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Summary. Extending the method of [-27], we prove that the correlation length 
of independent bond percolation models exhibits mean-field type critical 

behaviour (i.e. ~(P)~(Pc-P)-1/2 as p/~ Pc) in two situations: i) for nearest-neigh- 
bour independent bond percolation models on a d-dimensional hypercubic lat, 
tice Z d, with d sufficiently large, and ii) for a class of "spread-out" independent 
bond percolation models, which are believed to belong to the same universality 
class as the nearest-neighbour model, in more than six dimensions. The proof 
is based on, and extends, a method developed in [27], where it was used to 
prove the triangle condition and hence mean-field behaviour of the critical expo- 
nents 7,/3, 3, A and v2 for the above two cases. 
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I. Introduction 

In this paper, we continue our analysis of the mean-field critical behaviour 
for percolation in high dimensions (started in [,27]), and prove that the critical 
exponent v controlling the divergence of the correlation length exists and takes 
its mean-field value (v = 1/2; see Sect. 1.1 for definitions of v and other critical 
exponents). 

The first rigorous proof of the mean-field critical behaviour is by Sokal 
[,39], who proved the critical exponent equality e = 0  for Ising and ~o 4 models 
in dimensions greater than four. In the analysis, a combination of the infrared 
bound [-20] and correlation inequalities played an essential r61e. Works in this 
spirit followed, and led to the proof of exponent equalities 7 = 1,/3 = 1/2, ~ = 3 
in dimensions greater than four [-1, 4, 19]. However, the rigorous proof of the 
mean-field behaviour of the exponent v of correlation length (v = 1/2) turned 
out to be much more difficult, and we had to wait for the development of 
a rigorous renormalization group method [21] to obtain a partial result [-26, 
291. 

On the other hand, for related stochastic geometric models (self-avoiding 
walks, percolation, branched polymers ...), there has been no general proof of 
the infrared bound. There are even some indications that it is explicitly violated 
in low dimensions [42, 31, 10]. The important step in proving mean-field proper- 
ties for these models was taken in [14], where the mean-field property for the 
exponent v (i.e. v = 1/2) together with the infrared bound was proved for weakly 
self-avoiding walk in more than four dimensions. This method was further stud- 
ied and simplified in [37, 38], and yielded 7 = 1, v = 1/2 for strictly self-avoiding 
walk in sufficiently high dimensions. In the above analysis, "complex activity" 
of random walks was introduced, which, through Cauchy integral formula, pro- 
vided considerably detailed information on the critical behaviour, especially 
those of the susceptibility and the correlation length. (However, it has been 
shown in [37] that the infrared bound can be proved without using the "complex 
activity.") 

For percolation models, Slade and the present author [27] proved first the 
infrared bound in high dimensions along the line of argument of [-37]. Then, 
according to [-5, 8, 35], mean-field properties (7 = fi= 1, 6 = A = 2) followed. Also 
the analysis provided the proof of the mean-field critical behaviour of the average 
radius of gyration (also called the correlation length of order two), in particular 
the exponent equality v2 = 1/2. However, the problem of mean-field behaviour 
of the correlation length 4, defined as the inverse of the exponential decay rate 
of the two point function, and its exponent v still remained open. 

In this paper, we extend the analysis of [27] to prove v = 1/2. Instead of 
introducing "complex probability" which would correspond to the "complex 
activity" of self avoiding walk, we carry out our analysis based on the expansion 
(identity for the two point function) derived in [27], performing a kind of Four- 
ier-Laplace transform on it. A related idea was used in [13] to control massive 
decay of two-point functions of (p4 theory. The method of this paper, like the 
one of [,27], can also be applied to site percolation, and yields the same results. 
Also the method can be applied to other systems, once one has an expansion 
similar to the one used in this paper. (An example is a system of lattice trees 
and lattice animals [28].) 
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1.1. The models and their basic properties 

As in [27], we consider independent Bernoulli (bond) percolation models on 
the infinite d-dimensional hypercubic lattice 2g d. (See [-22] for a review.) An 
element of 2g d is called a site, and a pair of distinct sites is called a bond. To 
each bond b =  {x, y} (x, ye7Zd), a random variable nb is associated, which takes 
the value 0 and 1. The set of random variables {rib} is independent, and the 
distribution of nb is given by 

Prob (n b = 1) = Pb-- P" Jb, 

Prob (n b = 0) = 1 -- Pb-- 1 -- p. Jb. 

We require 2gd-invariance (i.e. invariance under translation, reflection and rota- 

tion by re~2) for the J~xy~ = J~0,~-y~. We write II x I b -  Ix.I ~ , I x l -  II x [I 2. 
1 

We consider the following possibilities for Jb: 
(i) the nearest-neighbour model: 

= ~fl if x is a nearest-neighbour of 0 (i.e. if 11 x [12 = 1) 
J o, x} 0 otherwise 

(ii) The spread-out model: 

J~o, ~ = L-a g(x/L) 

where g: ]R d ~ [0, oo) is a given function which is normalized so that Sg(x) dax = 1 
and ~[x[ 2 g(x )dax= 1 (see the remark after Theorem 1.2), and is invariant under 
rotations by ~z/2 and reflections in the coordinate hyperplanes. The parameter 
L will be taken to be large. A basic example is 

g(x) = t C  ifl[x[l~176 otherwise 

with l=(3/d) 1/2, C=(2/)  -d. We require that g decay exponentially at infinity 
(i.e. there exist positive C and 6 such that g(x)____ Ce -~ II x II , ) .  

The bond density p is the only parameter in these models. (Note that in 
model (ii), p can take values in the interval [0, Ld/supx g(x)].) 

If nb= 1 we say that b is occupied, while if nb= 0 we say b is vacant. We 
use Probv(E) to denote the probability of an event E with respect to the joint 
distribution of the n b, and denote expectation with respect to this distribution 
by ( ' ) p .  (However, we occasionally omit the subscript p.) 

Given a bond configuration {rib}, tWO sites x and y in the lattice are said 
to be connected if there exists a path from x to y which consists of occupied 
bonds. The connected cluster C(x) of x is the random set of sites defined by 

C(x) = {ye7Z.d: y is connected to x}. 

The number of sites in C(x) is denoted by [C(x)[. 
We define the two point function 

Zp(X, y)=  Probv(y is connected to x), 
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the susceptibility 

z ,  = E zv(o, x) = <lC(0)l>~, 
x 

and the mass m v (inverse of the correlation length {(p)) 

In zv(O, nel) 
(1.1) ~(p)- 1 rap= --Jim n 

where e t - ( 1 , 0 ,  0, . . . ,0) is the unit vector in 1-direction. The existence of the 
above limit (which might be zero) is proven by the Harr is-FKG inequality 
[30, 18] through a subadditivity argument [24, t6, 22] (see also Appendix A). 
We write ~(p) rather than {p in order to distinguish this from "correlation 
length of order r  defined in (1.4). 

Remark. In the above, we defined the mass by long-distance behaviour of ~p 
along a coordinate axis. It is natural to ask about behaviour of zv(0, x) in 
off-axis directions, i.e. behaviour of Zp(0, nx) (as n ,~ o0) for general xE2g ~. It 
can be shown 1-7] by a subadditive argument that l(x) defined by 

mp l(x)-  - lim in %(0, nx) 
n ~ o o  n 

exists, and is a norm on 2g d which satisfies [Ixllo~<t(x)< [IxlIl. In this sense, 
~(p)=m~ -1 characterizes long-distance behaviour of %(0, x) not only for x on 
coordinate axes but also for x off the axes. 

Some of the basic properties of the models which will be relevant for us 
are the following. See, e.g., 1-22] for clear and self-contained derivation of these 
properties for the nearest-neighbour model. Most of the proofs extend to the 
spread-out model trivially. More account can be found in Appendix A. 

i) For d>__2, there exists poe(0, 1) such that )(p< o0 for P<Pc, and Z ;=  o0 
for P>Pc 1-12, 25]. Pc is called the critical point. Usually, Pc is defined as the 
percolation threshold (i.e., pc-sup{p[Probp(IC(O)[= o0)=0}), but it has been 
recently established [32, 3, 33] for a quite wide range of models (including 
the ones considered here) that these two are identical. 

ii) Xp ,~ o0 as p ~ p~ [5]. 
iii) For models with exponentially decaying interactions (i.e. J{o,x} 

<=Ce -~ with some 0<~,  C<o0), ~(p)<o0 as long as Xv<o0. Moreover, 
~(p) s o0 as p ,~ p~. For finite range models (i.e. Jm~}=0 for [x[>R with some 
R >0), these have been proven explicitly in [24, 5]. For infinite range models 
(but still obeying the bound J{o,x}<=Ce-altxN O, we can argue as in I-6], or as 
in the Appendix I of I-2]. 

iv) The two point function obeys the bound [-23, 16] 

(1.2) %(0, x) < e-m~ It- tl 

where m v is defined by (1.1). 
In this paper, we are concerned with the critical behaviour of the correlation 

length ~(p), i.e. its behaviour near the critical point Pc as p approaches Pc. In 
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general, this behaviour (as well as that of Zp) is expected to be in the form 
of power laws, and we introduce the critical exponents ~ and v as follows 

(1.3) )~p~(Pc-P) ~ as p/~ p~, 

(p) ~ (p~- p)-~ as p ~ p~. 

Here f(p),,~lpc-pl -~ is defined to mean that there are positive constants C~ 
and Cz (which are independent of p) such that 

CllPc-p]-Z<=f(p)~C21p~-pl -a for pclosetop~. 

To compare the result of this paper with that of [27], we also introduce 
the correlation length of order 4) (4)= 2 case is sometimes called average radius 
of gyration) ~ (p) as follows: 

Y, Ixl ~ ~,(0, x) 
x 

(1.4) (~e(P))+= Zzp(O, x) 
x 

for 4)>0. By H61der's inequality, this ~e(p) is nondecreasing in 4). We define 
its critical exponent vo by the relation: 

~e (P) ~ (Pc - P)- ~ as p .7 Pc. 

Remark. The above ~(p) and Ce(p) are formally equivalent. E.g. if we assume 
a simple scaling form for the two point function 

(1.5) zp(O, x),.~f(l(x)) e -l(x)/r as Ix[ .7 oo 

where f (z) is a slowly varying real function (e.g. f ( z ) ~  z-(a-  2 + ~)), then ~ (p)~ ~ (p) 
for p near Pc, and thus v=v4,. However, at present, there is no rigorous proof  
of the scaling form (1.5), nor the proof  that ~(p) and Co(p) exhibit the same 
critical behaviour. Incidentally it has been proven [34] that 

and thus 

O ~ v _ v ~  7 - v  
4) 

lim vo = v 
q S - r ~  

assuming the existence of the exponents. 
On the Bethe lattice, the susceptibility obeys the simple power law, i.e. the 

above exponent 7 exists and takes the value 7--1. Also with a suitable (slightly 
artificial?) introduction of distance on the Bethe lattice, ~2(P) also obeys the 
power law, with v 2 = 1/2. See [22] for more details on the Bethe lattice calcula- 
tion. The Bethe lattice critical exponents are known as the mean-field values, 
and it is expected for the above models (i) and (ii) in more than six dimensions 
all critical exponents take their mean-field values (including v = v2 = 1/2). 
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1.2. Main results 

In [27] it was proved for the models (i) and (ii) satisfying the conditions of 
Theorems 1.1, 1.2 below that the susceptibility Zv and the average radius of 
gyration 42 (P) exhibit mean-field critical behaviour, i.e. 

(1.6) Z ,~ [pc -p l  -x, g2(p)~lpc-p[ -1/2 

together with other quantities (in particular, it was proven fi = 1, and 6 = A = 2). 
In this paper, we prove similar results for the correlation length ~(p). I.e., 

Theorem 1.1. For the nearest-neighbour independent bond percolation model (i) 
on ~d, there exists do > 6 such that for d > do the correlation length ~(p) exhibits 
mean-field type critical behaviour. I.e., there are positive and finite constants (inde- 
pendent of p) C 1 , C a, such that 

(1.7) C1 IPc- P[- 1/2 ~ ~ (p) ~ C2 IPc- Pl- 1/2 

for p~ [pc~2, Pc). 

Theorem 1.2. The correlation length ~ (p) exhibits mean-field type critical behaviour 
(i.e. (1.7) holds for pe[pj2, pc)) for d>6,  for the spread-out models (ii), if L is 

8d g 
sufficiently large (depending on d and g) and if g is ~a-invariant, 8xl 8x2...Oxd 

is piecewise continuous and satisfies the following conditions: 

(1.8) 

(1.9) 

5daxg(x)-l, 5daxg(x) lxl2-1, 
g(x)'ealtxN'~L~176 } forsomeS>O 
5 ] S r g ( x ) [  e a I1='11 lddx< C~ 

8 
where the derivative is interpreted as a distribution, and ~3i= ~[ ~x~x, with I c 

~.~I {1,2, ..., d}. 

Remarks. 1. Without loss of generality, we can normalize g(x) as in the first 
condition of (1.8), and can fix the scale of x (how far g(x) is spread-out) as 
in the second condition of (1.8). 

2. In [41, Sect. 6], it has been shown that exponents 7, A and v (when exist) 
satisfy the hyperscaling inequality 

dv>2A - 7 ,  

and thus that 7, A and v cannot simultaneously take their mean-field values 
in dimensions less than six. (Similar conclusion was derived for different expo- 
nents in [17].) Taking the result of this paper (v = 1/2 in high dimensions) and 
that of [27] (Y = 1, A = 2 in high dimensions) into account, the above inequality 
of [41] now implies that at least one of the exponents does take on different 
values depending on whether the dimension is high or low (or some of the 
exponents does not exist in low dimensions). 
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3. The above Theorems 1.1, 1.2 and Theorems 1.1, 1.2 of [27] imply that 
the scaling (continuum) limit of percolation is trivial (gaussian) in high-dimen- 
sions in the following sense: We define n-point connectivity function as 

Tn, p(X l , X2 . . . . .  Xn) =- Probp( C (x a)S X2 , "" ,  X.) 

and define the renormalized coupling (for n > 3) 

2 "C",P(Xl' X ' 2 ' ' " '  Xn) 
g ..... (p)=- . . . . . . .  , .  

