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Local Times for Markov Processes* 

By 

R. M. BLVM~THAL and R. K. G~TOO~ 

Introduction and preliminaries 

The present paper is devoted to the construction and study of a special class 
of additive functionals of a Markov process. These additive functionals measure, 
in a certain sense, the amount  of t ime the process X spends at  a particular point 
Xo, and hence the additive functional, A~0 associated with xo is called the local time 
of X at  x 0. The local t ime will be constructed under the assumptions tha t  X 
satisfies HUNT'S hypothesis (A) and tha t  there is positive probabili ty of reaching 
{x0}. More precisely let T ---- inf{t > 0: i ( t )  =- Xo) be the hitting t ime of {x0), 
then we assume that  there is at  least one x in the state space suchthat  px [ T <  c~] > O. 
In  the terminology of [13] the set {x0} is not polar. The most interesting 
situation is tha t  in which x0 is regular for {x0), tha t  is, PX~ --~ 0] ~ 1. This is 
easily seen to be equivalent to requiring tha t  (x0} is not semi-polar, again using 
the terminology of [13J. We will call this last case the regular case and the majori ty 
(sections 1--5) of the paper is devoted to it. The non-regular case in which {x0} 
is semi-polar but  not polar is essentially trivial, and we postpone its consideration 
until section 6. 

Local times for regular linear diffusions have been constructed by TROTTER [16J 
and by  McKwAN and ITO [12]. In  Chapter 6 of [12] McKEA~ and ITo give a 
detailed discussion of local times for this situation. More recently BOYLAN [6] 
has constructed local times for a fairly extensive class of one dimensional Markov 
processes and STO~]~ [14] has given a number  of applications of BOYLA~'S local 
times similar to those in [12] and in section 4 of this paper. Both TROTTEI~ and 
BOYLA~ are concerned with the dependence of the local t ime on x0 and they show 
tha t  Ax0 (t) is jointly continuous in t and x0 in the cases they are considering. In  
this paper we will not concern ourselves with investigating the continuity in x0. 
For x0 fixed A is continuous in t if  and only if (x0) is not semi-polar, i. e. in the 
regular case. 

Section 1 contains the construction of the local t ime A and the study of some 
of its properties; in particular the relationship between A and {t : X (t) = x0}. In 
section 2 we obtain the stochastic structure of the function inverse to A. Section 3 
contains further properties of the local t ime when X satisfies HUNT'S hypothesis 
(F) in addition to (A). In  this case it is shown tha t  the local t ime is a density for 
the occupation time relative to the basic measure ~. In  addition a simple sufficient 
condition is given for the regular case when (F) holds. Section 4 gives a number of 
applications of these results similar to those in Chapter 6 of [12] and in [14]. The 
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results obtained for processes with s ta t ionary  independent  increments on the real 
line and for symmetr ic  stable processes in R iv seem to be new. I n  section 5 we 
show tha t  under  a mild restriction the L tvY measure corresponding to the inverse 
of  A is absolutely continuous. Final ly the non-regular  case is discussed in section 6. 

Throughout  this paper  X will denote a temporal ly  homogeneous Marke r  
process satisfying t t v~T ' s  hypothesis  (A) with a locally compact  separable metric 
space E as state space. We refer the reader to [3] or [13] for a summary  of the 
relevant  properties of  X,  or, of  course, to  [9, section 1]. We will adopt  for the most  
par t  the nota t ion of  [13], but  for the convenience of  the reader we repeat  some of  
the basic definitions. Let  E = E u {A} where A is a point  adjoined to E as the 
point  at  infinity ff E is non-compact  and as an isolated point  ff E is compact .  
Let  ~ denote the space of  all paths  w, t ha t  is, all maps  w from [0, co] t o / ~  tha t  
are r ight  continuous and have left hand  limits on [0, c~) with w(c~) = d and if 
w (t) = A then w (s) = d for all s ~ t. As usual Xt (w) = X (t, w) = w (t). We let 
~-t0 (~0)  denote the a-algebra of  subsets of ~ generated by  sets of  the form 
X~- 1 (B) for s ~ t (s < co) where B is in ~ ,  the Borel sets of E. Also J t  (Y)  denotes 
the intersection of  the p z  completions of  ~ o  (~-0) taken over all finite measures 
# on ~ .  We let ~ = inf{t : X(t)  = zJ} denote the lifetime of  the process. The 
reader is referred to [13] for definitions and terminology no t  explicitly ment ioned 
in this paper.  

An  addit ive functional  A = {d (t); 0 --< t _< co} of  X is a family of  r andom 
variables such tha t  

(i) A ( O ) =  O, t - + A ( t )  is r ight  continuous and nondeereasing, and A(c~) 
= lim A (t) ; each of these s ta tements  holding almost  surely. Here and henceforth 

t ta  
almost  surely means almost  surely px  for all x in E. 

(ii) A (t) is ~-t  measurable for each t. 

(Hi) For  each t, s one has almost  surely 

(1) A (t § s, w) = A (t, w) + d (s, Otw). 

M ~ r ] ~  proved in [13] t ha t  A has the strong Marke r  property,  t ha t  is t m a y  be 
replaced by  any  stopping t ime T and s by  any  non-negative random variable S 
in (1). I f  A is an addit ive functional,  u (x) = Ex[A (co)] is an excessive function 
called the potential  of  A. We refer the reader to [13] for fur ther  properties of  
addit ive functionals. 

