type f2 in ep^(Nφ).
lϊapeεp(^) and ψ(α* f lp φ 0, then/ 2(#- ^ 2 ) = φ{{jga')ygV) with 6' = ap9 a' = α* is

a non-zero positive function of gx

 1g2 in ep%>(Nφ). Hence F(0)Φ0 for some h if a
= yhap, b = a*, b' = ap, and a' = a*. On the other hand, in φ(αpα*) = 0, then F(t + iβ)
with α' = α* vanishes for all ί. This would imply F(0) = 0 in contradiction with the
above conclusion. Hence φ(apa*) Φ 0.

Since εp(^)^ = εp (3F\ φ(apa*) φ 0 implies φ(a*ap) Φ 0 by the same argument with
p and p interchanged. Q.E.D.

Lemma Π.7. Nφ-spectrum of φ is one-sided under the assumption of Lemma II.6.

Proof The semi-group property has already been proved in Theorem 3.
Suppose p and p are contained in Uψφ. Then there exists apeεp(^) such that

φ(a*ap)φ0 and φ(apa*) + 0 by Lemma II.6. Among continuous irreducible unitary
representations q oϊ G, there exists at least one q such that E^φπφ(ap)Ωφ

Since

(πφ(ap)Ωφ, πφ(ε^ap)Ωφ)=\\πφ(ε^ap)Ωφ\\2Φ0, (IL7.2)

the representation q of Gφ, when restricted to Nφ, must contain p.
The equation (II.7.2) also shows that

and hence by Lemma II.7

EΪ*πφ{ε°+ap)*Ωφ = πφ(εN

p*(ε^ap))Ωφ Φ 0

and hence

(The same conclusion follows also from Lemma II.6 in which Nφ is replaced by Gφ)
This proves that

By (II.4.2), Nφ must be trivially represented in q. Hence p = ί. Q.E.D.
Because of Theorem II.4 (ii) and (iii) already proved, Lemma II.7 with oc~t = atεtζt

implies Theorem II.4 (i).

II.8. The Case Where Fermion Operators Are Present

In the foregoing discussion, we assumed the asymptotic Abelianness (II. 1.1). We
shall now show that all the foregoing arguments go through if we make a
modification of (Π.l.l) appropriate for the presence of Fermion operators.
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In addition to assumptions II. 1.(a), we consider an involutive automorphism θ
of #X#2 = 1) commuting with av every yg, geG, and τ. <F is split into a sum

where aeϊF± satisfies θ(a) = ± a. Operators in #"_ will be called Fermίon operators.
The assumption (II. 1.1) is modified to the following: we consider 4 different cases (i)
ae^+, be^+, (ii) α e # \ , foe^_, (iii) α e ^ _ , foe J % , (iv) a e ^ _ , foe#"_. We
assume

lim\\(τna)b-εbiabτna\\=O (II.8.2)

where εb α = + 1 for the cases (i), (ii), and (iii) and εb a = — 1 for the case (iv).
We can now show that all results in II. 1 through II.7 hold even if we change the

assumption (II. 1.1) to (II.8.2). We have only to check those part of proof where the
asymptotic abelianness is used. We do this item by item in the following:

(a) An extremal τ-invariant state is weakly τ-clustering
[This is relevant to the proof of Theorem 11.1.(2)]

Let φ be an extremal τ-invariant state, πφ on ξ>φ the associated cyclic representation,
Φ the associated vector, Uτ the unitary operator on § φ associated with τ and Pτ the
projection operator on ί/τ-invariant vectors. Then

Mn{φ{a*τna)} = (Φ, πφ{ά)*Pτπφ{ά) Φ) ̂  0, (II.8.3)

Mn{φ((τna)a*)} = (Φ, πφ{a)Pτπφ{ά)*Φ) Z 0. (II.8.4)

If a is a Fermion operator, (Π.8.2) implies

Mn{φ{a*τna)} = -Mn{φ{{τna)a*)},

which must vanish due to (Π.8.3) and (Π.8.4). Hence

Pτπφ(a)Φ = 0

for any ae^_. In particular, φ(βF_) = 0 and hence φ is θ-invariant. Let Uθ be the
unitary operator on ξ>φ associated with θ.

For any ae J^, we have

Mn{πφ(τna)Ωφ} = Mn{ Un

τ} πφ(a)Ωφ = Pτπφ(a)Ωφ.

Hence

exists for the 4 cases considered in (Π.8.2). Hence the uniformly bounded sequence
N

N " 1 Σ πφ(τHa) is weakly convergent:

If ae^+,MT(a) commutes with 3F by (Π.8.2) and with τ by the definition. The
ergodicity then implies that it is a number, which can be computed by

Mτ(a) = (Φ, Mτ(a) Φ) 1 = φ(a) 1.
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Hence

Mn{φ(bτna)} = φ(b)φ{a). (Π.8.5)

If ae^_,Mτ(a)Uθ commutes with 2F by (II.8.2) and by the definition of Uθ. It
also commutes with τ. Hence

Mτ(a) Uθ = (Φ, Mτ(a) UΘΦ)1 = φ(a) 1 = 0.

Hence

Therefore (II.8.5) holds also for this case and hence in general. This proves the
weakly τ-clustering property of an arbitrary τ-ergodic state φ, in the presence of
Fermion operators.

(b) Proof of Theorem II.3

Since Uθ commutes with ge G, each £ f § 0 = (ε^{^)Ωφ)~ in the proof of Lemma 2
can be split into a direct sum of two representations U± according to the eigenvalue
± 1 of Uθ. Accordingly, we have

(Π.8.6)

when v — v+ + v_. As far as the transformation property under geG and the action
on Ωφ are concerned, the operator

J»=Jϋ+(v+)+jϋ-(υ_)Uθ (Π.8.7)

also transforms unitarily equivalently to U and produces the same vactor when
applied on Ωφ. We then consider

which carries the representation U\®U2 provided that kerΩn = {0}. The condition
2π = {0} holds by the same reason as before. Namely the equation

follows from the asymptotic commutativity o f / 7 1 ^ ) a,ndj%2(v2) and from the weak
τ-clustering property, which is not affected by the presence of Uθ.

(c) Proof of Lemma II.3

Since (II.4.4) holds without change due to the weak τ-clustering property, we have
only to prove ffM βb, e C~φ(Gφ) when a, b, a', V are in # + u ^ _ . Since (II.4.3) holds
when the right hand side is multiplied by za b and since — ffb — fta b, this is the case.

