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Local Times for Markov Processes*
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R. M. BuomexTHAL and R. K. GeToor

Introduetion and preliminaries

The present paper is devoted to the construction and study of a special class
of additive functionals of a Markov process. These additive functionals measure,
in a certain sense, the amount of time the process X spends at a particular point
xp, and hence the additive functional, 4,, associated with xg is called the local time
of X at x¢. The local time will be constructed under the assumptions that X
satisfies HUNT’s hypothesis (4) and that there is positive probability of reaching
{zo}. More precisely let 7' = inf{f > 0: X () = 2o} be the hitting time of {0},
then we assume thatthere is atleast onex in the state space such that P¥[T<co]> 0.
In the terminology of [13] the set {xo} is not polar. The most interesting
situation is that in which ¢ is regular for {}, that is, P®[T = 0] = 1. This is
easily seen to be equivalent to requiring that {xo} is not semi-polar, again using
the terminology of [13]. We will call this last case the regular case and the majority
(sections 1—5) of the paper is devoted to it. The non-regular case in which {zo}
is semi-polar but not polar is essentially trivial, and we postpone its consideration
until section 6.

Local times for regular linear diffusions have been constructed by TROTTER [16]
and by McKEax and Ito [12]. In Chapter 6 of [12] McKEaN and ITo give a
detailed discussion of local times for this situation. More recently Bovyraw [6]
has constructed local times for a fairly extensive class of one dimensional Markov
processes and SToONE [14] has given a number of applications of BovLan’s local
times similar to those in [12] and in section 4 of this paper. Both TroTTER and
BoYLaN are concerned with the dependence of the local time on zy and they show
that 4, (#) is jointly continuous in ¢ and xp in the cases they are considering. In
this paper we will not concern ourselves with investigating the continuity in .
For x¢ fixed 4 is continuous in ¢ if and only if {xe} is not semi-polar, i. e. in the
regular case.

Section 1 contains the construction of the local time A and the study of some
of its properties; in particular the relationship between A4 and {#: X (f) = xo}. In
section 2 we obtain the stochastic structure of the function inverse to 4. Section 3
contains further properties of the local time when X satisfies HunT’s hypothesis
(F) in addition to (4). In this case it is shown that the local time is a density for
the occupation time relative to the basic measure &. In addition a simple sufficient
condition is given for the regular case when (F) holds. Section 4 gives a number of
applications of these results similar to those in Chapter 6 of [12] and in [14]. The
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results obtained for processes with stationary independent increments on the real
line and for symmetric stable processes in B¥ seem to be new. In section 5 we
show that under a mild restriction the LEvy measure corresponding to the inverse
of A is absolutely continuous. Finally the non-regular case is discussed in section 6.

Throughout this paper X will denote a temporally homogeneous Markov
process satisfying Huxt’s hypothesis (4) with a locally compact separable metric
space F as state space. We refer the reader to [3] or [13] for a summary of the
relevant properties of X, or, of course, to [9, section 1]. We will adopt for the most
part the notation of [13], but for the convenience of the reader we repeat some of
the basic definitions. Let £ = B U {4} where A is a point adjoined to E as the
point at infinity if £ is non-compact and as an isolated point if £ is compact.
Let Q denote the space of all paths w, that is, all maps w from [0, oo] to E that
are right continuous and have left hand limits on [0, co) with w(ce) = 4 and if
w(t) = A then w(s) = A for all s = ¢. As usual X;(w) = X (¢, w) = w(f). We let
FF) denote the c-algebra of subsets of 2 generated by sets of the form
X 1(B)fors = t(s < o0) where Bis in %, the Borel sets of E. Also % (%) denotes
the intersection of the P# completions of F?(Z#70) taken over all finite measures
won B. We let ¢ =inf{$: X(t) = A} denote the lifetime of the process. The
reader is referred to [13] for definitions and terminology not explicitly mentioned
in this paper.

An additive functional 4 = {4(f); 0 < < oo} of X is a family of random
variables such that

(i) 4 (0y =0, t > A(!) is right continuous and nondecreasing, and A (co)
= lim A4 (t); each of these statements holding almost surely. Here and henceforth
tto
almost surely means almost surely P7 for all x in E.

(ii} A () is & measurable for each &.

(iii) For each /, s one has almost surely
(1) At s, w) = A w) + A(s, Ouw).

MEYER proved in [13] that 4 has the strong Markov property, that is ¢ may be
replaced by any stopping time 7' and s by any non-negative random variable S
in (1). If 4 is an additive functional, u(x) = E*[A (o0)] is an excessive function
called the potential of 4. We refer the reader to [13] for further properties of
additive funectionals.

It is often convenient when terminating a process at an independent exponen-
tially distributed time to use a representation of the terminated process that is
different from its canonical representation on its path space described above.
When convenient we will do so without particular mention. The reader is referred
to [7] or [13] for the appropriate discussion.

1. Existence of loeal times: Regular ease

Let 2o be a fixed point of E and let 7' = inf{f > 0: X; = ¢} be the hitting
time of {x¢}. We assume throughout this section that w is regular for {wo}, that

4*



52 R. M. BLumeNTHAL and R. K. GETOOR:

is P[T = 0] =1. For 1, 4 > 0 define
D’ (x) = E* (e )
(L1) Vi = @r— (A — p) Ur P,
Here U2 is the A-potential operator (or resolvent) for X, that is

Urf(z) = Bz Te~zt F(Xy)dt.
0

Lemma 1.1. &% is uniformly J-excessive and V7, = b’ ®* where b} is a positive
constant.

Proof. Introducing the operator P%f(x) = E*{¢~*Tf(X 1)} where 7' is defined
above we have

Pl @A () = B {e~"T FXD (¢ —4T)}
= Eo{e= T} B {¢ T}
= D (),

since X (T') = wp almost surely on {7 < oo} and P* (T = 0) = 1. But &2 is
clearly J-excessive and so given & > 0 there exists 6 > 0 such that P}®*(zg) <
< DA (zy) < PPi(xy) + ¢ whenever ¢t = &. Moreover Ph(x, dy) is concentrated
on {xo} and hence if < §

Pr = PLdr < P[P} @+ 4 ¢] < Pid - ¢.

Thus P@* — @4 as t — 0 uniformly on E, that is @4 is uniformly A-excessive.
Regarding the second statement of the lemma we compute

Ur @ (z) = B* [e= " BXD (¢=+T)dt
0
— Ex]'ce—/lte—,ul'(@t)dt.
0
Since T (@;) = T — ¢ almost surely on {T > t} we may write
T
I = Exj'e—lte—#T(@t)dt
0 7
= Br{e=#T [ e~ UMt}
0

= (4 — @)L [P () — DHa)].

On the other hand since {T' < t} € #; we have

Iy = Eo [eie T (O 4t = B [ et pu(X,)dt
r T

_ Ex]?e—}-(t‘i' D Gu( X, r)dt = Bz {e~ T ULPR(X 1)}
0

= PLUDu(x).



Local Times for Markov Processes 53

Combining these computations we find
(1.2) Wi =@ — () — p) P U Dr.

But PLU@H(x) = Ex(e *T)UrDi(xy), and so Y, =0>b.P* with b} —
=1 — (1 — u) UrDx(x).

