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Abstract. Within the general framework of local quantum field theory a
physically motivated condition on the energy-level density of well-localized
states is proposed and discussed. It is shown that any model satisfying this
condition obeys a strong form of the principle of causal (statistical) inde-
pendence, which manifests itself in a specific algebraic structure of the local
algebras ("split property"). It is also shown that the proposed condition holds
in a free field theory.

1. Introduction

It is well known that the general postulates in quantum field theory, concerning
locality, Poincare covariance, and the spectrum condition, do not exclude models
with manifestly unphysical properties. Examples are the generalized free field with
continuous mass spectrum, which does not describe particles, or models with an
infinite number of particles in the same mass multiplet, for which the familiar
relation between spin and statistics need not hold. It has been a long-standing
problem in the theory of local algebras [1, 2] and in the standard version of
quantum field theory [3], to find conditions of a "local" character which would
guarantee an interpretation of the theory in terms of asymptotic particle states.

A first step towards the solution of this problem was taken by Haag and Swieca
[4], who pointed out that in any theory with a reasonable particle interpretation
the number of states occupying a finite volume of phase space should be limited
due to the uncertainty principle. Based on this physical input Haag and Swieca
proposed a "compactness criterion" which every quantum field theory ought to
satisfy if it is to describe particles. They also showed that their criterion excludes
the above mentioned examples of physically unreasonable models. But the difficult
problem of whether the compactness criterion ensures a particle interpretation
remains open to date. (For some partial results cf. [5].) One may surmise that the
compactness criterion is still too general and does not fully reflect the specific
phase space properties of a particle theory.
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In the present article we therefore propose a sharpened version of this criterion.
The precise statement requires a discussion of some technical points, but the
underlying physical idea can roughly be stated as follows: the number of states
which one can accommodate within some bounded region of configuration space
should grow with the total energy available in a specific manner, suggested by the
energy-level density of an arbitrary number of indistinguishable particles confined
to a container ("box") of finite volume. In Sect. 2 we give the proper formulation of
our level density condition (the "nuclearity condition"), and we will show in the
Appendix that our condition is satisfied in the free field theory of a spinless massive
particle.

In the second part of this study (Sect. 3) we will demonstrate that our condition
has implications for the structure of the physical states which resemble the tensor
product structure (Fock structure) of collision states in theories with a particle
interpretation. To be more specific: let St^) be the algebra of local observables
(respectively fields) associated with any bounded region (91 of Minkowski space.
Then there exists another bounded region (92D&1 such that the physical Hubert
space Jtf can be represented as a tensor product, $f = 3%^® tfF2,

 on which the
operators1 Ae^L(G^ JBe9l(02)' act according to A = A1®12

 and B = 11®B2,
respectively. In particular, there exists a total set of vectors Φej^ such that

= (Φ,AΦ) (Φ,BΦ) (1.1)

for all A e 21(0 1) and B e 2l(02)' Thus the vectors Φ describe states for which all
measurements in the regions &1 and &2, respectively, are uncorrelated. For further
discussions on this strong form of causal (statistical) independence see the
publications [6-8].

It is a remarkable fact that the presence of this specific property of the theory
manifests itself in a clearcut way also in the algebraic structure of the local algebras
[8, 9]. Namely, for each pair of regions &19 (92 related as above there exists a factor
9W of type / (i.e. a von Neumann algebra which is algebraically isomorphic to the
algebra of all bounded operators on some Hubert space) such that

SίίΦ^caWcSί^Γ (1-2)

The question of whether the nets of local algebras do have this "split property" [9]
in general was originally raised by Borchers. The split property was later
established for theories of non-interacting particles in [8] and [10] (cf. also [11]),
and by these means also for interacting theories which are locally Fock, such as the
P(φ)2 models [12] and the Yukawa theory in two dimensions [10]. But there exists
also an abundance of models which do not have the split property. Examples are
all theories with a non-compact global symmetry group and models of an infinite
number of free particles such that the number of species grows very rapidly with
the mass [9]. Note that the Haag-Swieca compactness criterion still holds in the
latter case.

It is a common feature of these counter-examples that they describe systems
with a large number of local degrees of freedom. (This is discussed in a more

1 If 33 is any algebra acting on ffl we denote by 23' its commutant in
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quantitative manner in Sect. 2.) Our present results indicate that it is precisely this
number which is of decisive importance for the question of whether the split
property holds in a model. They also suggest that the split property is a quite
general characteristic of theories with a sensible particle interpretation. In view of
the "local" nature of the feature in question this is a very useful piece of
information. For applications of the split property to the construction of local
current algebras and a quantum version of Noether's theorem, see the publications
[13-15]. Some implications relating to the superselection structure of models are
discussed in [10, 16, 17].

It follows from these investigations and the present results that our nuclearity
condition distinguishes a class of models exhibiting many physically desirable
properties. There is also evidence that this strengthened version of the Haag-
Swieca compactness criterion is relevant to the problem of asymptotic complete-
ness [18]. Moreover, as was demonstrated in [19], the nuclearity condition is
connected with thermodynamical properties of field theoretic models. Thus it
seems that this condition provides a natural basis for the investigation of problems
involving considerations of phase space.

The discussion in this paper is within the algebraic framework of quantum field
theory [1, 2]. We shall be concerned with a net of local algebras on a separable
Hubert space ffl, containing the (up to a phase unique) vacuum vector Ω.
Specifically we shall assume that to every open double cone Θ in Minkowski space
there corresponds a von Neumann algebra 2I($) for which the vector Ω is cyclic.
The standard conditions concerning Poincare covariance, locality and isotony are
assumed, and we also assume the usual spectrum condition for the translation
subgroup of the Poincare group.

