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Abstract. We present an algebraic description of the concept of chemical
potential for a general compact gauge group G, as a first step in the classification
of thermodynamical equilibrium states of a given temperature. Adopting first
the usual setting of a field algebra & containing the observable algebra 2 as its
gauge invariant part, we establish the following results (i) the existence and
uniqueness, up to gauge, of t-weakly clustering states ¢ of % extending a given
such state w of 2 (r an asymptotically abelian automorphism group of &
commuting with G) (i) in the case of an w faithful and -KMS for a time
evolution commuting with 7, and of a time-invariant ¢, the fact that ¢ is f-KMS
for a one-parameter group of time and gauge whose gauge part lies in the center
of the stabilizer G, of ¢. (iii) a description of the general case where ¢ is neither
time invariant nor faithful: ¢ is then in general vacuum-like in directions of the
gauge space governed by an “asymmetry subgroup”. We further analyze the
representations and von Neumann algebras determined by w, ¢ and the gauge
average @ of ¢. The covariant representation generated by @ is shown to be
obtained by inducing up from G to G the representation generated by ¢. Finally
we present, for the case where G is an n-dimensional torus, an intrinsic
description of the chemical potential in terms of cocycle Radon-Nicodym
derivatives of the state w w.r.t. its (quasi equivalent) transforms by localized
automorphisms of 2. Our main result (i1) is established using two independant
techniques, the first making systematic use of clustering properties, the second
relying on the analysis of representations. Both proofs are basically concerned
with Tannaka duality—the second with a version thereof formulated in Robert’s
theory of Hilbert spaces in a von Neumann algebra.
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1. Introduction

The physical motivation of this study arose from the following basic question:
given an infinitely extended dynamical quantum system (an infinite medium) how
does one define its thermodynamic equilibrium states? Traditionally this question
is approached by considering first finite systems; for these one argues that an
equilibrium state may be described by an appropriate Gibbs ensemble; then one
increases the size and takes the “thermodynamic limit” (infinite extension). If one
starts from a grand canonical ensemble, characterized by the inverse temperature
and the chemical potentials y; of the various components (species of particles in the
system) then the thermodynamic limit is most simply described : one keeps y;, 8
fixed and just increases the volume of the system. If the infinite volume limit of the
expectation values of local observables exists, then it defines a state ¢, ,, for the
infinite medium and one demonstrates that this satisfies (due to its construction
from grand canonical ensembles) the Kubo-Martin-Schwinger (KMS) condition
with parameter f§ for a one parameter subgroup of the symmetry group [1]. The
latter consists of time translation and gauge transformations (one parameter for
each species of particles), so it is a (k + 1)-parametric Abelian Lie group, if k is the
number of species of particles (chemical components). If we denote the generators of
time translations and gauge transformations in the Lie algebra of the symmetry
group respectively by H and N, then the one-parameter subgroup mentioned above
is generated by

X=H-Y N, (L1)

and one may summarize the conclusion mathematically by saying that an
equilibrium state of the infinite system is a state whose modular automorphism
group [2, 3]s generated by — X, i.e. it is a KMS-state with respect to this subgroup.
The equilibrium parameters f3, u; determine the selection of the subgroup.

An alternative way to characterize equilibrium states of an infinite system has
been described in [4]. It does not use Gibbs ensembles of finite systems but
characterizes the pure phase equilibrium states of an infinite medium directly as
those states which are stationary (i.e. invariant under time translation), primary (i.e.
not centrally decomposable) and stable against any small local® perturbation of
the dynamics. It is then shown in [4] that such a state satisfies the KMS-condition
for the time translation group with some value of 8* (unless it is a ground state). In
other words, its modular automorphism group is generated by — X with u,=0.
Conversely it is known that any KMS state is stable under local perturbations of the
dynamics [5] ; and that an extremal (pure phase) KMS state is primary (see e.g. [6]
Theorem 10.3). So the requirements on a state to be stationary, primary and locally
stable are essentially equivalent to requiring that it be an extremal KMS-state with
respect to time translation for some value of f.

1
2

This is taken as an expression of the “pure phase” requirement

The word “local” is used in the physical sense: the perturbations considered are changes of the
dynamical law in a finite space region

3 Actually in deriving the KMS condition from stability in [4] the absolute integrability of correlation
functions has been assumed
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In order to see how the chemical potentials enter one has to look at the réle of
gauge invariance more closely. The setting of the problem may be described as
follows. There is a C*-algebra &, the algebra of quasilocal operations, which we
shall also call the “field algebra” by analogy with the situation in Quantum Field
Theory. From the point of view of the physicist this algebra is thought of as being
generated by the creation operators af(f) (and annihilators a,(f)) of the various
particle types (i=1,...,k) at finite times in essentially finite space volumes (f
symbolizes the wave functions of the created particle). To remind us of this
background we denote elements of & by small Roman characters a,b ...

The gauge group G is represented by a strongly continuous automorphism
group on Z. In the example envisaged so far G is the k-dimensional torus; an
element geG is parametrized by k angles 0<¢,<2n and the action of the
corresponding automorphism is explicitly

var(M=e?aX(f);  plalf)=e"%a(f). (12)

We shall, however, consider in the sequel also more general gauge groups.

On & we have also an action of the groups of time translation and space
translation by automorphisms o,, respectively o, These automorphism groups
commute with the gauge transformations:

Uy =Vglle 5 Oy ="7g0 1.3)
and & is asymptotically Abelian in the sense*

lllim L4, o, (b)]] =0 |11im lI[a, o (b)]I| =0. 1.4)

t|—> o XxX{—

Actually we shall use in the following only asymptotic Abelianness with respect to
some subgroup t* of automorphisms and one may then interpret t" either as a
sequence of space translations or time translations moving to infinity.

The set of all gauge invariant elements of & is a C*-subalgebra of # which we
denote by U and call the algebra of observables. For its elements we use capital
Roman letters 4,B....

Because of (1.3) the automorphisms «,a,,7" of & define corresponding
automorphisms of ¥, the restrictions of the former to . Ultimately the physical
information contained in an equilibrium state ¢;,, concerns only the expectation
values for observables i.e. it concerns only the state w; ,, which is the restriction of
¢y, to U. Since the gauge transformations act trivially on 2 a KMS state of # with
respect to the generator (1.1) will become in restriction to 2 a KMS state with
respect to time translation and parameter f.

Thus, irrespective of whether one starts with grand canonical ensembles and
performs the thermodynamic limit to obtain the states ¢, ,, of # and restricts them
again to the states w, , of 2 or whether, alternatively, one considers the dynamical
system (2, «,) and singles out equilibrium states by the stability requirement under
local perturbations (from ) of the dynamics, one reaches the same conclusion : the
equilibrium states w are KMS states of 2 with respect to «,, and parameter f§; in
short they are («, f)-KMS states.

4 In(1.4) the bracket [,] denotes the generalized commutator. If # contains Fermi-type elements then

the bracket between two such elements means the anticommutator
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However, since the y; have observable significance, the w, , are different states
of A for different values of the y; i.e. there is a k-parametric family of extremal (z,, §)-
KMS states of . In the traditional approach they are distinguished by looking at
their extensions to & which correspond to different modular automorphisms
(different directions of the generator (1.1) in the Lie algebra of the symmetry group).

We shall therefore study the relation between (o, §)-KMS states of 9 and their
extensions to &. The setting will be more general than in the above discussion in so
far as we allow for G an arbitrary compact group. The case where G is not just a
torus group may be of some physical interest in connection with (exact) non-
Abelian internal symmetries and their spontaneous symmetry breaking.

In carrying out the analysis it appears that the essential structural requirement is
asymptotic Abelianness of & under some subgroup of automorphisms " (for its
interpretation see above). One then restricts the attention to states which are
extremal invariant (weakly clustering) with respect to 7". The results of Section 11
which for simplicity we state here in a specialized form are:

i) Any t"-extremal invariant state of 2 has at least one extension to a t"-extremal
invariant state of #. If ¢, and ¢, are two such extensions then ¢, =¢, <y, i.e. ¢,
and ¢, differ by a fixed gauge transformation.

This means in particular that the restrictions of states ¢, ,, belonging to
different generators (1.1) cannot coincide on 2 i.e. the w, , are different states of A
for different u,.

ii) Let ¢ be an extremal invariant state with respect to time translation® of &
whose restriction to U is an («,, f)-KMS state w. Denote by G, the greatest closed
subgroup of G under which ¢ is invariant. There may exist a closed, normal
subgroup N, of G, for which ¢ is a “ground state” i.e. the spectrum of the generators
of N, in the representation of # induced by ¢ is one-sided. If we divide that part out
by considering only the restriction of ¢ to the algebra # "¢ (the subalgebra of &
which is N -invariant) then ¢|zy, is a KMS state with parameter § for a modified
one-parameter group o, =0, 5, where f, is a one-parameter subgroup in the center of
G4/Ny.

In the statistical mechanics of a k-component system the subgroup N, has no
great practical significance. It arises if some of the y; tend to — co which means that
the density of these components is zero. So we may forget these components
together with the part N, of the gauge group. Let us assume now that N is trivial. I
G, has no central one-parameter subgroup (for instance if G, is trivial ie. if the
gauge symmetry is completely broken or if G, is a semi simple group) then ¢ is an
(o, B)-KMS state and, since it is extremal o,-invariant it is also an extremal KMS
state; hence it is primary and strongly clustering (mixing). If G, has a central one-
parameter subgroup (e.g. when G is a torus and ¢ does not completely break the
gauge symmetry) then there is the possibility that ¢ may not be extremal KMS (with
respect to o). In that case each of the extremal (o7, £)-KMS states into which ¢ may
be decomposed is again an extension of the state w but these extensions are no
longer a,-invariant ; the application of «, to such a state will produce the rotation of

5 This corresponds to the specialization of Theorem IL4 obtained by choosing " to be time

translations (in which case the a; of Section II coincides with o,)
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some phase angle in the gauge group®. This case may again be considered as a
breaking of the gauge invariance but one which becomes visible only when we look
at the strongly clustering extensions of w.

This situation may appear in the superfluid or superconducting state (though
not in the Bose-Einstein condensation of the free gas). In the example of chemical
potentials (Ga torus) the normal situation is the one where G, = G and the extension
¢ is already extremal KMS with respect to of,.

In Section 111 the representation of &# and 2 generated by the states described
above are studied. This gives a more detailed and deeper insight into the
mathematical structure of the extension problem and also provides an alternative
way for deriving the results of Section II. A description of these questions and
results is given at the beginning of Section I11.

The general setting studied in the present paper (involving &%, G, «,, their
properties and relations) is very similar to the one arising in the study of
superselection rules and charge numbers in Quantum Field Theory [7]. There the
structure is, of course, tighter due to relativistic invariance, locality etc. but in some
respects one may regard the present analysis as an adaptation of the questions
treated in [ 7] to the case of equilibrium states with finite temperature. In that spirit
one may replace the field algebra & by localized morphisms acting on U as done in
[7]. The difference is now that while in [7] these morphisms are applied to the
ground state representation of A where they produce inequivalent representations
of A and thereby lead to the charge quantum numbers and associated super-
selection rules, in the present case, where we apply them to thermodynamic states
wy ., they lead to quasiequivalent representations. This is intuitively easily
understood since these morphisms change the charge (or in our case the particle
number) by a finite amount and this will have no drastic effect if the mean particle
number of the state is already infinite. Instead of a discrete set of superselection
rules labeled by charges we have here a continuous set, labeled by the ;. But in order
to change y; we would need an infinite change in particle number ie. an infinite
product of the localized morphisms mentioned. This will not be considered here.
However we shall see in Section IV that localized morphisms of U may be used to
describe directly the significance of the chemical potentials in the observable
algebra (without considering the extension of the state to %).