To complete the proof we must show that b, > 0. Since @# is y-excessive and
u > 0, there exists a sequence {f,} of non-negative functions such that U#f, } @«
Making use of the resolvent equation and the fact that @#(z¢) = 1, one easily
obtains b% = 0. However if b} =0, then ¥)=0 or equivalently ®¢ =
= (4 — p) U2®u. Clearly this implies 4 > u. Also @#(x) < P#(x) = 1, and so
1< (A—wU* <1 — (u/A) which is a contradiction. Thus Lemma 1.1 is
established.

We now define for 1 > 0

(1.3) Yrh=YPi =Pl — (A —1)U D1,

and it follows from Lemma 1.1 that ¥4 is uniformly A-excessive for each 1.
Theorem 1.2. There exisis a continuous additive functional A of X such that

A (t) is almost surely finite for each t = 0 and for each 2 > 0

E= j‘oe—zt dA (1) = Ph(z).
0

A is called the local time of X at xo and is unique up to the equivalence of additive
functionals.

Proof. Let 8% be a positive random variable which is independent of the
process X and with distribution function 1 — e~4. Let X2 = (X, §%) be the
process X “killed at time 8§47, that is X2(f) = X (¢) if ¢ << 8% and X2(t) = 4
if ¢ = 8% Of course, S must in general be defined on a larger spac than {2 and the
representation of X# as (X, 82) is not the canonical representation of this process
on its path space, but we will not dwell here on these familiar technical points.
Since ¥* is uniformly excessive relative to X# it follows from a theorem of Vor-
KONSKI [7] that for each 4 > 0 there exists a continuous additive functional 44
of the process X% such that

Ex A2 (co) = B A2 (SA) = Wh(z).

If 2 and u are positive and S* and S# are independent, then letting a A b =
= min (@, b) we have

(1.4) Bz A1 (8% A Sk) = E= AA(S%) — BE=[AA(S%) — AA(SK); Sk < 8§4).
The first term on the right side of (1.4) is ¥#(x), while the second term equals
Ba[Ah(o0) — AX(SH); S < §1] = B2 (XM [ A4 (o0)]; S < 54}
= u B Te“(“ﬂ)t!l’l (Xp)dt = p Ustn'pz,
0
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Therefore using the resolvent equation
Ez AL (SA N Sy = Prte(z),

Since this last expression is symmetric in 4 and y, MEYER’s uniqueness theorem
[13] implies that A%(f) = A#(t) almost surely on {t < S A S«}. It now follows
by standard arguments from the independence of X, S%, and S# that there exists a
continuous additive functional 4 of the process X such that for each 2 > 0,
A*(@t) = A @) if £ < 8% and AA(t) = A(SA) if ¢ = S* Hence

Es re—lt dA () = Ev A (8%) = B* A*(00) = W (x).
0

The uniqueness of 4 follows from the fact that A% is uniquely determined
{up to equivalence) by ¥4. This completes the proof of Theorem 1.2.

Let us emphasize that 4 is an additive functional of X and does not depend
on the auxiliary variables S introduced in the construction. Moreover it is not
too difficult to see using Lemma 1.1 that if we had used W7 in place of P2 = ¥
in the construction, then the resulting additive functional of X would differ from
A only by a multiplicative constant.

We next examine in more detail the relationship between 4 and X. The follow-
ing result is the key step. As usual 7 is the hitting time of {xo}.

Theorem 1.3. Let R=inf{t: A (t) >0} =sup{¢: 4 (t) =0}, then P*(R=T)=
for all .

Proof. Clearly E is a stopping time and the continuity of A4 implies that
A (R) = 0 almost surely. We observed at the beginning of the proof of Lemma 1.1
that P}, ®* = @4, and hence PL¥* = ¥4 Thus

0 = Yi(z) — PLYP (x)
T
f e~MdA (1
But this implies that P#[4 (T) = 0] = 1 and hence P*[T < R] = 1.
To complete the proof of the theorem we will show that P#(T < R) = 0. To
this end we first observe that B = T -- R(@r) almost surely on {7 < R}.

Therefore
Pz[T < R]= P*[R(®7)>0;T < R]

< E={PXD(R > 0)}
= P (R>0),

and so it will suffice to show P* (R > 0) = 0. Since ¥1 = @1 < 1, we have

1 = PL(xg) = B™ [etd A (1) = B™ [etdA(t)
0 R

=B {e " FQPL(Xp)} < E* (e~ F).

But clearly this implies that P#(R > 0) = 0, and so Theorem 1.3 is established.
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We define the following sets each of which depends on w.

Z = {t: Xy = xo}
I={:A¢t+e)—A@t)>0 forall &>0}
I'={:4@¢+¢e) —A(t—¢e) >0 forall &>0}
More descriptively Z consists of the xo points of X, I the points of right

increase of A, and I’ the points of increase of 4. Since 4 is almost surley con-
tinuous it is clear that I’ = I (the closure of I).

Lemma 1.4, Almost surely Zc I' and 7 = I'.

Proof. As usual T is the hitting time of {0}, and so -+ T(6;) =
inf{s > t: Xs = xo}. Therefore

{w:Z&I'tcu{ds)—AF)=0; r+ T(O;) <s}
7,8
where the union is taken over all rationals s > r = 0. But for any x
Pr[A(s) — A(r)=0; r+ T(6,) <s]
=E2{PX0[A(s —r)=0; T <s—r]}
< B2 {P¥0(T < R)}
== 07

by Theorem 1.3. Thus Z c I’ almost surely.

To prove the second relationship it now suffices to show I' ¢ Z almost surely.
For a fixed w suppose tg € I and ¢y ¢ Z, then since Z is closed there exist rationals
r and s such that r < tg << s, 4(s) — A(r) > 0, and [r, s] N Z is empty. Thus

{fw:I' &« Z}cU{d(s) — A(r) > 0; X; + zo for all te[r,s]}
7.8
where again the union is over all rationals s > r = 0. But
Pr{A(s) — A(r) > 0; X; = xo for all te[r,s]}
=Ee{PXD[4(s —7r)>0; T >s—r]}
< Be{PX" (T > R)} =0.
Thus Lemma 1.4 is established.

Theorem 1.5. Let f be a bounded Borel measurable function, then for each 1 > 0
B [ &3 f(X1) dA () = f (o) ¥'*(@).
0

Proof. It suffices to consider f non-negative and continuous. Let w be fixed and
such that I'(w) = Z(w), t — X;(w) is right continuous, and ¢ - 4 (¢, w) is con-
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tinuous. In view of Lemma 1.4 the set of 2’ s not having all three of these properties
is almost surely null. For such a w the measure d.4 (f, w) is supported by I’ (w) =
= Z(w). Since f is continuous ¢ — f[X;(w)] is right continuous and hence has at
most countably many discontinuities, and if NV denotes this set of discontinuities
then N has d4 (¢, w) measure zero. Therefore

fe"”f[Xt w)]dA (8, w) = [e~2 [[Xy(w)]dA (L, w).
Z-N

But if teZ — N then f[X;(w)] = f(xs), and so
(1.5) je—ﬂtf[Xt )14A (F, w) = (o je—MdA (t, w).

Thus (1.5) holds almost surely and integrating with respect to PZ yields Theorem
1.5.
The next theorem is the main result of this section.

