Skip to main content
Log in

Contemporary and pre-industrial global reactive nitrogen budgets

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Increases and expansion of anthropogenic emissions of both oxidized nitrogen compounds, NOx, and a reduced nitrogen compound, NH3, have driven an increase in nitrogen deposition. We estimate global NOx and NH3 emissions and use a model of the global troposphere, MOGUNTIA, to examine the pre-industrial and contemporary quantities and spatial patterns of wet and dry NOy and NHx deposition. Pre-industrial wet plus dry NOx and NHx deposition was greatest for tropical ecosystems, related to soil emissions, biomass burning and lightning emissions. Contemporary NOy+NHx wet and dry deposition onto Northern Hemisphere (NH) temperate ecosystems averages more than four times that of preindustrial N deposition and far exceeds contemporary tropical N deposition. All temperate and tropical biomes receive more N via deposition today than pre-industrially. Comparison of contemporary wet deposition model estimates to measurements of wet deposition reveal that modeled and measured wet deposition for both NO 3 and NH +4 were quite similar over the U.S. Over Western Europe, the model tended to underestimate wet deposition of NO 3 and NH +4 but bulk deposition measurements were comparable to modeled total deposition. For the U.S. and Western Europe, we also estimated N emission and deposition budgets. In the U.S., estimated emissions exceed interpolated total deposition by 3-6 Tg N, suggesting that substantial N is transported offshore and/or the remote and rural location of the sites may fail to capture the deposition of urban emissions. In Europe, by contrast, interpolated total N deposition balances estimated emissions within the uncertainty of each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EMEP:

European Monitoring and Evaluation Program

GEIA:

Global Emissions Inventory Activity

NADP/NTN:

National Atmospheric Deposition Program/National Trends Network in the US

NH:

Northern Hemisphere

NHx=NH3+NH 4+ NOx=NO+NO2 :

NOy total odd nitrogen=NOx+HNO3+HONO+HO2NO2+NO3+radical (NO3 .)+Peroxyacetyl nitrates+N2O5+organic nitrates

SH:

Southern Hemisphere

Gg:

109 g

Tg:

1012 g

References

  • Aber JD & Driscoll CT (1997) Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests. Global Biogeochem. Cycles 11: 639–648

    Google Scholar 

  • Aber JD, Nadelhoffer KJ, Steudler P & Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39: 378–386

    Google Scholar 

  • Asman WAH & Van Jaarsveld HA (1992) A variable-resolution transport model applied for NHx in Europe. Atmospheric Environment 26A: 445–464

    Google Scholar 

  • Asman WH (1994) Emission and deposition of ammonia and ammonium. Nova Acta Leopoldina NF 70: 263–297

    Google Scholar 

  • Benkovitz CM, Scholtz MT, Pacyna J, Tarrason L, Dignon J, Voldner EC, Spiro PA, Jogan JA & Graedel TE (1996) Global gridded inventories of anthropogenic emission of sulfur and nitrogen. J. Geophys. Res. 101: 29,239–29,253

    Google Scholar 

  • Bottger KA, Gravenhorst G & Ehhalt DH (1978) Atmospharische Kreislauf von Stickoxiden und Amoniak. In: Kernforschungsanlage Julien, Julich Report number 1558

  • Bouwman AF, Lee DS, Asman WAH, Dentener FJ, Van Der Hoek KW & Olivier JGJ (1997) A global high-resolution emission inventory for ammonia. Global Biogeochem. Cycles 11: 561–587

    Google Scholar 

  • Carpenter S, Caraco NF, Corrlee DL, Howarth RW, Sharpley AN & Smity VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. App. 8: 559–568

    Google Scholar 

  • Chameides WL, Kasibhatla PS, Yienger J & Levy II H (1994) Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science 264: 74–77

    Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Howarth RW, Hedin LO, Perakis SS, von Fischer JD, Wasson MF, Latty EF & Elseroad A (submitted) Global patterns of terrestrial biological concentration (N2) fixation in natural ecosystems. Global Biogeochem. Cycles

  • Cornell S, Rendell A & Jickells T (1995) Atmospheric inputs of dissolved organic nitrogen to the ocean. Nature 376: 243–246