This work arose from a coalescence of independent efforts to understand the
algebraic background of the chemical potential [8,9]. The problem had been
initially approached through a conditional stability assumption (sketched in [8]). It
was later realized that the chemical potential can be inferred merely by looking at
extensions of (o, f)}-KMS states of 2 to the field algebra, as is shown in [9] and here
using different assumptions and techniques’.

5 Note that Theorem I1.4 in its general formulation affords a direct treatment of such states non

invariant in time but homogeneous in space (by taking t” to be space translations)
7 The “conditional stability” requires the states of the field algebra to be stable under local gauge-
invariant perturbations. Since this entails the («,f)-KMS property in restriction to A (cf. [4])
conditional stability is a priori stronger than our present requirements. However the latter imply in turn
conditional stability as an easy consequence of Theorem I1.4
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II. Extension of States

I1.1. Assumptions and Results

(a) Assumptions. We consider a C*-algebra & (the algebra of fields), a continuous?®
one-parameter group

teR—o,c AutF

of *-automorphisms of & (the time evolution), a compact group G (gauge group), a
continuous representation y of G by *-automorphisms of &

geG-oy,e AutF
and a *-automorphism
e AutF

such that «(teR), y,(geG) and t mutually commute and & is asymptotically
Abelian® relative to 1: For any a,be 7,

lim ||[c"a, b]| =0. (IL1.1)

(The case where Fermion operators are present will be treated in Section I1.8.)
The G-fixed point subalgebra of & (the algebra of observables) is denoted by U :

U={AeF;y,A=A forall geGj}. (IL.1.2)
Then U is a C*-subalgebra of & globally invariant under «,(teR) and .
Definition I1.1. A state ¢ of Z is said to be weakly t-clustering if ¢(ta)= ¢(a) for all
ae F (t-invariance) and if

M, {$(at"n)} = p(a)$(b) (IL.1.3)
for all a, be #, where the (Cesaro) mean M, (f,) of a function f, of ne N is defined by

N
M{f}=lIm N~" } f,. (I1.1.4)
n— o n=1
(b) Uniqueness of Weakly Clustering Extensions

Theorem IL.1. (1) If ¢, and ¢, are weakly t-clustering states of & and if their
restrictions to U are equal :

D (A)=¢,(A), Ae,
then there exists ge G such that for all a

r(a)=¢ 1(1’9‘1) .

8 We assume that, for each ae &, the function «,(a) of t is continuous relative to the norm topology of
Z (the strong continuity)

9  For the sake of definiteness, we have chosen the asymptotic Abelian property relative to a group
{z";nZ}. All our results and proofs remain valid if the group {z"} is replaced by an amenable group of *-
automorphisms of # [10]. For example, for a one-parameter group t,, our proofs remain valid if M, { f,,}
in (IL.1.4) is replaced by

T
M {f}= lim QD)™ | fdi

T -T
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(2) If # is asymptotically Abelian relative to t and if the state w of U is weakly
t-clustering, then there exists an extension of ® to a weakly t-clustering state of F.

Remark 11.1. This theorem shows the existence and uniqueness of a weakly
clustering extension up to gauge. Assuming the asymptotic t-Abelian property is
not needed for the part (1) of Theorem IL.1. For this theorem, the dynamical group o,
is irrelevant.

Remark I11.2. If w is an extremal KMS state of U, then it is primary [6]. If w is
t-invariant in addition, it is (strongly and hence) weakly 7-clustering,

Definition I11.2. The subgroup

G,={9eG; ¢(y,a)=¢(a) forall acF} (IL.1.5)
is called the stabilizer of ¢. The subgroups

N(G4, G)={geG ; gG,0~ ' =G} (I1.1.6)
and

Z(G4, G)=1{9geG ; gh=hg forall heG,}

are respectively called the normalizer and centralizer of G,.

Theorem IL2. Assume that G is separable. If ¢ is a weakly t-clustering state of & and
if its restriction to W is invariant under time translations :

P (A)=¢(4), AeW, teR
then there exists a continuous one-parameter subgroup
teR—¢,eZ(Gy, G)
such that ¢ is invariant under (the modified time translation)
ala)=oy.(a), aeF. (IL1.8)

Remark. 11.3. The asymptotic Abelianness is not needed for this Theorem. If G isnot
separable, one finds ¢, in N(G,, G)/G,,.

(c) Spectrum. In the cyclic representation (9, ©,, 2,) associated with ¢, (GNS-
construction), a continuous unitary representation of G is canonically defined by

Ug@nya)Qy=myy,0)2,, acF, geG,. (I1.1.9)
The restriction of U, to a subgroup H of G, is denoted by U%.

Theorem IL.3. Let H be a closed subgroup of the stabilizer G, of a weakly t-clustering
state ¢ of F. Then Ug has the following semi-group property: if the finite
dimensional continuous unitary representations U, and U, are contained in U%, then
U,®U, is also contained in UY.

Definition 11.3. For a closed subgroup H of G, the set Zg of all irreducible
representations p of H contained in U‘;’ is called the H-spectrum of ¢. The H-
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spectrum of ¢ is said to be one-sided if it is contained in a set X which has the
following two properties:

(i) If p, and p, are in X, then any irreducible component of p, ®p, is in X (semi-
group property).

(i) The simultaneous occurence of p and its conjugate representation p in X
implies that p is the identity representation: p=1. (Total asymmetry.)

(d) Extensions of KMS States. The following is the main theorem in Section II.

Theorem I1.4. Assume that G is separable. Let ¢ be a weakly t-clustering state of F,
whose restriction to W is an extremal (o, f)-KMS state. Then there exists a closed
normal subgroup N4 of G, a continuous one-parameter subgroup ¢, of Z(G,) and a
continuous one-parameter subgroup {, of G, such that

(i) the N s-spectrum of ¢ is one-sided,

(ii) the restriction of ¢ to the fixed point algebra under N ,:

FNe={aeF ;y,a=a forall geN,} (I1.1.10)

is an (¢, p)-KMS state*® for oj=a,y, ., and
(iii) the image £, ={,N, of {, in G,/N is in the center of G4/N,.

Remark 11.4. N , is called the asymmetry subgroup of ¢. It is trivial if ¢ is faithful on
A If N, is trivial, then (ii) implies that ¢ is separating [i.e. 2, separates the weak
closure of 7 (#)]. ‘

Remark I1.5. Let &, and 17, be commuting continuous one-parameter subgroups of G
such that there exists a f-KMS state ¢, , of F relative to

oy Euthat

forall A>A,and a u. Let ¢, be any accumulation point of ¢, , at A= + oo. Thenitis
easily seen that the H-spectrum of ¢, is one-sided for H={y,; telR} and the
restriction of ¢ to # is (o,y ¢, B)-KMS. This remark indicates the physical meaning
of N the latter determines the directions where the infinite components of the
(vector) chemical potential are concentrated. The finite components of the chemical
potential appear in the ¢,(, part.

Remark I11.6. If G is not assumed to be separable, and if ¢ is assumed to be
a-invariant, then Theorem I1.4 holds with the change that {, will be a one-param-
eter subgroup of the center of G,/N, instead of being in G,. The separability of
G in Theorems II.2 and 11.4 is used only in applying a result quoted in Appendix B
for lifting one-parameter subgroups.

(e) Strategy of Proof. For the proof of Theorem II.1 (Section I1.2), we first consider
the “one-point function” ¢(y,a), ac #, as a (continuous) function of he G. The
uniform closure of the set of all one-point functions is shown to be the C*-algebra of
left G,-invariant continuous functions over G (Lemma IL1). It is shown that the
map associating ¢,(y,a) to ¢,(y,a) is given by a left translation by an element ge G,
if ¢, and ¢, have the same restriction to . This proves Theorem II.1 (1). Theorem
I11.2 then follows as a Corollary. Theorem II.1 (2) is more or less known.

10 Thenotation in this paper is adapted to a non-zero f. If 8=0, {, is to be replaced by a one-parameter
family: the conclusion (i) of Theorem IL4 is that the restriction of ¢ to #™¢ is a (y,, 1)-KMS state
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The proof of Theorem I1.3 given in Section IL.3 is a more or less standard
argument.

The proof of Theorem I1.4 is split into 4 parts. In Section I1.4, the asymmetry
subgroup N, is introduced in connection with the set of “two point functions”
¢lay,b) as functions of ge Gy [Because of the definition (I1.1.5), ¢((y,,a)7,,b)
= d(ay,b)) with g=g g, if g1€G,.] In Section ILS, we derive the («;, f)-KMS
condition for the restriction of ¢ to #% from the (a,, f)-KMS condition for the
restriction of ¢ to # % =9. In Section I1.6, we derive the (of, f)-KMS condition for
the restriction of ¢ to #~¢ from the («;, 8)-KMS condition for the restriction of ¢ to
7 9. Finally in Section I1.7, we prove that the N ,-spectrum is one-sided, the proof
depending on the (o}, )-KMS condition for the restriction of ¢ to FNe.

I1.2. Uniqueness up to Gauge of a Weakly Clustering Extension
Let left and right translations be defined by

A f1@=rf""g), Te(Wf1(g)=flgh) (IL2.1)

for h, ge G and f belonging to L*(G) (square integrable functions over G relative to
the Haar measure) or ¢(G) (continuous functions over G). For a closed subgroup H
of G, ¥(H\G) can be identified with the set of all f in ¥(G) which are A(H)-
invariant: A(h)f = f for all he H.

Lemma IL1. If ¢ is a weakly t-clustering state of F, then the norm closure Cy~ of
Cy(G)={geG-fHg=¢(,a); acF}CH(G) (Ir2.2)
coincides with €(G,\G).

Proof. Let a,be # and let ¢ be a complex number. Since f? + £, = f¢,, and ¢f¢ = £.2,
C;,(G) is a linear subset of %/(G). Since ( £9)*=f2, C}(G) is stable under complex
conjugation.

For each gegG,
M, {£2(9)} = £2(9)1(9) (11.2.3)

by the weak t-clustering property of ¢. Since f2,,, neN, is an equlcontmuous
family, the convergence is uniform. Hence f’f?eC;(G) and C;(G) is a
C*-subalgebra of 4(G).

Since o(h)f,? = f,2, for all ae # and he G, Cy(G) is (globally) right translation
invariant: o(h)C}(G)=Cj(G), heG. By Lemma A.l of Appendix A, C}(G)
=%(G,\G) where G, is the set of he G such that f(g)= f(hg) for all fe C(},(G),
namely G, defined by (IL1.5).

Proof of Theorem I1.1(1). Let G;=G, and fi(g)=¢(y,a), ac F, geG. Since
A(a, 7b)= [y, (@*r"b)dge, (I1.2.4)
G
we have

¢,(Ala,7"b)) = ¢,(Ala, 7).
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By the weak t-clustering property of ¢; and by equicontinuity
M, {(A(a,7b)} = | fi(9)*fi(g)dg=<{fi, s -

G
Hence

S hDe=<{SfE 16 (IL2.5)
This shows that

Vofd =12 (11.2.6)

defines an isometric operator ¥, whose closure V is a unitary map from L*(G,\G)
onto L*(G,\G). By (11.2.3),

VU =121
which implies for fje C(G;\G) acting as a multiplication operator on L*(G;\G)
AV fl=tve=f2. (11.2.7)

Hence (Ad V) induces a *-isomorphism of (G, \G) onto ¥(G,\G). Furthermore V
commutes with the right translations:

VoW =V o= Fra=0W)fZ =o)L, .