(d) Proof of Lemma II.5

The only place where care should be taken is the passage from (Π.5.3) to (Π.5.4). If
a,b,a\b' are in J^+uJ^_, then either both sides of (II.5.4) get the same additional
sign εa>b = £b'a or else they both vanish due to φ(JΓ) = 0. This implies that (II.5.4)
holds for either case, and hence for α, b, a\ V in 3F.
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(e) Proof of Theorem II.4 (ii) and (iii)

The only place where care should be taken is the derivations of (II.6.1) and (Π.6.6).
These can be done exactly in the same manner as (d) above.

(f) Proof of Theorem IL4 (i)

The only place where care should be taken is the computation of F(t) and F(t + ίβ),
where the same argument as (d) above can be applied.

III. Analysis of Representations and the Associated von Neumann Algebras

111.1

In the last section, we saw that any weakly τ-clustering state ω of the observable
algebra 21 extends uniquely, up to a translation by the gauge group G, to a weakly
clustering state φ of the field algebra $F. Since the stabilizer Gφ of φ need not be
the whole gauge group G, the action of G may not be implementable in the GNS-
representation {πφ,ξ>φ,Ωφ} of 3F (in other words, the gauge symmetry may be
broken in the state φ, with only the smaller symmetry, Gφ9 still present). In
Subsection III.2, we shall study how one can restore the whole symmetry from the
smaller one. It turns out that the induced covariant representation Ind {πφ9 UΛ

GφϊG

from the smaller covariant system {#", Gφ} is unitarily equivalent to the GNS-
covariant representation {πω, Uω} given by the unique G-invariant extension ώ.
From this analysis, we shall derive that πφ{^Gφ)" = πφ(9l)".

Subsection III.3 is devoted to the analysis of the von Neumann algebras πφ{^)'\
πφ(?Ά)" and πω(2l)" in the absence of the asymmetry group Nφ. We shall show that (i)
any automorphism α on <ϋΰl = πφ(^r)", which leaves ςίl = πφ{%)" pointwise invariant
and commutes with τ, must be of the form α = yg<χ for some gfiφ (ϋ) 3ER is the dual
crossed product of 91 by some dual action y" of Gφ on 9t and the action y of Gφ on 9K
is realized as the dual action to y". As a byproduct, we shall give an alternative proof
of a part of Theorem II.4. A basic tool for this analysis is a von Neumann algebra
version of the Tannaka duality theorem adapted to the formalism developed by
Roberts in [11].

111.2. Broken Symmetry Versus Induced Covariant Representation

Let <F9 {yg:geG}9

 (H = ̂ rG and τ be as before. We showed that any weakly
τ-clustering state ω of 21 extends uniquely, up to a gauge transformation, to a
τ-clustering state φ of #". However, this extended state φ need not be invariant
under G, in which case the action y is not unitarily implementable in the GNS-
representation {πφ, ξ>φ9 Ωφ} of $F. On the other hand, any state ω of 91 has a unique
G-invariant extension ώ to 3F given by the following simple procedure:

ώ{a) = ωUyg{a)dg\ ae^. (III.2.1)

The action y of G on 3F is canonically implemented in the GNS-representation
{πω, §55, Ωώ} of & by the unitary representation Um of G on ξ>m given by

Ua{g)πa{a)Ωa - πω(yg(a))Ωω, ae F. (III.2.2)
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Contrasting with this, the GiVS-representation {πφ, ξ>φ, Ωφ} of #" given by the
weakly τ-clustering extension φ carries only the unitary representation Uφ of the
stabilizer of φ in G which implements the restricted action y\Gφ on 3F. The relation
between {ώ, π δ , U$} and {φ9 πφ, Uφ} is described as follows:

Theorem IΠ.2.1. Let ^ be a C*-algebra equipped with a continuous action y of a
compact group G, and let 21 = $FQ be the fixed point algebra. Suppose that 3F admits
an automorphism τ which is asymptotically abelian and commutes with y. Let ω be a
weakly τ-clustering state on^ί,φa weakly τ-clustering extension ofω to 3F and ώ the
G-invariant extension of ω to $F. The following then holds:

(i) the state ώ is given by the integral:

ώ = J φ°ygdg (III.2.3)
GΦ\G

where dg is the cononical image of the normalized Haar measure dg of G on the right
coset space Gφ\G = {Gφg :geG} of G modulo the stabilizer Gφ of φ in G.
Furthermore, this integral is orthogonal and subcentral in the sense of [12]

(ii) {πS9UB}c* Ind{πφ, Uφ}
GϊG

in the sense of [13, 14].

Proof Equality (III.2.3) trivially follows from the uniqueness of the G-invariant
extension. Denote

{π~, IT, § 1 = Ind {πφ, Uφ, ξ>φ}. (ΠI.2.4)
G T G

The Hubert space §~ consists of all ir^-valued square integrable functions ξ on G
such that

ξ{hg)=Uφ{h)ξ(g)9 heG, geG; (IIL2.5)

and the inner product in §~is given by:

(ξ\η)=$(ξ(g)\η(g))dg (ΠI.2.6)
G

= ί (ξ(g)\η(g))dg.
GΦ\G

The representation {π~ U~} is defined by:

{π~(a)ξ}(g)=φ(yg(a))ξ(g), ae^, geG;

{U~{g)ξ}(h) = ξ(hg), g, heG. (IΠ.2.7)

We define a vector Ω~ in §~ by

Ωφ, geG. (IΠ.2.8)
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It then follows that

j(Ωφ\πφoyg(a)Ωφ)dg
G

Hence the map: πm(a)Ωω -*π~(a)Ω~ extends to an isometry of § ^ into §~ which we
shall denote by W. We want to show that W is onto. To this end, we further
introduce operators θ(f\ feLco(Gφ\GX as follows:

θ(f)ξ(g) = f(g)ξ(g), geG9 feL«(Gφ\G), (IΠ.2.9)

where g = GφgeGφ\G. It then follows that θ is a σ-weakly continuous faithful
representation of L°°(Gφ\G) on §Γ. The range si of θ is called the imprimitίvίty
system of the induction (IΠ.2.4).

Lemma IΠ.2.2. The imprimitivity system si is contained in the center of π\^)".