2. The Nuclearity Condition

The intuitive idea underlying the paper by Haag and Swieca quoted before [4] can
be stated roughly as follows: let <£r C ffl be the set of vector states describing in
some local field theory all excitations of the vacuum which are localized at time
t = 0 in the ball Br = {x e R3: |x| < r}. If one applies to <£r the orthogonal projection
PE onto the states with total energy less than E one obtains a set 5£r^E of states of
limited extension in configuration and momentum space. In theories with an
asymptotically complete particle interpretation in terms of a finite number of
species of particles, these states should describe systems evolving within a
characteristic time interval τ into configurations of freely moving particles which,
because of the maximal propagation speed c = 1, are localized in the region Br+τ.
So the number of linearly independent states in <g.\ E should not exceed the number
of different configurations of non-interacting particles which can be placed in the
region Br+τ and have total energy less than E. Applying now the rule that the
number of quantum states of a particle which can be associated with a finite
volume Γ of phase space is equal to Γ/(2π)3 (setting h = 1) there should be only a
finite number of such configurations. Hence by this heuristic argument one is led
to the conclusion that in theories with a reasonable particle interpretation the
number of independent states in &ftE ought to be "finite."
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It was pointed out by Haag and Swieca that the above considerations give only
a rough idea of the actual situation in local field theory. In particular, there does
not exist a notion of localization of states which has all the properties familiar from
non-relativistic quantum mechanics. If one adopts, for example, the concept of
strict localization introduced by Knight [20] (cf. also the discussion below) one is
faced with the problem that the linear span of the set 5fr is dense in the physical
Hubert space. Consequently the sets JSPΓ>jB cannot be finite dimensional. But a
careful estimation of the long range correlations of the states in <£γ E led Haag and
Swieca to the conclusion that, at least in massive particle theories, these sets should
be (strongly) compact. Moreover, using the concept of approximate dimension,
they were able to estimate the "size" of these sets as a function of the cutoff
energy E.

If one follows the reasoning of Haag and Swieca in detail one finds that their
conclusions are in two respects unnecessarily conservative. Firstly, it follows from
their arguments that the sets cSfr>jE should not only be compact, but even nuclear (cf.
the definition given below). And secondly, the size of the sets jSfΓ)jB was over-
estimated, since the indistinguishability of particles was not taken-into account in
the discussion.

Instead of directly modifying the reasoning of Haag and Swieca, we will present
here an alternative, likewise heuristic argument, shedding some light on the
properties of the sets JS?r>jE. For the subsequent analysis it is actually more
appropriate to consider the sets e ~ βH£?r, β > 0, where the energy H has been cut off
smoothly.

Our considerations are based on a rough analogy between the SQtse~βH^r and
the grand canonical ensembles appearing in statistical mechanics. Using this
analogy we will motivate a condition on the size of these sets which rests upon the
assumption that the theory in question has decent thermodynamical properties, as
one may expect in models with a realistic particle spectrum. Our heuristic input
consists of the following three premises.

1. Boundary effects should play a secondary role for the problem at hand, so it
seems reasonable to assume that the size of the sets e~βH^r remains essentially
unchanged if one proceeds from the given (infinite volume) theory to the
corresponding theory for finite volume V9 provided Fis sufficiently large compared
to r3. A weakened version of this hypothesis can be stated as follows: let tffv and Hv

be the Hubert space and the Hamiltonian of the finite volume theory, respectively.
Then it should be possible to identify the set e~βH^r with a subset of e~βHvJtfVt 1?

where $fv t is the unit ball in fflv. Namely, for each r and β there should exist a
similarity transformation S (i.e. a bounded, invertible operator) mapping J^v onto
Jf, such that

e-βH&rCS e-βHvJfVtl. (2.1)

The norm of S should, for fixed β, converge to 1 in the limit of large F/r3.
2. In statistical mechanics the operators e~βHv describe, for any given volume

V< oo and temperature β~1 > 0, the Gibbs equilibrium states, and in most theories
of physical interest these operators have a finite trace. The few exceptions to this
rule are theories with a "maximal temperature" such as the so-called string-
theories (cf. for example [21]). But disregarding these models, the sets e~βHvJtfVt ±
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appearing in the right-hand side of (2.1) are the images of the unit ball in #fv under
the actions of some trace class operators. Such sets are the simplest examples of
nuclear sets, as defined by Grothendieck [22].

Definition. A subset jV of a Hubert space $f is called a nuclear set if there exists a
sequence of linear functional ίπ, n e N defined on the linear span of Jf, and a
sequence of unit vectors Φn, n e N such that

i) Σ4,<oo, where λn = sup{\ln(Ψ)\:
n

ii) Σln(Ψ)'Φn = V for all

The nuclearity index of J^ can then be defined, setting v(J^) = mϊ^λn, where the
n

infimum is to be taken with respect to all functionals /π, n e N and vectors Φn, n e N
complying with the above conditions.

It is easy to verify that similarity transformations S map nuclear sets Jf onto
nuclear sets, and that v(S - Jf}^ \\S\\- v(«yΓ). Therefore it follows from the previous
assumptions [cf. in particular relation (2.1)] that the sets e~βH^rCJ^ are nuclear.
Moreover, since clearly v(e~βHvJ^Vtl)^Ύιe~βHv

9 we obtain

v(e-βa&r)£\\S\\ Tτe-βHv. (2.2)

Bearing in mind that \\S\\ should be close to 1 if F/r3 is sufficiently large, one can
derive from this estimate bounds on the nuclearity index v(e~βH^r) if one has
sufficient information on the level density of Hv.

3. It is also obvious from relation (2.2) that the dependence of the nuclearity
index v(e~βH3Pr) on r and β is linked to the thermodynamical properties of the
theory in question: since Ύτe~βHv is the grand partition function (for zero
"chemical potential") the quantity

p = (βVΓ1'^(Ίτe-βHv) (2.3)

is to be interpreted as the pressure of the grand canonical ensemble occupying the
volume V at temperature jβ"1. Now in theories of physical interest the pressure
should stay bounded (for fixed β) in the thermodynamic limit F-» oo. In this generic
case it then follows from (2.2) and the remark following it that for all r ̂  r0, where r0

is some arbitrarily fixed length,

v(e~βH&r)<*(?*φ(β\ (2.4)

Here φ is some model-dependent function which tends to infinity as β
approaches 0.

If both, \\S\\ and p would converge uniformly for small β in the limit of large
F/r3 and F, respectively, one could replace φ(β) in (2.4) by β - p^(β\ where p^ is the
pressure in the thermodynamic limit. But in general it might be necessary to
modify this expression by some additional ^-dependent factor, which subsumes
the boundary effects.

The dominant contribution to φ should, however, be due to the pressure p^.
For non-interacting particles one obtains in the limit of small β (neglecting the



326 D. Buchholz and E. H. Wichmann

particle masses and using Stefan-Boltzmann's law) p^ = c β~4. We note that this
relation holds irrespective of the particle statistics. A similar behaviour of the
pressure is expected in theories which are asymptotically free [23]. So in these
cases φ should have an at most power-like singularity at β = 0. On the other hand,
there exist models where p^, and therefore also φ, has an essential singularity at
β = 0. (An artificial example is the theory of an infinite number of non-interacting
particles, the number of which grows sufficiently rapidly with mass.) But the bound
(2.4) with φ(β) = c-β~n for some π>0 is expected to hold in most theories of
physical interest. We will therefore restrict our attention to these cases.