Hence (Ad V) also commutes with the right translations.
By Lemma A.3 of Appendix A, AdV=21(g™ ') for some ge G, and g~ 'G,9=G,.
In particular

$2(@)= 2N ={(AdV) L3 D)=~/
O=£9)=¢0,9. Q.E.D.

Proof of Theorem 11.2. Since ¢(a) = $(x,a) is a weakly clustering state of &, whose
restriction to A coincides with ¢ due to the assumed a,-invariance of ¢, Theorem
IL.1 implies the existence of v,e G such that ¢,(a)=¢(y, a).

Since o, commutes with G, G, =G, Since G, =v, 'G,v,, v, must be in the
normalizer N(G,) of G, in G. Since v, is unique up to G,, the cosets v,=v,G, in
N(G,)/G, form a continuous one-parameter subgroup.

By Lemma B of Appendix B, there exist a continuous one-parameter subgroup
&€ Z(G) such that ¢ N,=7_,. Then ¢(y, a)=¢d(a)=d(xa), ac F, and hence ¢
is invariant under o;=ay, .

Proof of Theorem 11.1.(2). Let w be a weakly t-clustering state of 2. The weak
t-clustering property of w implies that w is an extremal z-invariant state of U ([10]
Theorem 4). The t-invariant state w of 2 has an extention to a t-invariant state.
(For any extension ¢, of w, the mean of ¢, 1" over ne Z will give a t-invariant
extension.) By the Krein-Milman Theorem, there exists an extremal element ¢ in the
non-empty convex compact set of all t-invariant states of &, whose restriction to 2
is the given state w. If p =A¢p, + (1 — A)¢p,, 0< A< 1,and if ¢, and ¢, are t-invariant
states of &, the restrictions w, and w, of ¢, and ¢, are t-invariant states of 2. By
the extremality of w, w, =w, =w, and hence by the extremality of ¢, ¢, =¢, =¢.
This shows that ¢ is an extremal t-invariant state of &. Since & is asymptotically
T-Abelian, ¢ is weakly t-clustering [11].
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I1.3. Semi-Group Property of Spectrum

Lemma I1.2. If a continuous unitary representation U of H on a finite dimensional
space V is contained in UY, then there exists a linear map j¥ from V into # such that
(i) the map ve V—>n¢(]’U(v))Q¢ is isometric and
(ii) jY is intertwining : jY(U(h)) =7,("(v)), he H.
Proof. Let p be any irreducible representation of H with y,(h) the corresponding
character and define

efl(a)= glxp(h)*yh(a)dh, El = | 3, (W*Uk(h)dh. (IL3.1)
H

Then the E¥ for different p are orthogonal and ef(#)Q, is dense in Ef'$,,. The latter
implies that EX'$, =& (F)Q, whenever the dimension of &} (#)Q, is finite. Hence
the Lemma follows from a counting of multiplicities of irreducible representations.
Proof of Theorem I1.3. Let the continuous representations U, of H on finite-
dimensional spaces V(k=1, 2) be contained in U¥ Let j%=j,. Since
741 (01)7")5(0,))2, is bilinear in v, € V; and v, € V,, and has a bound ||, (v,)]| [Ij,(v,)]]
independent of n, we conclude that there is a linear map Q, from V, @V, to $,, such
that

Q, (Z Cnlm ®vi) =Y Uy (03T (02))2, (I1.3.2)
m N n
sup || Q,[l <oo. (I1.3.3)

If ker Q,={0} for some n, Q" exists on Q,(V;®V,), and @, 'U(Q,=U,(h)
®U ,(h), showing that UY contains U, ®U,.

Hence it is enough to show that the assumption kerQ, & {0} for all nleads to a
contradiction. Let v,e kerQ,, |v, | =1. Then there is a subsequence n(p) with a limit v
in the sense that lim [v—v,,,| =0. This implies

pr

[v]=lim |v,,l=1, (I1.3.4)
hll;n ”Qn(p)(v)” = hll;n ”Qn(p)(v - vn(p))” :0 ’ (1135)
where we have used Q,,(v,,)=0 and (IL3.3). However, the asymptotic

Abelianness, weak t-clustering property of ¢ and the isometric property of Lemma
IL.2 (i) imply

lim Q)%= v|?

which contradicts with (I1.3.4) and (IL.3.5).
Q.ED.
11.4. Asymmetry Subgroup of a Weakly Clustering State

Let ¢ be a weakly t-clustering state of &, which is assumed to be asymptotically
Abelian with respect to 7. Let

Cy(Gy)={ge Gd,—»ﬁ;{’b(g): ¢lay,b)); a,be F}. (11.4.1)
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Let C74(G,) be the uniformly closed linear hull of C4(G,) and C7(G4)* denote the
set of complex conjugates of functions in C7(G,).

Lemma I1.3. There exists a closed normal subgroup N, of G, such that
CHGINCTY(Gy)* =F(G4/N,). (I1.4.2)

Proof. By the asymptotic 7- Abelianness of # and weakly t-clustering property of ¢,
we obtain

Mn{ffr"a’,bt"b'} = fa(,bb a?, b’ (1143)
M {f 2% o Fad, b+ +ud) =f;1¢f)b +j;z?,b’ (11.4.4)

where A is an element of 2 with non vanishing ¢(4?) and complex numbers 1 and u
are chosen to satisfy

Apup(A?) +A{p(Ab) + H(A)p(b)} + u{p(ad) + P(a)p(A)}
+ ¢(a)p(b) + P(a)p(b’)=0.

We also have

MO =Llans 0L = 120 (IL4.5)
Hence C74(G,) is a norm closed subalgebra of 4(G,), globally invariant under left
and right translations, which implies that C"y(G,)NC™y(G,)* is a C*-subalgebra of
%(G,), globally invariant under left and right translations. By Lemma A.1 of
Appendix A, we obtain (I1.4.2) for some closed normal subgroup N, of G,.

Q.ED.

We now consider #V¢ defined by (I1.1.10). For a state ¢, of #N¢ we define
C,4,(G,) in a way similar to (I1.4.1):

C4,(Gy)={ge Gy f2(9) = Play,b));a,be FNe}.
Lemma IL4. Let ¢, be the restriction of ¢ to FN¢ defined by (11.1.10.). Then

C4(G)=C7 (G *=F(Gy/N,). (I1.4.6)
Proof. If be #™¢, then y,b=b for all ge N, and hence

Q(g)ﬁ;?b = fa(f"ygb = f;z?b‘

Hence
C (G CE(Gy/N). (1L4.7)
Let pe G, and
o= | olg)dg= | Mg)dg, (IL4.8)
N No
eNo(a)= N§ y,(@)dg . (11.4.9)
@

Then eV is an orthogonal projection in L*(G,) and

eNofd =12 a,=e%a), by=e"*(b).

ag,bo ?
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Since eV4(F)=F"¢, we have

N0 Cy(Gy)=C,(G,). (11.4.10)
By (IL4.2) we have
€0 C(G,) D eV E(G 4/N ) =B(G,/N,). (IL4.11)

Equations (11.4.7), (IL.4.10), and (11.4.11) prove
C4,(Gy)=%(G4/Ny).
Q.E.D.

I1.5. Extension from A to FC¢

Lemma IL.5. Let a; be given by Theorem 2. If the restriction of a weakly t-clustering

state ¢ of F to W is an (o, f)-KMS state, then the restriction of ¢ to
Fo={acF ;ya=a forall geG,} (IL.5.1)

is an (o, B)-KMS state.

Proof. Let a,d',b,b'eF. Let k(E) be any C*-function of E€cR with a compact
support and

K (6)= °f K(E)exp {iEt +yE}dE . (IL5.2)

Since ;4 =a,A for Ae U, the assumed KMS condition implies
| p(A(a, T"a) o, A("b, b ) K y(t) dt
={ ¢({o,A(T"b, 1"b)} A(a, T"a)) K"y (t)dt (11.5.3)

where we have used the notation (11.2.4).
By applying the average M, first and the average M,, next, we obtain

SIRfFF@, b Kp)exe
={fRMGA, Y sk e
where f? and f? are defined as in (IL.2.2),
F(d,b';K)(91,9,)= [ ((7,,0),,b) K () dte €(G x G),
G(a',b' ;K 0)(g1,92) =] d{o"y,,b'}y,,0) K (1) dte €(G x G),

and the inner product in (IL.5.4) is in L%(G x G).
By Lemma 1, f?® f¢ for a,b is dense in

LY Gy x G\G x G)=(e5*®e%¢) L*(G x G)
4 ¢

(IL5.4)

where e = | A(g)dg is an orthogonal projection. Hence (I1.5.4) implies
Gy

(e ®e%*)F(a',b' k) = (e ®e%*)G(d, b’ ; k7). (I1.5.5)
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Since
(e%*®@e*)F(a,b'; k) (1, 1) = d(e®*(a’)qe (b)) k™p(r)dt
(€9*®e)G(a',b'; ko) (1, 1) = [ p{oye (b)) (@) kK p(t)dt

the equality (IL.5.5) for a’,b’e # %+ implies
fpl@up") i y(t)dt = [ p({ab'} @) k™o (1) dt

which is the (e, B)-KMS condition for the restriction of ¢ to #%. Q.E.D.

I1.6. Extension from F¢¢ to FN¢

Proof of Theorem I1.4 (ii) and (iii)

By Theorem I1.2 and Lemma ILS5, ¢ is oy-invariant, o; commutes with every ge G,
and the restriction of ¢ to #%¢ is an («, B)-KMS state.

Let a,b,d’, and b’ be o;-entire elements of . (It is known that the set of entire
elements is dense.) By the o;-invariance of ¢, we have

d(e%(a*t"a )% (b*1"b')) = Ppla*1"a we(b*T"D")).
Hence the (o, f)-KMS condition implies

Pla*t"d wjyef+(b*"b") = p(e¢(b*1"b ) a*"d).
By applying the average M, we obtain

<Sj;c¢’)~i,3b,a9 ﬁzd'),a;,,b'>c¢ = <fad,)b’ Sfad’),b’>G¢ (IL6.1)
where £, is as in (IL.4.1) and

(sNg)=1g™").
We have used following relations:

og(b*) = (0" ;5b)*
(b)) = by, a)=5f(9), (geG,).

By Lemma IL4, the set of £;%, as well as the set of s /2, = (i ,.)* for a, be # V¢ are
dense in 4(G,/N,) and hence in L*(G /N ).
Let S be temporarily defined by

Sﬁfb = Sf(‘ld')..,pb,a .
Then (IL6.1), with b’ replaced by «j;b’, becomes

S L o> =S S I - (IL6.2)
If X¢,f?, =0, then (I1.6.2) implies that

<ZciSf;1(€,biv f;l‘,?,b'> =0
for all ',b'e #™¢ and hence Zc¢,Sf?, =0. Therefore

SZefp = 2GS pbia (11.6.3)

defines a symmetric linear operator on a dense linear subset of LZ(G¢/N o
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Because of

09 fop= Jaypr Moo= Fypa> (1L6.4)

the definition (I1.6.3) implies that the domain of § is invariant under right and left
translations and that S commutes with them.
Let p be a continuous irreducible unitary representation of G,/N, and let

ep)= | o@rl9)*dg (1L6.5)

Gy/Ng

where y, is the character for p. Then S commutes with e(p). Since left and right
translations together are irreducible on the range of e(p) (which is of finite
dimension), Se(p)= S(p)e(p) for a function S(p). (The range of e(p) is actually in the
domain of S.)
Since the f?, span %(G,/N), there exists f?, with e(p)f?,+0. Then b,
= | ,b)x,(9)*dg satisfies e(p)f, ,= Ja, and hence @(byb,)+0. Since o« com-
Gg/N
mutes d;;vith G, we can find an appropriate f for which the «-entire element
a,= foc;(bp) f()dt fulfils ¢(aja,)+0. Then f, , is in e(p)6(G4/N,) and hence

B 1)) =(S g ) (D =S50, (1)
=S(p)¢laza,).
Since
Ao pay)ay =P i5,a,)%5,,05)
= (o ip/zap) (o iﬂ/Zap)*) 20,
we obtain S(p)=0.