Assuming this lemma, we continue the proof of the theorem. For each operator
AeUφ(Gφ)\ we put

A~ξ(g) = Aξ(g), ξeξ>~, geG. (IΠ.2.10)

It is then known, [15], that the mapping AeUφ(Gφ)'-+Ae$#(ξ)'*) gives rise to an
isomorphism of Uφ{Gφ)' onto U\G)fnsi'. Since the range of W is invariant under
U~(G) and π~(β?\ it is also invariant under si by Lemma IΠ.2.2, so that the
projection of §~ onto Wξ>m must be of the form P~ for some projection Pe Uφ{Gφ)'.
But {(Wξ) (g): ξe$bΰ) contains πφ^yg{^)Ωφ for all geG, and is thus dense in ξ>φ, so
that P must be the identity 1. Hence we conclude that W is an isometry of SyB onto
§~ which intertwines {πώ, Um} and {π~ t/~}. This completes the proof.

Proof of Lemma 2.2. For each n= 1, 2,..., we put

As in Section II, we have for all α, b, ce J%

lim (πφ(c)Ωφ\πφ(Tn(a))πφ(b)Ωφ)

Since {πφ(7^(α)): n = l , 2, ...} is bounded, πφ(Tn(a)) converges weakly to φ(a)\.
Therefore, we get, for each ξ, ηeξ>~,

lim (>/|π~°7»ξ)= Km \{η{g)\πφ°yg°Tn{a)ξ{g))dg
n->oo «->oo (J

= lim J()j(g)|π ψoTno7 ( ί(a)ξ(g))dg
n->oo G

= \φ°yβ{a){η{g)\ξ{g))dg
G
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where f+{g) = φ oyg(a) as in (Π.2.2.). Hence θ(ff) belongs to π~(#T. Since {f+ :
= Cl{G) is dense in %(Gφ\G) by Lemma Π.2.1, θ maps <β(Gφ\G) into π~{^)". The
σ-weak continuity of θ yields that stQπXlF)". By its construction, sfQπΊjF)'.
Hence jtf C π W ' n π ~ ( # γ . Q.E.D.

We will now identify the covariant representations {πs, Uώ, ξ>m, Ωω} with
the induced covariant representation {π~ IT, $~, £Γ}. We define

γ+(A) = Uφ(g)AUφ(g)*,

Corollary IΠ.2.3. With the notation and the assumptions of Theorem III.2J.

(i) {9JΓ, G, y"} ^ Ind {SK, G,, yφ}, m the sense of [16]
GΦ\G

Φ

(ii) S O Γ ^ Ϊ R ^ tinder ίhβ correspondence given by (111.2.10).
( ϋ i ) π ^ G * r = πφ(8ί)".

Proo/ Let {aR~,G,y~}= Ind {9K,Gφ,yφ}. By definition, 9JΓ is the subalgebra of

aR"®Lco(G) = Lco(G,φ,9M) consisting of all elements such that

x(hg) = y*(h)xfe), fce Gφ, geG. (IΠ.2.13)

The action y~ of G on 3Dί~ is defined by

y" (x)(fe) = %(%), fc.flfeG. (IΠ.2.14)

For each A=n(a), αe#", let

It follows that y4( ) belongs to 30Γ" and the correspondence: A<r->A( ) is a normal
isomorphism. Identifying A and A(-% 50i~is regarded as a von Neumann subalgebra
of 9QΓ", globally invariant under y~G and containing stf by Lemma IIL2.2, so that
[16; Proposition 10.4] yields that 9JΓ must be obtained from a von Neumann
subalgebra $1 of 9JI as S0Ϊ~={X€9JI~:X(^)G91, geG}. This means, however, that 9ΐ
contains π ^ ) . Thus 9l = aR; and so 9M~=2JΓ. This completes the proof of (i). We
now prove (ii). By definition

Since, by Lemma IΠ.2.2, SDΪ̂  contains the system s/ of imprimitivity in its center,
S[R"G is contained in si1'r\U\G)'. Hence $R^ corresponds to a von Neumann
subalgebra of Uφ(Gφ)

f under the correspondence (IΠ.2.10). Under the identification
of 9JΓwith SDΐ~ the correspondence (ΠI.2.10) means that

AeUφ(Gφ)'<-*A~=A®l. (IIL2.16)

Thus the subalgebra of UJGJ corresponding to 9K~G must be 9JίGφ.
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In order to prove that πφ(^Gφ)n = πφ{
<Άy it suffices to check that the images of

these von Neumann algebras under the isomorphism (IIL2.10) coincide. We just
showed that the image of πφ(3?Gφ)" = WlGφ is 9W .̂ On the other hand, since the
image of πφ(3I) is π~(3I), the image of πφ(9I)" is π W = ^ Q.E.D.

Remark. Corollary III.2.3 affords an alternative to the first stage (cf. II.5) of the
proof of Theorem Π.4.

We therefore come to the following situation:

This means that the FF*-covariant system {501, Gφ9γ
φ} describes entirely the whole

FF*-covariant system {9JΓ, G, y~}. Thus we shall consider only the case where G = Gφ

for the analysis of the associated von Neumann algebras in the next section.

III.3. The von Neumann Algebras Associated
with Weakly Clustering Extended States

In this section, we study the von Neumann algebras πφ(3F)'\ 7^(31)", and πω(3I)"
together with the gauge group G. Let J^, {yg: ge G}, 31 = J^G, τ and ω be as before.
Take a weakly τ-clustering extension φ of ω to 31. We further assume that ω and φ
are both separating in the following sense:

Definition III.3.1. A state Ψ on a C*-algebra 93 is said to be separating if the vector
Ωψ associated with the GΛΓS-representation {πΨ,ξ>Ψ,ΩΨ} of 95 is separating for

When a one-parameter automorphism group {αj of #", commuting with
{yg :geG} and τ, for which ω satisfies the KMS-condition at β>0, is given, the
separating assumption on φ is equivalent to the triviality of the asymmetry group

Proposition IΠ.3.2. Let ^ be a C*-algebra and 31 a C*-subalgebra of &. Let φ
be a state of 3F with ω = φ\^. If φ is separating, then the restriction πφ\^ of the GNS-
representatίon {πφ,ξ>φ,Ωφ} of'3P' ίo 31 is quasi-equivalent to the GNS-representation
{ J f W

Proof Let ft = [nφ(^ί)Ωφ']. Trivially the representation {πφ, Λ, Ωφ} of 31 is unitarily
equivalent to the GΛΓS-representation {πω,§ω,Ώω} of 31 under the isometry U
defined by Uπω(x)Ωω = πφ(x)Ωφ9 XG31. Let E be the projection of ξ>φ onto R :E
belongs to π^(3iy. The central support F of E in π^Sί)' is the projection of ξ>φ onto
[ ( 2 ϊ ) ' f t ] But we have

Since Ωφ is separating for πφ(tF)", it is cyclic for π

1 2 Cf. Remark 4 of Section Π.l
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φ φ = ξ)φ, thus F = 1 this means that the mapping:
Aeπφ(SB)"-+AEe UπJW)"U* is an isomorphism. Q.E.D.