Having thus explained the heuristic basis of our nuclearity condition we can
proceed now to its precise formulation. To this end we must merely specify the sets
<£r of well localized states. We distinguish these states by the following conditions :

firstly, it should be possible to generate these states from the vacuum by some
operation inside the region Br at time t = 0. Hence the vectors Φ representing these
states should be of the form Φ = WΩ for suitable operators W from the algebra
91(0,,); here (9r denotes the "double cone" with base Br at t = 0. And secondly, it
should be impossible to distinguish the well-localized states from the vacuum by
measurements in the spacelike complement Θ'γ of Θr. Thus the vectors Φ must
satisfy

(Φ,AΦ) = (Ω,AΩ) (2.5)

for all observables A which are localized in &γ. As was shown by Knight [20] and
Licht [24], this condition implies that the operators W generating the vectors Φ
from the vacuum must be isometries. We therefore identify the well-localized states
with the set of vectors

£>r = {WΩ:Wε 21(0,), W* W= 1 } . (2.6)

This is essentially the class of states considered by Haag and Swieca [4].
We now formulate our nuclearity condition, which we expect to be satisfied by

any local quantum field theory admitting a particle interpretation and having
regular thermodynamical properties.

Condition of Nuclearity. The sets e~βH^r must be nuclear for all β>0 and r>0.
Moreover, there must exist positive constants c, n and r0, β0 such that

v(e-βH&r)^<r3β~n (2.7)

for a

We show in the Appendix by a direct computation that this condition is
satisfied in the field-theory of a non-interacting spinless, massive particle. This
result provides evidence to the effect that the boundary effects alluded to in our
heuristic discussion play indeed the secondary role which we anticipated.

Our condition is clearly stronger than the criterion proposed by Haag and
Swieca. In particular, it restricts the admissible particle spectrum at high energies.
Yet since a physically acceptable theory should not only allow a particle
interpretation, but also exhibit a realistic thermodynamical behaviour, we believe
that our condition characterizes within the general setting of quantum field theory
a relevant class of models.
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3. The Split Property as a Consequence of Nuclearity

We will now show that the local algebras have the split property outlined in the
Introduction if they satisfy the nuclearity condition. Our goal is the following

Theorem 3.1. Let 0->2I(0) be a local net of von Neumann algebras subject to the
standard conditions mentioned in the Introduction and the condition of nuclearity.
Then there exists for any bounded region (9± another bounded region 02D0ι sucn

that:
i) (Existence of product states) There is an isometry V mapping ffl onto

such that

for all Ai e 21(0^ and Af

2 e 2l(02)'.
ii) (Split property) There exists a factor 9JI of type I such that

21(0^9^21(0,).
For the derivation of this result one actually does not need all the properties of

the net 0->2I(0) mentioned in the premises of the theorem. In particular, the
specific dependence of the nuclearity index on the radius r of the localization
region given in relation (2.7) is unessential; all that matters are the limitations on
the level density of localized states at high energies. In order to reveal which
properties of the net are relevant for our argument as well as for later reference we
give below a list of the specific assumptions on which our proof of the theorem is
based.

1 . We will make use of the fact that the von Neumann algebras 21(0) constitute
a net with respect to the open, bounded regions 0CR4; thus 9I(0ι)C2l(02)
whenever 0X C02. We remark that the spacelike commutation properties of the
local operators do not enter into our argument. But it will be essential that the
continuous, unitary representation x-»t/(x) of the translations R4 acts
covariantly on the net,

ί/(x)2l(0)l/(x) ' 1 C 21(0 + x) , (3.1)

and that the joint spectrum of the generators of x->l/(x) is contained in the closed
forward lightcone V+ . Moreover, we will rely on the fact that there is an (up to a
phase unique) unit vector Ω e Jtf* which is invariant under the action of [/(x) and
which is cyclic for each 21(0).

2. We require in our argument the existence of some vector ΦeJ^f which is
cyclic for the algebras 2I(01)

/n2t(02) whenever the closure of Gl is contained in the
interiour of 02, i.e. 0X C 02. I*

1 the present case of a local net it is obvious from the
preceding assumption that Ω satisfies this condition. But the existence of vectors Φ
with the desired property can also be established for non-local nets, provided the
algebras 2ί(01)'n 21(0 2) are properly infinite [26].

3. We also rely on the following property of algebraic independence of the
algebras 21(0 j,) and 2Ϊ(02)', whenever &l C02: if the product A1 - A2 of operators
^1e2I(01) and A'2e9l(02)' is zero, then either A1=0 or A2 = 0. This property
was established for local nets by Schlieder [6], and by a slight modification of his
argument it can be established for any net satisfying the preceding two
conditions.
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4. Besides these standard properties we will use in our argument the following
weakened version of our nuclearity condition : let U(0) be the group of all unitaries
in 9Ϊ(0) and let H be the positive generator of the time translations t-+U(t e),
where e e R4 is a timelike vector fixing the time direction. Then we assume that the
set of vectors e ~βHU(&)Ω is nuclear for any /?>0. Moreover, we require that for
small β

~ . (3.2)

where c and n are positive constants (independent of β, but dependent on G\
We emphasize that the statement of the theorem holds true for any net

0-»9I(0) satisfying these four conditions.
We turn now to the proof of Theorem 3.1 which will be given in several steps.

Let 01? 02 be regions such that β1 C 02, and let (£(0! 02) be the *-algebra which is
generated from 21(0!) and 21(0 2)' by taking all finite sums of products of operators
in these algebras. We will consider two representations of the algebra ^(O^i 02).
The first one, denoted by π, acts on $f and is given by

(3.3)

where AkE^ί((9^ and ̂  e 9l(02)' Thus π is the identical representation. Note,
however, that π depends on the choice of the regions 0X and 02. Yet in order not to
overburden the notation we do not indicate this dependence explicitly. The second
representation of (£(0! 02)

 to be considered is denoted by np and acts on Jf® J f .
It is defined by

(3.4)

with 4^21(0!) and ̂  e 2l(02)'. That this definition is consistent, i.e. that
Σ AkAk = 0 implies Σ A® A'k = 0, is a consequence of the algebraic independence
k k

of 91(00 and 91(02); as was shown by Roos [7].
It is our aim to show that for any bounded region &ί there exists another

bounded region 0 2 D0 X such that the representations π and πp of d(Φι'9 02) are
unitarily equivalent. This is exactly the statement in the first part of the theorem.
The second part is then an immediate consequence: namely, let Fbe any isometry
of J f onto 2tf®$f implementing the equivalence of π and πp. Then

is clearly a type / factor. From the trivial inclusion

Fc(F-1(l®5I(^2)/)>/)/ (3.5)

it then follows that the split property holds.
It was pointed out in [8] that the problem of establishing the equivalence of the

representations π and πp can be reduced to an estimate of the norm-difference of
two specific functionals ω and ωp on the algebra (£(0! 02). These functionals are,
for C e (£(0^02), given by

ω(C) = (Ω, π(C)Ω) , ωp(C) = (Q® β, πp(C)Ω® Ω) . (3.6)

We denote the norm difference of these functionals by

1}. (3.7)
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The following proposition provides the basis for the subsequent investigations.