Theorem 1.6. Almost surely I cZ cI'.

Proof. We have already shown in Lemma 1.4 that Z c I’ almost surely. It
follows from Theorem 1.5 and the uniqueness theorem for continuous additive
functionals that if f is the characteristic function of {w}, then

(1.6) f F(X)dA(s) =A()  a.s.
0

Let w be such that (1.6) holds, ¢ — X, (w) is right continuous, and ¢ — 4 (¢, w) is
continuous. For such a w suppose ty & Z (w), then there exists an ¢ > 0 such that
Xi(w) # xp for ty <t <ty + &. But (1.6) then implies 4 (ty + &, w) = A (¢, w)
so that fo ¢ I (w). Therefore I c Z almost surely; thus the proof of Theorem 1.6
is complete.

In general Theorem 1.6 can not be improved. Namely if x; is a holding point
then Z = I, while if X has continuous paths Z = Z = I'. But I + I’ unless z
is a trap. LaMPERTI [17] has shown that Z = Z almost surely for an extensive
class of processes with independent increments.

2. The inverse of the local time

In this section x¢ will be a fixed point of B such that x is regular for {xo}, or,
equivalently, {2} is not semi-polar. Let A be the local time of X at x so that 4
is a continuous additive functional with A (£) a. s. finite. Define

(2.1) T(t, w) =1inf{s: A (s, w) >t}

where it is understood that 7 (¢, w) = oo if the set in braces is empty. Since 4 is
continuous and non-decreasing it is immediate that 7 is right continuous and
strictly increasing on {t:7(f) << oo}, these statements holding almost surely.
The following facts are well known and easy to check, see [13, part II, sec. 7]:
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(i) Each 7(t) is a stopping time and
(22) T(t+87 U}) = T(ta w) + T(S; @T(t) w)) a. 8.

(il) If f is a measurable function from [0, oo] to [0, co] with f(co) = 0, then

el

TH0ddw = [fleoldt a.s.
0

0

We will now compute the distribution of 7 (). The notation is that of section 1.

Theorem 2.1. For each 4 > 0
Be[e#70] = &4 (x) exp [ — P (wo)]

Proof. We define e=47¢) to be zero on the set {7(f) = oo} and adopt the con-
vention that any function f on E is automatically extended to E by setting
f(A4) = 0 unless explicitly stated otherwise. If f is bounded and measurable define

Qi f (@) = Bo{e 410 f[ Xy ()]}

It is easily checked using (2.2) and the strong Markov property that for each
A >0 the family {@};¢=0} is a semi-group on the space of bounded (uni-
versally) measurable functions with || @}|| <1 for all ¢ = 0 and 1 > 0. (Note
that Q% is not in general the identity since 7(0) need not be zero.) Let

Juf(x) = [emmt @ f(x)dt
0
= =z fe‘/” e—Az(t) f[Xt(t)] dt
0
be the resolvent of {Q}}. Note that

JOf(x) = E= j'ce—”(t) Fl Xz ]de
0

— Bo [e (X)) dA ()
0

= [ (wo) ¥'*(x)

by Theorem 1.5. Therefore JO is bounded with |[JO]| = sup P*(z) = ¥i(xy).
The resolvent equation implies J4[I + uJ% = JO and so if 0 = u < ||JO|[2
we may write

Tt = JO[I 4 pJoJL
— 3 (— p)k (JOYk+1
E=0

But J01 () = Pi(z) and hence (JO)k+11(z) = Y2 (x) [P*(xo)]%. Thus
(2.3) Ju1 (@) = Pi(z) [1 + p¥P* (o)1 0= p < [PA(wo)] L.



58 R. M. BuomeENTHAL and R, K. GETOOR:

However y — J#1(x) is the Laplace transform of ¢ — E%[e~47®")] which is right
continuous, and so inverting (2.3) (both sides of which are analytic in Re(u) > 0)
we obtain

' Wi(x)

Ez(e-21(0)) = Pl

7 exp [— ¢/ F4(z0)].
Finally Lemma 1.1 implies that P4(x) = Y4 (xp)D*(x), and thus the proof of
Theorem 2.1 is complete.

If Q= {t <co:7(s) =1 for some 5,0 < s < oo} is the range of 7, then it
follows easily from the continuity of 4 that @ = I almost surely. Here I is the
set of points of right increase of 4 which was defined in Section 2. Important
consequences of this and Theorem 1.6 are the facts that

Q=IcZcl'=72=@ a.s.,
(2.4)
Xt =u a.s. on {z(f) < oo}.

We will study the process 7(f) with probability law P®. Since 7(0) = R it
follows from Theorem 1.3 that P*[z(0) = 0] = 1.

Theorem 2.2. If 0 =g << t; < ++- <y and if B, ..., By are Borel subsets of
[0, o0), then

Polr(t) —t(ti—1)e By, j=1,...,n; T(ts) << o]

n
I—[ P“[T by — b 1)GB]]

Proof. This is obvious if n =1 since By is a subset of [0, c0). Let
n
An = n{T{t;) — T(tj-1) € B;}; then using (2.2) and (2.4) we have
i=1
Po(Ap; T(ta) < 00)
= P%[Ap-1; 7ty — tn-1, Qt(tn_l) w) € By; T{tn-1) < oo]
= Emo(PX[I (tn—1)] [T (tn — tu—1) € Bal; An-1; 7(tn-1) < 0)

= P%[7(ty — tn—1) € Bn] P*[An-1; T(tn—1) < oo],

and so Theorem 2.2 follows by induction.

Roughly speaking Theorem 2.2 states that 7 has stationary independent
increments on {7(f) < oo}. Let us recall that if {¥ (t); ¢ = 0} is a real-valued
process with stationary, independent, and non-negafive increments, ¥ (0) = 0,
and right continuous paths, defined on some probability space (2%, ¢, P) then

E[e_}*y(t) ] = e~ tg(d)
where

(2.5) g(®)=0bA +°f(1 — e~ u)p(dt).

0
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In (2.5),5 = 0 and v is a Borel measure on (0, oo) satisfying fu (1 + u) 1y (du) < oo.

0
A simple calculation shows that b = lim 1-1g(4). Using the terminology of [2]

A—>c0

we will call Y a subordinator; ¢ is called the exponent of ¥ and » the LEVY measure
of V. See [2] and [5] for a discussion of the above facts.
The following theorem gives the stochastic structure of 7 (f) under P*.

Theorem 2.3. (1) C = lim [W? ()] exists and 0 < C < oo.
A0

(ii) There exists a subordinator ¥ such that if 8¢ is an exponentially distributed
random variable with parameter C that is independent of 7, and if 7* (1) = Y (f)
for ¢ << 8¢ and 7*(f) = oo for ¢t = S, then 7* and 7 under P® are stochastically
equivalent. Moreover the exponent ¢ of Y is given by g (1) = [FP4(xp)]"L — C.