Thus, if φ is separating, we know that 7^(91)" is isomorphic to πφ{S&)".
The situation of interest for us is that of an extremal (αί5 β) KMS state ω of 91: it

is known that in this case ω is primary, that is πω(5l)" is a factor [6]. We further have
that the automorphism τ of πω(2l)" extending τ on 91 is ergodic in the sense that its
fixed point algebra in πω(9ί)" reduces to the scalars13. A result of Hugenholtz [17]
then radily tells us that (unless at reduces to the identity automorphism group)
πω(2l)" is a factor of type III. Setting 50ί = π φ (#7' , and $ = Gφ (the stabilizer of the
state φ) we thus reach a situation corresponding to the assumptions of the following
Theorem, which is the main result of this subsection14:

Theorem III.3.3. Let Ώlbea von Neumann algebra equipped with a continuous action
y ofa compact group @15 such that the fixed point algebra S[Ry = 9lofyin9R is a factor
of type III. Assume further that the group

has a subgroup 9* ergodic in 501 in the sense

: τ{x) = x for all τe^}=€. (1113.2)

Then
(i) If a is an automorphism of 50ΐ commuting with 9 and such that <x(x) = x for

every xe 50ίy there is an element gaE^ such that a = yQχ [in particular a normalizes y(^),

(ii) // the action y of ^ on W is faithful the crossed product W*(Wl,&,y) is
isomorphic to W

We shall prove this theorem in several steps. The basic tool for proving (i) will be
the Roberts-Tannaka duality theorem discussed in Appendix C. To show that the
latter applies we have to prove the two following facts:

(a) One has α§C§> for each §eJfy(9JΪ).
(b) Each irreducible subrepresentation of y on 50ϊ belongs to ^y{^).
(We denote by ^(SDΐ) the collection of finite dimensional y-invariant Hubert

spaces in 501, and by $y(@) the set of equivalence classes of representations of ^
associated with these Hubert spaces—see Appendix C.)

For the proof of both (a) and (b) Proposition 3.6 in [11] plays an essential role.
We need in fact, for the proof of (a), the background machinery of this proposition
which we now describe.

1 3 The weak τ-clustering property of ω together with the asymptotic abelianness of τ imply that the
fixed points of πω(2l)' under the unitary implementaring τ in πω reduce to the scalars [10]. Since this
unitary commutes with the modular conjugation J of ω (due to the fact that ω is τ-invariant), πω(3l)"
= JπJ^iyj is ergodic for τ
1 4 This theorem will later be applied to the case α = σμ~γ, with σf the modular automorphism group of
φ and at the extension to SOI of the dynamical group
1 5 I.e. ge &-*yg(x) is continuous from ^ to 9Ή equipped with its σ-weak topology. We use the notation
Aut(2K) for the set of all automorphisms of the von Neumann algebra 9W
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Let §6^,(501): with n the dimension of §, one first builds a Hubert space § 0 in
9My (hence in W) of the same dimension by taking as one of its orthonormal bases a
set of n isometries ŵ eSDΐ7 with mutually orthonormal ranges adding up to 1. (This is
possible since $Jly is properly infinite.) Now consider an isometry v from § 0 onto §
and the Ό{g\ ge$, where l/ = y|$ is the representation of <$ on § determined by 0 :
Lemma 2.3 in [11] allowed us to consider t; and the U(g) as elements of 501. If x0eξ>0,
we then have

whence, using the separating property of Hubert spaces in 9Jt,

(IΠ.3.4)

where F(gf) = t;*l7(gf)ι; is an element of (ξ>0,ξ>0\ the subspace consisting of those
elements of SCR mapping § 0 into § 0 . We now use the fact [11] that

with </>0 the morphism attached to the Hubert space § 0 :

φo{x)= f M xwf, xeϊR. (IIL3.6)
i=ί

Using this set up we now prove (a). Since (§0,§0)e9W)' and 0L°φ0 = φ0°a, yg°φ0

= φo°yg (following from the fact that 50ly is stable under α and the γg\ the action of α
resp. yg on 9W in (IΠ.3.5) is as follows

, i = the identity automorphism. (IΠ.3.7)
yg=yg®i

If we define, for

τ"=τ~®i, τ^defined by τ~°φo(ά) = φo°τ(alaeyjl, (IΠ.3.8)

the assumed commutativity of τ with γg and α entails that τ~commutes with ŷ  and α.
The proof of (a) is now obtained as follows: since ξ> = vξ>0 the inclusion α $ C § is
synonimous with the fact that V*OL{V) belongs to ( § 0 , § 0 ). But since we assumed that τ
acts ergodically on 50ί [consequently τ~on 0O(9M)], this will follow from (III.3.5) if
we show that

φ)) = υ*φ). (III.3.9)

To check this, set

ax = τ\υ)υ*. (IIL3.10)

Since τ~ and α commute, the l.h.s. of (IΠ.3.9) reads

ϋ*ατ*α(αt)α(t;), (IIL3.11)
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we thus need to show that the unitary aτ fulfills a(aτ) = ar But we assumed α = ion
W(ly: hence our proof boils down to checking that

Now, since τ" commutes with γg9 using (IΠ.3.4), we have

yg(aτ) = τ1γg{v))γg(υ*) = τ\υ)τ\V{g)) V(g)*v, (III.3.13)

yielding our result since V(g) is unitary and τ~\V{g)) = V(g), [remember that
V(g)e(ξ)0,ξ)0)~]. We completed the proof of statement (a).