If we make the same argument with p, we obtain an oj-entire a, with
¢lazaz)*+0. Then a=0,,,a7, satisfies f,. ,ce(p)é(G,/N,) and hence

0<plagay)=(Sfuq) (1) =S(p)p(a*,a)
This proves S(p)=+0.

Therefore S is a positive self-adjoint operator and hence §"=TI(t) is a con-
tinuous one-parameter group of unitary operators commuting with left and right
translations.

By the weak t-clustering, we obtain

S s )= (S fon ) Sy ) (IL6.6)
This implies S(p)S(q)=S(r) whenever r is contained in p®gq. Hence

@) (fo,p o ) =T O fo,0) T (@) for 1)
which implies that

roty, JO*="Tryy,,,

where T, denotes the multiplication operator by f on L*G4/N )
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Hence AdI'(t) is a continuous one-parameter group of automorphisms of
%(G4/N4) commuting with right and left translations. Hence there exists a
continuous one-parameter subgroup &, such that AdI'(t)=A(&,,) (=ea(£_p,) due to
Lemma A.2 of Appendix Aj;and ¢ must lie in the center of G4/N,.

By Lemma B of Appendix B, ¢, can be lifted to a continuous one-parameter
subgroup {, of G. Q.E.D.

I1.7. Implications of KMS-Condition for Asymmetry Subgroup
Proof of Theorem I1.4 (i)

The following technical Lemma is due to Kishimoto [9].

Lemma IL.6. Let ¢ be a weakly t-clustering state of F . Assume that the restriction of
¢ to FN is an (o, B)-KMS state for a continuous one-parameter subgroup o, of
AutF commuting with © and satisfying o N 407 _,= N . Let p be an irreducible con-
tinuous unitary representation of N, such that p and p are both contained in U ;. Let
&, be defined by sﬁ of (IL3.1) with H=N,. Then for any ace,(F), p(a*a)=0 is
equivalent to ¢p(aa*)=0.

Proof. Let a,d’,b,b’ be in &. Since
a,=&V*(a*t"a)e FN¢, b,=eo(b*"b)e FN?, (IL7.1)

we have '! an F,(z), holomorphic for 0 <Imz/f <1, continuous and bounded for
0<Imz/f <1 and satisfying

F,(0)=¢(a,07b,), F,(t+iB)=¢("b,)a,)

for real t. Both F, (1) and F,(t+if) are equicontinuous families of uniformly
continuous functions of ¢ and hence there exists a uniform limit F(z)=M,{F (z)}
which is holomorphic for 0 <Im¢/f < 1, bounded and continuous for 0 <Im¢/f =1
and satisfies for real t

F(t)=M,{¢(a,07b,)}
= Nj Nf D(2774,0)74,0)* P((v4,4)277,,D") dg 1 dg 5 ,
F(t+if)=M,{$(«"b,)a,)}
= [ | ¢((,,90°9,,b)*d((0"2,,b')7,,a)dg 1 dg

Ny Ny

In the following we use the implication that F(t +if) =0 for all t implies F(0)=0.
From the assumption E;+0, there exists aze ¢5(#) such that ¢(a}a;)+0, as in
the proof of Lemma 5. For a=y,a; and b =a*(he N,), we have

Ji(h7 g7 g =¢((,,0)7,,0)
=(U¢(h) Ty (05)94» U¢(g 1 lgz) U ¢(h)7z¢(aﬁ)9¢)* .

11 If =0, then F,(z) is defined for Imz=0
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If £, f,, and f, are positive type functions in e,%(N,) with e, = j 0(9)1,(9)*dg,

N

then the vanishing of { f,(h~*gh)* f,(g)dg for all he N » implies either fd; =0or f,=0.
Hence

I 0,000 397 1 95)dg,dg, =0

Ng¢ No
for all he N, implies f, =0 for all positive type f, in e, %(N ).

Ifa,ce,(F)and ¢(aka,)+0, then f,(g7 'g,) = P((y,,a)y, b)) withb' =a,,a' = axis
a non-zero positive function of gy 'g, in e,%(N,). Hence F(0)%0 for some h if a
=7,a5 b=a*,b"=a, and a'=a}. On the other hand, in ¢(a,a’)=0, then F(t+if)
with @' =a¥ vanishes for all . This would imply F(0)=0 in contradiction with the
above conclusion. Hence ¢(a,a;)=+0.

Since e (F)* =¢, (F), p(a,ak)+0implies Pp(a}a,) +0 by the same argument with

p and p interchanged. Q.E.D.

Lemma IL7. N g-spectrum of ¢ is one-sided under the assumption of Lemma 11.6.

Proof. The semi-group property has already been proved in Theorem 3.
Suppose p and p are contained in Ugd’. Then there exists a,e¢,(F) such that
Plaja,)+0 and ¢(a,a’)+0 by Lemma I1.6. Among continuous irreducible unitary
representations g of G, there exists at least one ¢ such that Ef'f’nd,(ap)Qd,
G
=mye, *a,)Q,+0.
Since
(mya,)Q,, myled*a,) Q) =1, (e0*a,)Q,]%+0, (I1.7.2)

the representation g of G, when restricted to N, must contain p.
The equation (I1.7.2) also shows that

(e *(eg*a,)Q,+0
and hence by Lemma I1.7
ENemy(ega,)*Q, =m,(e)*(e5*a,)Q, %0
and hence
m4(eg?a,)*Q,+0.

(The same conclusion follows also from Lemma IL.6 in which N ; is replaced by G;.)
This proves that

eS4G(G ) CCTG N CHGy)* .

By (I1.4.2), N, must be trivially represented in g. Hence p=1. Q.E.D.
Because of Theorem I1.4 (ii) and (iii) already proved, Lemma I1.7 with o, =a,¢,(,
implies Theorem I1.4 (i).

I11.8. The Case Where Fermion Operators Are Present

In the foregoing discussion, we assumed the asymptotic Abelianness (11.1.1). We
shall now show that all the foregoing arguments go through if we make a
modification of (IL.1.1) appropriate for the presence of Fermion operators.
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In addition to assumptions I1.1.(a), we consider an involutive automorphism 6
of #(0*=1) commuting with «,, every 7y 9€G, and 7. F is split into a sum

F=F +F_ (IL8.1)

where ae # | satisfies 0(a) = +a. Operators in & _ will be called Fermion operators.
The assumption (I1.1.1) is modified to the following we consider 4 different cases (i)

aeF ,,besF ., (i) aeF ., beF _, (ill) acF _, beF ., (iv) acF _, be F _. We
assume
lim [(z"a)b—¢, Hbt"al| =0 (I1.8.2)

where &,,= +1 for the cases (i), (ii), and (iii) and ¢, ,= — 1 for the case (iv).

We can now show that all results in I1.1 through I1.7 hold even if we change the
assumption (II.1.1) to (IL.8.2). We have only to check those part of proof where the
asymptotic abelianness is used. We do this item by item in the following:

(a) An extremal t-invariant state is weakly t-clustering
[This is relevant to the proof of Theorem II1.1.(2)]

Let ¢ be an extremal r-invariant state, 7, on §,, the associated cyclic representation,
@ the associated vector, U, the unitary operator on $,, associated with 7 and P, the
projection operator on U, -invariant vectors. Then

M, {p(a*t"a)} =(D,n,(a)* P 1 4(a)P) 20, (11.8.3)
M, {¢d((t"a)a*)} = (D, m4(a) P my(a)*@) = 0. (I1.8.4)
If a is a Fermion operator, (I11.8.2) implies
M,{p(a*t"a)} = — M, {¢(("a)a*)},
which must vanish due to (I1.8.3) and (11.8.4). Hence
Pry(a)®=0

for any ae & _. In particular, ¢(Z _)=0 and hence ¢ is f-invariant. Let U, be the
unitary operator on $, associated with 0.
For any ae %, we have

M, {7,(t"a)Q,} = M,{ U} my(a) Q=P my(a)Q,.

Hence
M, {n¢(1”a)7t¢(b) Q¢} = Sa,bnqs(b) M, {nd,(‘t"a) Q¢}
exists for the 4 cases considered in (I1.8.2). Hence the uniformly bounded sequence

N
N~'Y my(t"a) is weakly convergent:

M, {n,(t"a)} =M (a).

If ae #,, M (a) commutes with & by (11.8.2) and with 7 by the definition. The
ergodicity then implies that it is a number, which can be computed by

M (a)=(®, M (a)P)1=¢(a)1.
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Hence

M, {p(bt"a)} = p(b)(a). (I1.8.5)

If ae #_, M (a) U, commutes with & by (I1.8.2) and by the definition of U,. It
also commutes with 7. Hence

M (0)Uy=(@, M (@) Uy®)1 = p(a) 1 =0.
Hence
M (a)=0=¢(a)l.

Therefore (I1.8.5) holds also for this case and hence in general. This proves the
weakly t-clustering property of an arbitrary t-ergodic state ¢, in the presence of
Fermion operators.

(b) Proof of Theorem II.3

Since U, commutes with ge G, each EJ'$, =(e[(#)Q,)” in the proof of Lemma 2
can be split into a direct sum of two representations U , according to the eigenvalue
+1 of U,. Accordingly, we have

=" )+ 00), 7 ) e (11.8.6)

when v=v, +v_. As far as the transformation property under ge G and the action
on Q, are concerned, the operator

Jow)=j"* )+’ () U, (11.8.7)

also transforms unitarily equivalently to U and produces the same vactor when
applied on Q,. We then consider

Q,(vy;v)= n.p(jul(vﬂfnjgz(uz))g(p

which carries the representation U; ® U, provided that ker 2, = {0}. The condition
kerQ,={0} holds by the same reason as before. Namely the equation

lim | Q,(0)%> = v]|?,

follows from the asymptotic commutativity of jV(v,) and j§*(v,) and from the weak
t-clustering property, which is not affected by the presence of U,,.

(c) Proof of Lemma II.3

Since (11.4.4) holds without change due to the weak t-clustering property, we have
only to prove f2,, /¢, C"(G,) when a,b,a’,b’ are in #, UF_. Since (I1.4.3) holds
when the right hand side is multiplied by ¢,. , and since — f, = f*, ,, this is the case.

(d) Proof of Lemma I1.5

The only place where care should be taken is the passage from (I1.5.3) to (I1.5.4). If
a,b,a’, b’ are in #, UZ_, then either both sides of (I1.5.4) get the same additional
sign ¢,., =¢,, or else they both vanish due to ¢(#)=0. This implies that (11.5.4)
holds for either case, and hence for a,b,a’,b" in F.
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(e) Proof of Theorem IL.4 (ii) and (iii)

The only place where care should be taken is the derivations of (I1.6.1) and (I1.6.6).
These can be done exactly in the same manner as (d) above.

(f) Proof of Theorem I1.4 (i)

The only place where care should be taken is the computation of F(t) and F(t +if),
where the same argument as (d) above can be applied.