Proof. Theorem 2.1 with x = xy implies that [¥4(x)]~1 is an increasing
function of 1 on 0 << 1 < oo and hence statement (i) is obvious. Let R+ = [0, o0)
and for each f > 0 define a measure y; on R+ by u:(B) = P™[z(f)e B]. An
immediate consequence of Theorem 2.1 is that usis = usx us for all £, s >0
where “x” denotes convolution. Also since P*[7(¢) — 0 as ¢ | 0] = 1 it is easy to
see that u; — g9 weakly as ¢ | 0. Finally using Theorem 2.1 we see that

s (BT) = P™[7(t) < oo]

= lim E% (e=47t)) = ¢~ 7,
2—0

Thus if we define »; = ¢“y;, the family {»;; ¢ > 0} is a semi-group of probability
measures on R+ such that v;— gy weakly as ¢ | 0. Under these circumstances it is
well known that there exists a subordinator Y defined on some probability space
(Q*, ¢, P) with stationary, independent, and non-negative increments, right
continuous sample functions, and Y (0) = 0 such that »; is the distribution of
Y (¢). Moreover

E(e= "YW = {2ty (du)
0

— ¢Ct o (e—lr(t))
= exp {— {[P*@)]* — O)} .

Thus the exponent of Y is g(A) = [W*(xo)]L — C.
If B is a Borel set of R+, then

P[z*(f)e B] = P[Y({) B; t < 8]
=e¢ % P[Y()e B]
= e Uiy (B)
— P=[z(t)e B].

Tt is now an easy consequence of Theorem 2.2 and the definition of 7*, that 7 and
7* are stochastically equivalent. This completes the proof of Theorem 2.3.
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Theorem 2.3 gives the stochastic structure of 7= under P*. Under P2 for an
arbitrary « the process 7(f) — 7(0) on {r(0) < oo} has the stochastic structure
indicated by Theorem 2.3. More precisely let 2y = {7(0) << oo} and suppose
Pz(Qg) > 0. Define @% on 2y by @+ (A) = P=(A)/P*(£2o). Then z(f) — 7(0) on
(L0, Q%) is stochastically equivalent to 7*. Moreover it is not difficult to see that
7(f) — 7(0) and 7(0) are independent on (£, @%).

Remark. »(B+) = oo if and only if x5 is not a holding point.

Recall that v[(a, c0)] is the expected number of jumps of ¥ of magnitude
exceeding a in unit time, so that »(R+) < oo if and only if the expected number
of juraps of ¥ in unit time is finite. But this last statement is easily seen to be
equivalent to
(2.6) lim P[Y(}) —bt=0foralli <e] =1

£}0
where b is the constant appearing in (2.5). Thus if »(R*t) << co there exists an
&> 0 such that P™{7(f) = bton [0, e]} > 0. In this situation b > 0 since
7 (f) is strictly increasing. Hence P® {4 () = b~1f on [0, ¢]} > 0 and thus Theorem
1.6 implies that o is a holding point. Conversely if z is a holding point the first
jump of 7 is positive with P* probability one and hence (2.6) must be valid.
Therefore »(R*) << oo.

We will prove in section 5 that under a mild additional assumption v is absolu-
tely continuous.

3. Hypothesis (F)

In this section we will investigate certain special facts which hold when our
process X satisfles HuNT’s hypothesis (F) [9, III] in addition to hypothesis (4).
This is of some importance since most familiar processes satisfy (). We refer the
reader to [4, sec. 2] or [13, pt. II, sec. 6] for a summary of the relevant conse-
quences of (F), or to [9, III] for a complete discussion. The basic fact is the
existence of a Radon measure £ on E and point kernels U#(z, y) such that the
potential kernels U%(x, dy) of X are given by

(3.1) Uz, dy) = Ut(x,y) & (dy) .

Of course (3.1) is equivalent to the statement that for a bounded measurable f
Eo (e b f(Xy)dt = [ Uz, y) f (y) E(dy) .
0

U0 may be identically infinite. We will write do for & (dz) in the sequel.

As in the previous sections 7' will denote the hitting time of {x¢}, P*(zx) =
= Ez(e~*7); and P* was defined in (1.3). Applying HunT’s general theory of
capacity [9, sec. 19] to the singleton {wg} yields the existence for each A > 0 of
a unique measure s7* concentrated on {xo} such that @i = U*nA. The A-capacity,
CO(A), of {xo} is defined to be the total mass of 4. Since 7* is concentrated at zo
we have in this simple case nt = C(A)¢,,, and hence @*(x) = C(4) U*(w, o).
The resolvent equation and the properties of U*(x, ) imply that

(3.2) Yi = Uhgl = C(1) UA(, o).



Local Times for Markov Processes 61

Finally C(2) = 0 if and only if @2 = 0, that is if and only if {xo} is polar.
The following result is a useful sufficient condition for 2y to be regular for {x}.

Theorem 3.1. Suppose (F') holds and that for some 4 > 0 the function x — U (x, xp)
is bounded and continuous at x = 9. Then xg is regular for {xo}.

Proof. Let us suppose that g is not regular for {xp}. The fact that x — U(x, o)
is bounded implies that {xo} is not polar, that is C'(4) > 0. (See formula (19.6) of
[9, II1].) Therefore there exists an x =+ xp such that Pz(T < o) > 0. Let {Gy}
be a decreasing sequence of open sets with x ¢ G1 and N G, = {%o}. Let 7', be the

n

first hitting time of (4. Since no point is regular for {xo}, Proposition 18.5 of
[9, I11], implies that 74 1 7' and 7'y << T for all n almost surely PZ on {T' < co}.
But now Theorem 6.2 of [9, I] implies that @A[X(7T,)] — 1 almost surely P# on
{T << eo}. By hypothesis @%(x) = O(4) U*(z, o) is continuous at zy and since
X(Ty) — wo almost surely on {7 << oo}, it follows that @4 (xg) = 1. However this
contradicts the assumption that xy is not regular for {xo}, and so Theorem 3.1 is
established.

Inasmuch as the local time at xg is only determined up to a multiplicative
constant it will be convenient to absorb the constant C(1) in (3.2) into the local
time. Thus whenever (F) holds and xq is regular for {2} the local time at zo will
be understood to be the unique continuous additive functional A of X satisfying for
allA >0

(3.3) Ee th dA () = Uz, o) .
0

Since C(4) = [U*(xg, 9)]t we have in this case
(3.4) E#(e=71)) = P2 (x)e 10D |

Also in Theorem 2.3 the exponent g of the subordinator ¥ becomes ¢ (1) = C (1) — C

where now ( = lim (). Moreover we can identify the linear component b4 of
A—0

g(4) in the present situation. Recall that b = lim A-1¢ (1) = lim 2-1C(A). If we

A—>00 A—o00
fix 29 > 0 then specializing equation (19.7) of [9, I1I] to the present case, we see
that for 4 > Ao

C() = C(ho) + (2 — Lo) [ DA (x) D™ (z) dx

where ®* () = Ee (e=*7) and B# is the expectation operator relative to the dual
process X and T is the first hitting time of {xo}. Since semi-polar and cosemi-polar
sets are the same, g is coregular for {wy}. Hence P (%) — ﬁx(T =0) = I(z) as
A — oo where [ is the characteristic function of {x}. Also

J@" () da = C(Ao) [ dax U™ (x, 20) < C(Ao)/Ao -
Combining these facts with the dominated convergence theorem yields
b =;1im CW)A = [ I({x) D™ (z)d
| — E({a}).
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Thus Writing & for £({Xo}) we have under (F)
(3.5) gA)=C0) —C; C=limC(A); b=1m A1C(1) =&.