We now turn to the proof of (b): for this we shall now need the statement

Proposition 3.6 in Roberts [11]. Let U be an n-dimensional unitary representation of
@. For the equivalence class of U to belong to My(^3) it is necessary and sufficient that
there be a unitary Vin 9JΪ(x)Mn (Mn the nxn complex matrices) such that

i®U(jg)=V*{γg®i}(V). (IΠ.3.14)

[We note that (ΠI.3.14) is obtained by transporting (III.3.4) to Wl®Mn via the
isomorphism φ^ι (x) Ψ, Ψ an isomorphism of ( § 0 , § 0 ) onto Mn—whereby v goes to V
and V(g) to U(g)—and using (ΠI.3.7).]

For shortness we need the following notation: we set

on which we define y~φ ge^, as

With U a nonzero representation of ^ on Mn we set

It is easily seen that we have the equivalence

is a subrepresentation of γ
on $R equivalent to the representation U. (HI.3.18)

(If the dj span a non vanishing subspace of $R carrying the representation (7,

then (α ̂ ^ ^ α ^ φ O belongs to &y~(U). Conversely if (a^t&^U) does not vanish
then atj φ 0 for some ί, j\ and

? X ) = Σ f l * t y 0 ) (ΠI.3.20)
k

In particular ^"((7)Φ0 if U is a non-zero subrepresentation of γ acting on 9JI.
On the other hand (IΠ.3.14) states the existence of unitary V in gPζ(U). Thus
Proposition 3.6 of Roberts stated above implies statement (b) if we establish
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Lemma III.3.4. // U is an irreducible representation of $ on Mn with 0>7

n~(U)+ {0},
then 0Ί~(U) contains a unitary v and

Proof. In addition to y~g defined in (IΠ.3.16) we shall need

y~β = yβ®AdU{g), ge%. (1113.22)

with corresponding fixed-point subalgebra S?y

n. Note that

Consider now the 2 x 2 matrix algebra, say, ^ , over 0>n and a new action, say, σ, of G
on SP given by

U(g)y-β(χ12) 1 mi 3 24)

)*, U(g)y-g(x22)U(gA ( Π L 3 2 4 )

We claim that of the projections

1, 01 [0, 0

o,oj and e 2 = [ o ,
are equivalent in the fixed point algebra ^σ in & under σ.

First, we note that

(ΠI.3.25)

Since ex ^
σe, ^ ^ " a n d ^ 2 ^ σ β 2 ^ ^ both contain W®<£, ex and e2 are both

properly infinite projections in ̂ σ . In order to prove e1 ~e2 in ̂ σ , it suffices to
prove that the central supports of ex and e2 in ^ σ are both the identity 1. To do this,
we must show that e20

>σeι has left and right supports equal to e2 and eλ respectively.

But we know by (IIL3.25) that e2^
>σe1 =0>y

n\U)®e2ί, where e21 = ' . Thus, we

have only to prove that the left and the right supports of &*l~(U) are both one in 0>n.
For each ρeAutySDΪ, we consider ρ~=ρ®ieAuty.(^w). Since ρ~(U(g))=U(g\

have

9ζ{U), ρe Autγa«. (IΠ.3.26)

Therefore, the left support z2 and the right support zx of
are both invariant under ρ~ for every ρeAuty9Jl. Hence it follows from the
ergodicity of Auty$R that zγ and z2 both fall into Mn. Furthermore, the inclusion:

Pΐ&ΐ{U)PΐC&ΐ{U) (IIL3.27)

yields that zί (resp. z2) are central in ̂ γ

n (resp. ^J). Since 0>γ

n~CMn, we get zx = 1.
Since ^ Π ϋ ) contains l/(gf), the commutativity z2U(g) = U(g)z2, ge$, and the
irreducibility imply that z2 = 1. Thus, we have proved the claim: e1 ~e2.
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Therefore, there exists v~e£Pσ such that v~*v~=e1 and v~v~* = e2. Since v~
— e2v~ex, ιΓ must be of the form:

v =
"0, 0

v, 0

for some ve^l'(U). The equalities v *v =ex and v v* = e2 mean precisely that v is
unitary. This proves the first conclusion of Lemma IIL3.4. Furthermore (IΠ.3.25)
and e^&'e^&l' proves (IΠ.3.21).

This concludes the proof of Lemma ΠI.3.4, and thus of Theorem ΠL3.3(i). A
result of Roberts [11 Proposition 6.9] concludes assertion (ii) of this theorem, since
fflγ(@) contains all irreducible representations of ^ if the action y is faithful (cf. the
last assertion of the theorem in Appendix C).

Corollary IΠ.3.5. With the same assumptions as in Theorem 111.3.3 (ii), there exists a
dual action y" of & on 9J17 = $R in the sense of Nakagami, [20], such that16

{9W, y} •£ {W*(W9 y\ y~}9 where W*(W, y*) means the crossed product ofW by the
dual action yΛ and y™ means the action on W*($Jly,yΛ) dual to y".

Proof Let 0> = <m®<&{L2{<#)) and y~g = yg®Ad(ρ(g)), ge&, where ρ is the right
regular representation of (§. Put fg — Ίg®i- Since 9JΪ is properly infinite being a
factor of type III, {9K, y~} ̂  {&, y~}. It is known from Digernes [18] that 0>γ is iso-
morphic to the crossed product W*(Wl, y) of SCR by 9. A duality theorem due to
Nakagami [19], and Roberts [11], says that {0>;y~} = {W*{W*{Wl,y), f);y~}.
Thus we have only to prove that {^ y~} = {&; y~}, which is equivalent to the fact
that ^γ~(ρ) contains a unitary. But it follows from Theorem ΠL3.3.ii that ^ r

= W*{m, g)^W is a factor of type III. We know also that ^y"=aRy(g)33(L2(0))
is a factor of type III. Thus ^γ(ρ) =t= {0} entails the existence of a unitary in ^ r ( ρ ) .

The proof of the next corollary provides an alternative way of establishing the
second part of Theorem II.4 (ii), (iii) (extension from ^Gφ to ^Nφ—cf. II.6),
since one knows that a weakly clustering extension to ^ of a τ-weakly clustering,
(αf, β) KMS state of 91 separates $F.

Corollary III.3.6. In addition to the assumptions of Theorem 1II.3.3 relative to the
system {9CR, y}5 let {α̂ } be a continuous one parameter group of automorphisms o/9K
such that tt't

oyg = yg°ot^ ge^, ίeIR, andH = {σ Autγ9Jί;τoα; = α;oτ, teΊR] is ergodίc on
ΪR. If φ is a faithful normal state ofSOΐ such that the restriction of φ to W satisfies the
KMS-condίtion for {a't} at β>0 and φ°σ = φ,τeH, then we conclude the following

(i) φis invariant for both y(&) and {a't}
(ii) there exists a one parameter subgroup {gt} of Z(@) such that φ satisfies the

KMS condition for the one-parameter automorphism group {ot'tygt} at β>0.