Proposition 3.2. 2 Let (9a,@b be open, bounded regions such that @aC(9bί and let

||ω-ωp|Uα;,b<2. (3.8)

Then the representations π and πp of (£($! &2) are unitarily equivalent for any pair
of regions Θl9Θ2 satisfying &ιC&aC&bC&2.

Proof. The proof of this statement is based on standard arguments and may be
omitted in a first reading. It consists of the following three steps.

i) Let π and πp be the representations of £ : = £($fl; Θb) defined according to
relations (3.3) and (3.4), respectively. It then follows from the definition (3.6) of ω
and ωp, and from the assumption (3.8) that these representations are non-disjoint
(cf. the Appendix of [25]). This means that there exist non-trivial subrepresen-
tations of π and πp9 respectively, which are unitarily equivalent.

ii) Let πs be any non- trivial subrepresentation of π. We want to show next that
if &ι,&2 satisfy the premises of the proposition, then the restrictions of πs,
respectively π, to the algebra (£: = (£($!; 02X^ are unitarily equivalent. To that
end we must verify that the projection Es onto the relevant subspace J^CJf
reducing π can be represented in the form ES = VSV*9 where P^eπ((£)' is an
isometry, i.e. V*Vs = l.

It is well known that such an isometry exists if there is some vector Φe^f
which is cyclic for π((£) and which has the property that ESΦ is separating for π((£)".
Because then it follows from a Radon-Nikodym type of theorem [26, Theorem
2.7.9] that there exists another vector Ψ e Jti? which is cyclic for π((£), and

for all C e (£. Taking into account these features of Ψ and Φ as well as the fact that
Eseπ(ε)'Cπ(K)', it is then easy to verify that the operator Vs defined by

Vs - π(Q Ψ = π(C)EsΦ for C e (£

is an isometry with the desired properties. So it remains to establish the existence
of Φ.

Now according to our assumptions on the net 0->2l(0) there exists a vector
Φe^f which is cyclic for 2l(fi?α)'n 21(00), whenever 0α C 0^. In particular Φ is cyclic
for π((£) = (L That ESΦ is separating for π(G)" can be seen as follows: since
0! C 0α C 02, it is clear that S/nS D 21(0 Jn?!̂ ), so φ is separating for π(fy"vπ($)'
= K//v£/. Hence if ZΈSΦ = Q for some projection Z e π(G)/x = (£/x, we obtain
ZΈS = 0. Moreover, with the notation Z(x) = U(x)ZU(x)~l, we have
[Z(x), Es~] = 0 for x in some open neighbourhood of the origin in IR4; the latter
assertion follows from Eseπ(&)' = &' and the fact that U(x)&U(x)~l c£ for all x
satisfying Θ1 + x C &α C ΰb C Θ2 + x.

It is a well-known consequence of the above relations between Z and Es and the
assumed spectral properties of U(x) that ZU(x)Es = 0 for all x e R4 [27]. Since Es

commutes with the operators Ak(xk), k — 1 , . . . , n if Ak E 21(0^ and xk is contained in

1 The nuclearity condition is not needed here
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some sufficiently small neighbourhood of the origin in IR4, it is also clear that

ZU(x)A1(x1)...An(xJE8 = 0.

But this equation extends, by the edge of the wedge theorem, to arbitrary
x,x l 5 ...,*„ because of the spectral properties of U(x). Now the von Neumann
algebra generated by 31(01) and U(x) is the algebra £$(&} of all bounded operators
on ffl. [Recall that Ω is cyclic for 5i($i) and the only state in ffl which is invariant
under translations.] So we conclude from the above discussion that
Z 38(3?) ΈS = Q. Since Es Φ 0, this is only possible if Z = 0, which proves that the
vector ESΦ is separating for π((E)".

iii) Finally, let πps be any non-trivial subrepresentation of πp. Arguing as in the
previous step one can show that the restrictions of these representations to the
algebra (£ are equivalent: the counterpart to the vector Φ is, in the present case, the
vector Φ(x)Φ, which is cyclic for πp((£) and separating for πp((I)" v πp((£)'; the role of
the translations x->U(x) is now played by x->C7p(x): = t/(x)(g)l7(x) which also
satisfies the spectrum condition. Making use of the facts that Ω®Ω is a cyclic
vector for <Ά(G^®yJi(C)^ and the only state in 3?®3? which is invariant under
Up(x\ the previous argument can be taken over almost literally.

Summing up, we have seen in i) that there exist subrepresentations πs and πps of
π and πp, respectively, which are unitarily equivalent: πs~πps. From ii) we know
that π = π \&~πs \(£, and from iii) that πp = πp Γ<£~πp s Γ<L Hence we conclude
that π~πp. D

By the above proposition the problem of establishing the equivalence of π and
πp has, so to say, been reduced to a "computational" problem. Making use of the
nuclearity condition (3.2) we shall now carry out this computation and show that
for any given bounded region &a there exists another bounded region Θb D &a such
that \\ω-ωp\\&a.&b<2.