(Z)"/: 
P 

Then for n>3 ,  g . . . . .  (p) ~ 0 as p ,7 p~ for models (i) and (ii) which satisfy the 
assumptions of the above Theorem 1.1 or Theorem 1.2. The proof follows imme- 
diately, if one uses the tree graph bound [-5] to bound 

�9 , . A x ~ , x ~ , . . . , x , ) < = c , z ~  " - ~  

x2, ...,Xn 

and combine it with the above results of the mean-field property of Zp and 
~(P). 

We are planning to come back to this and related problems (slightly artificial 
"nontrivial" continuum limits in d < 6) in future publications. 

1.3. Framework of  the proof 

In this section, we present the general framework of the proof of our main 
results. The proof is based on the following two properties (Prop. 1.3 and 
Prop. 1.4). The former holds quite generally, and can be proven along the line 
of argument of/-6, 36]. The latter is the key of the proof, and is proven using 
the identity for the two point function derived in [-27]. Actually, the proof 
follows steps quite similar to the proof of Theorems 1.1 and 1.2 of [27]. But 
here, the parameter m plays the r61e of p of [27]. 

We start from the expression for the two point function zp(0, x) which was 
derived in [27, Sect. 2-]: 

(1.10) ~, (0, x) = 6~ (0, x) + 2 p0, z~ (y, x) + ~ H ~ u (0, y) r ,  (y, x) 
Y Y 

where GN and H_< N obey the bounds described in Prop. 2.6 of [-27]. (The bounds 
are explicitly stated again in the following Sect. 2.) Multiplying (1.10) by e "~ ,  
we have 

(1.11) ~(m) (o, x) = Gg m) (0, x) + Z P~ ~")(Y, x) + F, nt2~ (o, y) ~)(y ,  x) 
Y Y 

where, and throughout the paper, for arbitrary f(x) ,  g(x, y) (x, y~TZd), we write 

(1.12) ftm)(x) =--f(x) e "x', gtm)(x, y) ~ g(x, y) e m(y~ -Xa) 
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T h r o u g h o u t  the paper,  the Four ier  t ransform f (k )  of a function f ( x )  and ~(k) 
of a t ranslat ion-invariant  function g(x , y )=g(O,y -x )  are defined as (k .x  

(1.13) f ( k ) -  ~ f ( x ) d  k'~, ~,(k)=__ ~ g(x,y)e 'k('-~) 
XeTld yffgd 

and the m o m e n t u m  k is an element of the Brillouin zone: k e [ - n , ~ ]  e. We 
write [k[2 =Z.= 1 _  d k~. We abbreviate  the integral over the Brillouin zone as 

dek ddk 

(2n)e ---- ~ d (2~)d" 
[ - n , ~ l  

We now take the Four ie r  t ransform of bo th  sides of (1.10) and (1.11) [for m < m~ 
the Four ie r  t ransform of Z(p ~) exists, because from (1.2), z~m)(0, X)< e - ( ~  -")II ~ II ~]. 
We get 

6~"*)(k) 
(1.1 4) f(p.0 (k) = 1 - (P/PG) ~(.o (k) - 20(<=m~ (k) 

and the corresponding equat ion  for m = 0. Here  

~ Joy emr' eik " y 
y 

(1.15) /5(") (k) --- ~ J 0 ,  

y 

and po is defined so that  

(1.16) pG'Y~4~= 1- 
y 

Taking the inverse of (1.14) and the corresponding expression for m = 0 (both 
for k = 0) and subtracting, we get [Z~ m)-- f(.'~)(0) -- Sx z~"~)(0, x)] 

(1.17) Z~- 1 -- (Z~")) -1 

_ (P/Po) {/~m)(0) - - / )  (0)} + 20~m~ (0) -- 20 ~ N (0) + (G~N m) (0) -- ~N (0)) Z~ -1 
6~m)(O) 

As for the left hand  side, we have, using the Aizenman-Simon inequality, 

Proposit ion 1.3. For model (i) (respectively for model (ii) with g(x) satisfying (1.9)), 

(1.18) % (") .~ oo as m .~ mp 

for all p < p~ (resp. for all p < p~ for which rap<6). 

Proof This can be proven along the line of a rgument  of [36, 6]. We include 
its p roof  in Appendix  A for the convenience of the reader. [ ]  

N o w  for the quantities on the right hand  side, we have the following proposi-  
t ion which is the main  technical result of the paper. This proposi t ion,  in essence, 
states that  in (1.17) i5(m) (0) -- /3 (0) is the main  term, and that  the rest (i.e. 2 0 ~ ( 0 )  
--20_<N(0), G~")(0)-- GN(0)) is a " co r rec t ion"  of higher order  in d - t or  L- 1. 
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Proposition 1.4. Consider model (i) (respectively model (ii), which satisfies the condi- 
tions of Theorem 1.2). Uniformly in P6[P~,Pc), we have the following: For any 
e>O there exists do>6  (resp. L o > l )  [d o and L o are independent of p] such 
that for d> do (resp. L> Lo) and for N> No(e ) 

(1.19) 
(1.20) 

[ n~)N (0) --/I__< N (0) 1 ~ e m2/d, 
16~ ~)(0)-  6u(0)l ~ em2/d, 

and 

(1.21) I G ~ ( o ) -  11 _-< 

hold for 0 < m < min {my, d - 1 / 2 }  (resp. 0 < m < min {ilL- 2, L- 1, rap}). Also for the 
model (i), for all m > 0 

(1.22) I3(')(0)--/)(0)= cosh m -  1 m 2 > - -  
d = 2 d  

and for the model (ii), for sufficiently large L, 

(1.23) 
J" >- m 2 L2/3 d for all m >_ 0 

D(m~(O)-D(O)~<=m2L2/d for 0 < m < b L - 2  

Proof of Theorems 1.1 and 1.2, given Propositions 1.3 and 1.4. We choose various 
constants in the following way: (0) Fix e<l /10 .  (1) Fix d>d o (model (i)) or 
L > L  o (model (ii)) and N>No(8 ) so that (1.19) to (1.22) or (1.23) of Prop. 1.4 
should hold. (2) Take P(P~<P<Pc) sufficiently close to Pc so that mp<d -1/2 
(model (i)) or mv< min {L- 1, ilL- 2} (model (ii)). Existence of such p is guaranteed, 
because ~(p) s oo as p/~ Pc. (3) Now let m ,7 m; for any fixed p chosen in (2). 

As m ,7 rap, by Prop. 1.3, Z~ "~ oe, and thus by Prop. 1.4 and by (1.17) (we 
know, from [27], that P/P6 <PJPG < 3), 

(1.24) 
m~/3 d < Z; ~ < m~p/d 

L 2 m2v/5 d N )~pl (~ 4 L 2 m2/d 

(model (i), for 0 <mp < d - 1/2) 

(model (ii), for 0 < mp < min {L- 1, ilL- 2}). 

Because it has been proven Zp ~ (Pc- P)- 1 for these models [27], this immediately 
implies our main theorems. (More precisely this proves (1.7) for p close to Pc 
as chosen above. However, this can be easily extended to smaller p down to, 
say, pc~2, because both )~p and ~(p) are uniformly finite and positive.) [] 

Remark. In [27], it was shown (for p close to Pc) 

~2 (p)2 ~)~v for model (i), 

42 (p2) ~ L 2 Zv for model (ii). 

On the other hand, the above (1.24) can be written as 

(p)2 ~ zp/d for model (i), 

(p)2 ..~ L 2 zv/d for model (ii). 
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The difference between ~(p) and ~2(P), ~(p)2 ~{z(p)2/d, can be explained by the 
fact that ~2(P) measures the distance in II x/12-norm, whereas ~(p) measures in 
[I x II ~-norm. 

The above Prop. 1.4 is similar to the result of [27], especially Prop. 4.3 and 
Lemma 4.5, that in (1.14) (for m=0)  GN(k)~I and 1-(p/pG) O(k) give the main 
contribution, and that the rest is a correction of order e. So the proof of Prop. 1.4 
is carried out in a way parallel to that of Theorem 1.1 and Theorem 1.2 of 
[27]. 

For the convenience of the reader who has some knowledge of the method 
of [27], we briefly explain the method of proof of Prop. 1.4. In [27], we intro- 
duced quantities like T, W, and proved (i) the continuity of T, W in p (ii) T, 
W<4e=~T, W<3e,  for P<Pc. Because W = T = 0  at p--0  (more precisely, T, 
W<e for p near zero), it then followed that T, W<3e  for all p<p~. In this 
paper, to prove Prop. 1.4, we follow similar steps for e . . . .  weighted quantities, 
but now with the parameter m playing the r61e of p as follows. We first introduce 
T ("), W ~), defined by replacing ~p by ~r~) (see Sect. 3 for precise definition). 
We then prove (i) the continuity of T (~) and W (m) in m (instead of p), (ii) T ~"), 
W (m) < 4 e ::~ T ~"), W ~") < 3 e, for I ml < rap. Because T ~") and W (") coincide with 
T and W at m = 0, by the result of [27] (i.e. T, W< 3 e) it follows immediately 
that T ~'~), W ~') < 3 e. This in turn implies n~=~)u etc. is very small, that is, Prop. 1.4. 

1.4. Organization of the paper 

This work is a natural extension of that reported in [27]. Although considerable 
effort has been made to make the presentation rather self-contained, readers 
are advised to read (Sect. 1 of) [27] first to get some understanding of the 
basic strategy of [27]. The rest of the paper is organized as follows: 

In Sect. 2, we recall the key identity for the two point function derived in 
[27]. We also present the corresponding identity for z~ "). In Sect. 3, as in Sect. 3 
of [27], we show how to bound each term of the identity in terms of basic 
quantities, like T ~m), W (m). Based on this, we prove Prop. 1.3 for the spread-out 
model (model ii) in Sect. 4, and for the nearest-neighbour model (model i) in 
Sect. 5. In Appendix A, we briefly summarize basic properties of the two point 
function and the correlation length, and in Appendix B, we prove several proper- 
ties of gaussian (simple random walk) models used in Sects. 4 and 5. 

2. The expansion 

In this section, as a preparation for the proof of Prop. 1.4, we recall the identity 
for the two point function zp derived in [-27] and study its direct consequences. 
This section contains the analysis which corresponds to Sect. 2 of [27]. 

Throughout the paper, we use the following diagrammatic notation. The 
two point function zp(x, y) is represented by a straight line x y. (Note that 
in [27], the two point function was represented by a wavy line.) We use a 
wavy line to represent e . . . .  weighted two point function: ~ ( y ( x , y ) = x ~ y .  
A pair of bars y I I Y' represents pyy,. We follow the convention that unlabelled 
vertices are summed over. For example, 

y,y" 
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We also use the convent ion as in [27] that in unshaded loops the summation 
over their vertices is constrained so that at least two of the vertices must be 
distinct. Shaded loops  have no restrictions. 

In [27], an identity for the two point  funct ion was derived [27, Prop�9 2.3], 

N 

(2.1) %(0,x)=~o,x+ ~ (--1)"g.(O,x)+(--l)N+lRN(O,x) 
n = 0  

N 

+ZPoy  vp(Y, x)+  Z (-- 1) '~U,(O, y')zp(y', x). 
y n = 0  y' 

Here  g.(0, x), Ru(0, x) and H.(O,x) are even functions in each x u, and obey 
the bound  [27, Prop.  2�9 : 

(2.2) 0=<g.(0, x) <h . (0 ,  x), 
o ___ n . (o ,  y')==_ ~ h.(0, y) p,, , ,  

Y 

O<=RN(O, x) <-_~,hu(O, y) p,y, zp(y', x) 
Y 

where h, are defined as 

and for n > 1 

(2.3) 

w i t h  

ho (0, x) = "cp (0, x) 2. I [x ~= 0] 

hn(0, x) = ~ A3(O, Sl , t l )  f i  Bl(si, ti, ui, vi) 
Sk, tle, Uk~ vk { = 1 

�9 ~ I  B 2 ( u j -  1, l ) j_  1, s j ,  t j )  A 3 ( u n ,  l)n, X) 
j=2 

i l l  t) 
B 1 (s, t, u, v)=-~ Pry zp (y, v) z p (s, u)= S - - U  y 
B2(U, v, s, t)-- zv(v, s) zp(s, t) zp(t, u) z,(u, v) {l -- I E v = s = t = u ]  } 

+ (~v, ~ z p ( s ,  y) zp(y, t) z,(t, u) zp(u, y) 
Y s 

= + 3  . . . .  
u t u t 

A 3 (x, y, z) - T~ (x, y) z~ (y, z) ~,(z, x) = x 
Y 

Z 

We illustrate ho(0, x), h 1 (0, x) and h2(O, x) in Fig. 1. 

ho(O,X) = O @ X  

h,(o,x)= o ~ x  

Fig. 1. Diagrammatic representation for hN(0, x) for N=0, 1, 2. 
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Multiplying both sides of (2.1) by e m~*, we can immediately get an identity 
for "cfvm)(O, x) =- zp(O, x) em~ : 

N 

(2.4) z~")(0, x)=6o, x+ ~, ( -1)"  g(,") (0, x ) + ( - l f f  +1R~"~ 
n = 0  

N 

+ ~ p ~  ~ ( y ,  ~) + Z ( -  1)" Zu~:(0, y') ~V~(y ', ~) 
y n = 0  y '  

where we followed the convention of (1.12). Taking the Fourier transform, we 
get/following the convention of (1.13)] 

6~")(k) 
"~y) (k) = 1 - (p/pG) ~(") (k) - I~m) N (k) 

(2.5) 

where 
N 

6 ~ ' ( k ) -  1 + ~ ( -  1)" g T ) ( k ) + ( -  1) N+I/~"~(k), 
n = 0  

N 

/~2~(k)- ~ ( -  1)"/~<.m~(k), 
n = 0  

and/)(m)(k) and PG are defined by (1.15) and (1.16). 
As an immediate consequence of the identity (2.4), we have the following 

lemma, which corresponds to Prop. 2.6 of [-27]. 