A—>0Q A—co
We will now show that if the local time exists at all points of & then it is a
density with respect to & for the occupation times. To this end the following
measurability result is basic.

Theorem 3.2. Suppose that x is regular for {x} for all x in E and let A, denote the
local time of X at x. Then assuming (F), the function (x, w) — Az (¢, w) is jointly
measurable with respect to the v x P® completion of B X F; for all finite measures
v, pon &.

Proof. Standard considerations show that it will suffice to prove that 4 has
the required measurability properties where A is the additive functional of
(X, 8%) defined in the proof of Theorem 1.2. For typographical convenience we
will suppress the A in our notation for the remainder of this proof. We will need the
following lemma which is a routine extension of an important result of MEVER [13].
Recall that a semi-group {@,} is said to be subordinate to {P;}, the semi-group of
X, provided @;f =< P;f for all bounded, non-negative, measurable f and the function
t — @;1(x)is continuous at ¢ = 0 for all z.

Lemma 3.3. For each y in E let {QY} be a semi-group subordinate to {P;}, and
suppose that (y, x) — @ f(x) is jointly (Borel) measurable in (y, x) for each t and
bounded continuous f. Then there exists a multiplicative functional MY such that
K f(x) = E=[{(X;) MY] for each bounded measurable | and (y,w)-—> MY(w) is
measurable with respect to the v X P# completion of B X F; for all v, u and t.

The proof of the lemma is exactly the same as the proof of Theorem 2.2, Part I
of [13] except that one must keep track of the parameter y at each step.

Returning to the proof of Theorem 3.2, let us define

gn(x,y) =n[U(x,y) — P, U(,y) (@)].
Clearly g, is # X % measurable for each n. Define

¢
A, w) = _fgn(Xu(w),y)du
0
so that (y, w) — 4} (t, w) is # X F; measurable for each n and ¢. It is well known
that in the present situation (x — U (x, y) is uniformly excessive)

Bul(dy () — Ay (#)2] =0
for each w and ¢. See [17] or [15]. Thus if we let
@7 () = E={f(Xy) exp [— Ay (D]},

it follows that ,Q7f (x) — @¥f(x) as n — oo for each 2 and bounded Borel measur-
able f, where {@Y} is a semi-group subordinate to { P;} and satisfying the measur-
ability assumption of Lemma 3.3. See [3, pp. 411, 412]. Applying Lemma 3.3 and
letting A, (f) = —log MY it is clear that (y, w) — A, (¢, w) is measurable with
respect to the y X P# completion of # x & forall v, 4, and ¢, and that for each
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y the additive functionals 4, and 4, are equivalent. Thus we may take 4, to be
the local time of X at y and so the proof of Theorem 3.2 is complete.

ReMARK. Since the set of (z, w) for which ¢ — A,4(t, w) is not continuous is
v X Penull, it is immediate that (£, x, w) — A, (f, w) is measurable with respect to
T X (B x Fy.uforall v, uy where I is the Borel sets of [0, co) and (# X F).#
is the » X P# completion of & X #.

Corollary 3.4. Under the assumptions of Theorem 3.2 we have for each B e %
t
fo(t) de = fIB(Xu) du, a.s.
B 0

where Iy is the characteristic function of B.
Proof. Let A (t) = fo(t) dx. Then using FuBinr's Theorem several times it
B

is easy to check that 4 (¢) is a finite continuous additive functional of X. Also
t

L) = f Ip(X,)du is a continuous additive functional. If > 0, then
0

Eyfe‘“dA (&) = fUﬂ(y,x)dx
0 B

= Bv [eMdL(t),
0

and so MEYER’s uniqueness theorem yields the equivalence of 4 and L.
It is perhaps worthwhile to note that if m is any positive measure on ¥ such
that U%m is bounded for each A > 0, then under the conditions of Theorem 3.2

A() = [ As(tym(da)

is a finite continuous additive functional whose A-potential (i.e., E* 4 (84)) is Utm
for all 1 > 0. The proof is similar to that of Corollary 3.4. We are, of course, still
assuming that all points are non-semi-polar. It is also possible to prove the con-
verse of the above statement under these assumptions by methods similar to
those used in [4], but we will not enter into this.

4. Applications

In this section we will give some applications of the results of section 3. Many
of these applications are the same as those given by McKEax and Ito [12, Ch. 6]
for diffusion theory or by Stoxg [14] for semi-stable processes. We will not strive
for the utmost generality, but rather we will be content to indicate the type of
results that may be obtained.

We begin with some results on the Hausdorff dimension of Z = {¢: X (f) = wo}.
We assume that {xy} is not semi-polar and we use the notation of the preceding
sections.

Theorem 4.1. Let = inf{a:1*W¥4(x9) > o0 as 1— oo} and o = sup
{a:22W2(xp) > 0as oot Then 0 <o <pB <1and Po[¢c <dimZ =< f] = 1.
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Proof. Tt follows from Theorem 2.3 that [A¥*(x0)]"1 —b as 1 — oo where
0 < b < co. Henceif o > 1then 124 (x) — oo as 1 — co and so § =< 1. Obviously
0 < ¢ < f. In view of (2.4) and the fact that §(w) — @ (w) is at most countable
(@ is the range of 7 as defined above (2.4)), it will suffice to prove P*[¢ < dim
Q < B} = 1. However, this follows from Theorem 2.3 and the known results
on the dimension of the range of a subordinator ([2], Theorem 8.3 and Corollary
9.1). In [2] we assumed that b = 0, but the extension of the results of [2] to the case
b > 0is simple.

Suppose X is a real valued process with stationary independent increments and
right continuous paths; then as is well known

Bz (ein(t)) — oW o —t ¥ (W)

where
(4.1) Yy )~zmy—|— 2—}—/(1—6”/”— li—jiuu?)v(du)

with » satisfying fwz (1 + 22)~1y(dx) < oco. For simplicity we assume m = 0 and

o2 = 0. In addition, writing ¥ for the real part of ¥, we assume
(4.2) [[A+ Pr@)]de < oo

for all positive 4. If we take Lebesgue measure as our basic measure then X satisfies
hypotheses (4) and (#), and in fact

4.3) plt,x,2) = f —iy(e— ">e*”’(?/)dy
1 e~iy(z—x)

are the transition density and potential kernel for X, the integrals in question
existing absolutely under the assumption (4.2). Moreover U# is bounded and
continuous and so each {x} is not semi-polar. Let us take o = 0; then we have the
following corollary to Theorem 4.1.

Corollary 4.2. Using the above notation define
B(X) =inf {& = 0:|x|-*¥Pr(z) > 0as |x| = oo},
B (X) =sup {& 2 0:] x| 2P (x) >0 as |x| > oo}
where 8 (X) = 0 if there are no such «. Then under the above assumptions
POl —1/8"(X)=dimZ =1 —1/8(X)]=1.

Proof. In light of Theorem 4.1 it suffices to prove ¢ =1 — 1/§(X) and
B <1 — 1/p(X). Clearly (4.2) implies §(X) = 1. In [2, Th. 3.2] we showed that
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|x]|~*|¥(x)| — 0as|z| — oo for any « > f(X). Choosing a > f(X) we have

d

27 UA(0,0) = 71—3,—(?/7
1

— )hlloc—l[ J 114 iy -1y
~1

+ [+ AP @ey)) Ly

|lyi>1
= AMo=1 [T, (1) + I3(A)].