    Google Scholar 

  • Cramer W, Claussen M & Solomon AM (1995) An assessment of different climate change scenarios for the global redistribution of agricultural land. First Science Conference, Int. Geosphere-Biosphere Programme, Global Anal., Interpret., and Model, Garmisch-Partenkirchen, Germany

    Google Scholar 

  • Crutzen PJ & Andreae MO (1990) Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250: 1669–1678

    Google Scholar 

  • Crutzen PJ & Gidel LT (1983) A two-dimensional photochemical model of the atmosphere 2: The tropospheric budges of the anthropogenic chlorocarbons CO, CH4, CH3Cl and the effect of the various NOx sources on tropospheric ozone. J. Geophys. Res. 88: 6641–6661

    Google Scholar 

  • Crutzen PJ & Zimmermann PH (1991) The changing photochemistry of the troposphere. Tellus 43AB: 136–151

    Google Scholar 

  • Davidson EA & Kingerlee W (1997) Global inventory of nitric oxide emissions from soils. Nutrient Cycling in Agroecosystems 48: 37–50

    Google Scholar 

  • Dawson GA (1977) Atmospheric amonia from undisturbed land. J. Geophys. Res. 82: 3125–3133

    Google Scholar 

  • DeFries RM & Townshend JRG (1995) An initial coarse resolution NDVI-derived global land cover classification. In ISLSCP Initiative 1: Global Data Sets for Land/Atmosphere Models 1987-1988. CD-ROM NASA, Greenbelt, Md

    Google Scholar 

  • Delmas R, Derca D & Jambert C (1997) Global inventory of NOx sources. Nutrient Cycling in Agroecosystems 48: 51–60

    Google Scholar 

  • Dentener FJ & Crutzen PJ (1993) Reaction of N2O5 on trospheric aerosols: Impact on the global distributions of NOx, O3 and OH. J. Geophys. Res. 98: 7149–7163

    Google Scholar 

  • Dentener FJ & Crutzen PJ (1994) A three-dimensional model of the global ammonia cycle. J. Atmos. Chem. 19: 331–369

    Google Scholar 

  • Dignon J & Hameed S (1989) Global emission of nitrogen and sulfur oxides from 1960 to 1980. J. Air Poll. Control Assoc. 39: 180–186

    Google Scholar 

  • Elkund TJ, McDowell WH & Pringle CM (1997) Seasonal variation of tropical precipitation chemistry: La Selva, Costa Rica. Atmos. Environ. 31: 3903–3910

    Google Scholar 

  • Erisman JW, Beier C, Draaijers G & Lindberg S (1994) Review of deposition monitoring methods. Tellus 46B: 79–83

    Google Scholar 

  • Erisman JW & Draaijers GPJ (1995) Atmospheric Deposition in Relation to Acidification and Eutrophication. Elsevier Press, New York

    Google Scholar 

  • Feichter J & Crutzen PJ (1990) Parameterization of vertical tracer transport due to deep cumulus convection in a global transport model and its evaluation of 222 Radon measurements. Tellus, Series B 42: 100–117

    Google Scholar 

  • Food and Agriculture Organization (1985) 1984 FAO Production Yearbook, Vol. 38, FAO Statistics Series 61, United Nations, Rome

    Google Scholar 

  • Food and Agriculture Organization (1986) 1985 FAO Fertilizer Yearbook, Vol. 35, FAO Statistics Series 71, United Nations, Rome

    Google Scholar 

  • Food and Agriculture Organization (1990a) 1989 FAO Production Yearbook, Vol. 43, FAO Statistics Series 100, United Nations, Rome

    Google Scholar 

  • Food and Agriculture Organization (1990b) 1989 FAO Fertilizer Yearbook, Vol. 39, FAO Statistics Series 95, United Nations, Rome

    Google Scholar 

  • Food and Agriculture Organization (1991) 1990 FAO Production Yearbook, Vol. 40, FAO Statistics Series 61, United Nations, Rome

    Google Scholar 

  • Franzblau E & Popp CJ (1989) Nitrogen oxides produced from lightning. J. Geophys. Res. 94: 11,089–11,104

    Google Scholar 

  • Galbally IE & Johansson C (1989) A model relating laboratory measurements of rates of nitric oxide production and field measurements of nitric oxide emission from soils. J. Geophys. Res. 94: 6473–6480

    Google Scholar 

  • Galbally IE & Roy CR (1978) Loss of fixed nitrogen from soils by nitric oxide exhalation. Nature 275: 734–735