Proposition 2.1. The above Fourier transforms satisfy the following: 

(2.6) a( m) tk~l < V h (') (0 x), 
x 

(2.7) I Ira ~}(k)  l < m t ka t ~ h7 ) (0, x) l xa 12, 
x 

^(m) < (m) (m) (2.8) IH, (k) l=~,po~,h,  tO, x), 
v x 

(2.9) lira/7~")(k)l <2mlk~[ {Zp(0%)Z h(,'~)(0, x)[x, I 2 +Zp(o"-~)lvt[ZZh(,m)(o, x)}, 
v x v x 

(2.10) 0 < Re (/7~) (0) -/~(m) (k)) 
d 

<= y~ k~ ~vo=XV"r h~..)~0, t , x)Ix~l 2 +~p~) lv . I  2 ~hl,~(0, x)}, 
/ 1 = 1  v x v x 

(2.11) I/~(N'~) (k)[ < ~ zy)(0, x) ~p(o"2~h~m)(O, y), 
x V y 

(2.12) Z Z P o , E  hN ( O, y) ly112 lira iq(um)(k)l < 3talk11 z(pm)(O, x) r ("~ 
L X  V y 

+ ~ z~'~(O, x)~p(o"b)lv~ 12 ~ h~"~(O, y) 
g V y 
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+ Z z~')(O, x)]x 112 Zp~2  Z h(~~ y)], 
x o y 

for s = 1, 2 (c3. =_ c3/c~ k.) 

(2.13) I~?; ~"~ (k)l =< ~ h},"~ (0, x)Ixul 2, 
x 

(2.14) 1~.I71~.')(k)1<-_2 V~(m)x'h(")zO/_.eoo /__. . ~ , x~lx~12 + 2~P(o%)lv.12 
t) x ~ x 

(2.15) I~ ~')(k)l _-< 3YG")(o, x) {Y~pg"2 Y~h~m)(o, y)ly.I 2 
X t~ y 

+y~pg"21v.I 2 2 h~')(O, y)} 
v y 

+ 3 }-"/c~'n)(0, x)[x, l  2 ~'p(o m2 2h(Nrn)(O, y), 
X V y 

and 

(2.16) 

(2.17) 

(2.18) 

349 

m 2 

0 ~ W)(0)-~.(0)~ ~-~h~')(0,  x)Ix,I 2, 

0 ~ / ~ ( m )  ( 0 )  - -  J ~ N  ( 0 )  

3m 2 
_-< [-~r~)(O, x) yV..(-) Vh(m)t 0 . ~ 12 12 2 tz.,~'o~ z., N t ,y ,  lY~ +2P(o'21 v, 2h(N")(0, Y)} 

x v y u y 

+ E G")(o, x)Ix~ 12 Y~pg"2 Y~h~(o, y)], 
X v y 

0 < O(n") (O) -- n.(O) =< m2 {2p(0"2 2 hp)(O, x)Ix1] 2 + 2p(0"2 Iv~ 12 y h(.')(O, x)} 
D x /J X 

Proof  (2.6), (2.8), (2.11) and (2.13) to (2.15) follow in exactly the same way as 
in the p roof  of Prop. 2.6 of [27], once one notices that  //(r,), g~,,) satisfy the 
bounds  

(2.19) 
(2.20) 

0 < g(.m)(0, X) =< h.(0, x) e mx~ = h(~m)(0, x), 

0 =< H(. ") (0, y') N ~ h (.")(0, y) p(y'~! 
Y 

which follow immedia te ly  f rom (2.2). Fo r  example  for (2.6), 

I~(,")(k)l = I F, e'~ x g,~)(O, x)l < ZgF~(o, x) <-_ Z h(.m)(o, ~). 
x x x 

(2.10) is p roved  similarly. We first write 

Re (/I~")(0) --/I(,") (k)) = ~ (1 - cos (k. x)) H(, ") (0, x) 
x 

Z 2 m~)(0, x) _-< - -  ( . " ) ( 0 ,  x = x .  

p . , v = l  1 
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and then use (2.20) with the triangle inequality. In the above, contribution from 
# # v terms vanishes because H{,m)(0, x) is an even function in each x2, ..., xa. 

To prove (2.7) we first observe, because g,(0, x) is even in each xi ,  ..., xe, 
that we can write 

(2.21) Im ~,(,")(k)-Im ~g,(O,x)e"X'e ik'x 
x 

d 

= ~ g , ( 0 ,  x) emX'sin(kx x,). ~I cos(k~ x0 
X V = 2  

d 

= ~ g , ( 0 ,  x) sinh(mxz) sin(k1 xl)" ]7I cos(k~ x~). 
X V = 2  

Taking the absolute value, 

(2.22) IIm ~},~)(k)l < ~,g,(0, x)Isinh(mxa)[, tsin(kl xl)t 
x 

= ~g, (0 ,  x) cosh(mx,)[tanh(rnxl)]. [sin(k, x,)[ 
x 

--< y'g,(0, x) cosh(mx,) rnlx,[. ]k I x, ] 
x 

--mlk, I }-', g~,m)(0, x)[x,[ 2 <m[k,I ~h~m)(O, x)[xal 2. 
X X 

(2.9) and (2.12) are proved similarly. 
(2.16) is proved as follows: we first write 

~ 7  ~ (0) - ~. (0) = Z g.  (0, x) (e . . . .  1) = ~ g.  (0, x) [cosh (m x , )  --  1 ] > 0 
x x 

where we used the symmetry of g, (g,(0, x )=  g, (0, -x)) .  Now we apply an elemen- 
tary inequality 

cosh(mx) - 1 - < _ ~  cosh(mx) for m, xelR 

to the right hand side to get 

m 2 . 2 2 2 

~ -  g, (0, x) e '~x' ~ g . ( O , x )  cosh(mx,)= m Xx 

(we again used the symmetry of g,) and use (2.2). Proofs of (2.17) and (2.18) 
are similar. [] 

3. Diagrammatic  estimates 

In the previous section, an identity for the (e . . . .  weighted) two point function 
z(p m) was obtained from the corresponding identity for Zp derived in [27]. Now 
as in Sect. 3 of [27], we bound the terms appearing in the right hand sides 
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of the inequalities of Prop. 2.1 in terms of the quantities T ("), l~ ("),/~(,'), which 
are introduced in the next definition. These quantities form the "e=~'-weighted" 
version of the quantities T, W, and /7 of [27]. In this section, we extensively 
use the diagrammatic notation introduced at the beginning of Sect. 2. 

Definition 3.1. For a, a, and a 2 in 2U, we define 

F, (G~)(0, ~))~ =o  B(2m)-_ 
x~O 

ra (m)= Z'C(pra)(O,X)Zp(X, y)'Cp(y,a)--~O,a'C.(O, O)3= ~ 
X~ y 

0 x N~)=Y~lx.l~z.(O,x)v(;')(a,x)=2a> I x . I  ~ 
x x 

H(m) __ ~ Ix[ z z + a l  ~ Y+a2 
a l , a 2 , l t  

x,y,z z 0 x Y 

We write To (m) and w(m),,o,, simply as T (") and W(u"), and define 

T(') -- sup T~ (m), Wu(m) ~- sup W.(:~ ), /T~"' = sup H~).~, . .  
a a a l , a 2  

We also define 

W~',(~ )~  Z [x~[ 2 Poy ~p(Y, x)~(p=)(a, x)= Z 0 Ik"~ X Ix~l 2, 
x,y x a t -  

1,~7 u, (m) = ~nn W' (m) 
a 

and write Wf f  ") for Tar(m),,o,u �9 Quantities without the superscript (m) denote those 
with m = O. 

Remark. The above B (2m), T (") and WA m) are increasing functions of ]m[. Also 
( m )  2 ~P~2, ~Po~ lv, l are increasing in lm[. These can be seen by rewriting them 

v v 

in terms of eosh(mx,) instead of e rex1, using the symmetry of zp(0, x) or Po,. 
Now we can state the following two lemmas: 

Lemma 3.2. (a) For n = O, 
T (m) 

~ Y h~~ x)--< 2 
x 

and for n >= 1, 

(3.1) O<=~h(.m)(O,x) 
x 

< {~Po ~(B- B (2")) t/2 + (~,p2v( B + B(2,.))) a/2 + 2 suppo.} 
v a 

-(1 + r(m)) 2 (r(m)) n- 1 



352 T. Hara 

where we defined 

(3.2) r (") - (1 + T (m) J- T (~)~ aV,(,,)~ ~(m) + sup  p(o,.)). t ! ~3, / ,YOvl  

(b) For/~ = 1, 2, . . . ,  d, 

(3.3) 0 < Zh~")(0, x)Ix~l ~ 
x 

[ w.,~ 
< / W~(") + 10 r(") 1~/~ (~) 

((2n+ 1) ~-~r r (~} . ~ )  2 o 1) (1 + T('~)) 2 (r('~ " -  

+(2n+ l )121( l  + T("))2 (r('))"- l. Vf~(m) 

+ (2 n + 1 ) I ~ l ( 1  + T(~)) 2 (r("~ "-2 (Z p(om~)) 2./~(u ") 
o 

(n = 0 )  

(n = i) 

(n>2).  

In the above, ~x~ denotes the largest integer which does not exceed x. 
The proof  of this lemma is carried out in a way similar to that  of Lemma 3.2 

of [27]. Before proceeding to the proof, we state another  lemma, which gives 
bounds on some of the quantities appearing in the above lemma. 

L e m m a  3.3. 

T _ 3/3/3/3/~ 
~--< + V 2  d ,  

~(m) =< 2 T (") + 4(B" B(2m)) 1/2 + 4(B/2d) i/2 + 2 (B(2")) ~/2. 

For lz=l,2, ...,d, 

w y  <= ~p~) w~ ~) 

+ { ( ~ p 2  e , . V ,  Iv/~12) 1 /2  - •  ~ , / , vou  ( ~  n(m)Vz../-'Ov'(m)1V#[2)1/2 (B(2m))1 /2}  ( w # ( m ) ) l / 2  

t~ u o 

p 

Sketch of the Proof of Lemma 3.2. (a) The proof  is carried out  exactly as in 
1-27]. There we wrote ~h , (0 ,  x) in the form ~ f ( y )  g(y) and used the basic inequal- 
ity: x y 

(3.4) ~ f(x) g (x) _<- sup l f  (x)[ ~ [ g  (x)[ 
x x x 

to decompose it into its basic unit (i.e. T~). Here, we have an extra weight 
factor e "'~1 multiplying h,(0, x), but  because of the multiplicative property of 
the exponential  function (i.e. e x =  e ~'-y- e y) this factor can be expressed as a prod- 
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uct of exponentials multiplying each unit, thus giving rise to T} m), instead of 

(b) The proof  proceeds similarly. Now we have two weight factors: [x,] 2 
and e m~' both multiplying h,(0, x). The idea is to express these two as a sum 
and a product  over the two lines connecting 0 and x in the diagrammatic 
representation of h,(0, x). (Recall Fig. 1.) To illustrate the idea, we consider the 
contribution for n = 1 from the term in which neither of the triangles is a point: 

V 

>xe-Xl,x ,2. 
x , v , w , y , z , u  

V W 

We use the triangle inequality for Ixul = 

(3.5) Ix, I 2 ~ 3(Iv~l = + Iv~ - w , I  2 + iw~-  x,I 2) 

on one hand, and use the multiplicative property of the exponential 

emXl  = emYl . em(Za - y O .  era(u1 - z t )  . em(Xl -ua) 

on the other. Now use (3.4) twice to bound the resulting expression by a product 
of each constituent. For  example, the term coming from the first term on the 
right hand side of (3.5) is bounded as (without the factor 3) 

~. Iv.I 2 0 ~ x 
x, v 

V 
v + a  

o <  
V 

_ X . 

emXl 

}{u a r ]V#] 2 S p ~em(wl+b'-"l) 0 W 
a ,w 

The first factor is exactly W(_~ ),u. For  the second term we can use Lemma 3.4 
of [27], and the third term is just T (m). Other and higher order terms are treated 
similarly�9 We omit the details of these straightforward but tedious calcula- 
tions. []  

Proof of Lemma 3.3. The first inequality is proved in Lemma 3.3 of [27]�9 The 
proof  of the other inequalities is carried out almost in parallel to that of Lem- 
ma 3.3 of [27]�9 The only subtlety here is that (because of the factor e rex') full 
•<symmetry is absent, and moreover the Fourier transform of z~) is not neces- 
sarily real. We find it convenient to consider symmetrized quantities, such as 
{ T. ~m) + T!m2}/2 and 

( 3 . 6 )  ( . , )  - 1 (,,) "Csym(0 , X) = ~ {Tp (0 ,  X) -I- T(m)(0 ,  - -  X)}  = "Cp(0, X)" cosh (mxa). 
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For ~(m), we first write (for a 4= 0) 

(3.7) � 8 9  (m) + r(-m2)= ~ -sym "c(m) ,-,(a X) ~p(X, y)"rp(y,  a) 
x ,  y 

= ~ ( ~ ) d  ~syml,.lddk ,<m) ~ (.~v(k)_ 1)2 e-ik . a  

+ 2Z Z~y)m(O, x ) - a o  ~)(zv(a, x) (m) , - -  a a ,  x)  -'}- ~ s y m (  O, a) + 2%(0, a). 
X 

We can also write T (m) as 

T(m) " dak (̂m) dak ?(m)(z4(.~p(k)_l)2. 
= J ~ {~'sym(k) ~p(k) 2 - 1} ~ i ~ -symV', 

Using the Schwartz inequality, (3.7) can be bounded as 

(3.8) G T ( m ) + 2 ( ~  re(0 ,x) 2. ~" (m) 2 1/2 r(m) (n (~'sym (0, X)) ) ~- a) + 2 rp (0, a). 
x#:O x:#0 