Proof. Suppose that αe AutSR commutes with H. Then φ° α and φ are both invariant
under H, so that the cocycle Radon-Nicodym derivative (Dφoa : Dφ\ belongs to the
fixed point algebra ^RH under H (which is C1 by assumption). Hence φ °α is a scalar
multiple of φ. But being a state, φoa = φ. Thus statement (i) follows.

In what follows we omit for shortness mentioning the group 0 in the notation for cross products
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The modular automorphism group {σf} of φ commutes with γ(&) and H. Hence
it leaves 9JP globally invariant and σft(x) = ott(x) for every xeW. It follows then that
{tt-tσ

φ

βt} is a one parameter automorphism group commuting with γ(&) and H,
which leaves W pointwise invariant. Hence it follows from Theorem III.3.3. (i) that
there exists a one parameter group {gt} in 9 such that ygt = u_tσjv The com-
mutativity of {γgt} and y(9) yields that {gt} is a subgroup of the center Z(^) of
9. Q.E.D.

IV. Intrinsic Characterization of the Chemical Potential

Since expectation values of the non-observables elements in 3F are without physical
significance, the role of the chemical potential for the equilibrium state ωβμ should
be seen directly without considering the extension problem of the state from the
observable algebra 21 to the field algebra # \

If one considers 2Ϊ as the given fundamental object then, following [7] the
physically relevant part of the structure involving $F and G may be seen to arise
from the fact that 21 possesses localized automorphisms which are not inner (we
treat in this section the special case of an abelian gauge group which we take for
simplicity to be the one-dimensional torus). The following two properties are
discussed in [7] :

a) Space or time translations do not change the equivalence class of a localized
morphism modulo inner automorphisms. More precisely, if ρ is a localized
morphism giving rise to an αΓcovariant representation of 21 we have 1 7

ρ-1oα foρ = Adϋfoαί, ίeIR, (IV. 1)

with υt a continuous one-parameter family of unitaries of 21 fulfilling the "cocycle
condition"

b) The equivalence classes of localized automorphisms form an Abelian group
the "charge group". In the case of our (simplest) example the charge group is the
additive group of integers.

The field algebra 3F arises then as a covariance algebra in which the mentioned
automorphisms are realized by unitaries ue J ^ 1 8 :

The (Abelian) gauge group is the dual of the "charge group".

Unlike the situation in [7] where irreducible representation of 21 were
considered and the (non inner) localized automorphisms led to inequivalent
representations (superselection rules) we have now

17 By definition kάυt(A) = υtAυf,
1 8 ρ is then of class n if γθ(u) = einθu, 0eIR
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Proposition IV. 1. // ω is an extremal (oct,β)-KMS state of 91 and ρ a localized
automorphism, then ω °ρ is equivalent to ω. Consequently ω and ω °ρ have normal
faithful extensions to the same von Neumann algebra ?t = πω(2l)".

Proof Since ρ = Aάu with u e J ^ the state ω°ρ generates a representation of 9ί
contained in the restriction to $1 of the representation πφ of 3F where φ is a
clustering extension of ω to 3F. The proposition then results from Proposition
IIL2.2. Note that the assumption of unitariness of u entails that the spectrum of the
gauge group is not one-sided (Nφ is trivial). Theorem II.4 then assures us that φ is
β-KMS for a one parameter group t->ot_βty_βt: φ is thus separating and Proposi-
tion IV. 1 applies.

According to known results in the theory of modular automorphisms [21],
Proposition IV.l tells us that there is a unitary cocycle WtenJ%)" (for which one
has a unique definition procedure) called the cocycle Radon-Nikodym derivative
of ω° ρ with respect to ω:

such that

{A))WJ{)) teR

(we used the fact that the modular automorphism group of the continuous
extension of ω to πω(9l)" coincides with a_βt on 91, so that the modular
automorphism group of ω°ρ is ρ~loot-βt°ρ on 91 cf. [21] Lemma 1.2.10). The
relation (IV.l) gives on the other hand

= πω(v_βt)πω(a_βt(A))πω(v-βt)*, AeVL, teR. (IV.5)

Comparison of (IV.4) and (IV.5), together with the fact that πω(9I)" is a factor, entails
that Wtπω(vtβt) is a scalar. Furthermore the cocycle properties of Wt and vt imply
that this scalar is of the form eiλt for some real λ:

We now relate this constant λ to the chemical potential μ of the state ω. We have,
for the separating states φ and φu of #", where φu(a) = φ(uau*\ aeέF, (or rather for
their continuous extensions to 9ΪI = π ^ ^ ) " , see [21] Lemma 1.2.3 (e)):

(Dφu:Dφ)t = πφ(u*)σt(πφ(u)), ί e R ,

with σf the modular automorphism of φ such that σf°πφ = πφ°oι_βt°γ_βμt. Thus, if
the automorphism ρ carries the charge n [i.e. yθ(u) = eίnθu, θeW] one has σf{u)
= eίnβμtu, and thus

(Dφu:Dφ\ = eίn^πφ(u*ot_Ju)). (IV.7)



128 H. Araki et al.

Taking the restriction of both sides to the cyclic component for 71̂ (91) of the vector
corresponding to φ in its GNS construction we see that

(D(ω oρ) :Dω)t = eίn^πω(u*a_βt(u)). (IV.8)

Now, since v't = u*at(u) satisfies (IV.l) as well as vv we have that u*at(u) = e~inctυv

which c a real constant which is chosen independantly of ω. We proved

Proposition ΊI.2. If ρ is a localized automorphism in class n, ω an extremal (avβ)-
KMS state of^H and υt a continuous cocycle in 9t satisfying (IV.l) then

(D(ω oρ) :Dω\ = eίn^πω(v _ βt) (IV.9)

where μ" = μ + c with μ the chemical potential as treated in the previous sections and c a
real constant independant of ω. (We recall that (D(ω°ρ):Dω)t denotes the cocycle
Radon-Nίcodym derivative of the continuous extension of the states ω°ρ and ω to
πω(2l)" (see Proposition HI).)