Let Φ be a fixed bounded region and let, for any r>0, &r be another bounded
region which is sufficiently large such that G +1 - e C (9r for all \t\ < r here e e IR4 is
the timelike vector appearing in the formulation of the nuclearity condition (3.2).
Picking arbitrarily a finite number of operators Ak e 91(0) and Af

k e 9I(d?r)' for
gl, we define two functions /+(z) and /_(z) as follows.which

zH^Ω) for ze(C, Imz^O,
(3.9)

"ίzH^fcΩ) for zeC, Imz^O.
k

Here H is the positive generator of the time translations eltH = U(t -e\te 1R, and PΩ

is the projection onto Ω.
The function /+(z) is continuous on the closed upper half of the complex

z-plane, and analytic for Imz > 0. Similarly /_(z) is continuous on the closed lower
half of the complex z-plane, and analytic for Imz < 0. Since Ω is invariant under all
time translations, and since Ak(t e) commutes with A( for \t\<r, it follows that
/+(ί)=/_(ί) for \t\<r. Let 0>r be the cut plane,

: Imz = 0, |Rez|^r}. (3.10)
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From what was said above we can conclude that there exists a function fr(z),
defined and analytic on ̂ r, which coincides with /+(z) when ze^ and Imz^O,
and similarly coincides with /_(z) when ze&r and Imz^O. Notice that

m = ω(ΣAk
\ k

- ωp (Σ AkAλ. (3.11)

Hence if we can show that there exist constants r and δ < 2 such that |/r(0)| rg δ for
any choice of the operators Ake$ί(0) and ^e9I(0r)' with ^1> the

desired bound ||ω — cop\\0;βr<2 follows. The pivotal point in the proof of this is
expressed in the following lemma, which depends in an essential way on the
nuclearity condition (3.2).

Lemma 3.3. The analytic functions fr defined above satisfy the condition

|/r(z)|^/ι(.|Imz|) βc|Imz|"n for ImzφO.

Here c and n are positive constants and h(s), s^.0 is a continuous function which
tends monotonically to 0 as s tends to infinity. The quantities c, n, and h depend only
on (9. They are in particular independent of r and the specific choice of the operators

ΣAkAk ^Ak e 81(0) and Ak e 91(0,.)', provided that

Proof. We begin with some preliminary remarks about two simple algebraic facts.
Firstly, let Φ, Ψe^f and let || - \\p denote the operator norm on
Then it is obvious that

Making use of the existence of the representation πp of (1(0 0r) defined in (3.4), it is
also clear that

Hence, taking into account that ^ 1, we arrive at the useful estimateΣAkAk

Secondly, we note that any operator A e 2Ϊ(0) with \\A\\ ^2 can be represented
as a sum of four unitaries in 91(0), since 91(0) is norm closed. Hence if for some
linear functional / on 91(0) and a fixed /l^O the bound \l(U)\^λ holds for all
unitary [7e9I(0), it follows that \l(A)\^2λ \\A\\ for Ae91(0).

After these preliminaries we can now discuss the consequence of the nuclearity
condition for the problem at hand. By the condition (3.2) and by the above remark
there exikt, for any σ>0, a sequence of linear functional lm on e~σH9l(0)Ω and a
sequence of unit vectors Φm in ffl such that for any A 6 91(0), we have

v~σH

m = l
AΩ) Φn
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where the sum is absolutely convergent. In fact, setting

we have for sufficiently small σ > 0 the estimate

£ λm

where c and n are the constants appearing in the nuclearity condition (3.2).
Now let z = 1 + is, where ί e R and s > 0. Then it follows from the definition off,

that fr(t + is)=f+(t + is), and with the arbitrary decomposition s = σ + τ, where
σ>0, τ^O we obtain from (3.9) the equality

, A'ke«-^(\ -Pa)e-'sAkΩ) .

Making use of the above mentioned properties of the functional lm and the vectors
Φm, we can convert this expression into the equalities

Mt + is)=Σ Σ (Ω9A&*-*a(ί-PΩ)ΦJ.lm(e-σHAkΩ)
k m=ί

= Σ lm(e
m=l

where the operators

are elements of the algebra 91(0). From the above preliminary remarks it follows
that

\\A^\\^\\e-τH(l-PΩ)Φm\\,
and hence we arrive at the estimate

m = l

Setting first σ = s, τ = 0 and taking into account that || Φm \\ = 1 as well as the bound
00

on Σ ^m(σ)> we obtain
m = l

for 0 < s ̂  s0, provided s0 is sufficiently small. If s ̂  s0, we set σ = s0, τ = s — s0, and
we then have

|/Γ(ί + ίs)|S Σ
m = l

The right-hand side of this inequality is continuous for s^s0 and tends
monotonically to 0 as s tends to infinity, because each individual term
||e~(s~So)H(l — Pβ)Φm|| has these properties (recall that Ω is the only invariant state
under translations) and the sum over all coefficients λm(s0) is finite. By a
combination of these bounds on \fr(t + is)\ the assertion of the lemma follows for
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s > 0. To see that this assertion also holds for s < 0 we note, with reference to (3.9),
that for s < 0

where g+ is obtained from /+ by replacing the operators Ak, Ak in (3.9) by their
adjoints Aξ and A'h*9 respectively. Since

Σ Ak Ak *k
k

the conclusion then follows from what has already been proved. G

Let c, n be the positive constants and h be the function appearing in the
formulation of the previous lemma. We consider for any r > 0 the family J^ of all
functions / which are analytic on the cut plane 0*r and satisfy the inequality

\f(z)\^h(\Imz\).ec\lmz\-n (3.12)

for all z e C, Imz Φ 0. The functions fr considered earlier are clearly elements of J%.
The desired bound on |/r(0)| now follows from the next lemma, which is based on a
Phragmen-Lindelόf type of argument.

Lemma 3.4. For any <5>0 there exists an (J (̂<5)) > 0 such that |/(0)|<<5 for all

Proof. Let r>0 be fixed in the following. We will show that the family J^ of
analytic functions on 0>γ is normal (i.e. uniformly bounded on each compact subset
of ̂ ). Anticipating this result, the proof of the lemma can be completed as follows :
if the statement were wrong, there would exist a sequence of functions gn^^n.r,
n e N such that \gn(0)\ ^ δ. We then consider the scaled functions gn(z) : — gn(n z),
z e 3?r which are all elements of J^, since the bound on the right-hand side of (3.12)
decreases monotonically if |Imz| increases. Moreover, since this bound converges
to 0 as |Imz| approaches infinity, it follows that Iim0w(z) = 0 if |Imz|φO. Making

n

use now of the fact that 3Fr is a normal family of analytic functions, it is then an
immediate consequence that lim gn(z) = 0 for all z e ̂ Γ. But since 0 e 0>r and gn(G)

n

= #„(()), this result is incompatible with the assumption that \gn(ϋ)\^δ.
For the proof that Ĵ . is normal it suffices to show that the functions in 3Fr are

uniformly bounded on some neighbourhood of each real point t e 0>r. To this end
we introduce for any given ε with 0 < ε < r the auxiliary function