We now use 

(3.9) ~ (m) 2__1 (2m) (27sy m (0, X)) - -  2-(B + B) -_< B (2 ") 
x#O 

to bound the last three terms. 
WE (m) and ~(m) are treated in a similar way as follows. First, f o r  W# (m), 

by the triangle inequality, 

w/~ (m> ~ E P(O%/2) ~T/2)(y, X) ~T/2>(o, x). (I X . - -  y.  I + l Y. I) IX. I. 
X, y 

The first term is bounded as 

< ~ .(m/Z) SU" :'V dm/2':., X) l Yu -- X~,I" ~T/2) (0. X) Ix. I) ~ Z #0%/2) ~m> ~Z_aFOy l-'l,Z..a p ~,Y, 
y Y x Y 

where in the last step we used Schwarz inequality. The second term is bounded 
as  

~ '  ~(m/2)I ,, I = z . v o .  ,~., { Y. v(;./2)(y, x) Gin/2)(0, X)IX.I + ly.I vgm/2)(0, y)} 
y x:x:#y 

<-_Y.pS%/2~ ly.l (B (m) Nm)) In + (2(P(0"f/2~Y l y f  Nm)) 1/2- 
y Y 

As for ~(m), we first use the triangle inequality: 

G'(i  "~ __< 2 F. po. ~p (y, x) ~(m~(a, x) (I Y. 12 + l Y. -- x .  12). 
y, X 
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For the first term, we first use the trivial inequality p~y<Zp(X,y) and then use 
the Schwarz inequality: 

~2~'po,ly~l 2 [ ~ zp(y,x) z~")(a, x)+z~")(a,y)+z,(y, a)] 
y x : x ~ a , y  

----2Zpo,ly.121- Z zp(Y,X)V~")(a,x)] 
y x z x ~ : a , y  

+ 2 ~ zp (0, y) ]Yu ] 2 [z(, r") (a, y) + z v (y, a)] 
Y 

=< 2 ~ p o ,  lYu 12 (B. B(2")) ~/z + 2 (W.!,~ ~ + W., u)" 
Y 

The second term is simply bounded as 

< 2Zpo, -  sup {Zzv(y, x) z~"~(a, x) lYz-- xu [2} = 2 Z p o .  ITdf"). [] 
y Y x y 

4. Proof of Proposition 1.4 for the spread-out model 

In this section, we use the results of the previous sections to prove Prop. 1.4 
for the spread-out model (model ii). According to Sect. 1.3, this completes the 
proof of one of our main results, Theorem 1.2. 

The structure of the proof of Prop. 1.4 itself is similar to that of Theorem 1.1 
and Theorem 1.2 of [27], and is described in the following Sect. 4.1. Actually, 
the conclusions of Prop. 1.4 can be proven for a wider class of models, whose 
gaussian quantities (defined below) satisfy the conclusions of the following Lem- 
ma 4.1. In this section, we prove Prop. 1.4 for those models, and postpone the 
proof of Lemma 4.1 to Appendix B. 

To state Lemma 4.1, we introduce several definitions. These quantities are 
defined in terms of a gaussian (simple random walk) theory corresponding to 
the model, and are relatively easily calculated. For fixed {Jb}b, we first define 
PG and {p(oG]} so that 

pa .ZJ0~= 1, p(oa2=-p~.Jox, 
v 

and then introduce 

x-j, e~-~ r D(k)-Pa'/_., o~ , 
x 

Note that C defines (in k-space) the gaussian propagator (or two point function) 
of a random walk whose transition probability is given by " j, _ .(c.) We F G "  O x - - F O x "  
introduce the emXl-weighted gaussian propagator 

C(") ( O, x)= C (O, x) . e "x' 
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and define TG, T(m),~ etc. by replacing "cp (respectively r~ 'n)) by C (resp. C ~"~ in 
the definitions of T, T (~). We  also introduce 

l~(m)(k)-~po.~Jo~em~,e ik~, S(m)=_d~'p(oa2em~'lxll 2. 
x x 

N o w  we can state our  lemma on the gaussian quantities defined above:  

L e m m a  4.1. Consider the model (ii) of Sect. 1.1 which satisfies the conditions of 
Theorem 1.2 on the d-dimensional hypercubic lattice with d > 6 .  For any ~>0,  
there exists Lo(e; d,g)>=l such that for all L>->_Lo and for all 0<:mKOL -2, the 
followings are satisfied: 

(4.1) supP(o~2 e "x', )_.,(Pox e ) ~-STm), 
x : l : 0  x 

x 12< L, (4.2) supp~o~e~llxll 2, F~(p~oG2)2e .... 1 =  d 
3r X 

(4.3) 1-/9(k)_> Ik12 
3rc2d ' 

dak D(k) a 
(4.4) 0 N C(O, O ) -  1 = ~ (2 rc)d 1 - - / )  (k) --< 3 S (m)' 

8 

(4.5) T~ _<_ 3 S (m)' 

_ ~ "dak  _]G/~ (k)12 < 5  
(4.6) WG- J ( ~ ) d  ( 1 - D ( k ) )  4 = 3 '  

ddk [c?../5(k)[ < 
(4.7) ~ (2re) a (1 -- 13(k)) 3 = 2-d' 

0 @ < 6 (4.8) g a u s s  = 5 

(4.9) /)("~ < 6 ,  

f ddk ~ b~")(k)) 2 d'~k D(m)(k)2 e 
(4.10) J ( 2 ~  ~ . l - s  ' Y (2re) a (1 -/~(k)) 3 ~-3S (m)' 

< 2 L  2 
(4.11) lira/5(') (k)[ = ~ - -  m lk~ J, 

and finally 

(4.12) L 2 m213 d <% D(')(0) -- D (0) < L z m21d. 

This lemma on gaussian quantities can be proven along the same line of 
argument  as in [27, L e m m a  5.1]. We  sketch its p roof  for completeness in Appen-  
dix B.1. 
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Remark. By Zd-invariance of {Jox}, it follows that 

(4.13) sup p(o~2 e mxl Ix.I 2 6 sup p(0G2 e mx' Ix, 12, 
x x 

(4.14) Z (p(o~) 2 e ' ~  Ix.I 2 < ~ (p(o~2) 2 e rex' Ix, 12, 
x x 

(4.15) ~ ~ ~(G) < S(m). LVox e'X' Ix~l 2 
x 

We use these relations in the following to bound quantities like 

Ep~]lx ,]2= p y'p~oa2 emXl Ix, J2 
x F G  x 

which appear in Prop. 2.1 and Lemma 3.3, without further mention. 

4.1. General structure of the proof of Proposition 1.4 

The proof of Prop. 1.4 for models satisfying the conclusions of Lemma 4.1 is 
based on following Lemma 4.2 and Prop. 4.3. We also employ an upper bound 
on PJPG which has been proven in [27] : 

(4.16) PdPG < 1 + O (0 < 26/25 

both in the proof of Prop. 1.4 and of Prop. 4.3. (More precisely, it has been 
proven in [27, Prop. 5.2, eq. (4.10)] that Pr < 3, but this can be easily tightened 
up as above for models satisfying the conclusions of Lemma 4.1 with small 
e.) Similar arguments have already been used by various authors [13, 27, 40], 
and in particular in [27] exactly the same argument was used to prove the 
triangle condition. Here the parameter m plays the r61e of p of [-27]. 

Lemma 4.2. For both models (i) and (ii) of Sect. 1.1, B (2m), T (m), W ~  ) and H (m) 
t I 1 ,  G 2 , / l  

(introduced in Def. 3.1) are continuous in m for all m<mp,  p<p~ and for all 
a ,  a l ~ a 2  ~ 7~,d. 

Proof. As proved in Appendix A (eq. (A.5)), 

~(7)(0, x) < e-(~, -~) 11 ~ II 

and trivially 
"c~')(0, x )=  lim z~")(0, x) 

m ' ~ m  

pointwise. The lemma follows immediately from Def. 3.1 by the Dominated 
Convergence Theorem. [] 

Proposition 4.3. Consider the model (ii) of Sect. 1.1 with L >= L o (e) sufficiently large 
so that conclusions (4.1) to (4.12) of Lemma 4.1 are satisfied for sufficiently small 

(8~10 -12 is enough). Then for this e and for any f ixed pE[p~,pc ) and for 
any 0<__ m<min{mp, L-1}, P4 implies Pa , where P~ is the statement that the follow- 
ing set of inequalities holds: 
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a) 

b) 

c) For # = l ,  2, . . . ,d ,  

8 
B(2,n) ~ 0~. s(m) . 

8 
T (') N ~. S (m)" 

W(m) < �9 'g 

d) For ~ = 1, 2, . . . ,  d and for II a 11 ~ ~ M(mp -- m)- 1 

wJ,7_-< ~. K 3" 

e) For kt = 1, 2, . . . ,  d and for II aa II ~, II aN II ~ ~ M ( rap-  m)- 

H(.o < ~. i0  e 
al,~2, I/ d-' 

Here K is a universal constant independent of d, e, m (determined in the proof; 
K can be taken to be 10 3 for e<10-1a ) ,  and M is a constant which satisfies 
the conditions of the following remark. 

Remark. In the above, M is chosen so that  

and 

I T V a ( r • )  < ~ for I lal lo~>M(mp-m) - I  

/~(,~) <_8 for [[alll~ or Ira2] l~>M(mp-m)  -1 
al 'a2"lz  ~ d 

~,V (m) where ITE (m) and ~('~) are defined by replacing (in the definitions of . . , ,u ,  
(m) H,,,,2,u) zp(O, x), z~")(O, x) by their bounds  e - ' -  II x I1% e -c"~--m) ITxll~ 

These have the following immediate  consequence:  

Corollary 4.4. Under the same assumption as Prop. 4.3, P3 holds for pe[pG, pc ) 
and for 0__<m < m i n  {rap, L-I} .  

Proof, given Proposition 4.3. If we fix L >  Lo(~;d,g) and pe(p~,p~), Prop.  4.3 
implies that  there is a forbidden region in the graph of  (B (2"), T ~'), Wu("), . . . )  
as a funct ion of m. Tha t  is, for each m, (B (2m), T ~"), wu(m) . . . .  ) cannot  exist in 
the following region given by the difference of two hypercubes:  {[0 ,4e/S (m)] 
x [0, 4 e/S (m~] x [0, 4 e/d] x ... } \  { [0, 3 e/S (m)] x [0, 3 e/S ~m)] x [0, 3 ~/d] x ... }. At  

m = 0 ,  we know [27, Prop.  5.2] that  P3 is satisfied, i.e. (B (2m~, T ("), W(u"), . . .)  
is inside the smaller hypercube.  However ,  as in L e m m a  4.2, these quanti t ies  
are continuous functions of m. Therefore  P3 holds. [ ]  

N o w  given in L e m m a  4.1, Prop.  1.4 is a direct consequence of Prop.  2.1, 
Lemm a  3.2 and Corol lary  4.4. 
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Proof of Proposition 1.4. Take L>Lo(e ) sufficiently large as in Prop. 4.3. Then 
by Corollary 4.4, we have P3- No w given Pa with small ~, Lemmas 3.2 and 3.3 
together with (4.13) to (4.15) give 

(4.17) O<Vh(m)(O,x~< fO(5 ) (n=O) 
= T "  ' '=(O(5") (n>l) '  

(4.18) 0 _-< Z h(,") (0, x)[xu] 2 <fO(e)/d 2 (n=0,  1) 
x =~n 20(e "/)/d (n>2) 

where big-O implies bounds involving computable constants which are indepen- 
dent of d, L, m, p. Now take N sufficiently large so that right hand sides of 
(2.11) and (2.15) are less than 5/d and that of (2.17) is less than mZ.e/d. (The 
above bounds (4.17) and (4.18) assures that there are such N.) The statements 
of Prop. 1.4 on G~ '~) and/I~")N now follow directly from Prop. 2.1 (writing 1055 
as 5). Those on/3("~(0) follow from Lemma 4.1, (4.12). []  

Remarks. (Relation to Ornstein-Zernike behaviour) 
1. It is expected (and partly proven [-151) that for P<Pc, ~,(0, x) behaves 

like 

e - rnp t (x) 

(4.19) "cp(O, x) ... l(x)(a_ 1)/2 

at large Ixl-II x/12 with a suitable norm l(x) (l(x)>= Ikx 11 o0) which is equivalent 
(and very close) to [L x ]l 2- At first glance, this seems to contradict above Corol- 
lary 4.4, especially P3 for B ~z''), because the power law decay provided by the 
denominator of (4.19) is not sufficient to guarantee the convergence of the sum 
defining B (2m). However, because we have defined z~'~)(0, x) by introducing expo- 
nential weight factor (e m~') only in one direction, the contribution to B (2") from 
long distances is 

e -  2mp(l(x)- xl) 

~ -  l(x)~d_ ~ 
and this sum is convergent (e.g. in d > 3 for l(x)= [] x ]12) due to the exponentially 
decaying factor supplied by the difference between l(x) and Ix~ ]. 

2. Similar mechanism provides convergence of T (m). In fact, even if we defined 
T C"~ by replacing all of %'s by r~")'s in the definition of T, the result would 
be still convergent for d > 5. 

(m) (m) 3. For  W~ and Wa ~ , ,  however, the situation is different. We cannot replace 
both zps by z~")'s [exponential decay factor due to ( l (x)-xO is not sufficient 
to guarantee the convergence as m ~ mp]. This can be most easily illustrated 
by gaussian theories, where W~2)~ would diverge (as m ~ rap) for d<7 ,  if we 
defined it by replacing both zp's by z~")'s in the definition of W. For a similar 
reason we have defined W2.~ ) by multiplying e ~ and Ix] 2 on different legs 
of W~. I am grateful to Gordon Slade for calling my attention to these points. 