Comments, (i) By (IV.9) the chemical potential of an equilibrium state of 91 is
intrinsically defined, in terms of objects related to 91 alone, up to a conventional
constant (zero point of μ) which is fixed by the convention adopted in choosing vt.
This freedom corresponds to the freedom in changing the definition of time
translation on J^ by a factor γct.

(ii) (IV.9) shows that the Radon-Nikodym derivative lies actually not only in
πω(9Q" but in πω(9ί).

(iii) Let ρ be an automorphism of 91 such that: (A) ρ fulfills (IV.l) with a
continuous unitary cocycle vt [satisfying (IV.2)] with values in 91; (B) ω°ρ and ω
are quasi equivalent for all (β, α^-KMS states of 91, j8eR Then we have (II.6) (so ρ
defines a kind of a chemical potential).

(iv) If is replaced by an automorphism ρ' of the same class modulo inner
automorphisms (ρf = ρ °Ad U, U unitary in 91), ρ' satisfies (IV.l) with the continuous
unitary cocycle vf

t=U~1vtoct(U). On the other hand, using (IV.l) and the com-
position property of cocycle Radon-Nikodym derivatives, one sees that

(D(ωoρ'):Dω)t=U-1v_βta_βt(U)v*_βt(D(ωoρ):Dω)t

thus (IV.9) holds with the same μ" and with ρ\ v'_βt instead of ρ, v_βt.

Appendix A. Right Translation Invariant C*-Subalgebras of Continuous Functions on
a Compact Group

Let G be a compact group. We shall consider ^(G), the set of complex continuous
functions on G, as a C*-algebra with pointwise multiplication, complex conjugation
as the ^-operation and the sup norm || H .̂ For geG we recall that we defined the
right, resp. left translation acting on functions / on G by (ρ(h)f)(g) = f(gh%

) = f(h-1g),geG.(cίll.2Λ).

Lemma A.I. The following correspondences establish a bijection between the closed
subgroups Kof G and the C*-subalgebras srf of ^(G) globally invariant under all right



Extension of KMS States and Chemical Potential 129

translations (i.e. with ρ{g)fes$ for all fesd and geG) :

for all keK} (A.I)

for all fed and geG} (A.2)

This bijection associates to the normal subgroups of G those globally right-
translation invariant C*-sub algebras of^(G) which are also globally left translation
invariant (or, equivalently, invariant under the symmetry s, where (sf)(g) = f{g~x),

Note that owing to the right translation invariance of j / , K in (A.2) can also be
defined as

K = {keG;f(kgo) = f(go) for all fe^} (A.3)

with g0 any fixed element of G (for instance the unit e of G).

Proof. s$ — s$κ defined in (A. 1) is obviously (for each subset K of G) a C*-subalgebra
of ^(G) globally invariant by all ρ(g\ geG. On the other hand K = K^ defined in
(A.2) is clearly [for each subset jtf of ^(G)] a subgroup of G, closed as an
intersection of closed sets.

Now, with J / a globally right translation invariant C*-subalgebra of ̂ (G), one
has clearly M C stKjd = C£(K^\G): the Stone-Weierstrass theorem will therefore
imply that stf = stfκ^ if we show that stf separates the spectrum of s$κ i.e. that
f{g1) = f(g2X festf, entails gγg2

 1eK^. But this follows from (A.3) with gx = g2 and
k = gxg2l. Since, on the other hand, the map K~>K^ is obviously injective, we
proved that (A.I), (A.2) establish a bijection.

Suppose now that s$ is globally left translation invariant and let keK, geG:
(A.2) with / replaced by λ(g)f and x = gx0, xoeG, shows that f(g~1kgg0) = f(g0\
hence g~1kgeK by (A.3): we proved that K is a normal subgroup. Conversely, if
this is the case, K\G = G/K9 thus stf consists of the fe ^{K) invariant under the ρ(fe),
keK9 and is thus globally left-translation invariant. Further, the fact that S(J/) = s/
evidently entails global left-translation invariance; and conversely normality of K
entails that s{sί) = si.

Lemma A.2. Let Kh i= 1, 2, be closed subgroups of the compact group G: every C*-
isomorphism of ^(K^G) onto (£(K2\G) commuting with all right translations
ρ(g\ geG, is of the form λ(h) for some heG such that K2 = hK1h~1.

Proof. Let σ be such an automorphism: the transposed σ1 of σ maps (homeomorphi-
cally) K2\G onto Kt\G whilst commuting with all ρ(g\ geG. Therefore

σ\K2g) = σ\K2e g) - σ\K2e)g = (K^g

geG,

19 This notation presupposes that we may identify the functions fe^{G) invariant under all left
translations λ{k\ keK, with the continuous functions / on the space K\G of the right cosets Kg, geG,
endowed with the usual quotient topology. The identification if by means of the bijection / < - » / = / °φ,
with φ the canonical map G-^K\G
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with h any element of G such that σt{K2) = Kίh. By transposition we obtain that σ
= λ(h). Since σf fe^(K^\G), has to be invariant under all λ(k2), k2eK2, we must

1k2g) = f(h-1g), geG, k2eK2, fe^K^G), whence h'^heK^ thus K2

Lemma A.3. Let όrfι

0, i = 1, 2, with norm closures srf\ be globally right translations
invariant *-subalgebras of%>(G) and let Kt be the closed subgroup associated to srf\
Every linear, multiplicative Uo sd\-+sd\> which commutes with all right-translations
ρ(g), geG and is isometric for the L2(Kt\G) norms is given by λ(h) for some he G such

Proof Let U be the linear isometry from L2(KX\G) onto L2(K2\G) obtained by
continuous extension of Uo. Let V be the ̂ -representation of <$/* on L2(Kt\G)
defined by point wise multiplication:

geG,

and define σ on j / 1 by

Tσ

2

f=UT}U*, fe^1. (A.4)

Applying the r.h.s. of (A.4) to Uof\ pes/^CL^K^G) with festf\ we have
that

whence σf=Uof by comparison with the l.h.s. of (A.4) since UOS/Q is dense in
L2(K2\G): thus (A.4) defines a continuous extension of Uo to srf1. Since T 1 and T2

are faithful representations this extension fulfills the assumptions of Lemma A.3,
which yields the result.

Appendix B. Lifting of a One-Parameter Subgroup

For the convenience of the reader, we shall state a Lemma, which is a trivial
combination of results of Iwazawa [23], §1, and Montgomery and Zippin, [24],
§4.1.5.