III. Analysis of Representations and the Associated von Neumann Algebras

111.1

In the last section, we saw that any weakly 7-clustering state w of the observable
algebra A extends uniquely, up to a translation by the gauge group G, to a weakly
clustering state ¢ of the field algebra #. Since the stabilizer G, of ¢ need not be
the whole gauge group G, the action of G may not be implementable in the GNS-
representation {n,, 9,,Q,} of # (in other words, the gauge symmetry may be
broken in the state ¢, with only the smaller symmetry, G, still present). In
Subsection II1.2, we shall study how one can restore the whole symmetry from the
smaller one. It turns out that the induced covariant representation Ind {n¢, Uy}

from the smaller covariant system {#, G,} is unitarily equivalent to the GNS-
covariant representation {n;, Uz} given by the unique G-invariant extension @.
From this analysis, we shall derive that 74(# G¢)”:n¢(91)”.

Subsection I11.3 is devoted to the analysis of the von Neumann algebras m,(#)",
m4(A)" and ()" in the absence of the asymmetry group N,. We shall show that (i)
any automorphism o on MM =7 4(F)", which leaves N = ,(A)" pointwise invariant
and commutes with 7, must be of the form a=y, for some g,G,; (i) M is the dual
crossed product of 9t by some dual action y"of G, on 9t and the action y of G, on M
is realized as the dual action to y”. As a byproduct, we shall give an alternative proof
of a part of Theorem I1.4. A basic tool for this analysis is a von Neumann algebra
version of the Tannaka duality theorem adapted to the formalism developed by
Roberts in [11].

I11.2. Broken Symmetry Versus Induced Covariant Representation

Let #, {y,:9eG}, U= ZC% and 1 be as before. We showed that any weakly
‘c-clustermg state w of A extends uniquely, up to a gauge transformation, to a
t-clustering state ¢ of &#. However, this extended state ¢ need not be invariant
under G, in which case the action y is not unitarily implementable in the GNS-
representation {m,, H,, Q,} of #. On the other hand, any state w of 2 has a unique
G-invariant extension @ to & given by the following simple procedure:

a')(a)=co(j yg(a)dg), ac F . (ITL.2.1)

The action y of G on & is canonically implemented in the GNS-representation
{ns D Rz} of F by the unitary representation U of G on $; given by

Us@ma(@)Qs=7,0,a)RQ,, acF. (I11.2.2)
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Contrasting with this, the GNS-representation {r,, $,,Q2,} of # given by the
weakly t-clustering extension ¢ carries only the unitary representation U, of the
stabilizer of ¢ in G which implements the restricted action |G, on &. The relation
between {®, n5, Uz} and {¢, ny, U} is described as follows:

Theorem IIL.2.1. Let # be a C*-algebra equipped with a continuous action y of a
compact group G, and let W=F ¢ be the fixed point algebra. Suppose that F admits
an automorphism © which is asymptotically abelian and commutes with y. Let w be a
weakly t-clustering state on W, ¢ a weakly t-clustering extension of w to & and @ the
G-invariant extension of w to &. The following then holds :

(i) the state @ is given by the integral :

D= | ¢eoy,dyg (I11.2.3)
G

where dg is the cononical image of the normalized Haar measure dg of G on the right
coset space G,NG={G,9:9€G} of G modulo the stabilizer G, of ¢ in G.
Furthermore, this integral is orthogonal and subcentral in the sense of [12];

(1) {ng Ug}= Ind {m,, U}
Gyt G

in the sense of [13, 14].

Proof. Equality (I11.2.3) trivially follows from the uniqueness of the G-invariant
extension. Denote

{n U9} = Ind {n,, Uy, 9y} (I11.2.4)
GotG

The Hilbert space $~ consists of all §,-valued square integrable functions & on G
such that

Shg)=Uyh)(g), heG, geG; (IIL.2.5)
and the inner product in $~is given by:

(&)= i (&(@)In(g)dg (111.2.6)

= [ (&9)n(g)dg.
Gs\ G

The representation {n~, U~} is defined by:

{n (@)} (9) = 4(v (@))é(g), aeF, geG;

{UTg)} (W=CE(hg), g, heG. (IIL.2.7)
We define a vector Q7 in $~ by

QMg)=2,, geG. (111.2.8)
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It then follows that
QI (@)= [ (Q4lmso7,(0)Q,)dg
G

= g doy(dg=d(a), aeF

Hence the map: m4(a)Q,; —n(a)Q" extends to an isometry of §, into 7, which we
shall denote by W. We want to show that W is onto. To this end, we further
introduce operators 0(f), feL*(G4\G), as follows:

0N)i9)=19)(g), 9eG, [feL(G,\G), (I11.2.9)

where g=G,geG \G. It then follows that 0 is a o-weakly continuous faithful
representation of L*(G,\G) on $~ The range .o of 0 is called the imprimitivity
system of the induction (111.2.4).

Lemma II1.2.2. The imprimitivity system s/ is contained in the center of n(F)".
Assuming this lemma, we continue the proof of the theorem. For each operator
AeU4G,), we put
At(g)=Allg), Ce9H”, geG. (I11.2.10)

It is then known, [15], that the mapping Ae U4(G,)— A #(H") gives rise to an
isomorphism of U 4(G,) onto UYG)'n</" Since the range of W is invariant under
UTG) and n(&), it is also invariant under &/ by Lemma IIL.2.2, so that the
projection of $~onto W$, must be of the form P~ for some projection Pe U 4(G,).
But {(W¢) (9): {€ 9Dy} contains 7,0y, (F)Q, for all ge G, and is thus dense in §,, so
that P must be the identity 1. Hence we conclude that W is an isometry of $ onto
%", which intertwines {ng, Uz} and {n", U"}. This completes the proof.

Proof of Lemma 2.2. For each n=1, 2, ..., we put

n

T(@=2n+1)"" Y o), acF. (I11.2.11)

k=—n

As in Section II, we have for all a, b, ce Z,
lim (7T¢(C)Q¢'7T¢(7:;(“))”¢(b)9¢)

=¢(a) (n¢(C)Q¢|n¢(b)Q¢) .

Since {ny(T,(a)): n=1, 2, ...} is bounded, n,(T,(a)) converges weakly to ¢(a)l.
Therefore, we get, for each &, ne 9",

lim (7l T"(a)¢) = Jim i n(@)lm 7,0 T(@)e(9))dg
= 152 i(y,(g)|n4,oT,.ovg(a)é(g))dg
= (5; d°7,(a) (n(9)|€(9))dg

= (f} 129 (9)|&(9)dg =nlO(E),
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where f2(g)= ¢y, (a)as in (IL2.2.). Hence 0(f) belongs to n(#)". Since { /¢ : ac F }
=C}(G) is dense in (G, \G) by Lemma I1.2.1, f maps 4(G,\G) into n(F)". The
g-weak continuity of 6 yields that o/ Cn(#)". By its construction, &/ Ca{Z).
Hence o Cn(F)' nn(#). QE.D.

We will now identify the covariant representations {r, Uz, Oz, @5} with
the induced covariant representation {z", U~, $7, 27}. We define

M =n(F), M=n,(F),

VAA)=UT9AUTg)*, AeM, geG;

YA =Uy9)AU,(9)*, AeM, geG,. (IT1.2.12)
Corollary II1.2.3. With the notation and the assumptions of Theorem I11.2.1.

@) {M, G,y = Ind {M,G,, 7%}, in the sense of [16];
(ii) M= MO under the correspondence given by (111.2.10).
(i) 7y (F o) =m (Y.
Proof. Let {M",G,y7}= Ind {I, G,,7?}. By definition, M is the subalgebra of
Gp1G
IM"® L*(G)=L* (G, dg, M) consisting of all elements such that

x(hg)=7*(h)x(g), heG,, geG. (111.2.13)
The action y~ of G on I is defined by

Y x)(k)=x(kg), k,geG. (I11.2.14)
For each A=mn(a), ac Z, let

Alg)={m4v,} (@), geG. (I11.2.15)

It follows that A(-) belongs to M~ and the correspondence: A<>A(-) is a normal
isomorphism. Identifying A and A(+), M~is regarded as a von Neumann subalgebra
of M7, globally invariant under y7; and containing .«/ by Lemma I11.2.2, so that
[16; Proposition 10.4] yields that 9~ must be obtained from a von Neumann
subalgebra N of I as M= {xeWM™: x(9)e N, ge G}. This means, however, that N
contains 7,(#). Thus 9t =90 ; and so M~=9M". This completes the proof of (i). We
now prove (ii). By definition

M6 =M NUTGY
M =IMAU (G,) -

Since, by Lemma I11.2.2, 9~ contains the system .o/ of imprimitivity in its center,
IM~C is contained in o/'"UYG). Hence M corresponds to a von Neumann
subalgebra of U 4(G ) under the correspondence (I11.2.10). Under the identification
of I~ with IM", the correspondence (I11.2.10) means that

AeU Gy eA"=A®1. (I11.2.16)
Thus the subalgebra of U,(G,) corresponding to MM~ must be M.
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In order to prove that m (% Goy’ =m,(A)" it suffices to check that the images of
these von Neumann algebras under the isomorphism (III.2.10) coincide. We just
showed that the image of 7 (#¢)’ =M% is M. On the other hand, since the
image of 7,() is #7(A), the image of 7,(A)" is 7 (A)" =M. Q.E.D.

Remark. Corollary 111.2.3 affords an alternative to the first stage (cf. 11.5) of the
proof of Theorem I1.4.

We therefore come to the following situation:
M= MR L (G,\G) ;
MG =M.

This means that the W*-covariant system {, G,, 79} describes entirely the whole
W*-covariant system {9", G,y"}. Thus we shall consider only the case where G =G,
for the analysis of the associated von Neumann algebras in the next section.

II1.3. The von Neumann Algebras Associated
with Weakly Clustering Extended States

In this section, we study the von Neumann algebras n,(F)", n, ()", and = (2A)"
together with the gauge group G. Let #, {y, :ge G}, U=F ¢ t and w be as before.
Take a weakly t-clustering extension ¢ of w to 2. We further assume that w and ¢
are both separating in the following sense:

Definition 111.3.1. A state ¥ on a C*-algebra B is said to be separating if the vector
Q, associated with the GNS-representation {7y, Hy, 2y} of B is separating for
Tg(B)".

When a one-parameter automorphism group {a,} of &, commuting with
{y,:9€G} and 7, for which w satisfies the KMS-condition at >0, is given, the

separating assumption on ¢ is equivalent to the triviality of the asymmetry group
N 2
P

Proposition I11.3.2. Let & be a C*-algebra and W a C*-subalgebra of F. Let ¢
be a state of F with w=@ly. If ¢ is separating, then the restriction myly of the GNS-
representation {my, 9,4, Q,} of F to Wis quasi-equivalent to the GNS-representation
(M Hp 2} of .

Proof. Let & =[n4(A)Q,]. Trivially the representation {r,, K, Q2,} of W is unitarily
equivalent to the GNS-representation {7, 9., 2,} of U under the isometry U
defined by Ur,(x)Q,=7,(x)Q,, xeU. Let E be the projection of H, onto K: E
belongs to 7,(2)'. The central support F of E in 74()' is the projection of $,, onto
[m4(A)K]. But we have

[ W) KT [my(UAYR2,1D [my(F Y21
Since Q, is separating for ny(#)", it is cyclic for my(F):

12 Cf Remark 4 of Section IL.1
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[ny(F)VQ,]=94 thus F=1; this means that the mapping:
Aeny (W' > Age Un (W)'U* is an isomorphism. Q.E.D.

Thus, if ¢ is separating, we know that 7,(2)" is isomorphic to m,(2)".