Since Yr =0, |1+ A 1¥W (AV2y)[-1 <1 and since « > B(X), 1 + A1 (IVey) -1
as A — oo provided y =+ 0. Thus by the bounded convergence theorem I () — 2
as A — oo. Also Re([1 + A1/ (AVey)]-1) = 0 and so Re I3(1) = 0. Since U#(0, 0)
is real this shows that U4(0, 0) = AV=-1 4 (1) where 4 () is bounded away from
zero for large A. Thus A% U4(0,0) > oo as 4 — oo provided a’ > 1 — 1/, and
since « > f(X) was arbitrary it follows that f <1 — 1/8(X). The fact that
g =1 — 1/ (X) can be proved by a similar argument which we omit.

As a final application of Theorem 4.1 let X (¢) be the symmetric stable process
of index o in Euclidean N-space, RY. If R, (f) = | X (#)| is the radial part of X,
then R, is a Markov process with state space [0, oo) satisfying hypothesis (4).
If o = 2, then X is N-dimensional Brownian and it is known, see [10] or [12], that
the transition function Py (¢, z, 4) for Ry is given by

Py(t,x, A) = [ pa(t, @, y) £(dy)
4

where &(dy) = 277 PO (y - 3/2)] 1y2+ldy, y = (N — 1)/2 and pa(t, z, ) =

22+ y?

1 12—y E
ol tere) ()

where [, is the usual modified Bessel function.

Let T be the stable subordinator of index 8,0 < § < 1, with 7' (0) = 0.
Then R, (t) and Re[T,p2(f)] are stochastically equivalent provided 7’5 and R
are completely independent. Therefore if g, (¢, u) is the probability density func-
tion of T4 (#), then the transition function of B, is given by

Pa(t:mﬁA) = jpa(t: Z, ?/)E(dy)
A

where & was defined above and

Pt @, y) = fgoclz (¢, u)pa(u,x,y)du.
0
It is now clear that for each «, R, satisfies hypothesis (F) with £ as basic measure
and since p, is symmetric in z and y, a set is polar if and only if it is semi-polar.
See HuNT [9, Sec. 20].
Let xg > 0 and let Z = {t: R, (f) = xo} = {t:| X (¢)] = o} be the zo-points of

®%r

R

=

Z. Wahrscheinlichkeitstheorie, Bd. 3
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Corollary 4.3. If 0 < o <1 then P™[Z = {0}] = 1, while if 1 < a < 2 then
PofdimZ =1 — Lja] = 1.

Proof. The asymplotic expansion of I, implies that pa(f, g, xe) ~ at~1/2 as
t — 0 where @ > 0; of course, @ depends on . Since gy(t, u) = t-1Bgy(1, -1/ )
we obtain

[ o2, wyu L2 du = i1/
0

2
where b = Ve I'(1 ++ 1/a), although the precise value of b is of no importance.
41

Given &> 0 there exists ug > 0 such that (1 — g)auV2 < py(u, xp, 2g) <
=1+ g)auV2for 0 < u < ug. Also

g1/ J'go:/2 (¢, %) pa(u, 2p,29) dus — 0

Uo

as t — 0 since pa(u, xp, xp) is bounded for v = wo. Similarly

% § goo (f, w)u2du —0 as t—0.
Uo

Combining these facts we easily see that

2, (t, 20, 20) ~ abt~*
ast— 0. Hence
Uk(wg, xo) = [ e~ p,(t, %o, x0) di
0
is infinite if 0 < « < 1. This implies that {x} is polar for R, and so the first
statement follows. If 1 <o =<2 an Abelian theorem for Laplace transforms

implies that
U (o, x0) ~ dAle1

as A — oo where d is a positive constant, and so Corollary 4.3 follows from Theo-
rem 4.1.

Perhaps it is worthwhile to remark that if o > 1, then for an arbitrary z,
dim Z = 1 — 1/a almost surely PZ on the set {I <C oo}, where 7' is the first
hitting time of {xo}.

We return now to a general process X on £ and we will compute

Pro[X(s)=xp forsome s,0a=<s=a-1]

under the following agsumption:
(D) X satisfies hypothesis (¥) and for each ¢ > 0, x € E the transition function
Py (x, dy) of X is absolutely continuous with respect to &, and there exists a density
p(t, z,y) jointly measurable in (¢, ) such that ¢ — p (¢, x, 20) is bounded on
[g,1/e]l for each z € B, & > 0, and satisfying
(i) Ur(z, mo) = [e~#p(t,x, xo)dt; A>0, xz€kE,
0

(11) p(t+u:x02x0):fPt(xO:dy)p(u:y:xO); t;u>0-
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Note that if X is a process on the real line with stationary independent incre-
ments satisfying (4.2), then (D) holds. If &, > 0 then, of course, p(¢, , xo)
=§&,71 P (x, {xo}) and hence (i) and (ii) are automatically satisfied for any density.

Theorem 4.4. Assuming xq is regular for {xo} and (D), let h(u) = v[(u, o0)]
where v is the Lévy measure of T, If T is the first hitting time of xg, then for t > 0

;
PY[T < t]=&p(t,y,x0) + [[C+h(t —w)]p(u,y, ) du
b

where O was defined vn Theorem 2.3. (See also (3.5).) Moreover for any a > 0

Po[X (s) =xg forsome s,a<s=aqa-{]

i
=&opla+t,a0,x0) + [[C+ kit —w)lpla+ u,zo, o) du .
]

Proof. Because of the right continuity of the paths and the fact that z¢ is
regular for {wg}, the probability appearing in the second statement is just
P2 [T (0, w) < i]. Thus the second statement follows from the first and condition
(i) of (D). To prove the first statement let F(f) = Pv[T < ¢] for a fixed y. Then

Bi(y) — PY[T < §7] = Py[T < ] — 1 [ e F (1) de .
0

But @*(y) = C(A) U*(y, xg) and from Theorem 2.5 and (3.5) C'(1) = C + &4 +
+ g*(A) where g* (1) = f(l — e M)y (du). It is easily seen that uh (u) — Oasw >0

0
and so we may integrate by parts obtaining

g*}fl) = fe—l“h(u)du.
0

Hence

[}

C gt
[erroa=s+5+ L2 Uiy,
O |

and it now follows from the uniqueness and convolution theorems for Laplace
transforms that

¢
0

for almost all (Lebesgue measure) ¢£. But F (f) is right continuous. On the other
hand it is not difficult to see that the integral appearing in (4.5) is continuous in
ton {t > 0} by making use of the facts that & is decreasing (and hence has at most
a countable number of discontinuities) and that p is bounded on [, 1/¢] for every
g > 0. Thus (4.5) holds for ¢ > 0 if & = 0. If &, > 0 then as pointed out above
Pt y, wo) = &L Pi(y, {xo}), and it is known [1] that ¢ — P,(y, B) is continuous
on {t > 0} for any Borel set B under assumption (D). Thus the proof of Theorem
4.4 is complete.