4.2. Proof of Proposition 4.3 

Now we proceed to the proof of our key proposition, Prop. 4.3. Throughout 
this section we fix pE[pa,pc ) and fix me(0, rap) so that 0 < m < m i n { L  -1, 8L-2}. 
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We introduce a symmetrically exponentially-weighted two point function 
r(") (0 x) according to (3.6), and omit the subscript p in ~v(k), ~m)(k) etc. s y m  ~ ,~ ,  

First, if we assume P4 for sufficiently small ~ (it turns out that e____10 -12 
is certainly enough) it follows immediately from the choice of M and Lemma 3.3 
and (4.13) to (4,15) that [note, by (4.9), ~p(o~)emx'~6/5, and thus by (4.16), 

~P~2 _-< 5/4] 
X 

T ~m) ~ 81/~/s~', w ; ~ )  _< ~3 .  g/d,  /~ ,~)  = 4 o -  e /d ,  

ffCm)-_<4.K.~/d, N~'~) ____ 30-/( .~/d.  

(Here and in the following, the precise values of the coefficients on the right 
hand sides of these equations are not important. The point here is that they 
are independent of p, d, L, K or m.) This, together with Lemma 3.2 in turn 
yields the following bounds. 

g 
(4.20) ~ ~ h~~ x) _< c1" S(,. ) , 

n x 

(4.21) 

Z ~h~m)( 0, x)Ix ,  l z ~ c2. ~ .  
n x 

h(~ n) (0, x) <--< c'1" (ci e)(N + 1)/2, 
x 

~ h(Nm)(0, X)Ixul 2 =<d -1  .c 2' - X  2 .(c~ g)(N+ t)/2 
X 

Here, cl, c2 are calculable numerical constants independent of p, d, L, K or 
! t t  t tp  m (we can take c t = 14, c2=40 ). cl, ct ,  c 2 and c z are numerical constants which 

might depend on K (but not on p, d, L or m). 
We use these bounds to control ~(~(k). We have, from Prop. 2.1 and (4.13) 

to (4.15), 

Lemma 4.5. Given P4 for model (ii) for sufficiently small e, we have, for sufficiently 
large N > No (e; m, p): 

g 

I G ~ ) ( k ) - l l ~ c 3  �9 s(~), [ n ~ ( k ) l ~ c 4  �9 sr 

g 
IIm CJ~'~)(k)[<cs.~.mlk~], IImI~(g=~(k)l<c6.~.mlkll, 

0 < Re (/7(_<")u (0) - / I~)u  (k)) < c7" e. [k12 
- - - d ' 

[ G(N m) (0) -- GN (0)l = ca- e- m2/d, I/1(2) u (0) --/7_< u (0)l < c9" e" m2/d 

where c a through c9 are calculable constants independent of m, p, d, L or K. 
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Proof. The lemma follows directly from (4.20), (4.21) and Prop. 2.1, and an upper  
bound  on P/Pc, (4.16). Fo r  instance, by Prop. 2.1 and (4.20), (4.21) 

N 
16~ '~) (k) - 1 [ < Z Z h(, ") (0, x) + Z z~ m, (0, x) Z P~"~) Z h~ ") (0, y) 

t l=0 X X V y 

By taking N sufficiently large (depending on e) so that the second term becomes 
less than e/S ("), we get the desired bound.  Other  bounds  are proved similarly. [ ]  

In the following, we use O(e) to denote an upper  b o u n d  which involves 
constants  independent  of/9/`, p, d, L, or K. N o w  L e m m a  4.5 implies the following 
bounds :  

.(,,) _ (m) satisfies L e m m a  4.6. Under P4 with sufficiently small e, "%m(k)=Y'Zsrm(O, x)e ik'~ 
x 

(4.22) 

(4.23) 

Also 

(4.24) 

< #m) (/c~ = R e  ~(~)(k) -< ] ~(")(k)[ < (~ + O (e)) 
= - ~ , m , . - ,  _ _ ~ ( k ) ,  

^(') 1 - -  s (k) + 1 - -  s (k) =< 1 - -  s (k)" 
i Z ~ y ~ ( k ) _ l l < ( l + O ( O  ) I/)(m)(k)l O(e/S (")) 3/2 

[~2~(k)l<=(l+O(e)){(l~us 2 1~ s .'~ 
(1-s ~ (1-s 

1 
+ O {  '~fl_~(k)~d)~ 1 . ,~us ] 

+ (1 - s 2 ~- (1-s 

Proof. By (3.6), 

^(m) _ 
Tsy m (k)  - ' ~ ' ~ p  (0,  x )  c o s h  (/9/, x 1) eik'x = E TP (0, X) c o s h  ( m x  1)" c o s  ( k .  x )  

x x 

= ~ ' c ~  ) (0, x) cos (k. x) = Re  t('~)(k). 
x 

To prove the upper  bound  of (4.22) we write the numera tor  and the denomi-  
nator  of (2.5) as follows: 

~'~)(k) = G(N'~) (k) - G(N") (k) 
1 -- (P/Pc) s - l~m~ (k) - if(m)(k) 

As for the numerator ,  we can directly use L e m m a  4.5. For  the denominator ,  
we first write (note that  s176 ) are real) 

Re  F (m) (k) = { 1 - (P/Pc) s -/I(=g)N (0)} 

+ (P/Pc) Re (s - s + Re  ( /~)u  (0) -/I(_<")u (k)). 



362 T. Hara 

As for the first term, for 0 < m < rap, 

(4.25) 1 - (P/Pa)/5(m) (0) - - / ~  (0) = (Z(m)/G(N ") (0))- ~ > 0. 

As for the second term, 

Re (/5("*) (0) - /5("*) (k)) = ~p(oa~}(1- cos(k-x)) cosh(mx~) 
x 

> ~, p(oG, ) (1 -- co s (k.x)) = 1 - / 5  (k). 
x 

As for the third term, 

]Re ( / / ( ~  (0) -/T=Y)N (k))l < c 7" e" ~ -  ~ "c  7" re2. e (1 - / 3  (k)) 

where in the last step we used (4.3). As a result, 

> Z  (4.26) Re  F(")(k)= (p  a - 3 c 7  re2-e)(1 -/5(k)).  

Thus (because we are considering p > Pa) 

< < 
~(~,y)m (k) _<-I'e(m)(k)l = Re  F("*)(k) = 1 -/5(k)' 

and the upper  bound  of (4.22) is proved. Also 

I { l+(p/pa)/3(m)(k)+ )} 
~(~) I = Re G%~)(k)- I/(__&(k 

[ "Csy m ( k )  - -  1 i ~ (m)  ( k )  

0 (e/N (")) 115 ("*) (k) l 
< 1 - / 5 (k )  ~-(1 + O(e)) 1 - / 3 (k )  

and (4.23) is proved.  
To  prove the lowerbound  of (4.22), we first write (denoting the complex 

conjugate of ~'~)(k) by ~ )  

Re  (F ("*) (k) ~ )  
(4.27) ~("*) (k~ - 1 (4("*)~z,~ • ~(-"*)(k)) = 

- s y m t  , ' - - 2 t  ~ V~, " iF("*)(k)l 2 

We only have to prove that the numera tor  is nonnegative. This can be written 
a s :  

(4.28) Re  (/~(m)(k) ~ )  = Re  F("*)(k)- Re  G(N ")(k) + Im F ("*)(k). Im G ("*)(k). 

As for the first term we have, by Lemma 4.5, (4.26) and (4.3), that  

Ikl 2 
(4.29) Re/?(=) (k). Re G(N "*) (k) ~ (1 - 0 (e))-(1 - / 5  (k)) _> 4 u2 d" 

As for Im/~("*)(k), by (4.11), (4.16) and Lemma 4.5, 

I Im/?("*) (k)l = [ -- (P/Pc) Im/5("*) (k) - I m / 7 ( ~  (k)[ =< - ~  (~s 2 L 2 + c 6 ~) 
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and thus 

^ k ~  t52r2 Ikal 2 (4.30) Ilmff(m)(k)'ImG(Nm)(k)l< .cs8.m2.t23~ +c6g)<=3c5.8. d2 

where, in the last step, we used our condition on m: m<L -1. Now (4.28) to 
(4.30) imply 

Re (ff(") (k) ~ ) >  412 'klg-3cse~2->O 
d 

as long as 12g 2 c 5 �9 e =< d. This proves the lower bound of (4.22). 
The bound on 62 ~(k) can be obtained as follows. We first write (denoting 

the partial differentiation with respect to k, by the subscript #) 
A 

~2 ~(k) = ~ _  2 G~,(k)ffu(k)F(k) 2 G(k)Fuu(k ) i f ( k )  2 F 2 G(k)ffu(k)2ff(k) 3 

and bound each term using Lemma 4.5. In particular, as for the last term, we 
write out 

F.(k) = _ L  G D ( k ) -  G/I=<N(k) 
PG 

and using the symmetry and Taylor's theorem (just as was done after (5.23) 
of [27]) bound the second term above as 

< C 6 8  
IGn__<N(k)l=-- U.Ik.I. 

(This was essentially done in 1-27, around (5.22)], and we omit the details.) [] 

We now proceed to the proof of Prop. 4.3. 

Proof of Proposition 4.3. We prove the conclusions one by one. a) First note 
that 

B(2")-- Z ('c(')(0, x)) 2 = 2  Z (~y)(0, x)) 2 -  ~' (z(0, x)) 2. 
x~O x=i=0 x ~ 0  

To get the upper bound, we simply omit the second term, and bound the first 
one as (note that (") Tsy m (0, 0)  - -  1) : 

(4.31) ~ (m) 2 dak ^(.) 
x + 0 (Tsym (0, X)) = ~ ~ (Tsym (k) - -  1) 2 

<.  dUN f3  I/)(m)(/)l~ 2 + 3 (O(g/s(m))~2"~ 

and use (4.10) and (4.4), (4.5) of Lemma 4.1. Note that by Schwarz inequality, 
(4.4) and (4.5) imply the following: 

(4.32) 
a k{ 1 1" 

I (5~)~ ~ ~ }  = 1 + 0 ( ~ ) ( f o r . = 1 , 2 ,  3). 
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b) Using the Fourier transform and the Schwarz inequality, 

~k r~,-~ = r ~ k  s,~,.~ ~ ( ~ ( k ) -  1) ~ + 2 ( ~ ( k ) -  1) ( ~ 7 L ( k ) -  ~)} 
- a (2rc)a (~syrrt\--! 

d k 
G f ~ k  ,(,,,} (k~ ('~(k)- 1) 2 - a (2 a) a ~sym,,--, 

dk 1)2) 1/2 ' + 2 (y ~ (.~(k)_ 1)2 y d ^o,) ~5~)~ (~ .m(k)  - 

By Lemma 4.6, the first term is bounded as 

< d~k 3 1+O(8))2 =j'(~)~.J'~-(( 1O(k)l~ '3 -0(8/ff<"))~-~<2. 8 
(1-fi(k)? -~ (~-D(k))q = 3SC~) 

In the last step, we used (4.10) and (4.32). As for the latter term, we use Lem- 
ma 4.6, Lemma 4.1, and (4.32) 

dd k ^(,.) 2 
(~.m(k)- 1) 

< .  dak ( 3  ^ 

Thus T(m)< 2e/S ("), and (b) is proved. 
(c, d, e) Note that [xu[ 2 appears as a weight factor multiplying %(0, x) [not 

z~m)(a, x) etc.] in the definitions of W~ m), W~ (~), --a,,~2,u.14(") So using the Fourier 
transform we can express these quantities as integrals of product of d")(k) [-or 
dm)(k)- l ]  and (appropriate derivatives of) ~(k). Then we can argue exactly 
as in [27] (using the bounds of Lemma 4.6 on ~)m(k), ~0m(k)-1). We omit 
the details, except for the proof of the bound on Wu~"d, which follows a somewhat 
different line of argument from that of [27]. 

c) For Wu~"), a direct calculation combined with Lemma 4.5 and Lemma 4.6 
yields 

(4.33) 
ddk 2 d~k l~ .~(k)-  11 (%m (k)-- 1) < ~ ~ I -- G ~(k)l *(~) 

<~ dak [ . . . . . .  f(l~?.fi(k)l+O(e/d)lk~,]) 2 , ID~ fi(k)l ) 

o / 8 \ r  1 1 IG~(k)l "(] 
+ ~-)ti_~(k) 4-(1--/~(k))2 + (l_fi(k))2jj 

[(1 + . . . .  I f i ~  (k)l ~162 
R 

L 

Here, contributions from the terms with coefficients O (e/d) or O (t/S (")) are shown 
to be of higher order of 8, by Lemma 4.1 and the Schwarz inequality. For 
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example, the product of the first terms of the above two factors are bounded 
as follows: 

d) ddk Ifi~m)(k)l 
(4.34) 0 I (2~)e (1- / ) (k))  2 

(d)( dak Ifi(m)(k),2 dak 1 ~1/2 
< 0  5 (2re) d (1- /)(k))  2 5 (2=) d (1-/~(k)) 2] 

This leaves us with two terms, that is 

d ak f_(lc?.fi(k)J_+O(~/d)lk~,l) 2 , Ir "1 
(1 + 0(0)  ] ~ I/~(m)(k)l 

~ (1 - fi(k)) 4 ~- (1 - fi(k))3 f" 

However, if we  use (4.9) to bound [/)(~)(k)l < I/5(m)(O)[ < 6/5, and then use Schwarz 
inequality to bound the cross term from (10 u L3(k)] + O(e/d)Ik.I) 2, this is bounded 
as 

6 dak ddk Ik.I 2 
(4.35) (1 - f i (k))  4 + ute/a) ~ (2~) e (1 - b ( k ) )  4 

+O(d)(Sdak 10. fi(k)12~l/2 [.dak ik.12 ~1/~ 
(2~)e (~-- ~ j - 4 - j  "lJ ( ~ e  ( 1 _ ~ ) ) 4 ]  

\ t \  

dak la 2 fi(k)l 1 I + 
(2 =)e (1 - / )  (k)) 3 f -  

Now in the above, by symmetry and by (4.3), (4.32) 

dak Ik.I 2 r dek ]kl2/d 
I (2~) e ( 1 2 ~  =~ (2~) a (1-/3(k)) 4 

N3~r2 ~ d'~k 1 
(2~) d (1 - / ) (k))  3 = 3~2(1 + O(e)), 

and we can use (4.6) and (4.7) for the rest. As a result, (4.35) is bounded as 

____(1 + o(~)). ~ .  + o  + < 
= 2 d "  

As a result, 

ddk 2 . [,Csym(k)_ 11 ~ 2 ~ .  (4.36) f (~=)a [0. ~(k)l A(m) 

This proves P3 for W~ m). 
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d) For I~  (m), we simply write 

(~" " dak -ik'a( (.Csym(k)) W~,~u'=J ( ~ ) a e  - 0  2 e(k)) ~") 

< .  ddk [ - I t ~ y m ( k ) l  = ~ ~ - o~ r ~m) 

use Lemma 4.6, and evaluate each term as above. 
e) The method of [27] can be used here. We have 

H(~'~!a2,. =_< 4 Wu{(1 + T (m)) (1 + 2  T(")) + 1~ 0 ~  
/ 1 " - .  