0(r-ε-z), zφ±(r-ε),

It is obvious that the restriction of ai to the open set

@ = {z: |Rez| + |Imz|1/2<r-ε}

is analytic; moreover, this restriction extends in a continuous fashion to the
closure 2 of 3). We denote this extension of a1 f 2 by a and note that a(r — ε)
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Now let / e ̂ v and let g(z) = a(z) /(z) for z e ̂ . Since ® C ̂ r it is clear that 0 is
analytic on 3), continuous on ®, and g(r — ε) = g( — r + ε) = Q. The maximum
modulus principle is then applicable, and hence \g(z)\^M(g), where M(g) is the
maximum of \g(z)\ on the boundary dSi of 3) this maximum is assumed at some
point different from z= ±(r — ε). On the basis of the bound (3.12) on the functions
fe&r and the specific properties of the auxiliary function a we obtain by a
straightforward calculation the estimate

M(g)^ sup {expC-e1/') - h(t2)<?~2n} = M ,
ί>0

where M is a constant independent of the particular choice of /e JV Since α does
not vanish on the open set 2), we thus arrive at the bound

which holds for all /e J^. This result implies in particular that the functions in J^
are uniformly bounded in some neighbourhood of any real point t with |ί| < r — ε.
But ε>0 was arbitrary, and taking also into account the a priori bound (3.12) it is
then clear that the functions in ̂ . are locally bounded on ̂ .. Hence 3Fr is a normal
family of analytic functions. D

Summarizing the results of the previous discussion we have seen [cf.
Eq. (3.11), Lemma 3.3, and the definition of the families J^] that

||ω-ωp|U;^sup{|/(0)|: /e^r}. (3.13)

From Lemma 3.4 it then follows that || ω - ωp \\ &. Φr < 2, provided r (and consequent-
ly Θr) is sufficiently large. We have thus established

Proposition 3.5. Let Θa be any open, bounded region. Then there exists another open
bounded region &b^)0a such that ||ω — ωp\\&a,&b<2.

The proof of Theorem 3.1 is now accomplished by combining Propositions 3.5
and 3.2: given Θί9 we can choose two open, bounded regions 0a, &b such that
0βD0ι, $&D0fl, and \\co-ωp\\&a;C)b<2. It then follows that the representations π
and πp of CL^; 02)> where &2 is any region containing βb in its interiour, are
unitarily equivalent. As already discussed, this implies the theorem.

It is obvious from our arguments that these results can be generalized in
various ways. For example, we never depended on 0->9ί(0) being a net on R4, and
accordingly the theorem holds in any number of space-time dimensions.

It is also clear that the bound given in the nuclearity condition (3.2) could be
relaxed. The actual borderline, where the theorem breaks down is not known to us.
One can show, however, that the conclusion in Lemma 3.4 is false if the bound
(3.12) entering into the definition of the families 3Fr is replaced by exp(e1/|Imz|) in a
neighbourhood of the real axis [30]. Our particular approach is thus not
applicable in this case.

Finally, we would like to point out that, by a refinement of the argument in
Lemma 3.4, one can derive an estimate on the size of the region (92 i

n the theorem in
terms of the parameters c, n, and h in (3.12). We have refrained from doing so since
the size of (92 obtained in this way is far from optimal. In fact, on the basis of a
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slightly more restrictive version of our nuclearity condition, it has recently been
shown [31] that the statement of the theorem holds true for any region &2

containing &^ in its interiour.

4. Concluding Remarks

In the present investigation we have focussed attention on certain configuration
space aspects of our nuclearity condition. We have seen that the asymptotic energy
level density of the well localized states, which can be read off the nuclearity index
v(e~^HJS?r) for small β and fixed r, governs the nature of the correlations between
observables in spacelike separated regions of Minkowski space. In models where
the nuclear index does not grow too rapidly as β approaches 0, one can represent
all physical states as superpositions of "product states" which do not exhibit any
correlations between certain pairs of spacelike separated regions.

By a straightforward generalization of the present methods one can extend this
result to any number of spacelike separated regions 0^...,Gn provided these
regions are bounded (with the possible exception of one member), and their mutual
distances are sufficiently large. Namely, given any such collection of regions, which
may be regarded as lacunary paving of some spacelike surface, there exists an
orthonormal basis of product states Φ e ffl for which

(Φ9A1...AHΦ)=Π(Φ9AkΦ) (4.1)

for any choice of the operators Ak e 5I($fe), k = 1 , . . . , n. In all models satisfying our
nuclearity condition the physical states can thus be interpreted in terms of
completely uncorrelated subsystems which are localized in the panels of such
lacunary pavings of spacelike planes.

In collision theory one is interested in the properties of the subsystems
appearing in these resolutions of physical states at asymptotic times. In this
connection it is of particular interest under which circumstances these subsystems
can be interpreted as particles. We expect that the volume dependence of the
energy level density of the well-localized states, which likewise can be read off the
nuclearity index, is of decisive importance in this context.

Because of the additivity of the energy of multiply localized states (i.e. states
consisting of several localization centers) [33], it is clear that the nuclearity index
v(e~βH

fSfr) increases in all models at least as rapidly as ecr3 in the limit of large r and
fixed β. If, on the other hand, the nuclearity index would grow considerably faster,
this would mean that there exist excitations of fixed energy E in the model,
occupying arbitrarily large regions of space, which are not composed of several
localization centers whose total energy adds up to E. It is evident that such states
cannot have a particle interpretation. The r-dependence of the nuclearity index
stated in our nuclearity condition therefore seems to be a necessary condition for a
theory to have a particle interpretation. In fact, there are indications [18] that this
condition is also sufficient, if one defines a single particle state as a state singly
localized at all times [5]. This more general concept of a particle can also be
extended to infra-particles [18], (i.e. particle like excitations which do not
correspond to discrete points in the mass spectrum [34]).
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5. Appendix

In this Appendix we show that our nuclearity criterion is satisfied in the theory of a
free hermitian scalar field associated with a single spinless particle of mass m > 0.
This is the simplest example of a large class of free field theories which can be
treated by similar methods.

We begin with a brief review, partly to establish our notation. The Hubert
space 3? is the Fock space over the Hubert space of all single particle states,
which we identify with the space L2(IR3) of momentum space wave functions
/(p) equipped with the scalar product

The generator ω of the time translations on the single particle subspace is given (on
its natural domain) by

The global space-time translations U(x) are then fixed by the Fock-space structure
of jr.