5%



68 R. M. BuumentHAL and R. K. GETOOR:

Since Z is closed [0, u] — Z consists of at most countably many disjoint
(relatively) open intervals provided u > 0. Let N (u, &) be the number of such
intervals which exceed ¢ in length.

Theorem 4.5. If xg is not a holding point then as ¢ — 0, N (u, &)[h(e) = A (u)
with P™ probability one.

Proof. If €' = 0 and h is continuous this may be proved exactly as in [12,
section 6.3]; & (g) — oo as & —> 0 since zg is not a holding point. If % is not conti-
nuous the proof in [12] may still be carried through by decomposing 4 into a
continuous component and a pure jump component. Finally if ¢ > 0 standard
considerations show that the conclusion of Theorem 4.5 is still valid. We will not
enter into the details.

One final remark: Suppose (D) holds and &y = C = 0, then the distribution of
A (u) under P™ may be computed just as in section 3 of [8]. In particular the
moments of 4 (u) are given by

E[A (u)k] = k! fpk(t)dt; k=1
0

where p1(t) = p(¢, %o, zo) and

1
pen(t) = [pe(t —wpr(w)du, k=1,
0
Thus 4 (u) has a generalized ‘‘Mittag-Leffler” distribution based on the generalized
“powers” pp.

5. The absolute continuity of »

In this section zp is a fixed point such that {xo} is not semi-polar. We use the
same notation as in the previous sections. In particular 7' is the hitting time of
{xo}, » the LEVY measure of 7 (or more accurately of the corresponding subordi-
nator), and k(%) = »[(u, 00)]. We will prove the following two theorems.

Theorem 5.1. Suppose that P¥ (T € dt) is absolutely continuous on (0, o) for all
y. Then v is absolutely continuous.

Theorem 5.2. Suppose condition (D) of section 4 holds with &y = 0, then P¥ (T e dt)
18 absolutely continuous on (0, o) for all y.

We will give the proof of Theorem 5.2 first since it is simpler than the proof of
Theorem 5.1.

Proof of Theorem 5.2. Let F(t) = Pv(T < t). Note that dF = g if y = o,
while dF is concentrated on (0, oo) if y * x9. Now according to Theorem 4.4
{0 = 0) we have for ¢ > 0

i

F(t)=[[C+ h(t — w)]p(u,y, xo)du.
0

It will suffice to show G(f) = | k(¢ — u)p(u)du is absolutely continuous as a

Oty
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measure on (0, oo), where we have written p () for p (4, y, zo). It will be convenient
to define p(u) = 0 for u < 0. Let Dy be the characteristic function of (1, co) and

! %] for n = 1. Define hy (1) = @, () ke (£).

@, the characteristic funection of (n 1

Integrating by parts one obtains

§ f (6 —w)p(u)du

4

f[ 20 (s — u) dkn(u)}

and since all quantities are non-negative the expression in square brackets is
finite for almost all s. Hence @ is absolutely continuous on (0, oo).

Proof of Theorem 5.1. We begin by introducing some terminology. For a fixed
w and b > 0 we say that X (-, w) has an zo-free inferval of length exactly b if there
is a number @ > 0 such that X (¢, w) + xpforallfin (e, @ + b), X(a + b, w) = =z,
and for all § >0 there exists ¢ in (@ — §, a] such that X (¢, w) = xo. The terminology
is not perfect since it rules out the situation in which X (f, w) + o for all t << b
and X (b, w) = x¢. Given a set J we will say that X (-, w) has an xg-free interval of
length in J if it has an xp-free interval of length exactly b for some 5 in J.

Now suppose that y is not absolutely continuous with respect to Lebesgue
measure (which we will denote by m in the present proof}; then there exists a
compact set J contained in [#, oo) for some % > 0 such that »(J) > 0 = m(J).
Since v (J) is the expected number jumps of the subordinator Y (t) (notation of
Theorem 2.3) with magnitude in J, and since { ¥ (¢), f = 0} and 8¢ are independent,
it follows that the event

6.1) {(t) —7(t — )eJ and v () < oo for some ¢ = 0}

has positive P* measure. Recalling the relationship between 4 and 7, and making
use of Theorem 1.6 and the fact that a point of increase of 4 is either a point of
right increase or the limit from the left of points of right increase, one sees that
the event in (5.1) is P* almost surely contained in the set

(5.2) {X has an zo-free interval of length in J}.

Thus the proof of Theorem 5.1 is reduced to showing that the set in (5.2) is P% null.
It is necessary to treat certain measurability problems before proving this last
statement.

As above J is a non-void compact set contained in [7, o) for some # > 0.
For a fixed w we say that r > 0is a J point for X (-, w) if; :

(1) X(r, w) = xq.

(ii) There exists ¢ in J such that X (s, w) + xo for all s in (r — ¢, 7) and for
every 6 > 0 there exists « in (r — ¢ — &, r — ] with X (1, w) = x.

If {rs} is a sequence of J points for X (-, w) which converges to r, then it is
obvious that 7 is a J point for X (-, w). In fact, r, must equal » for all n such that
[re — r| < n/2.



70 R. M. BuumenTHAL and R. K. GETOOR:

We now define
(5.3) Ty (w) = inf{r:ris a J point for X (-, w)}.

According to the above discussion 7'y (w) is a J point of X (-, w) provided it is
finite. The next few paragraphs are devoted to showing that 7' is a stopping time. -
Given positive numbers ¢, 71, 72 With r; <7z, let

A(ry,re, €) = {w: X (t, w) = g for some ¢ in [rz, 72 + €};
X (¢, w) = o for all £in (r1 | &, r2);
X (¢, w) = xo for some ¢ in (r, — &, 71 - &)}.

Clearly A (r1, 72, ¢) is in Fry1e. Now let {fz} be a countable dense subset of J.
Given b > 0 define

Ad=uU Nn v uA(q—tk,q,—:T)

mna>mq=b k

where ¢ is rational. It is immediate that 4 € #5 and we will now show that
A={Ty;=<b}

Suppose w is such that 7'y (w) =< b; then there exist numbers r < b and ¢ in J,
which will be held fixed, satisfying conditions (i) and (ii) in the definition of a JJ
point given above. Given a positive integer n choose a rational ¢ < b such that

1
g<r<g-+- and then choose ¢z from our dense subset of J such that | — tk| <

1 . ..
< - (r —g). Elementary considerations now show that w is in 4 <q —tr, q, —:L—)

with the above choice of q and ;. Therefore {7y < b} c 4.
Conversely suppose w is in 4 ; then there exists an ng such that for all n > ng

there exist a rational ¢, < b and a #, in {t;} such that wisin A (qn —tn, qn ,%) .

By passing to a subsequence we may assume ¢, —r = b and #, — ¢ € J. In order
to show A c {Ty < b} it will suffice to show that r is a J point of X (-, w).

(i) If ¢, = r for infinitely many n, then the right continuity of X (-, w) implies
that X (r, w) = @o. Suppose that g, < 7 for all large n and X (r, w) + . From the
right continuity one obtains a § > 0 such that X (r - u, w) + @o for all u in
[0, 6]. Choose N such that 1/N < dand 0 < r — ¢, < yforalln = N ; then there

exists a point  in [qy,r) such that X (u,w) = xo. But then » isin (qm — b+ %, _qm)
for all large m and this contradicts the fact that w is in 4 <_qm —tm, qm,%> for
m > ng. Thus X(r,w) = xp.