The situation of interest for us is that of an extremal (z,, ) KMS state @ of A : it
is known that in this case w is primary, that is 7 ()" is a factor [6]. We further have
that the automorphism 7 of ()" extending = on A is ergodic in the sense that its
fixed point algebra in 7 ()" reduces to the scalars'?. A result of Hugenholtz [17]
then radily tells us that (unless «, reduces to the identity automorphism group)
(W) is a factor of type II1. Setting M=7,(F)", and 4 =G, (the stabilizer of the
state ¢p) we thus reach a situation corresponding to the assumptions of the following
Theorem, which is the main result of this subsection!#:

Theorem II1.3.3. Let 9N be a von Neumann algebra equipped with a continuous action
y of a compact group 41> such that the fixed point algebra M =N of y in M is a factor
of type 111. Assume further that the group

Aut, M= {ge AutM : ¢y, =7,0,9€%} (I11.3.1)
has a subgroup & ergodic in M in the sense
{xeM:1(x)=x for all te ¥} =C. (I11.3.2)

Then

() If o is an automorphism of M commuting with & and such that o(x)=x for
every xe W there is an element g,€ 9 such that a =y, [in particular o normalizes y(%),
that is ay(@)o~t =y(%)].

(i) If the action y of 4 on M is faithful the crossed product W*(IR,%,v) is
isomorphic to M @B(L*(G)) ="

We shall prove this theorem in several steps. The basic tool for proving (i) will be
the Roberts-Tannaka duality theorem discussed in Appendix C. To show that the
latter applies we have to prove the two following facts:

(a) One has a$HCH for each He A (M).

(b) Each irreducible subrepresentation of y on 9t belongs to Z.(%).

(We denote by #,(9) the collection of finite dimensional y-invariant Hilbert
spaces in I, and by Z.(%) the set of equivalence classes of representations of ¢
associated with these Hilbert spaces—see Appendix C.)

For the proof of both (a) and (b) Proposition 3.6 in [11] plays an essential role.
We need in fact, for the proof of (a), the background machinery of this proposition
which we now describe.

13 The weak t-clustering property of o together with the asymptotic abelianness of t imply that the

fixed points of 7, () under the unitary implementaring t in =, reduce to the scalars [10]. Since this
unitary commutes with the modular conjugation J of w (due to the fact that w is t-invariant), ()"
=Jn (A)J is ergodic for t

4 This theorem will later be applied to the case o = o0, !, with ¢ the modular automorphism group of
¢ and o, the extension to M of the dynamical group

'3 le ge9—y,(x)is continuous from & to M equipped with its o-weak topology. We use the notation
Aut(I) for the set of all automorphisms of the von Neumann algebra 9t
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Let He A, (IM): with n the dimension of H, one first builds a Hilbert space $, in
I’ (hence in M) of the same dimension by taking as one of its orthonormal bases a
set of nisometries u;e MM” with mutually orthonormal ranges adding up to 1. (This is
possible since I’ is properly infinite.) Now consider an isometry v from §, onto
and the U(g), ge 4, where U =y, is the representation of 4 on $ determined by %
Lemma 2.3 in [11] allowed us to consider v and the U(g) as elements of M. If x,€ H,,
we then have

V5(0)%0=7,(vx0) =Ulg)vx,, ge¥, (I11.3.3)
whence, using the separating property of Hilbert spaces in IR,
Y, 0)=vV(g), ge¥. (111.3.4)

where V(g)=v*U(g)v is an element of (,,9,), the subspace consisting of those
elements of MM mapping §, into H,. We now use the fact [11] that

M= oM B(Ho, Do) (ITL.3.5)

with ¢, the morphism attached to the Hilbert space H,:
do(x)= Y, uxuf, xeM. (I11.3.6)
i=1 ’

Using this set up we now prove (a). Since (Hg, Ho)e M’ and acy= oy, V0P,
= ¢,°y, (following from the fact that 9R” is stable under « and the y,), the action of o
resp. y, on M in (I11.3.5) is as follows

{ x= ol i=the identity automorphism. (I1L.3.7)

Vg=7,®i’
If we deﬁne, for 1e ¥
T=1"®i, 1" defined by t7o¢py(a)=¢,°1(a),acI, (I1L.3.8)

the assumed commutativity of t with y, and « entails that " commutes with y, and a..
The proof of (a) is now obtained as follows: since $ =v$,, the inclusion a$HC$ is
synonimous with the fact that v*a(v) belongs to (9, 9,). But since we assumed that
acts ergodically on 9t [consequently t~ on ¢,(9%)], this will follow from (II1.3.5) if
we show that

T(w*a(v)) = v*a(v). (I11.3.9)
To check this, set
a, =1t (v)v*. (I11.3.10)

Since 7~ and o commute, the Lh.s. of (II1.3.9) reads
v¥aXa(a)o(v), (T11.3.11)
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we thus need to show that the unitary a, fulfills «(a,)=a,. But we assumed o=i on
P : hence our proof boils down to checking that

vla)=a,, geY. (I11.3.12)
Now, since t~ commutes with y,, using (I11.3.4), we have

Vol =T (7, (1)) 7,(v*) =) T (V(g) Vig)*v, (1I1.3.13)

yielding our result since V(g) is unitary and t(V(g))=V(g), [remember that
V(g)e (9o, Ho)]. We completed the proof of statement (a).
We now turn to the proof of (b): for this we shall now need the statement

Proposition 3.6 in Roberts [11]. Let U be an n-dimensional unitary representation of
4. For the equivalence class of U to belong to 2 (%) it is necessary and sufficient that
there be a unitary V in MROM, (M, the nxn complex matrices) such that

i®U(g)=V*{y,®i} (V). (IT1.3.14)

[We note that (II1.3.14) is obtained by transporting (I11.3.4) to MR M, via the
isomorphism ¢, ' ® ¥, ¥ an isomorphism of (H,, 9,) onto M,—whereby v goes to V
and V(g) to U(g)—and using (I11.3.7).]

For shortness we need the following notation: we set

2,=MOM,, (I11.3.15)
on which we define y7,, ge¥, as

1,=7,®i, geg. (I11.3.16)
With U a nonzero representation of ¥ on M, we set

2y (U)={xeZ,; 7 (x)=x(i®U(9)), ge%}. (I1L.3.17)
It is easily seen that we have the equivalence

27 (U) =+ {0}<>there is a subrepresentation of y
on I equivalent to the representation U. (I11.3.18)

(If the a; span a non vanishing subspace of M carrying the representation U,
T4(a) =2 aU9) (I11.3.19)
k

then (a;;)=(6;;a;)+ 0 belongs to 2,7 (U). Conversely if (a;;)e 2} (U) does not vanish
then a;;#+0 for some i, j, and

0= Y. az Ui (9). (I11.3.20)
I
In particular 2] (U)+0 if U is a non-zero subrepresentation of y acting on 9.

On the other hand (II1.3.14) states the existence of unitary V in £(U). Thus
Proposition 3.6 of Roberts stated above implies statement (b) if we establish
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Lemma II1.3.4. If U is an irreducible representation of 4 on M, with 21 (U) = {0},
then 22 (U) contains a unitary v and

Pr(U)=Pv. (I11.3.21)
Proof. In addition to y7, defined in (II1.3.16) we shall need

7,=7,8AdU(g), ge¥%. (I11.3.22)
with corresponding fixed-point subalgebra 2! Note that

Z U7 U)Czy

P (U)PL(UYC P (IT1.3.23)

Consider now the 2 x 2 matrix algebra, say, 2, over 2, and a new action, say, ¢,0f G

on # given by
o ( ): V_g(xu)a U(Q)V_g(xn)
! V(X2 U@)*, Ulg)y y(x22) U(g)*
We claim that of the projections

1,0 0,0
0, 0 0, 1

X115 X12

(I11.3.24)

X215 X22

€=

and e2=[

are equivalent in the fixed point algebra 27 in 2 under o¢.
First, we note that

0, 0
x, 0 (IT1.3.25)
Since e, #°, =2) and e,P#%¢, =P} both contain M'QC, e, and e, are both
properly infinite projections in £°. In order to prove e; ~e, in 27, it suffices to

prove that the central supports of e; and e, in 2° are both the identity 1. To do this,
we must show that e,#%¢, has left and right supports equal to e, and e, respectively.

0,0
But we know by (I11.3.25) that e,2%¢, = 2] (U)®e,,, Where e,, = { ’ } Thus, we

eP’=xe?) (U).

1, 0
have only to prove that the left and the right supports of 22)(U) are both one in £,
For each ge Aut, 9, we consider ¢g"=9g®ie Aut (%,). Since ¢ (U(g))=Ul(yg),
ge¥%, we have

PIU)=21(U), geAut M. (IT1.3.26)

Therefore, the left support z, and the right support z, of £2(U)
are both invariant under ¢~ for every ge Aut 9. Hence it follows from the
ergodicity of Aut 9 that z, and z, both fall into M,,. Furthermore, the inclusion:

PrPT(U)PT CPT(U) (I11.3.27)

yields that z, (resp. z,) are central in ) (resp. £2). Since 2. CM,, we get z, =1.
Since 27(v) contains U(g), the commutativity z,U(g)=Ul(g)z,, ge¥, and the
irreducibility imply that z, =1. Thus, we have proved the claim: e, ~e,.
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Therefore, there exists ve#’ such that v v =e, and vv*=e,. Since v~
=e,v"e,, v” must be of the form:

_ 10,0
. [v, 0}
for some ve 22 (U). The equalities v *v"=e; and v v* =e, mean precisely that v is
unitary. This proves the first conclusion of Lemma I11.3.4. Furthermore (I111.3.25)
and e, #%e, =2} proves (I11.3.21).
This concludes the proof of Lemma II1.3.4, and thus of Theorem II1.3.3(). A
result of Roberts [ 11 ; Proposition 6.9] concludes assertion (ii) of this theorem, since

2.(%) contains all irreducible representations of ¢ if the action y is faithful (cf. the
last assertion of the theorem in Appendix C).

Corollary II1.3.5. With the same assumptions as in Theorem I11.3.3 (ii), there exists a
dual action y" of 4 on MM’ =IN in the sense of Nakagami, [20], such that'®
(I, 9} = (WO, y7),7""}, where W*(OR?,y") means the crossed product of " by the
dual action y* and y™" means the action on W*(W,v") dual to y".

Proof. Let Z=MRB(L*(%)) and y,=7,®Ad(0(9)), ge ¥, where ¢ is the right
regular representation of 4. Put y,=y,®i. Since M is properly infinite being a
factor of type 11, {9, y } = {<, v }. It is known from Digernes [ 18] that & is iso-
morphic to the crossed product W*(HXR, y) of M by %. A duality theorem due to
Nakagami [19], and Roberts [11], says that {2;y7}={W*(W*ON,v),y);y"}.
Thus we have only to prove that {#;y}={2;y"}, which is equivalent to the fact
that 2"(g) contains a unitary. But it follows from Theorem II1.3.3.ii that &
=W, 9)= M is a factor of type III. We know also that 2" =I"Q B(LX¥))
is a factor of type III. Thus 2%(g) = {0} entails the existence of a unitary in £"(g).

The proof of the next corollary provides an alternative way of establishing the
second part of Theorem IL.4 (ii), (iii) (extension from Z%¢ to FN+—cf. IL6),
since one knows that a weakly clustering extension to % of a t-weakly clustering,
(o, ) KMS state of A separates & .

Corollary II1.3.6. In addition to the assumptions of Theorem I11.3.3 relative to the
system {9, v}, let {0} be a continuous one parameter group of automorphisms of MM
such that ayoy,=y,c0;, ge¥, telR, and H = {o Aut, M ; to0; =0t/o7, te R} is ergodic on
M. If ¢ is a faithful normal state of M such that the restriction of ¢ to M satisfies the
KMS-condition for {o;} at f>0 and ¢poo=¢, T H, then we conclude the following

(1) ¢is invariant for both y(¥) and {o;};

(ii) there exists a one parameter subgroup {g,} of Z(9) such that ¢ satisfies the
KMS condition for the one-parameter automorphism group {oyy,} at >0.