Is . . . .  ) [ ]  

5. Proof of Proposition 1.4 for the nearest-neighbour model 

In this section, we prove Prop. 1.4 for the nearest-neighbour model (model (i) 
of Sect�9 1.1), and complete the proof of our main result, Theorem 1.1. Proposi- 
tion 1.4 for the spread-out model was proven in Sects�9 2 through 4, using the 
continuity (Lemma 4.2) and the "P4 implies P3" (i.e., poor bounds imply good 
estimates) argument (Prop. 4.3) of the quantities B (2"), T (m), Wu("), W,[~ ), and 
H(~'~!a2.u. We were forced to use all these quantities (which naturally made the 
proof complicated) in order to avoid quantities which diverge above six dimen- 
sions. 

Although we can prove Prop. 1.4 for the nearest-neighbour model by careful- 
ly following the analysis of the previous section and that of [27], we here present 
a rather simple proof. We prove the proposition by using the continuity and 
the "P4 implies P3" argument of essentially one quantity - the weighted heptagon 
diagram (for # = 1, 2, ..., d): 

(5.1) t;rl(,~), v H, /z _= E lX(gl)[ 2 -sym~-(m) \v,(D X (1)) "gp(X (1), X (2)) "Cp(X (2), X (3)) 
X (1) . . . . .  X(6)~7/d 

�9 "X (6) 0).  ~.(,,) (~c(33 x(4)) ~(m) (~c(4) x(5)) tp(X(5), x(6)) tpt , - s y m t  -v ~ ~syttlk -~ 

This considerably simplifies the proof of the "P4 implies P3" property (see 
Prop. 5.3 below)�9 The price we have to pay is, first, WH(,~ will be finite only 
for d >  18 (this is unsatisfactory in view of the common belief that Theorem 1.1 
should hold for d >  6), and second, we have to reorganize the analysis of Sect. 3 
to fit into the new scheme�9 Incidentally, for the nearest-neighbour model, the 
value do =48 for the triangle condition announced in [-27] was obtained by 
a method closely related to the one presented in this section. (Although in 
[27] a slightly more efficient bound, using a weighted square diagram, rather 
than a weighted heptagon diagram, was used.) 

The pattern of the proof is the same as for the spread-out model in Sect�9 4. 
First, in Sect�9 5.1, we present a diagrammatic estimate which modifies the analy- 
sis of Sect. 3 to fit into our scheme here. Then in Sect. 5.2, we outline the proof, 
by using the continuity (Lemma 5.2) and the "P4 implies P3" argument (Prop. 5.3) 
of the weighted heptagon diagram. Finally, in Sect. 5.3, we prove Prop�9 5.3 and 
complete the proof of Prop. 1.4. As in the previous section, we use c, c' to 
denote universal constants which are independent of p, m, d. These may represent 
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different values on different occasions. We also use the big-O notation to denote 
a bound which involves a universal constant which does not depend on p, 
m~ d. 

5.1. Diagrammatic estimates 

In this section, we modify the analysis of Sect. 3 to make use of W~,~,. The 
result, which corresponds to Lemma 3.2, is the following: 

Lemma 5.1. For the nearest-neighbour model (i) of Sect. 1.1, we have 
(a) Same as part (a) of Lemma 3.2 
(b) For l~ = 1, 2, ..., d, 

[ (n = o) 
O<~h~m)(O,x)lx,12<<_] 7- elml(1 + T(m)) 2" w(m ) ( n =  1) 

(25nZ.elml(1 + r(~))2 (r(m)),-1. w(,,nm~ (n>2) 

where r (m) is defined in (3.2). 

Remark. It is not difficult to see from the definition of W~,~ that 

d d 
(5.2) ZaZ(") < • TaZ(") ~az(m) " .  = 6  "n, . ,  T(rn)~�89 2 B(2m)< ~ 14/-(m) r r H , , u ~  __  r r H , #  

~:1 #=1 

and thus by Lemma 3.3 that (for d>8)  

(5.3) r(m) ~ 5 ~ I/IT(m) ~- 5 T/IT(m)~ 112 
- -  = 1  ' ' H ' g t  = 1  r V H ' # ]  " 

Thus, bounds (a) and (b) of the above Lemma 5.1 can be expressed entirely 
in terms of WH(~. 

Proof Part (a) and the n = 0 case of part (b) are the same as Lemma 3.2. We 
illustrate the proof of part (b) for n > 1 by the simplest case, n = 1. We proceed 
in way similar to the proof of part (b) of Lemma 3.2. That is, to evaluate the 
diagram 

0 x IxA 2 e r ex '  
I) W 

we first use the triangle inequality for Ixul a 

(5.4) Ix.I 2 --< 3 ([v,] 2 + Iv u -  wu[ 2 + [w u --x~l 2) 

and then use a basic inequality 

(5.5) ~, f (x)  g (x) ~ sup l f  (x) l ~,lg (Y)[ 
X X y 
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to bound each of the resulting terms. For  example, we bound the contribution 
from the first term of (5.4) as follows: 

F~ Iv~l ~ 0 ~ x e rex1 

/) 

�9 sup a~ y+b 

/) 

The first factor (weighted triangle) is bounded by • and the last one is 3 r r H ,  t~, 

nothing but 1 + T (m). The middle factor is bounded as follows: 

p~ Zp(Z, y+ b) zp(O, y) e m(y~ +b~-aO 
y , Z  

= ~ Pa~ e ~(~ -~)" zp(z, y + b) e "(y~ +bl -~) .  Zp(O, y) 
y,  Z 

< ~ zp(a,z)elml'~p(")(z,Y+b)"%(O,y)=elmlTb(~-)~ 
y, z: z @:a 

where in the second step we used a trivial inequality pa~<r,(a, z) and the fact 
that paz=0 unless I l a - z n 2 = l .  As a result, using T2m)+T-@<2(I+T(")) ,  we 
can bound the contribution from the first term of (5.4) • (m). I,,I by3W~." e .2(l+T~m)) 2. 
The second term of (5.4) contributes: 

a ~ : ~  x [w~[ 2 e ' ~ '  ~) 
w , x , a  

0 w 

y w,r,z W k b 0 / 

~(I + T(m))(~ Q ~  IXF, I2)(I + T (")) 
\ xO  X 

where, in the second step, we bounded the middle factor by the weighted penta- 
gon (which is in turn bounded by w(~)~ by using a trivial inequality r r H , , u )  

(5.6) P ~  =Pov em~' Gzp(O, v) e m~' = z(p")(0, v). 

The third term of (5.4) contributes the same as the first one. 
For  n>2 ,  we proceed similarly. We first use the triangle inequality, then 

use the basic inequality (5.5) to bound each of the resulting terms by its basic 
units. We omit the details. []  

5.2. General structure of the proof of Proposition 1.4 
for the nearest-neighbour model 

We prove that the weighted heptagon w<m),,~,~ (introduced in (5.1)) is of order 
d -2 for d sufficiently large. This is done by combining the continuity in m 
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(Lemma 5.2) and the "P4 implies P3" argument (Prop. 5.3), as in Sect. 4. We 
also employ an upper bound on Pc derived in [27, (4.10)] : 

(5.7) 2 dpc = 1 + 0 (l/d) =< 26/25. 

Lemma 5.2. For the model (i) of Sect. 1.1, Wn(.~)~(#= 1, 2, ..., d) are continuous 
in m for all [ml <rap, P<Pc. 

Proof Same as that of Lemma 4.2. []  

PropositionS.3. Consider the model (i) of Sect. 1.1 on ~a. There exists d o > 6  
such that for any d > do and for any fixed p e [1/2d, Pc) and I m[ < rain {rap, d -  x/z}, 
P4 implies P3, where P~ is the statement that the following inequalities hold: 

whm)u<7.4.d -2 for # = 1 , 2 ,  .. . ,d. 

Proof of Proposition 1.4, given Lemma 5.2 and Proposition 5.3. As a consequence 
of the above two and the fact that P3 holds for m = 0  (see note added), for 
d>do, P3 holds for O<m<mp, P<Pc. Now Prop. 1.4 follows immediately just 
as in Sect. 4.1, if we combine P3 and (5.7) with Lemma 5.1 and Prop. 2.1. (The 
bound on/3(m)(0)-/3(0) follows trivially by explicit calculation, using the follow- 
ing (5.12).) [] 

5.3. Proof of Proposition 5.3 

We now proceed to the proof of the "P4 implies P3" property ,,r wcm) Prop. 5.3. ~ *  r r H , # ,  

We begin by listing some properties of gaussian integrals: 

Lemma 5.4. For the gaussian nearest-neighbour model on Z a, with d sufficiently 
large, we have: 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

Pc = 1/2d, 
a 

max/o"2 = P e m, 
a 

S (m) = cosh m, 
d 

suppoa=p,  ~pox=2dp,  ~pZ~=2dp2, 
x o 

F /o 2=2dp d ' 
x 

/3(k)= ~ cosk. 
d ' 

, u = l  

/3~") (k) =/3(k) + c o s h m -  i sinh m 
cos k 1 + i ~ sin k~, 

ddk { 1  .<11 
Y (2n) a k l - O ( k ) ]  = 10 (0<n<9) .  

We briefly describe the proof in Appendix B.2. 
Now, given P4, (5.7) and the explicit formulas (5.8) to (5.10), we have, just 

as in the proof of Lemma 4.5: 
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L e m m a  5.5. Under P4 for model (i), for sufficiently large d and for sufficiently 
large N>__No(d; m, p), we have: 

Id(m)(k) - l l ,  I /~(~(k) l~c~ d -a, 
10~ d(m)(k)[, 10~/~(2)u (k) l _-< c2 d - 2 (s = 1, 2), 

0 < R e  ( / ~ m ~  (0)-/~(_<m~ (k)) < c3 d - 1  [k[ 2 < , - - - d = c a d - ~ ( 1 - / 9 ( k ) ) ,  

I~(m)(0)-(~(0)l, I / ? (~)~(0) - /?~(0) l__<c ,d-2m 2, 

where ct, . . . ,  c4 are universal constants independent of  p, m, d. 
As a result, proceeding just  as in the p roof  of  L e m m a  4.6, we have: 

L e m m a  5.6. Under P4 with sufficiently large d, for Im[<d -~/2 (including m = 0 ;  
note ~'y'm = o)(k) = 2(k)), 

l + O ( d  -1) 
I r (k)/= l e e  "~(y (k)l < I 2(p")(k)l < - -  1-ZS(k) ' 

10 1 1 
t0 .  A(,.) _ -Csym(k)l- IRe 0. r < la. 2~")(k)l < 11 d (1 - f i ( k ) )  2" 

Proof. The first bound  is proven in exactly the same way as Lemma 4.6. That  
is, we write 

IG(m)(k)l < IG(m)(k)t 
Ir(")(k)l = Iff(m)(k)t = Re  ff(")(k) 

and use L e m m a  5.5 to bound  the numera tor  and the denomina tor  just  as was 
done to prove (4.26). 

To prove the second bound,  we first write 

Ou 2(,,)(k) - ~, ~(")(k) G(")(k) 0, P(")(k) 
P " ) ( k )  P m ) ( k ) :  

For  the denominator ,  by  L e m m a  5.5, just  as in (4.26), 

IF (m) (k)[ > Re if(")(k) > (1 - c' d - ~) (1 - b (k)). 

For  the numerator ,  ]0 u G(")(k)[ is bounded  by L e m m a  5.5. ]0, F(")(k)l is bounded  
by writing 

s ink ,  { c o s h m  l s in ,  . s i nm } _ 0 u  
~?,ff(")(k)=2dp-~---+6~,,1 d = ~1 + ~ - ~  c o s  k l  //~%(k) 

and using L e m m a  5.5 and (5.7), to get (for re<d-1/2) 

2 13 1 10uff(,.)(k)[<26 [sin 1%[ ~_O(d_3/2)+O(d_ ) < 1 2 " d "  
25 d 
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Combining these, we get the desired bound on OpW')(k) for d sufficiently 
large. [] 

Given these, we can now prove Prop. 5.3 for the nearest-neighbour model. 

Proof of Proposition 5.3 for model (i). We first use the Fourier transform to 
write, 

d 
i/l/_(m ) __  f d k t ,q2 ^ 5 ^(m) 2 

"Csy m (k)) (z (k)) ("Csy m (k)) ' ' H ' ~ - -  J ( 2 ~ )  d t - ~ a  ^(m) 

ddk ^(,.) 2 (-c(k)) -Csym(k ) = 2 ~ ~ ( ~  Zsy m (k)) ^ 4 ^(m) 

+4~ dak 
(~ (k)) ('~sym(k)) (~/~ "~(k)) (~/~ ^(m) ^ 3 ^(m) 2 

d ' d k  ^ 
___ 2~ ~ (Ou Z~')m (k)) 2 (~(k)) 4 f~y")m(k) 

4 d d k  ^ 2 
~'sym (k)) ] (T (k)) ('Csym(k)) S [ (G + ( a  m ^ 

and then use Lemma 5.6 to bound the integrands. We get 

wu(m)~6.(ll]2 1 . d"k / 1 \9 9 11 
'#  \ lO,J  (l-[-O(d-1))5~J ( ~ ) d [ ~ )  <=dff'~" 

In the last step, we used (5.13) to bound the integral for large d. [] 

A. Basic properties of two-point functions 

Here we summarize several basic properties of the two point function ~p and 
the correlation length ~ (p), which are used in the text. Clear, concise, and beauti, 
ful expositions of these and related properties can be found in [16, 22]. Through- 
out this section, for a given subset A c Z d, we write A ~ = Zd \ A .  We start with 
two correlation inequalities which play central r61es. 