    Google Scholar 

  • Galloway JN, Levy HI & Kasibhalta PS (1994) Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen. Ambio 23: 120–123

    Google Scholar 

  • Galloway JN, Schlesinger WH, Levy HI, Michaels A & Schnoor JL (1995) Nitrogen fixation: Anthropogenic enhancement environmental response. Global Biogeochem. Cycles 9: 235–252

    Google Scholar 

  • Galloway JN, Dianwu Z, Thomson VE & Chang LH (1996) Nitrogen mobilization in the United States of America and the People's Republic of China. Atmos. Env. 30: 1,551–1,561

    Google Scholar 

  • Gosz JR & Murdoch P (1998) Integrating the nation's environmental monitoring and research networks and programs: An exercise to demonstrate the value of index areas in a national network. In: Office of Science and Technology Police (OSTP)

  • Haas TC (1990) Kriging and automated variogram modeling within a moving window. Atmospheric Environment 24A: 1759–1769

    Google Scholar 

  • Harrison RM & Allen AG (1991) Scavenging ratios and deposition of sulphur, nitrogen, and chlorine species in eastern England. Atmospheric Environment 25A: 1719–1723

    Google Scholar 

  • Hicks BB (1989) Atmospheric processes research and process model development. In: National Acid Precipitation Assessment Program, NOAA/ATDD, 2

  • Holland EA, Braswell BH, Lamarque J-F, Townsend A, Sulzman JM, Müller J-F, Dentener F, Brasseur G, Levy HI, Penner JE & Roelofs G (1997b) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J. Geophys. Res. 102: 15,849–15,866

    Google Scholar 

  • Holland EA & Lamarque J-F (1997a) Modeling bio-atmospheric coupling of the nitrogen cycle through NOx emissions and NOy deposition. Nutrient Cycling in Agroecosystems 48: 7–24

    Google Scholar 

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaeorski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P & Zhao-liang Z (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35: 75–139

    Google Scholar 

  • Jaeger L (1976) de Monatskarten des Niederschlags für die ganze Erde. Beri. Dtsch. Wetterdienstes 139:

  • Kittel TGF, Rosenbloom NA, Painter TH, Schimel DS & Participants VM (1995) The VEMAP integrated database for modeling United States ecosystem/vegetation sensitivity to climate change. J. Biogeography 22: 857

    Google Scholar 

  • Langford AO, Fehsenfeld FC, Zachariassen J & Schimel DS (1992) Gaseous ammonia fluxes and background concentrations in terrestrial ecosystems of the United States. Global Biogeochem. Cycles 6: 459–483

    Google Scholar 

  • Lee DS, Kohler I, Grobler E, Rohrer F, Sausen R, Gallardo-Klenner L, Olivier JGJ, Dentener FJ & Bouwman AF (1997) Estimations of global NOx emissions and their uncertainties. Atmospheric Environment 31: 1735–1749

    Google Scholar 

  • Leemans R & Cramer WP (1991) The IIASA database for mean monthly values of temperature, precipitation and cloudiness of global terrestrial grid. WP-41. International Institute of Applied Systems Analyses, Laxenvurg, Austria

    Google Scholar 

  • Levy H, Moxim WJ & Kasibhatla PS (1996a) A global three-dimensional time-dependent lightning source of tropospheric NOx. J. Geophys. Res. 101: 22,911–22,922

    Google Scholar 

  • Levy H, Moxim WJ & Kasibhatla PS (1996b) Tropospheric NOx: Its sources and distribution. J. Geophys. Res. 101: 22,911–22,922

    Google Scholar 

  • Logan JA (1983) Nitrogen oxides in the troposphere: Global and regional budgets. J. Geophys. Res. 88D: 10,785–10,807

    Google Scholar 

  • Matthews E (1994) Nitrogenous fertilizers: Global distribution of consumption and associated emissions of nitrous oxide and ammonia. Global Biogeochem. Cycles 8: 411–439

    Google Scholar 

  • Mayewski PA, Lyons WB, Spencer MJ, Twickler MS, Buck CF & Whitlow S (1990) An ice-core record of atmospheric response to anthropogenic sulfate and nitrate. Nature 346: 554–556

    Google Scholar 

  • Michaels AF, Siegel DA, Johnson RJ, Knap AH & Galloway JN (1993) Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phytoplankton blooms. Global Biogeochem. Cycles 7: 339–351