Lemma B. Let Gbea locally compact group with H a compact normal subgroup, and π
the natural homomorphism ofG onto G/H. If {g (t)} is a one parameter subgroup of
G/H, then there exists a one parameter subgroup {g{t)} in G such that (i) n(g(t)) = g (t)
and (ii) g(t) commutes with H for any ί e R

Appendix C. Robert's Version of the Tannaka Duality Theorem in von Neumann
Algebras

Let 9W be a properly infinite von Neumann algebra equipped with a continuous
action γ of a compact group ^ such that the fixed point algebra 9Wy is also properly
infinite. By definition (see Roberts in [11]), a (non-degenerate) Hilbert space in SDΐ is
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a closed subspace § of SCR such that (i) y*x is a scalar multiple of the identity for
every x, yeξ> and (ii) aξ> = {0} implies a = 0 for any aeW. The inner product (y\x) in
§ is accordingly given by y*x. We note also that any element of § with norm one is
an isometry, and that a complete orthogonal basis {MJ of § is a collection of
isometries with orthogonal ranges and Yutuf = 1. If § is globally invariant under y,
then we have, for any x, y

(yg(y)\yg(χ)) - yg(y)*yg(χ)=yg(y*χ)=y*χ=(y\χ).

Hence the restriction of y to § gives rise to a unitary representation of ^ . Let ^(501)
denote the collection of all finite dimensional Hubert spaces in SOΪ globally invariant
under γ. Let SfcjfS) denote the collection of unitary representations of ^ obtained by
restricting y to all members oϊJfy($R). We quote the Tannaka duality theorem in the
cast of the formalism given by Roberts [11] as follows:

Tannaka Duality Theorem. With the assumptions and notation above suppose that
each irreducible equivalence class of subrepresentations of the action y of & on^Ji
occurs in tMγ(W)20. If a is an automorphism of SCR such that (i) α(§)C§ for each
§ e Jfy(9Dΐ), (ii) a(x) = x for each xe9Jly, then there exists an element gae^ such that α
= ygoc. If the action of G onW is faithful, Msp(y) contains (up to equivalence) all
irreducible representations of <&.

Proof For x, yeξ>, §eJfy(9W), let fxy be the function on <S given by

(Ci)

and let # y (^) be the set of all such functions. We claim that c€yi^) is a *-subalgebra of
#(^). Let xl9 y^ξ)^ x2, y2

e$>2> S u § 2 G ^ y ( ^ ) If we choose isometric u, v in 9Ky

with complementary orthogonal ranges (possible since SCRy is properly infinite) the
set ξ) = uξ)1 + v9)2 i

s a member of J^(50l): one has namely, with x = uxι-\-vx2,y = uy1

More generally

χ*yg(y)=χt y ^ ^

i e fχi,yι+fχ2,y2 = fχ,y:<^y(^) ^s t n u s additive (moreover obviously linear). To show
that ^ y ( ^ ) is multiplicative we observe that

in other words

Jχi*yιJχ2,y2 Jxiy 1, X2i?2 V^ ^ ;

with Xχyu x2y2 elements of the tensor product Hubert space H1®H2 (see [11]). It
remains us to show that ^AfS) is closed for complex conjugation. For this we

2 0 In other terms the spectrum Sp(y) of y (irreducible equivalence classes of subrepresentations of γ)
coincides with its monoidal spectrum Msp(y) (irreducible equivalence classes of restrictions of y to
Hubert spaces in 9JI)
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observe that the fx y{g\ x9 ye § , are the matrix elements of the representation U = y\%
of ^ : therefore it suffices to check that if U belongs to My(^\ the same holds for the
conjugate representation 17". Since Sty{^) is closed for direct sums (observe that y\%
= y\%1®y\ξ>2 for § = M§i + ϋ § 2

 a s constructed above), it is enough to examine an
irreducible Ue^y(^): now, if U = y\%, y\%* is equivalent to U~: [/"thus appears as a
subrepresentation of y: but it then by assumption also occurs in Sly{<&\ We
completed the proof that <€p) is a *-subalgebra of #(0).

We now set, for fXtye<gy(&)

UfX.y=faix)y (C3)

The fact that this defines a map U on c€y{^) results from the calculation

) = $faixΊ,y>{g)*faix),y{g)dg

=oc(x)*[yg(y/*)dgoL(x')

= \fχ,y\jχ',y')L2(&)

[we used the fact that §yg(y'y*)dg belongs to SO?7, thus is left invariant by α]. The last
relation shows that (C.2) defines an isometry of # y (^) for the L2(^) norm. As, on the
other hand, by (C.I),

U is multiplicative. Since moreover U obviously commutes with right trans-
lations, Lemma A.3 of Appendix A tells us that we have, for all fx>ye^y(^\

with some gae&. This means that oφc)*^);) = x*yg- ίg(y) = yga(x)*yg(y) for all x, y eξ>,
§e^fy(9Jl). It follows that u = yga in restriction to all §e^fr(9Jl).
In order to show that ot> = yg<x on all of 9W, it now suffices to check that oc = ocg<χ in
restriction to each subspace Ψ on which y induces an irreducible representation of
^ (since ^ is compact, the collection of these subspaces is total in SQΐ). Let thus Ψ* be
one of these subspaces and let y\Ψ~\J, U an irreducible representation of ^ . By
assumption, there exists an § e J^y(W) such that y\% ~ U. We can, therefore, choose a
basis {eί9 . . . ,βj of "f and an orthonormal basis {fl9 ...,/„} of § such that

yM)= Σ W Λ .
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with the same unitary matrices {(l/^ J realizing 17. As a result

belongs to W, whilst /f= Aξ> since Afi = ei,i = l,...,n. Thus, for each Axe f, xe § ,
one has

α(,4x) = 4α(x) = ̂ ( x ) = ygxi
Λx)

This proves the first conclusion of the Theorem.
Assume now that the action y of ^ on 301 is faithful i.e. that yg = i entails g = e.

Since ^y{^) is a *-subalgebra of ^(^) it follows (cf. Lemma A.I of Appendix A) that

xjg) = fxje) for all fXtye

From this we infer that if geK, U{g) = i for all Ue$βΰl\ and thus, according to our
assumption, for all irreducible subrepresentations of y: thereforeyg = i and g = e,iϊy
is faithful. We proved that K = {e}, thus # y (^) = #(0). The Peter-Weyl theorem then
implies that ^ ( ^ ) contains all irreducible representations of ^.
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