Proposition A.1. (a) A simple consequence of Harris-FKG inequality: 

(A.1) zp(x, y) > zp(x, z) "cp(z, y) x, y, ze2g d 

(b) Aizenman-Simon type inequality: Let A be any (nonempty) subset of 2g a such 
that O~A and x ~ A  c. Then 

(A.2) "cp(0, x) < ~ zp(0, y) Prz zv( z, x). 
yea z~A e 

Remark. When dealing with an infinite range model, we find it more convenient 
to use the above inequality than to use that of Simon-Lieb type. 

About the proof (a) This is a special case of the Harris-FKG inequality [16, 
18, 30]. See Sect. 2.1 and (2.22) of [16], or (5.59) of [22]. 
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(b) See Sect. 2.3 of [16]. There Lieb-Simon inequality was derived. The proof 
of (A.2) proceeds in a similar way, by picking a path (self-avoiding walk) connect- 
ing 0, yeA,  zEA c and x ~ A  c (where {y, z} is a single bond) for each bond configu- 
ration contributing to zv(0, x), and applying van den Berg-Kesten inequality 
[9]. The corresponding inequality for Ising (and related) models was first derived 
in [6]. 

Remark. It is clear from the above proof that a stronger inequality (Lieb- 
improved version) holds: 

�9 ~(o, x)<= ~ z~(o, y)p,~-~p(~, x) 
y ~ A  

z ~ A  e 

where zA(x, y) is defined to be the probability of the event that there exists 
an occupied path from x to y which does not have any cite of A as the endpoints 
of their bonds. 

The "supermultiplicative" (or subadditive for In zv) property expressed by 
(A.1) immediately implies: 

Proposition A.2. The mass 

lira in zv(0, (x l, 0 . . . .  ,0)) 
(A.3) r (p)-~ -= mv= - ~, -o~ I x~ t 

exists (0 <mp <= oc), and zp(O, x) satisfies an a priori bound 

(A.4) 0 < zv(0, x)__< e-  mp II x [I 

Remark. Supermultiplicative property alone does not guarantee the positivity 
of rap. Corollary A.4 proves mp>O for P<Pc. 

About the proof See, e.g., [16] (Sect. 2.3, in particular, Prop. 2.9) or [223 (Sect. 5.2 
and Appendix II). (A.4) for x on a coordinate axis follows immediately from 
the subadditivity. (A.4) for x off the axes is obtained by combining (A.1) [in 
the form zv(0, x) 2 <'cv(0, x')] with (A.4), where x ' - 2  Ib x bl co el is on the axis. See 
[22, p. 943 for details. The original "subadditive" argument dates back to 
[233. []  

Note that (A.4) implies 

(A.5) z(v~) (0, x) < e -("P-") II ~ II 

Aizenman-Simon inequality (A.2) has the following important consequence. 
Because it plays the central r61e in the proof of Prop. 1.3, we here present it 
in a general form and reproduce its proof. 

Proposition A.3. Suppose on Z a two nonnegative translation-invariant functions 
a(x, y) and K(x ,y )  are given (i.e. O<a(x,y)=a(O,  y - x ) ,  O<K(x , y )=K(O,  y - -x )  
for x, ye2~ d) and that they satisfy 

(A.6) a(O,x)<__ ~ 6 (O,y )K(y , z )a (z , x )  for O~A, x e A  C 
y e a  

z e A  c 
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for any (nonempty) finite subset A ~ 2g a. Suppose moreover that ~ K (O, z)e ~1t~11~ 

< oo for some 6 > 0  and that Z--~a(0 ,  x)< oe. Then 
x 

o(O,x)<=C.e-mll~Jl~ 

for some finite and positive C and m. (See the proof for a possible choice of 
C and m.) 

Proof Given (A.6), this is proven following the proof of Corollary 4.2 of [6], 
which in turn follows the proof of Prop. 3.2 of the same paper. (There, similar 
results were proven for Ising models.) 

Because this proposition is the key in the proof of Prop. 1.3, we reproduce 
their proof (with minor changes) for the convenience of the reader. The basic 
idea of the proof can be found in [36, Theorem 1.3, Theorem 5.1]. The following 
proof (after [6]) is a little more complicated, due to the possible presence of 
exponentially long-range interactions. We proceed in several steps. 

Step 1. We first choose A which is suitable for our needs. For this, fix a positive 
integer R such that 

(A.7) (R -l- 1) d e -~ ~ (4~  K(0, z) e ~ fl z I/~)- 1 

z 

and 

(A.8) ~, a(O,y)<=(4~K(O,z)eOJlzJl=) -~ 
y: [] y l[ ~ > R / 2  z 

and choose AR =- I--R, R]anZ  d, A~R- -Za \ [ -R ,  R]d. Because ~a (0 ,  y)< 0% and 

because this is a sum of nonnegative terms, Y 

lim E a (0, y) = 0 
R ~ ~ 1 7 6  y: Hy I Im>~R/2  

and thus the above R (which is finite) exists. In the following, we denote for 
ze7Z a, dist(z, AR)=-inf{ l ly-z l[~:  y e A R } = m a x  {l[zlro~--R, O } and, with a slight 
abuse of notation, dist (z, A~) -= inf{ ][ y -  z Jr 00 : II Y JI ~ > R} = max {R - [I z Jl ~, 0}. 
Note that with this choice of R, 

(A.9) e -~= - ~ a(O,y)e-~ais"Y'A;>K(y,z)e ~ <= �89 
zEACR 
y E A R  

This can be seen, e.g., by writing 

Z e- ~ aist(Y' a;) a(0, Y)- -< Z e- ~ dist(y' a'~) + Z O-(0, y) 
yeAR Y: Pl Y II ~ =<e/2 Y: II y Ir ~ >e/2 

and then using above (A.7), (A.8). 



374 T. Hara 

Step 2. In the following, we fix x, y ~ Z  d (y--xeA~),  and analyze ~r(x,y). We 
now define a transition probability of a Markov random walk as (the walk 
itself will be defined in Step 3.) 

(A.10) p ~ -  e ~ ~ a(w, u) e -~" dist(u-w'"l~)K(u, V) e ~ II ~-,  II 
U:U -- W ~ A R  

for v -  w e A~. We rewrite the inequality (A.6) by using the triangle inequality 

dist ( u -  x, A ~ ) -  [] u -  v 1[ ~ _<- - dist ( v -  x, AR) 

for u -  x eAR,  v - - x  e A~, and the above definition of Px, as: 

(~, y)__< ~ o(x, ~) K(u, v) ~(v, y) 
U : t ~ - - X E A  R 
o: t)--  x e A e R  

= ~ e ~ ~ a (x ,u )e  ~''dist(u--x'aR)K(u,v)e 611u-vtl~ 
v : v - - x ~ A e R  U l U - - x e A R  

�9 O" ( l ) ,  y )  e a '  d i s t  (u - x ,  A~z) e - ~5 H v - u II ~ e - ~ 

< ~ p ~  e(v, y) e-~e -~ " a i s t ( v - - x ' A R )  

V: v -- x ~  ACR 

At this stage we can interpret the above sum over v as an expectation with 
respect to a one step random walk which starts at co(0)=x and makes a jump 
to co(l)= v with probability px~, defined in (A.10). Writing 

px. F (v)- el  IF(co 0))] 
v: v - -  x~Ae i t  

for an arbitrary function F of v, we can write the above inequality as 

(A.11) ~(x, y) _-< Ea [~ (co (1), y) e -~-  ~" ais,~ (1)-x, AR)']. 

Step 3. We can again apply the inequality (A.6) to a(co(1), y) in (A.11), as long 
as y--co(1)EA~, and can iterate this procedure. For  this purpose, for given 
x, y e~a (y - - xEA~) ,  we define a random walk co = (co (0), co (1), co (2) . . . .  ), which 
is a generalization of the one-step walk in Step 2, according to the following 
rules: (a) The walk starts at co(0)=x. (b) If y - c o ( i ) e A ~ ,  the walk makes a 
jump from co(i) to o~(i+ 1) [co(i+ 1)-co(i)eA~] with the transition probability 
P~o(0,~,(i+l) [given by (A.10)]. (c) If y - c o ( i ) e A g ,  the walk stays at co(i), i.e. co(i 
+1)=co(i). In other words, the walk stops at the first time t such that y 
--co(t)~AR. We define the stopping time z N for the N-step walk as either the 
earliest time re{ l ,2 ,  ..., N} for which y - c o ( t ) ~ A  R [in this case the walk stops 
at co(t)], or N, i f y - c o ( t ) e A ~  for all t~{1, 2 . . . .  , N}. 

Using this notation, iteration of the above inequality (A.11) gives for N > 1 

i = 1  

where we denoted the expectation with respect to the above defined N-step 
walk by EN[ ' ] .  
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Step 4. We take N sufficiently large so that N . R  > []x-y[[ o~. In the exponent 
of (A.12), either z N = N  or "oN< N. If zN=N,  the quantity inside the expectation 
is bounded above by 

(A.13) <=e-~N <__exp(-R l[X- yHoo). 

If ZN<N, there exists tE{1, 2 . . . . .  N} such that y--~o(t)~A R. In this case, rN=t, 
and by the triangle inequality, 

i dist (e) (i)-  co(i- 1), AR)> l] o)(t)--co(0)]l oo - - t . R >  l[ y--xl] oo --(t+ 1) R 
i = 0  

and thus the quantity inside the expectation of (A.12) is bounded by 

(1.14) <exp ( - m i n  {R,  @ ]]x-y]]~ +~). 

(A.12), (A.13) and (A.14), yield 

6(x,y)<=e~e-min{e,~} IIx-yl[~ 

and we have the desired bound with C = e  ~, m = m i n ~ R , 6  ~. [] 

Corollary A.4. Consider a translation invariant bond percolation model defined 
in Sect. 1.1 with ~po~e~ll~El=< oc. Then (a) my>0 as long as p<pc=sup{p[Zp 

z 

< oo } and (b) m v ",~ 0 as p .~ Pc. Moreover, (c)/f m; < 6, 

Z~ n) =- Z'Cp (0, x) e rex1 .~ oo as m ..~ rap. 
x 

Proof Part (a) follows directly from Prop. A.3, by replacing a (respectively K, 
Z) by zv (resp. p, Zp) [-(A.6) follows from (1.2)]. 

(b) The a priori bound (A.4) implies a simple upper bound on mp (for all 
P<Pc): 

(A.15) z p < l + 2 d .  ~p . 

Because Zp s oe as p ,7 p~ [-24, 5], taking (a) into account, (A. 15) implies mp N 0. 
(c) Multiplying (A.2) by e m~'l, we get its e . . . .  weighted version (as always, 

x) emX') : 

(A.16) �9 (y(o,x)<= Z �9 
y ~ A ,  z E A  e 
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Fix p such that m,<3 .  Then we have ~p(o%p)e~'ltzll~~ with (say) 6 '=(6 
z 

--mv)/2>O. Now suppose Z(p")<C<oo uniformly in me[0, mp). Then by the 
Monotone Convergence Theorem Z(p ~)  ~ C < oo [note: )(p~) 
=~Ze(0,  x)cosh(mXl) is monotone nondecreasing in Im]]. Now we can apply 

x 

Prop. A.3 [with o-, K, X replaced by z~ "p), p('~,), ~(~'%}; (A.6) is nothing but (A.16) 
with m = mp] to conclude "c~ "~) (0, x) < C' e- "' II ~ II = with 0 < m', C' < oo. This con- 
tradicts the definition of rap. (I am grateful to Gordon Slade for having pointed 
out an error in an earlier version of the above proof.) [] 

Remarks. 1. Part (a) was first proven (for the nearest-neighbour model) by Ham- 
mersley [24]. 

2. Divergence of {(p) can be proven without relying on the divergence of 
Zp, by using "Lieb-improved" AS inequality along the line of argument of [36]. 

B. Bounds on gaussian quantities 

In this appendix, we prove Lemma 4.1 and Lemma 5.4 on the properties of 
gaussian quantities defined in terms of {J~r}" The proof of Lemma 4.1 is very 
much similar to that of Lemma 5.1 of [-27]. We concentrate on several points 
which require a somewhat different treatment from that of [27]. 

B.1. Proof of Lemma 4.1 (gaussian quantities of the spread-out model) 

The proof of Lemma 4.1 proceeds in parallel to that of Lemma 5.1 of [27]. 
In the following, we write a(L)~  b(L) when lim a(L)/b(L)= 1. We also use big-O 

L - - ~ m  

to denote upper bounds involving constants independent of L. 
First note that by definition, 

L-ag(x/L) 
p(oa),, - ~ L-a g(x/L).  

As L goes to infinity, the denominator goes to one, because this is nothing 
but the Rieman sum approximation of the integral ~dayg(y)-- 1 (we have rewrit- 
ten x / L = y ;  recall that we have normalized g in the definition). Now, for 
O<_m<_O.L -2, from the assumption on the decay of g, (i.e. g(x)<=Ce -allxH~) 

p~oG2 e "x' ~ L-d g(x/L) e "~1 <=L -a. C. e -(o-mL) II y II ~ = O(L-a) 

(in the second step we wrote y = x/L). Also (writing again y = x/L) 

• ,~(a) . . . .  ~2 ~ L-a~ day {g(y) e,.Ly~}2 ~ O ( L-a). 
x 
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This proves (4.1). F o r  (4.2), 

sup Ix, ] 2 P(o~ emx~ ~'sup L-d+2 [Yl 12 g(Y) e"LY* = O(L-d+2), 
x y 

5-~/~(a)~2 . . . .  I-~ 12 ~L-a+2~ddyg(y)2 emLY, ]y, [2 = o(g-d+2). 
x 

The  bounds  (4.3) to (4.8) are identical to (5.9) to (5.14) of [27] (except tha t  
the constants  here are a little sharper), and are proven in exactly the same 
way as in [27]. We are now left with (4.9) to (4.12). 