    Google Scholar 

  • Muller J-F (1992) Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases. J. Geophys. Res. 97: 3787–3804

    Google Scholar 

  • Nadelhofer KJ, Downs MR, Fry B, Magill A & Aber JD (in press) Controls on N retention and exports in a fertilized watershed. Environmental Monitoring and Assessment

  • Nadelhoffer KJ, Downs Mr, Fry B, Aber JD, Magill AH & Melillo JM (1995) The fate of15N-labeled nitrate additions to a northern hardwood forest in eastern Maine, U.S.A. Oceanologia 103: 292–301

    Google Scholar 

  • Neff JC, Keller M, Holland EA, Weitz AW & Veldkamp E (1995) Fluxes of nitric oxide from soils following the clearing and burning of a secondary tropical rain forest. J. Geophys. Res. 100: 25,913–25,922

    Google Scholar 

  • Newell RE, Kidson JW, Vincent DG & Boer GJ (1974) The General Circulation of the Tropical Atmosphere and Interactions with Extra Tropical Latitudes. MIT Press, Cambridge, Mass

    Google Scholar 

  • Olivier JGJ, Bouwman AF, van der Maas CWM, Berdowski JJM, Veldt C, Bloos JPJ, Visschedijk AJH, Zandveld PYJ & Havelag JL (1995) Description of EDGAR Version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis on 1× grid. In: RIWM, 771060 002

  • Oort AH (1983) Global atmospheric circulation statistics, 1958–1973. In: Natl. Oceanic and Atmos. Admin., Report Number 14

  • Penner JE, Atherton CS, Dignon J, Ghan SJ & Walton JJ (1991) Tropospheric nitrogen: a three dimensional study of sources, distributions and deposition. J. Geophys. Res. 96D: 959–990

    Google Scholar 

  • Penner JE, Atherton CS & Graedel TE (1994) Global emissions and models of photochemically active compounds. In: Prinn RG (Ed.) Global Atmospheric-Biospheric Chemistry, Plenum Press, New York

    Google Scholar 

  • Potter CS, Matson PA, Vitousek PM & Davidson EA (1996) Process modeling of controls on nitrogen trace gas emissions from soils worldwide. J. Geophys. Res. 101: 1361–1377

    Google Scholar 

  • Prather M, Derwent R, Ehhalt D, Fraser P, Sanhueza E & Zhou X (1995) Other Trace Gases and Atmospheric Chemistry. In: Climate Change 1994, Radiative Forcing of Climate Change. Intergovernmental Panel on Climate Change (pp 73–126). Cambridge University Press, Cambridge

    Google Scholar 

  • Rice C, Penner J & Prather M (1997a) NOx from lightning, 1, Global distribution based on lightning physics. J. Geophys. Res. 102: 5929–5941

    Google Scholar 

  • Price C, Penner J & Prather M (1997b) NOx from lightning, 2, Constraints from the global atmospheric electric circuit. J. Geophys. Res. 102: 5943–5951

    Google Scholar 

  • Prospero JM, Barrett K, Church T, Dentener F, Duce RA, Galloway JN, Levy II H, Moody J & Quinn P (1996) Atmospheric deposition of nutrients to the North Atlantic Basin. Biogeochemistry 35: 27–73

    Google Scholar 

  • Rendell AR, Ottley CJ, Jickells TD & Harrison RM (1993) The atmospheric input of nitrogen species to the North Sea. Tellus 45B: 53–63

    Google Scholar 

  • Ridley BA & Atlas E (in press, anticipated publication January 1999) Nitrogen Compounds. In: Brasseur GP, Orlando JJ & Tyndall GS (Eds) Atmospheric Chemistry and Global Change. Oxford University Press, New York

    Google Scholar 

  • Ridley BA, Dye JE, Walega JG, Zhenge J, Grahek FE & Rison W (1996) On the production of active nitrogen by thunderstorms over New Mexico. J. Geophys. Res. 101: 20,985–21,005

    Google Scholar 

  • Sanhueza E, Fraser PJ & Zander RJ (1995) Scientific assessment of ozone depletion 1994: Source gasses: Trends and budgets. In: World Meterological Organization, 37