Proof. Suppose that ae Aut¥t commutes with H. Then ¢« and ¢ are both invariant
under H, so that the cocycle Radon-Nicodym derivative (D¢-a : D¢), belongs to the
fixed point algebra MM” under H (which is C1 by assumption). Hence ¢ <o is a scalar
multiple of ¢. But being a state, ¢poa=¢. Thus statement (i) follows.

16 In what follows we omit for shortness mentioning the group ¢ in the notation for cross products
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The modular automorphism group {o?} of ¢ commutes with y(%) and H. Hence
it leaves M’ globally invariant and af},(x) =o,(x) for every xe M. It follows then that
{a_,0%,} is a one parameter automorphism group commuting with (%) and H,
which leaves M" pointwise invariant. Hence it follows from Theorem I11.3.3. (i) that
there exists a one parameter group {g,} in ¢ such that ygtzoc_,a;}’,. The com-
mutativity of {y,} and y(%) yields that {g,} is a subgroup of the center Z(%) of
4. Q.E.D.

IV. Intrinsic Characterization of the Chemical Potential

Since expectation values of the non-observables elements in & are without physical
significance, the role of the chemical potential for the equilibrium state w, , should
be seen directly without considering the extension problem of the state from the
observable algebra U to the field algebra .

If one considers U as the given fundamental object then, following [7] the
physically relevant part of the structure involving # and G may be seen to arise
from the fact that 9 possesses localized automorphisms which are not inner (we
treat in this section the special case of an abelian gauge group which we take for
simplicity to be the one-dimensional torus). The following two properties are
discussed in [7]:

a) Space or time translations do not change the equivalence class of a localized
morphism modulo inner automorphisms. More precisely, if ¢ is a localized
morphism giving rise to an o,-covariant representation of 2 we have'’

0 tow,09g=Adv,o0,, teR, (Iv.1)

with v, a continuous one-parameter family of unitaries of U fulfilling the “cocycle
condition”

U4 =00(v), s, teR. (Iv.2)

b) The equivalence classes of localized automorphisms form an Abelian group
the “charge group”. In the case of our (simplest) example the charge group is the
additive group of integers.

The field algebra & arises then as a covariance algebra in which the mentioned
automorphisms are realized by unitaries ue # '8:

o(A)=uAdu*, AeU. (Iv.3)

The (Abelian) gauge group is the dual of the “charge group”.

Unlike the situation in [7] where irreducible representation of U were
considered and the (non inner) localized automorphisms led to inequivalent
representations (superselection rules) we have now

17 By definition Adv,(4)=v,Av}, AcU
18 g is then of class 7 if yy(u)=e"u, feR
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Proposition 1V.1. If o is an extremal («,,f)-KMS state of U and ¢ a localized
automorphism, then w < is equivalent to w. Consequently w and w @ have normal
faithful extensions to the same von Neumann algebra N =mn (A)".

Proof. Since 9= Adu with ueZ the state wo-g generates a representation of A
contained in the restriction to U of the representation m, of &# where ¢ is a
clustering extension of w to &. The proposition then results from Proposition
II1.2.2. Note that the assumption of unitariness of u entails that the spectrum of the
gauge group is not one-sided (N, is trivial). Theorem I1.4 then assures us that ¢ is
B-KMS for a one parameter group t—a_ 4y _g,: ¢ is thus separating and Proposi-
tion IV.1 applies.

According to known results in the theory of modular automorphisms [21],
Proposition IV.1 tells us that there is a unitary cocycle W,e z ()" (for which one
has a unique definition procedure) called the cocycle Radon-Nikodym derivative
of we g with respect to w:

W,=(D(w-g):Dw),,

such that
707 o0 g 0(A)= Wy (ANWE, A, teR (IV.4)

(we used the fact that the modular automorphism group of the continuous
extension of w to 7, ()" coincides with «_; on A, so that the modular
automorphism group of weg is Q“ooc_ﬁ, o on A cf. [21] Lemma 1.2.10). The
relation (IV.1) gives on the other hand

nw(Q ! ol py OQ(A))
=T, (0 p) (@ g (AT (0 p)*,  AeU, teR. (IV.5)

Comparison of (IV.4)and (IV.5), together with the fact that 7 ()" is a factor, entails
that W,m,,(v* 5, is a scalar. Furthermore the cocycle properties of W, and v, imply
that this scalar is of the form ¢** for some real A:

W,=(D(w+0),: Do), =€ m (). (IV.6)

We now relate this constant A to the chemical potential u of the state . We have,
for the separating states ¢ and ¢, of &, where ¢ (a) = ¢p(uau*), ac Z, (or rather for
their continuous extensions to M =n,(F)", see [21] Lemma 1.2.3 (¢)):

(D¢, : D), =mn,(u*)od(m,(u). teR,
with ¢ the modular automorphism of ¢ such that gfom, =m,c0_gey_ 4, Thus, if
the automorphism ¢ carries the charge n [ie. y,(u)=e"u, 0eR] one has o?(u)

=™y and thus

(D, : D), = e Him (u*or_ g (u)). (IvV.7)
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Taking the restriction of both sides to the cyclic component for 7 ,(2) of the vector
corresponding to ¢ in its GNS construction we see that

(D(e<): D), = e"'m (uw¥s _ (1) (IV.8)

Now, since v, =u*a,(u) satisfies (IV.1) as well as v,, we have that u*«,(u)=e~ ",
which ¢ a real constant which is chosen independantly of w. We proved

Proposition IL.2. If ¢ is a localized automorphism in class n, w an extremal (o, B)-
KMS state of A and v, a continuous cocycle in W satisfying (1V.1) then

(D(40): D), ="', (v_,) (IV.9)

where u" = u+ c with p the chemical potential as treated in the previous sections and ¢ a
real constant independant of w. (We recall that (D(w-g):Dw), denotes the cocycle
Radon-Nicodym derivative of the continuous extension of the states weg and w to
T (A)’ (see Proposition 11.1).)

Comments. (i) By (IV.9) the chemical potential of an equilibrium state of 2 is
intrinsically defined, in terms of objects related to 2 alone, up to a conventional
constant (zero point of ) which is fixed by the convention adopted in choosing v,.
This freedom corresponds to the freedom in changing the definition of time
translation on & by a factor y,,.

(ii) (IV.9) shows that the Radon-Nikodym derivative lies actually not only in
(W) but in 7 (A).

(i) Let ¢ be an automorphism of 2 such that: (A) ¢ fulfills (IV.1) with a
continuous unitary cocycle v, [satisfying (IV.2)] with values in U ; (B) weg and w
are quasi equivalent for all (f, «,)-KMS states of 2, feR. Then we have (11.6) (so ¢
defines a kind of a chemical potential).

(iv) If is replaced by an automorphism o’ of the same class modulo inner
automorphisms (¢’ =g -Ad U, U unitary in ), ¢’ satisfies (IV.1) with the continuous
unitary cocycle v;=U " 'v,0(U). On the other hand, using (IV.1) and the com-
position property of cocycle Radon-Nikodym derivatives, one sees that

(D(we¢"):Dw),=U" lv—ﬂz“—pz(U)vﬁpt(D(wOQ) :Dw),

thus (IV.9) holds with the same u” and with @', v_, instead of g, v_,.

Appendix A. Right Translation Invariant C*-Subalgebras of Continuous Functions on
a Compact Group

Let G be a compact group. We shall consider €(G), the set of complex continuous
functions on G, as a C*-algebra with pointwise multiplication, complex conjugation
as the *-operation and the sup norm || ||,. For ge G we recall that we defined the
right, resp. left translation acting on functions f on G by (o(h)f)(g)= f(gh),

(Ah)f)(9)=f(h""g), geG. (cf. IL2.1).

Lemma A.1. The following correspondences establish a bijection between the closed
subgroups K of G and the C*-subalgebras o/ of €(G)globally invariant under all right
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translations (i.e. with o(g)fe.of for all fesof and geG):
K=o (=F(K\G)"’ = {feb(G); M) f=f

for all keK} (A1)
A >K={keG; f(kg)=f(g)
forall fes/ and geG} (A2)

This bijection associates to the normal subgroups of G those globally right-
translation invariant C*-subalgebras of €(G) which are also globally left translation
invariant (or, equivalently, invariant under the symmetry s, where (sf)(g)=f(g™ 1),
geG).

Note that owing to the right translation invariance of .«Z, K in (A.2) can also be
defined as

K={keG; flkgo)=f(g,) forall fesl} (A3)
with g, any fixed element of G (for instance the unit e of G).

Proof. of = ol defined in (A.1) is obviously (for each subset K of G) a C*-subalgebra
of %(G) globally invariant by all g(g), ge G. On the other hand K = K, defined in
(A.2) is clearly [for each subset .7 of 4(G)] a subgroup of G, closed as an
intersection of closed sets.

Now, with .«7 a globally right translation invariant C*-subalgebra of €(G), one
has clearly & C.o/ 4 =C(K 2 \G): the Stone-Weierstrass theorem will therefore
imply that .o/ =/, if we show that .o/ separates the spectrum of 7, ; ie. that
flg)=f(g,), feo, entails g, g5 '€ K ,. But this follows from (A.3) with g, =g, and
k=g,g5 . Since, on the other hand, the map K— K, is obviously injective, we
proved that (A.1), (A.2) establish a bijection.

Suppose now that .7 is globally left translation invariant and let ke K, geG:
(A.2) with f replaced by A(g)f and x=gx,, x,€G, shows that f(g~ *kgg,)= f(9,),
hence g~ 'kge K by (A.3): we proved that K is a normal subgroup. Conversely, if
this is the case, K\G = G/K, thus ./ consists of the fe ¥(K) invariant under the o(k),
ke K, and is thus globally left-translation invariant. Further, the fact that s(.of) = .o/
evidently entails global left-translation invariance ; and conversely normality of K
entails that s(.o7)=./.

Lemma A.2. Let K;, i=1, 2, be closed subgroups of the compact group G : every C*-
isomorphism of €(K{\G) onto G(K,\G) commuting with all right translations
0(9), ge G, is of the form Ah) for some he G such that K,=hK h™ !

Proof. Let o be such an automorphism: the transposed ¢* of ¢ maps (homeomorphi-
cally) K,\G onto K, \G whilst commuting with all ¢(g), ge G. Therefore

o'(K,9)=0"(K,e g)=0'(K,e)g=(Kh)g
=K,(hg), geG,

' This notation presupposes that we may identify the functions fe%(G) invariant under all left
translations A(k), ke K, with the continuous functions # on the space K\G of the right cosets Kg, ge G,
endowed with the usual quotient topology. The identification if by means of the bijection £« f =/ ¢,
with ¢ the canonical map G—K\G
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with h any element of G such that ¢'(K,)= K, h. By transposition we obtain that ¢
= A(h). Since of, fe¥(K,\G), has to be invariant under all A(k,), k,e K ,, we must
have f(h™'k,g9)=f(h"'g), geG, k,eK,, fe€(K,\G), whence h™ *k,he K, thus K,
=hK,h™ 1.

Lemma A.3. Let o7}, i=1, 2, with norm closures o/*, be globally right translations
invariant *-subalgebras of 4(G) and let K; be the closed subgroup associated to <.
Every linear, multiplicative U ,; o/ §{— .o 5 which commutes with all right-translations
0(9), g€ G and is isometric for the L*(K,\G) norms is given by A(h) for some he G such
that K,=hK h™'.