As for (4.9), by the definition of/5("~ we just  use the fact that  

5 da y g(y) e rely1 
D{m~(o)~ 5ddyg(y ) + 1 (as L--+ oo) 

for [ml=<~5.L -2. Fo r  (4.12), 

L-d~g(x/L) (cosh r e x , -  1) L-a~,fl(x/L) ix 1 [2  (m2/2) 
x x 

/)(~)(0)-- L$ (0) - L_a~g(x/L ) >= L_a~g(x/L ) 
x x 

U m 2 I~ m 2 gZm 2 l ~ddyg(y )[y12. = 
~dayg(Y)[Y*12" 2 - d  2 2d 

where in the last step we used the normal iza t ion  convent ion  (1.8). Fu r the rmore  
for [ml<OL -2 

L-d~,g(x/L) cosh(mXl) Ix ,  ] 2 (m2/2) 

~(~)(o)-h(o)< = L-~Eg(x/L) 
x 

(mL) 2 r . a  , , 12 _(mL) 2 (mL) 2 
" ~  ja YgtY) IY, cosh(mL y , ) ~ 7 -  ~deyg(Y)rY] 2--- 

2d " 

F o r  (4.11), we proceed exactly as we did in (2.21) and (2.22). Using the fact 
that  P~o~ is even in each x ,  . . . . .  xe, 

]Im/5(m)(k)] __< m [k,[ ~p~o~ c o s h ( m x 0  [Xl [2 
x 

"~ ~ ddyg(Y) [Yl [2 cosh (mLy  O.L 2. rnlk,[~ L2 mlk, I 
d 

Lastly for (4.10), we note  by L e m m a  5.4 of [27] that  for sufficiently large L 
and for ]ml<aL -2 

I~(~)(k)l ~ 2 [I ~I {g(y) emLy,} II1 ~ 2 

[ I 2 L  sin k~ 
vs, 2 

II a*g(y)ll 

I ~ 2 L  sin k~ 
~ ,  2 
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for t c  {1, 2, .,,, d}. The numerator is bounded by some constant independent 
of L, by the assumption on the derivatives of g. Now we can argue just as 
in [27, Sect. 5.2]. [] 

B.2. Proof of Lemma 5.4 (gaussian quantities of the nearest-neighbour model) 

For the gaussian nearest-neighbour model, we can explicitly calculate most of 
the quantities in question. (5.8) to (5.12) are proven this way. (5.13) can be 
proven, e.g., following Sect. 3 of [37]. We here provide the proof of (5.13) and 
bounds on related quantities following a different line of argument. 

Throughout this section, as in Sect. 5, we write 

ddk ddk 
(B.1) ~(2rc) e =  ~ d (2re) n' 

[ - ~ ,  ~r] 

d /)(k)= ~ cos k~, dek e ik'x 
. = ,  d ' c (~  ~ 1 - ~ ( k )  

and we define (for nonnegative integers m, n) 

ddk b(k) ~ 
I,, m (d) = 5 (2 =)d (1 --/) (k))"" 

We also write 
f (d)  = a(d) + O(d -~) 

if 
(B.2) f (d)=a(d)+b(d)  with Ib(d)l<Cd -~ 

where C is a constant which does not depend on d. (In the following, this 
C depends on integer parameters m, n.) 

We here prove the following two estimates. The first lemma provides (5.13) 
as its special case. The method of its proof can be used to generate rigorous 
asymptotic expansions in d-1 for gaussian quantities, and in the Lemma we 
have given their first order terms. The second one is not necessary for this 
paper, and is presented here just to give another proof of the O(1/d) bound 
on WG, A somewhat related idea was used in [i  I] to prove lira dl lz(d)= 1/2. 

d--+ oo 

Lemma B.1. For the gaussian nearest-neighbour model (i) of Sect. 1.1, (a) For 
a nonnegative integer m, 

(B.3) (2d) ~ " 1 -  <__~(5~)~1~(k)12~_-__ (2d) ~ 

where cl is a constant which does not depend on d (but does depend on m). 
(b) 1,,o(d) is monotone nondecreasing in n, is monotone nonincreasing in d, 

and 
ddk 1 

In, (d) f - - > l .  0 J (2 rr) ~ (i - s (k))" 
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(c) For nonnegative integers m, n, and for d >= 4n + 2, 

ddk /)(k) TM ( 2 m -  1)!l 
(B.4) K"'m(d)=-S (2re) d (1-/)(k)2) " -  (2d) ~ " {1 +O(d - ' ) } .  

Moreover, for m = O, 

(B.5)  

(B.6) 

and, for m odd, 

(B.7) 

Moreover, for I,, o (d), 

n 
K,, o(d)= 1 + f d +  O(d- 2). 

(d) Consider the same situation as (c). We have, for m even, 

I rd~ - ( m -  1)!!- . , . , ,~ , -  (2d)m/2 { l+O(d-1)}  

m ~  
I,,,,(d)=n. {1 + O ( d -  1)}. (2 d)(,, + 1)/2 

(B.8) I ,  o (d )= l~  n ( n + l )  t_O(d_l)" 
' 4d 

As for quantities which include derivatives, we have 

Lemrna B.2. For the gaussian nearest-neighbour model (i) of Sect. 1.1, 
Ix [2 -weigh ted quantity 

~ .  ddk rOu/5(k)l 2 
W , ( d ) - L J  ( ~ d  (1-/~(k))" 

# 

satisfies, for n > 1 + d/2, 

W.(d)= ~--2+ O(d- 2). 

379 

the 

2d = TG <= ~--d -t-O(d- 2)' 

2~ ~ WG~ ~ +  O(d- 2), 

--~ < C(O, O)-- l = Kl, o(d)- l = ~d+ O(d- 2). 

(B.9) 

(BAO) 

and 

(B.11) 

Remark. In particular, for gaussian quantities TG, Wa defined by replacing zp 
by C in Definition 3.1 we have 
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In the above, the lower bounds were obtained by rewriting the quantities in 
terms of C(0, x) in x-space, and by counting the contribution to C(0, x) only 
from a one-step walk. 

Proof of Lemma B.I. (a) By direct computation: just expand/)(k)  2" and evaluate 
the integral. The upper bound is a trivial case of gaussian inequality. 

(b) Here in (b), and in the proof of Lemma B.2, we use v to denote the 
dimension to avoid confusion with the differential notation. This v should not 
be confused with the critical exponent. First, by H61der's inequality, 

11, o (v) =< (I,, o (v)) 1/, < (in, ' o (v)) 1/,, 

for 1 _< n ___ n'. Also by Jensen's inequality, 

I1  ^ \ - 1  
, (~)~(l-D(k))) =1 .  

These prove In, o(v) > 1, and the monotonicity in n. To prove the monotonicity 
in v of I,, o (v), we employ the formula: 

1 - .~ dt'tn-1 e_tA 
A n - (n----~.v for A > 0  

0 

to write 

(B.12) In, o ( V ) = ~ d t ' t " - l ( ) ~ d O e  t(l-c~176 ~ 
o (n-- l ) !  o ~-n 

Now, in general, for a real random variable X and a probability measure d#(X), 

g(a) = (S d #(X) e-~X) 1/~ = tl e - x IIL.~d,~ 

is a nondecreasing function of :~ > O. In (B.12), the integrand of the t-integration 
is of the form g(1/v), and is monotone nonincreasing in v for each t. 

(c) We use c, c', c" to denote constants which do not depend on d (but 
do depend on m, n). They many represent different values on different occasions. 
We also introduce Y--/)(k) 2, and denote the integral over k simply as 

d~k F(/~ (k)2). (F(Y)) - S 

The lower bound of (B.4) follows immediately, if we note (because 0 -~ Y_< i) 

y~ 

and use the lower bound of (B.3). (We can alternatively derive the lower bound 
by the following argument.) 

To get the upper bound, we employ a method which can be used to generate 
asymptotic expansions in the powers of d-1 of the quantities in question. The 
basic idea is rather simple: Y=/)(k) 2 is a square of a sum of d independent 
random variables (cos k,) divided by d 2, and thus we can expect Y~d-1 .  Hence 
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in the expression (B. 13) of K,, , ,  (d), we might be able to neglect Y in the denomina- 
tor to conclude K,,,,(d),,~ (Y"),,,d-". 

To make the above idea rigorous, we first add and subtract ( Y " )  to write: 

(B.14) 

where 

. / y m { l _ ( l _ y ) . } \  1)z+t/n,~/ ~'m+l \ 
K.,m(d)=(Y')+\ ~ y ) .  / = ( Y " )  + z=l ~' ( -  \ I] \ (1-  Y)"/ 

(7) .' =- l!(n-l)! 

is the binomial coefficient. The first term gives the main contribution and the 
rest will be of higher orders in d -1  (one factor of Y in the numerator  would 
give rise to one d-1). 

Our remaining task is to show that the terms in (B.14) except for the first 
one are in fact of higher orders in d-1.  This is done in several steps. First, 
we derive a (very rough) uniform (in d) bound on K,,m(d). Because (1 - / ) (k ) ) -1  
is increasing in /)(k) and ( l+/ ) (k))  -1 is decreasing in /)(k), we can use the 
F K G  inequality to derive (using I Yl < 1 first) 

K,, m (d) < K,, o (d) = ((1 - / )  (k))-". (1 + / )  (k))-") 

< ~(1 - / 5  (k))-") ((1 +/5 (k))-") = (I,, o (d)) 2. 

But, because 1 -D(k)~2[k[2/(drc2), I,,o(d) is finite for d >  2n. Taking into account 
the monotonicity of I,, o (d) in d, we thus have a bound (uniform in d > 2 n + 1) 

K,, ,,(d) < (I,, o (2 n + 1))2 _ c2. 

As the second step, we use this uniform bound to obtain O(d-') bounds. 
By the Schwartz inequality, and by (B.3), for d > 4 n + 2, 

(B.15) 
1/2 

K.,  re(d) = __< ( r 2 , , )  1/2 __< c. d -  " 

where c depends on m, n but not on d. 
As the third step, we substitute the above rough bound (B.15) into (B.14), 

and use (B.3) to bound to resulting (y , ,+z) .  

,,mta)~- ~ "}- O(d -(re+t)) 
l 

__< (2d) m " 1 +  

where c' depends on m, n, but not on d. This proves (B.4). 
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Now it is clear that we can carry out the above procedure to obtain asymptot- 
ic expansions in d -  1 to arbitrary high orders. For example, to the second order, 
we write 

K. .,(d)=(Ym) +n(Y"+ I) +(Y" -  Y"(1- Y)"-nY"+ ~(1- Y)"\ 
, / 

and use (B.15) to bound the last term, together with explicit calculation of 
( Y ' )  and {Y"+ 1). For m = 0  this gives (B.5). 

(d) This follows immediately from (c), by writing (by the symmetry of the 
integral measure) 

I, m(d)=~ j ( ~ ) a  (( 1 t ' - / ) (k ) )"  (1 +fi(k))"J 

and using (B.4) to bound the right hand side. For m = 0, we write 

i , , o (d )=K, ,o (d )+~( ( l~ )+u~_2(21 ,  ) yt, 

and use (B.15). This completes the proof of the Lemma B.1. [] 

Proof of Lemma B.2. We write v for the dimension d to avoid confusion with 
the differential. The lemma follows immediately from Lemma B.1 and the follow- 
ing identities: 

(B.16) 

(B.17) 

W n (v) = ~ {I n _ 1, o (v) - I .  _ 2, 0 ( v ) }  

W1 (v) = ~ v  {Ii,o(v)-C(O, 2; v)}. 

for n_>_2, 

Here in (B.17), C(0, 2; v) is the gaussian ~,, i,agator (B.1) from 0 to x = (2, 0, ..., 0). 
To prove (B.16) and (B.17) we first observe, by the same argument which led 
to (B. 12), that (here we write t/v = s) 

(B.18) W.(v)=v "-1 ; ds's"-2 
0 ( n - l ) !  e-~S{I~ 

where 
2 ~  

I o(s)-- 2~ ~dOe ..... o, Ii(s)=s" ~ 2~udOe~~176176 0 
0 0 
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are  modi f i ed  Bessell functions.  Us ing  the recurs ion  re la t ion  

11 (s) = d io  (s) 

which  fol lows easi ly f rom their  defini t ion,  and  using the in t eg ra t ion  by  pa r t s  
(for n > 2), 

Wn(V)=vn_ 2 ~ ds.s "-2 e_~, d 
o ( n -  1)! Ts (l~ 

v -lo  = v ' - 2 [ ~  e-~(I~ o + ( n - - 1 ) ~  dss"-2e-~(I~ 

cO 

n--2 v,,_ 2 ~ dss,_3e_~S(io(s))L 
(n--  1)! o 

F o r  n > 3  the first t e rm vanishes  and  (B.16) is p roved .  F o r  n = 2  the last  t e rm 
vanishes,  a n d  the first one  con t r ibu te s  - 1 ,  thus  lead ing  to  (B.16) again.  F o r  
n = l ,  we s imply  rewri te  s i n Z 0 = ( 1 - c o s 2 0 ) / 2  in the def ini t ion of  Ii(s) which 
occurs  in (B.18), and  c o m p a r e  the resul t  wi th  express ions  for 11,o and  
c(0, 2; v). [] 
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Note added in proof 
In the proof of Propostition 1.4 for the nearest-neighbour model in Section 5.2, we used the 
fact that WH,,= WtH~,~ ~ 12 .d -2 (/~ = 1, 2, ..., d). This follows easily from i) continuity of WH,, 
in p, ii) the fact that Wm,<(Wm,)g .... N 12.d -2 for pN 1/2d, and iii) Proposition 5.3 for m=0,  
just as was done in [273 to prove/'3 for quantities T, IV, W,, H ..... , 