To each /eL2(R3) corresponds a creation operator a*(f) and a destruction
operator α(/) as well as a unitary Weyl operator

The creation and destruction operators satisfy the usual canonical commutation
relations, which are equivalent to the well-known law of composition

W(f) W(g) = W(f + g) e*(<i*n ~ </lflf>)

for the Weyl-operators.
To each double cone $r = {xeR4: |x0| + |x|<r} there corresponds a real

subspace K((9r) of L2(R3) consisting of all wave functions of the form

(|p|2 + m2) - ̂ /(p) + ί(|p|2 + m2)1/2^) ,

where /, g are test functions whose Fourier transforms are real and have support in
the ball |x| < r. The local algebras 9I(0r) are then defined as the von Neumann
algebras generated by all Weyl-operators W(h) with h e K(Θr\ i.e.

With the aid of these special algebras and the translations we can define the
algebras corresponding to arbitrary bounded regions 0 by atiditivity. The
resulting net d?->9l(ύ?) has all the standard properties mentioned in the
Introduction.

Our goal is the following theorem which shows that our nuclearity condition is
satisfied for the free-field theory under consideration.

Theorem. In the free field theory of a single spinless particle of mass m>ΰthe sets

are nuclear for any r and any β>0. Moreover, if r^m~1 and β^r, then

v(e~βπ& ) < ec(r/β}3 ' \ι*(i-*-βm'2)\ 9

where C is some constant (independent of r, /?, and m).
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Remark. Our estimate for the nuclearity index is rather crude and can be improved
at the price of added complications.

For the proof that the set of vectors e~βH^r is nuclear we must exhibit a
sequence of unit vectors Φn and a sequence of linear functional /„ with the
properties given in Sect. 2. Our construction of these quantities depends on a
proper choice of an orthonormal basis ek, k e N in L2(IR3). Given such a basis we
define for all finite sequences (nί9 ...,np) of non-negative integers ("occupation
numbers") the vectors

where n is the label of the sequences (nl5 ..., np) in an appropriate enumeration.
These vectors form an orthonormal basis in j#*. The associated linear functional /„
are defined on all of ffl by

ln(Ψ) = (Φn,Ψ) for

It is then obvious that

n=l

the sum being defined in the sense of strong convergence. It will be shown in the
remainder of this section that for any given r and β > 0 one can find an orthonor-
mal basis ek, k e N in L2(R3) such that the corresponding sequence

λn = sup{\ln(e-βHUΩ)\: 17 e 21(0,), £7*E7 = 1}

is summable. This means that e~βHJ£r is a nuclear set. Moreover, the sum over all
λn will provide the upper bound on the nuclearity index of e~βH££r stated in the
theorem.

The proof of this assertion involves mildly cumbersome combinatorial
problems which we will handle by generating function methods of the kind which
are standard in Fock space theory. To begin with we define for any Ψ e J^ the
functional

G(f;Ψ) = (ea*^Ω,Ψ), /eL2(R3),

where the exponential function is understood in terms of its power series
expansion. In view of the relation

it is clear that

where we have put ||/||2 = </|/>, and this bound is optimal if Ψ is arbitrary. The
following observation is now important : if, for some set of vectors Jf d2ff, one can
establish bounds on the functionals G(/; Ψ), Ψ e Jf as stated in the next lemma,
then it follows that Jf is a nuclear set.
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Lemma 1. Let Jf be a subset of vectors in the unit ball of 3? . If there exists a
(self adjoint) trace class operator T^O on L2(R3) with norm \\T\\ <1 such that

/eL2(R3)

for all Ψ e Jf , then Jf is a nuclear set. Moreover,

Proof. Since T is a positive trace class operator in L2(R3) there exists an
orthonormal basis of eigenvectors ek, k e N corresponding to the eigenvalues tk of
T. From the fact that || Γ|| < 1 and T^ 0 it is also clear that 0 <, tk < 1 . Now let Φn

and ln be the unit vectors and functional, respectively, constructed from ek, k e N
as described above. We desire a good estimate on the quantities ln(Ψ), Ψ eJV.

Let (n1? ...,np) be the sequence of integers corresponding to the label n.
Denoting by w = (w l5 ..., wp) and by z = (zl9 ...,zp) arbitrary p-tuplets of positive
and complex numbers, respectively, we introduce the auxiliary L2(lR3)-valued
function

p
/(z,w)= Σ zkwk ek.fc=ι

Using the notation zk = xk + iyk with xfe, j^eR, dpz = dxί...dxpdy1...dyp, and
l zl 2 — l zιl 2 + + !zp|2? we obtain, through a straightforward calculation, the
equality

= lim -

for any Ψ e 3?. [Note that due to the presence of the term e~ε'z |4, one may
interchange the integration with the summation, involved in the definition of
G(/(z,w); Ψ), for any choice of w l 9...,wp.] Applying the Cauchy-Schwarz
inequality to the integral we thus arrive at

provided that the right-hand side of this inequality exists. Now for vectors Ψ E Jf
it follows from the premises in the lemma that

This leads, after integration, to the estimate

which is valid for all wfc satisfying wfc > 0, wfcίfc < 1 . Calculating the minimum of the
right-hand side of this inequality with respect to w1? ..., wp we finally arrive at the
bound
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which holds for all Ψ e Jf. We note that this bound is not optimal, but we selected
this form in the interest of simplicity. Setting

and taking into account that the sequence tk is summable as well as the fact that
l, it follows that

Σ ̂  Πn=ί k=ί

This estimate shows that Jf is a nuclear set and it provides the bound on the
nuclearity index of Jf given in the lemma. D

We will now exploit the specific properties of the sets e~βH^r and show that
they are of the type considered in the previous lemma. We first note the trivial
identity

- ~ ; U Ω )

which holds for any bounded operator U. The analysis of the consequences of the
assumption that l/e2I(0r) is somewhat more complicated. Let K({9r)' be the
closed real subspace of L2(R3) which is conjugate to K((9r) in the sense that

K(Θry={gεL2(^Y <0|/> = </|0> for all fεK(Or)}.

In view of the composition law for the Weyl operators we then have W(g) e 9l(0Γ)'
forany0eK(0 r)'.

On the basis of this composition law it is also easy to establish the equality of
the various representations of the function F(z\ z e C given by

, 17 W(zg)O).