(ii) Since X (u, w) == xo for any u in (qn — iy —i—%, qn) and g — 7, qn — In -+
+ —717—> r — £, it follows that X (u, w) + x¢ for any u in (r — ¢, 7). Finally given
6>Owehave<qn — Iy —%, qn—tnﬁ—%) contained in (r — ¢ — 8, r — & + 9)
for all large , and so it follows from the right continuity of X (-, w) that for every

8 > Othereisauin (r — t — &, r — t] such that X (u, w) = 2. Thus r is a J point
for X (-, w), and hence the proof that 7'y is a stopping time is complete.
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Clearly
{X has an x¢-free interval of length in J} = {7y < oo},

and so to complete the proof of Theorem 5.1, we must show that P% (7 ; << o0) = 0.

We will need one more stopping time. If ¢ > 0 let Ty = inf{t = ¢: X () =
for all w in (t — ¢, £)}. An argument similar to (but much simpler than) that just
given for 7'; shows that 7 is a stopping time. We are finally ready to show that
P* [Ty < oo] = 0 under the assumption of Theorem 5.1 and m(J) = 0.

Recall that J is a compact subset of [#, oo) with 5 > 0. Choose ¢ such that
0 < ¢ << n and let R be the stopping time 7'y defined above. Define stopping times
as follows: (here 7' is the first hit of {xo})

Ki=T Ly = K1+ R(Oy,)

Kn+1 - Ln + T(@Ln) Ln+1 = Kn+1 ’I‘ R(@Km.1)

Note that K1 = L, and that L, = ¢ + K. Also X (u, w) + ap if Ly(w) <
< % < Kpi1(w). Since X (Ty) = xg on {T'y < oo} the events {L, < Ty < Kny1}
are impossible for any ». It is easy to see that if ¢ is any stopping time such that
X(Q) =29 on {@ < oo}, then Ty =Q - Ty (Og) on {Q < Ty}. But P> [T; < R;
Ty < 0] = 0 and so for any » and y

PY[Ky<T;<Ly; Ty < oo
= Pv[T;(Ok,) = B(Og,); T5(Og,) < o0; Ky < o0]
SPoTy<R; T;y<<o]=0.
Suppose that P®[T; << co] > 0. Clearly 7y > K; almost surely P™ and
K, — oo as n — oo. Thus the above remarks imply that for some n

Poo[Ly < Ty=Kps1 < o0]>0.

Using the fact that K1 = L, almost surely on {X (L,) = 2} (since g is regular
for xzg) we see that Ty — LyisinJ — ¢ almost surely on {In < Ty =Knu1 < oo},
Hence
0< PP[Ly < Ty=Ky, 1 <o0]
= Po[Kp1 — Lyed —q; Ly < o0]
= Fo{PXUN[TeJ —q]; Ly < oo} =0,

since m(J — g) = m(J) = 0 and 7' has an absolutely continuous distribution
on (0, co) under P2 for all z. This completes the proof of Theorem 5.1.

Similar, but simpler, considerations show that if P*(T e dt) is continuous on
(0, o0) for all x then y is continuous.



72 R. M. BLumENTHAL and R. K. GETOOR:

6. Local Times: Non-Regular Case

In this section ¢ will denote a fixed point of £ such that {xo} is not polar and
xg is not regular for {xo}, that is {xo} is semi-polar. As before 7' denotes the first
hitting time of {wxo}, P*(x) = E*(e~*T), and Wi =@l — (1 — 1)U*PL. Our
hypotheses on zg are equivalent to @4(xg) <1 and @4 + 0. One could use the
method of section 1 to construct the local time of X at xy. However, in the present
case, the local time has a very simple structure and we will give an elementary
construction of it.

Define Ry =0, B = T, and Ry1 = Ry + T(Op,) for n =1, so that R,
is the time of the n-th visit to zg. Note that By << Rp41 almost surely on { Ry < oo},
since the fact that zg is not regular for {xo} implies that P%(T > 0) = 1.

Lemma 6.1. There are almost surely only a finite number of the R, s contained
in any finite interval [0, to].

Proof. Tt suffices to show that almost surely only a finite number of the events
{Ry < S§*} ocur, where, as usual, §* is an exponentially distributed random
variable independent of the process X. For each x we have

Pr[Rpt1 < 84 = P*[Ry + T(@Rn) < 8%]
< P[T(Op,) < 8% Ry, < 8]
= P®(T' < 8*) P*(R, < 8%),
and so

P2 (Ray1 < 8%) < [P(T < SH]" Po(T < 8%).

But Po(T < 8%) = @*(xp) < 1 and hence Lemma 6.1 follows from the Borel-
Cantelli Lemma.

We now define V(#) to be the number of visits to zo by X during the interval
[0, t]. Clearly V is an additive functional of X which is constant except for jumps
of magnitude one at the R,’s. Lemma 6.1 implies that V() is almost surely finite
for each . ’

Theorem 6.2. Le! f be a bounded continuous function. Then for each A > 0
Ea [ ¢4 {(X)dV () = BY*(x)f (20)
0

where B = ([1 — @ (x0)] [1 — (A — 1) UA @ (x)])~1 is positive and independent
of 1.

Proof. The computations leading to formula (1.2) are independent of the
assumption that g is regular for {xo} and so we have

(6.1 Yi=[1— (A —1) U P(xg)] D*.
Under the present assumptions on g, P (%) < 1, and so
1 — (2 — 1) UAD (o) > P (mo) — (A — 1) UrP(zo) = 0.

The last inequality following as in the proof of Lemma 1.1.
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From the definition of V and the fact that X (B,) = xp almost surely on
{Ry << oo} we obtain

Be et f(XaV () = 5 ol (X))
0 n=1

(=)

= f(0) 2, D*(x) [D*(wo)]"~2

n=1

= [ (o) [1 — P*(w)] D*().

In view of (6.1) this proves Theorem 6.1 except for showing that B is independent
of A.

Define B(A) = ([1 — @*(xg)] [1 — (A — 1) U*PL(x)])"L. If S§* and Sk are
independent, a calculation similar to that used in the proof of Theorem 1.2 yields

Ex V(8% \ Sk = B V (St) — Bo{V (8%) — V (Sk); & < St}
= B(A) WA (z).

Since ¥4+# is a non-zero multiple of @4+# there is at least one x for which P4+« () +
+ 0, and hence B(1) = B(u). This completes the proof of Theorem 6.2.

If we define 4 (t) = B-1V (¢), then 4 is an additive functional of X that is
uniquely determined by the relationship ([13, Pt. II, Th. 4.4])

62) 1 e f(X,) dA (1) = PP@) f (w0)
0

for all bounded continuous f and all x. Thus we may call 4 (or V) the local timne at
xp under the present assumptions.

If X satisfies (¥), then using Proposition 18.5 of [9] one can show that the
sample paths #-> X;(w) are almost surely continuous at 7' on {I' < oo}. It
follows from this that V is a natural additive functional (that is, ¢ — X;(w) and
f — A(t, w) have almost surely no common discontinuities). In the general case
¢t — X;(w) may be discontinuous at 7" and so V need not be natural.
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