Proof. Let U be the linear isometry from L*(K,\G) onto L*(K,\G) obtained by
continuous extension of U,. Let T be the *-representation of /' on LA(K,\G)
defined by pointwise multiplication:

{T;,d)t} 9)=19)9:9), fieﬁ{i >
$,e L2 (K\G), ¢geG,

and define ¢ on &' by
'1;2f=UTf1U*, fest. (A4)

Applying the r.h.s. of (A4) to U, f*, f1esly C L*(K,\G) with fe.o/} we have
that

UTflfl = U(ffl)z(Uof)(Uofl)= Tuoonf1

whence of=U,f by comparison with the Lh.s. of (A.4) since U,s7} is dense in
L?*(K,\G): thus (A.4) defines a continuous extension of U, to «/*. Since T* and T*>
are faithful representations this extension fulfills the assumptions of Lemma A.3,
which yields the result.

Appendix B. Lifting of a One-Parameter Subgroup

For the convenience of the reader, we shall state a Lemma, which is a trivial
combination of results of Iwazawa [23], §1, and Montgomery and Zippin, [24],
§4.1.5.

Lemma B. Let G be a locally compact group with H a compact normal subgroup, and
the natural homomorphism of G onto G/H. If {g (t)} is a one parameter subgroup of
G/H, then there exists a one parameter subgroup {g(t)} in G such that (i) n(g(t))=4g ()
and (ii) g(t) commutes with H for any teR.

Appendix C. Robert’s Version of the Tannaka Duality Theorem in von Neumann
Algebras

Let 9 be a properly infinite von Neumann algebra equipped with a continuous
action y of a compact group ¢ such that the fixed point algebra 9" is also properly
infinite. By definition (see Roberts in [11]), a (non-degenerate) Hilbert space in M is
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a closed subspace $ of Mt such that (i) y*x is a scalar multiple of the identity for
every x, ye 9 and (ii) a$ = {0} implies a =0 for any ae M. The inner product (y|x) in
$ is accordingly given by y*x. We note also that any element of $ with norm one is
an isometry, and that a complete orthogonal basis {u;} of  is a collection of
isometries with orthogonal ranges and Y wu* =1. If § is globally invariant under y,
then we have, for any x, y

g, () =7,()*y,() =7,(*x) = y*x = (y]x).

Hence the restriction of y to § gives rise to a unitary representation of 4. Let /()
denote the collection of all finite dimensional Hilbert spaces in )t globally invariant
under y. Let Z.(%) denote the collection of unitary representations of ¢ obtained by
restricting y to all members of #,(9). We quote the Tannaka duality theorem in the
cast of the formalism given by Roberts [117] as follows:

Tannaka Duality Theorem. With the assumptions and notation above suppose that
each irreducible equivalence class of subrepresentations of the action y of 4 on M
occurs in B (M)?°. If o is an automorphism of M such that (i) «(H)CH for each
He A (M), (ii) a(x)=x for each xe M, then there exists an element g,€ ¥ such that o
=Y,. If the action of G on M is faithful, Msp(y) contains (up to equivalence) all
irreducible representations of 4.

Proof. For x, ye®, He A (M), let f, , be the function on ¥ given by
Jer@) =0y (M) =x*p,(y), ge¥, (C.1)

and let % (%) be the set of all such functions. We claim that % (%) is a *-subalgebra of
C(9). Let X1, €91, X2, V2,€9D5, D1, D, #(M). If we choose isometric u, v in M
with complementary orthogonal ranges (possible since I is properly infinite) the
set H=u, +v$, isa member of #,(M) : one has namely, with x =ux, +vx,, y=uy,
+0vy,,

x*y=x{y; +x3y,eC.
More generally
X*p, 0 =xTy,(v) +x37,(y2), g€9,

ie. fo ot e =S, i€ (%) is thus additive (moreover obviously linear). To show
that € (%) is multiplicative we observe that

XE0(V)x34(2) = x53x1,(y 1 )7,(02)
in other words
fxx,y:fxz,yz = fxfy;,xzyz (C2)

with x,y;, x,y, elements of the tensor product Hilbert space H; ® H, (see [11]). It
remains us to show that %.(%) is closed for complex conjugation. For this we

20 In other terms the spectrum Sp(y) of y (irreducible equivalence classes of subrepresentations of y)
coincides with its monoidal spectrum Msp(y) (irreducible equivalence classes of restrictions of y to
Hilbert spaces in 9t)
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observe that the f, (g), x, ye 9, are the matrix elements of the representation U =7y|g
of @ : therefore it suffices to check that if U belongs to #.(%), the same holds for the
conjugate representation U™, Since Z.(%) is closed for direct sums (observe that y|g
=9|g,®7lg, for H=u$H, +v$H, as constructed above), it is enough to examine an
irreducible Ue Z.(%): now, if U= 1|, 7| is equivalent to U™: U~ thus appears as a
subrepresentation of y: but it then by assumption also occurs in £.,(¥%). We
completed the proof that € (%) is a *-subalgebra of €(%).
We now set, for f, ,e%.(9)

fo,y = f;z(x)y . (C3)

The fact that this defines a map U on (%) results from the calculation

(ULl U e )@ = § fu,9)* facy 1 (9)dg
= Ja(x)*y, () {alx'V*y,(y')} *dg
=a(x)* [ 7,(yy*)dgo(x’)
=a{x* [y,(yy*)dgx'}
=feylfxy)L2@)

[we used the fact that [y ,(y'y*)dg belongs to M, thus is left invariant by o]. The last
relation shows that (C.2) defines an isometry of € (%) for the L*(%)norm. As, on the
other hand, by (C.1),

U(fxx,)’x 'fxz,y2)= U(fxlxl,)'l)’l) =fa(x1xz),y1yz

= fa(xl)a(xz), yiva fa(xx)ylfa(xz)yz >

U is multiplicative. Since moreover U obviously commutes with right trans-
lations, Lemma A.3 of Appendix A tells us that we have, for all f, €% (%),

Ufe)@)=1 9,9,

with some g,€%. This means that a(x)*y (y) = X*Yy-14(1)=7,,(x)*y,(y) forall x, ye $,
He A (M). It follows that a =y, in restriction to all He A (IMN).

In order to show that a=y, on all of 9, it now suffices to check that a=a, in
restriction to each subspace ¥ on which y induces an irreducible representation of
% (since % is compact, the collection of these subspaces is total in 9t). Let thus ¥ be
one of these subspaces and let y|,,~ U, U an irreducible representation of 4. By
assumption, there exists an $e #,(IM) such that y|; ~ U. We can, therefore, choose a
basis {e,, ...,e,} of ¥ and an orthonormal basis {f,, ..., f,} of § such that

Vqle) = gnll (Uy);e)»

n

2= 2 (Ug)uf;,

i=1
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with the same unitary matrices {(U,);;} realizing U. As a result

A= Z ef*
i=1
belongs to M, whilst V"= A$ since Af,=e,,i=1,...,n. Thus, for each Axe ¥, xe $,
one has

o Ax) = Aa(x)= Ay, (x) =7, (AxX).

This proves the first conclusion of the Theorem.
Asstime now that the action y of % on M is faithful i.e. that y, =i entails g=e.
Since %.(%) is a *-subalgebra of (%) it follows (cf. Lemma A.1 of Appendlx A) that
(g) %”(K\{ﬁ) with

K={ge%;f. (@)=1.(e) forall f eF(%)}.

From this we infer thatifge K, U(g)=1 for all Ue (M), and thus, according to our
assumption, for all irreducible subrepresentations of y:thereforey,=iand g=e,ify
is faithful. We proved that K = {e}, thus @_(9) (%)=%(%). The Peter- Weyl theorem then
implies that Z,(%) contains all 1rredu01ble representations of %.

References

1. Haag,R., Hugenholtz,N.M., Winnink,M.: On the equilibrium states in quantum statistical
mechanics. Commun. math. Phys. 5, 215 (1967)
2. Tomita, M. : Standard forms of von Neumann algebras. V-th Functional Analysis Symposium of the
Math. Soc. of Japan, Sendai (1967)
3. Takesaki,M.: Tomita’s theory of modular Hilbert algebras and its applications. Springer Lecture
Notes, Vol. 128 Berlin-Heidelberg-New York: Springer 1970
4. Haag,R., Kastler,D., Trych-Pohlmeyer,E.B.: Stability and equilibrium states. Commun. math.
Phys. 38, 173 (1974)
5. Araki,H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Pub. Res.
Inst. Math. Sci. Kyoto University 9, 165 (1973)
5a. Araki,H.: In C*algebras and their applications to statistical mechanics and quantum field theory,
Enrico Fermi School of Physics Course LX, North Holland Pub. Comp. Amsterdam (1976)
6. Araki,H.: Gibbs states of a one-dimensional quantum lattice, Commun. math. Phys. 14, 120 (1969)
7. Doplicher,S., Haag,R., Roberts,J.E.: Fields, observables and gauge transformations I and IL
Commun. math. Phys. 13, 1 (1969); 15, 173 (1969)
8. Kastler,D.: Equilibrium states of matter and operator algebras. March 1975 Rome Conference on
C*algebras and their applications to theoretical physics. Symp. Math. to appear
9. Araki,H., Kishimoto, A.: Symmetry and equilibrium states, Preprint
10. Doplicher,S., Kadison,R.V., Kastler,D., Robinson,D.W.: Asymptotically Abelian systems.
Commun. math. Phys. 6, 101 (1967)
11. Roberts,J.: Cross products of von Neumann algebras by group duals, Proc. of the March 1975
Rome Meeting on C*algebras and their Applications to theoretical Physics. Symp. Math. to appear
12. Skau,C.: Orthogonal measures on the state space of a C*-algebra, Algebras in analysis (ed. J. H.
Williamson) New York-London: Academic Press 1975
13. Takesaki,M.: Covariant Representations of C*algebras and their locally compact automorphism
groups. Acta Math. 119, 273 (1967)
14. Zeller-Meier,G. : Produits croisés d’une C*algebre par un groupe d’automorphismes. J. Math. Pures
Appl. 47, 101 (1968)
15. Mackey,G.: Unitary representations of group extensions I. Acta Math. 99, 265 (1958)



134

16.

17.

18.

19.

20.

21.
22
23.
24.

H. Araki et al.

Takesaki, M. : Duality for crosses products and structures of type III von Neumann algebras. Acta
Math. 131, 249 (1973)

Hugenholtz,N.: On the factor type of equilibrium states in quantum statistical mechanics. Commun.
math. Phys. 6, 189 (1967)

Digernes, T.: Duality for weights on covariant systems and its applications, Thesis, Univ. of
California, Los Angleles 1975

Digernes, T.: Poids dual sur un produit croisé, C. R. Sci., Paris, Sér. A 278 (1974), 937—940
Nakagami, Y.: Duality for crossed product of von Neumann algebras by locally compact groups.
Bull. Am. Math. Soc. 81, 1106, (1975)

Nakagami, Y.: Dual action of a von Neumann algebra and Takesaki’s duality for a locally compact
group, submitted to Publ. RIMS, Kyoto Univ.

Connes, A.: Une classification des facteurs de type III. Ann. scient. Ec. Norm. Sup. 6, 133 (1973)
Takesaki,M., Tatsuuma,N.: Duality and Subgroups. Ann. Math. 93, 344 (1971)

Iwasawa,K.: On some types of topological Groups. Ann. Math. 50, 507 (1949)

Montgomery,D., Zippin,L.: Topological transformation groups. New York: Intersci. Pub. 1955

Communicated by J. L. Lebowitz

Received August 20, 1976