These equations hold for any g, fteL2(IR3) and any bounded operator U. By
inspection of the first (defining) equality we see that F(z) is an entire analytic
function. If z = x is real, g e K((9r}\ and U e 2l(0r), then W(xg) commutes with £7,
and thus it follows from the second equality that F(x) is constant. But this implies
that F(z), z e (C is constant, and setting z — 0 in the third member we find that F(z)
= G(h UΩ). Setting now z = — i/2, h = e ~ βωf, and using again the second equality
we obtain the estimate

which holds for all /e L2(R3), all g e K(Θr)'9 and all operators U e 9I(0Γ) of norm
less than 1 (i.e. in particular for all isometries).

In the next step we select for every / e L2(R3) a g e K(0r}
f such that \\e ~ βωf- g \\

is "as small as possible." To this end we define an antiunitary involution J on
L2(R3) by



340 D. Buchholz and E. H. Wichmann

i.e. J induces complex conjugation of the wave functions in configuration space.
We also consider the closed complex-linear subspace K(

r

+} of L2(R3) which is the
closure of the set of functions ω1/2/, where / runs through all test functions which,
in configuration space, have support in the ball |x| <r. Similarly, K(

r~
} is defined as

the closure of the set of functions ω~1/2/ with / as above.
Now let E(

r

+} and E(

r~
} be the orthogonal projections onto K(

r

+} and K(

r~\
respectively. Since K(

r

+} and K(

r~
} are invariant under J it follows that E(

r

+} and E(

r~
}

commute with J. It is also easy to see that

is an element of K(Θr)
f for any choice of the function h e L2(R3). Hence if we put

h = e~βωf and choose g as above, we obtain from the earlier estimate on
G(/; e~βHUΩ) the bound

where Γ+ , Γ_ denote the bounded operators

For further progress we need estimates on the norms and trace-norms of these
operators, and we thus consider

Lemma 2. If r^m" 1 and 0<β^r, then

\\T±\\^e~βrn and ^T±\\^C'(r/β)3e~βml2

 9

where c is some constant which does not depend on r, jδ, or m. Here \\ - \\ i denotes the
trace-norm for the operators on L2(R3).

Proof. (In the following m is set equal to 1, i.e. the quantities r, β are given in units
of m"1.) The bounds on the operator norms of T+ and T_ follow from the trivial
inequality || T+ \\ ̂  || e ~ βω \\ and the fact that ω ̂  1 . For the proof that T+ and Γ_ are
trace class operators we proceed as follows.

Let χ(x) be any real test function on configuration space with the property that
χ(x) = l for |x|^l and χ(x) = 0 for |x|^2. We then consider the scaled function
χr(x) : = χ(r ~ 1x) and define the bounded, selfadjoint operator χr on the momentum
space wave functions h E L2(R3), setting

Here the tilde denotes the Fourier transforms of the respective functions.
It follows from the definition of the space K(

r

+) introduced above that
ϊ = E(

r

+}'ω~ίl2χrω
112, so we have the trivial identity

where P denotes the momentum operator on L2(R3). It is also easy to verify that
the two operators in the curly brackets are in the Hubert-Schmidt class, and
hence T+ is in the trace class. Moreover, on the basis of the simple inequality
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for all p, q e R3, we obtain after a straightforward calculation the following bound
on the Hubert-Schmidt norm of the first operator:

for r^l and 0<β^r. Here cv is a constant which only depends on the specific
properties of the function χ(x) selected above. Making also use of the estimate

for p G R3, we likewise obtain for the second operator

for r^ 1, 0</?ίgr, and another constant c2 Combining the above identity for T+

with these estimates of the Hubert-Schmidt norms, we now have

for r^l and 0</?rgr. This is the desired bound on the trace-norm of T+. The
same considerations apply to T_ , so the proof of the lemma is complete. D

With this information at hand we can now continue our analysis of the
functional G(/; e~βHUΩ). Let r^m"1, 0< β^r, and let Γ+, T_ be the operators
considered in the preceding lemma. We then define the positive, bounded operator
Tby

where n is some positive integer. It is obvious that

and hence if we choose n sufficiently large we have || T|| ̂ e~mβ/2. We next note that
for positive operators A, B, and 0 < α ̂  1

provided A* and B* are in the trace class (cf. for example [35]). We thus con-
clude that T is in the trace class, and we have

From the fact that x->x1/w, x^O is an operator-monotone function for rc^l, it
finally follows that Tf T+ ̂  Γ2 and T*T_ ̂  T2, and consequently

||Γ_i(^^

where in the last equality we made use of the fact that T commutes with J. On the
basis of the previous estimate of G(f; e~βHUΩ\ we thus arrive at the inequality

We are now in a position to complete the proof of the theorem. Since Γ is a
trace class operator and ||T||<1, it follows from the above bound on
G(/; e~βHUΩ) and Lemma 1 that the sets e~βH&r are nuclear for small β>0 and
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large r. But it is then clear that these sets are nuclear for all r and β>0 because
&rC&r, if r^r', and e-

(β-βΊH is a bounded, invertible operator if β^β'.
According to Lemma 1 we also have

and making use of the fact that the function x-» — x~i ln(l— x), 0^x<l is
monotonically increasing, we can obtain the more convenient estimate

Taking into account the explicit bounds on ||T|| and || Tl^ given above we
conclude that, for r^m"1 and

where c is some number. This completes our proof of the theorem.
In conclusion we would like to point out that our methods also apply to

"many-particle theories" with a countable number of free spinless particles with
arbitrary masses 0<m1^m2^...^m ί^... . They are obtained from the present
theory by a standard tensor-product construction (cf. for example [9]). This class
of models is of some theoretical interest because it allows a simple study of the
effects of a more complicated particle spectrum on the properties of the sets

By a slight generalization of the previous arguments one can show that the sets
e~βH<£r are nuclear for any r and j5>0, whenever the particle spectrum of the
theory is such that

Σe-'m ί<oo for all β>0.

Moreover, for the nuclearity index of these sets one has
c(r/β)3 Σ | ln(l-e-0mi/2)|

for all r^rm^1, 0</?:gr and some constant c. (This result can also directly be
deduced from the present theorem if one uses the following general fact [36]: the
nuclearity index v(Q~βH5Pr) is, in the "tensor-product theory" constructed from a
given set of models, bounded from above by the product of the corresponding
nuclearity indexes in the respective underlying models.) It follows from the above
estimate that a many particle theory satisfies our nuclearity condition, provided
the number of particles in the theory of mass less than m does not grow faster than
some power of m.
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Note added in proof. It has recently been shown that our nuclearity condition is also satisfied by
field-theories of non-interacting massless particles, such as free quantum electrodynamics [37].