  • Schimel D, Braswell BH, McKeown R, Ojima DS, Parton WJ & Pulliam W (1996) Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling. Global Biogeochem. Cycles 10: 677–692

    Google Scholar 

  • Schimel DS, Braswell BH & Parton WJ (1997) Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proceedings of the National Academy of Sciences 94: 8280–8283

    Google Scholar 

  • Schlesinger WH & Hartley AE (1992) A global budget for atmospheric NH3. Biogeochemistry 15: 191–211

    Google Scholar 

  • Schulze ED (1989) Air pollution and forest decline in a spruce (Picea Abies) forest. Science 244: 776–783

    Google Scholar 

  • Setzer AW & Pereira MC (1991) Amazonia biomass burnings in 1987 and an estimate of their tropospheric emissions. Ambio 20: 19–22

    Google Scholar 

  • Soderlund R & Svensson BH (1976) Their global nitrogen cycle. Nitrogen, Phosphorous and Sulphur Global Cycles SCOPE 7: 23–73

    Google Scholar 

  • Stedman DH & Shetter RE (1983) The global budget of atmospheric nitrogen species. In: Schwartz SE (Ed.) Trace Atmospheric Constituents (pp 411–454). John Wiley & Sons, New York

    Google Scholar 

  • Stohl A, Williams E, Wotawa G & Kromp-Kolb H (1996) A European inventory of soil nitric oxide emissions and the effect of these emissions on the photochemical formation of ozone. Atmos. Env. 30: 3,741–3,755

    Google Scholar 

  • Sulzman J, Braswell BH, Holland EA & Lamarque JF (1997) Poster: A Comprehensive Compilation of Atmospheric Deposition Data for Global and Regional Studies. Ecological Society of America, Albuquerque, NM

    Google Scholar 

  • Townsend AR, Braswell BH, Holland EA & Penner JE (1996) Spatial and temporal patterns in potential terrestrial carbon storage resulting from deposition of fossil fuel derived nitrogen. Ecological Applications 6: 806–814

    Google Scholar 

  • Van Breemen N, Bottough PA, Velthorst EJ, Van Dobben HF, De Wit T, Ridder TB & Reunders HF (1982) Soil acidification from atmospheric ammonium sulfate in forest canopy throughfall. Nature 299: 548–550

    Google Scholar 

  • Veldkamp E & Keller M (1997) Fertilizer induced nitric oxide emissions from agricultural soils. Nutrient Cycling in Agroecosystems 48: 69–77

    Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH & Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7: 737–750

    Google Scholar 

  • Wagenbach D, Munnich KO, Schotterrer U & Aeschger H (1988) The anthropogenic impact on snow chemistry at Colle Gnifetti, Swiss Alps. Ann. Glaciol. 10: 183–187

    Google Scholar 

  • Warneck P (1988) Chemistry of the Natural Atmosphere. Academic Press, San Diego

    Google Scholar 

  • Wesely ML (1989) Parameterization of surface resistance to gaseous dry deposition in regional-scale numerical models. Atmospheric Environment 23: 1293–1304

    Google Scholar 

  • Whelpdale DM, Dorling SR, Hicks BB & Summers PW (1996) Atmospheric Processes. In: World Meterological Organizational Global Atmosphere Watch: Global Acid Deposition Assessment, 106

  • Whelpdale DM & Galloway JN (1994) Sulphur and nitrogen oxide fluxes in the North Atlantic atmosphere. Global Biogeochem. Cycles 8: 481–493

    Google Scholar 

  • Whelpdale DM, Summers PW & Sanhueza E (1997) A global overview of atmospheric acid deposition fluxes. Environmental Monitoring and Assessment 48: 217–227

    Google Scholar 

  • Williams EJ, Guenther A & Fehsenfeld FC (1992) An inventory of nitric oxide emissions from soils in the United States. J. Geophys. Res. 97: 7511–7519

    Google Scholar 

  • Yienger JJ & Levy II H (1995) Empirical model of global soil-biogenic NOx emissions. J. Geophys. Res. 100: 11,447–11,464

    Google Scholar 

  • Zimmermann PH (1987) MOGUNTIA: A handy global tracer model. Proceedings of the Sixteenth NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application, New York

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, E.A., Dentener, F.J., Braswell, B.H. et al. Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46, 7–43 (1999). https://doi.org/10.1007/BF01007572

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007572

Key words

Navigation