I t  is often convenient  when terminat ing a process at  an independent  exponen- 
tially distr ibuted t ime to use a representat ion of  the te rminated  process t ha t  is 
different f rom its canonical representat ion on its pa th  space described above. 
When  convenient  we will do so wi thout  part icular  mention.  The reader is referred 
to [7] or [13] for the appropria te  discussion. 

1. Existence of local t imes: Regular ease 

Let  x0 be a fixed point  of  E and let T - -  inf{t > 0 : Xt  = x0) be the hit t ing 
t ime of  {x0}. We assume th roughout  this section tha t  x0 is regular for {x0}, t ha t  

4* 
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is p x o [ T = O ] = l .  For  A , # > 0 d e f i n e  

~SA (x) = E* (e -~.T) 

Here  UA is the  A-potential opera tor  (or resolvent) for X, t h a t  is 

U A / (x) = E x ~ e -A~ / (Xt) dt.  
0 

L e m m a  1.1. ~5A is uni/ormly A-excessive and ~ = b~qSA where b~ is a positive 
constant. 

Proo/. In t roduc ing  the  opera tor  P~]  (x) = Ex {e -ZT/ (Xy)}  where T is defined 
above we have  

p ~  qSA (x) = Ex  {e -;,T EX(T) (e-~T)} 

= Ex{e-~T}EXo{e -~T} 

= ~)A ( x ) ,  

since X ( T ) =  xo almost  surely on {T < oo} and  PX~ = 0 ) =  1. Bu t  ~ is 
clearly A-excessive and so given e > 0 there exists (~ > 0 such t h a t  P~tqSA(xo) 

CA(xo) ~ P~qSA(xo) -~- s whenever  t ~ (~. Moreover  P~T(X, dy) is concentra ted  
on {x0} and  hence if t ~ (~ 

Thus  Pt~b A --> qia as t --> 0 uniformly on E, t ha t  is r is uni formly  A-excessive. 
Regarding the  second s t a t ement  of the  l emma  we compute  

o o  

U,~ qStt (x) = E x ~ e -~ tE  x(t) (e -~T) dt 
0 

oo 

= E x ~  e-Ate-~T(O,)dt.  
0 

Since T (Or) = T - -  t almost  surely on {T > t} we m a y  write 

T 
I1 = E x ~ e -At e-I~ T (Oe) dt 

o 
T 

0 

= (A - # ) - 1  [ ~ g ( x )  - r  ]. 

On the other  hand  since {T < t} e ~-t  we have  

o o  o o  

12 -= E x [ c -~ te - ' f (Ot )d t  = Ez  [ e - ~ t r  
T T 

oo 

= E x ~ e-~(t+ T)q5~ (Xt+T) dt = E= {e -  ~ U A r  (XT)} 
0 

= P~T UA qT)t~ (x). 
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Combining these computa t ions  we find 

(1.2) ~ = ~z  _ (k - -  ~u)P~ U Z ~ .  

B u t  P ~ U ~ , ( x ) = E z ( e - " ~ ) U a r  and so ~ = b ~ , v a  with b~= 
= 1 - -  (k - -  t t )U~q)~(xo) .  

To complete the proof  we mus t  show tha t  b~ > O. Since ~bz is #-excessive and 
# > O, there exists a sequence {/n} of non-negative functions such tha t  U~/n  ~ q)~. 

Making use of the resolvent equat ion and the fact  t ha t  ~b~ (x0) = l, one easily 
obtains b~ ~ 0. However  if b~ = 0, then  T~ = 0 or equivalently ~5~ = 
= (2 -- /~)  Ua~ b~. Clearly this implies 2 > it. Also ~b~(x) __< ~5~(x0) = 1, and so 
1 =< ( 2 - - # ) U X l  =< 1 -  (#/2) which is a contradiction. Thus Lemma 1.1 is 
established. 

We now define for ~ > 0 

( 1 . 3 )  T z  = ~P~ = 551 - -  (k  - -  1 )  U Z ~ b  1 , 

and it follows f rom Lemma 1.1 tha t  T z is uniformly 2-excessive for each ), 

Theorem 1.2. There exists a cont inuous additive ]unctional A o/ X such that 

A (t) is almost  surely f i n i t e / o r  each t ~ 0 a n d / o r  each 2 > 0 

oo 

E x ~ e -zt  dA  (t) = T ~ (x).  
0 

A is called the local t ime of X at x0 and is unique up to the equivalence of  addit ive 
funetiona]s. 

P r o @  Let  S ~ be a positive r andom variable which is independent  of the 
process X and with distr ibution funct ion 1 -  e -At. Let  X~, = (X, S a) be the 
process X "killed at  t ime S k'', t ha t  is XZ( t )  = X ( t )  i f  t < S a and XZ( t )  = A 

if t ~ S ~. Of course, S a mus t  in general be defined on a larger spae than  ~2 and the 
representat ion of  X z as (X, S z) is not  the canonical representat ion of this process 
on its pa th  space, bu t  we will not  dwell here on these familiar technical points. 
Since h uh is uni formly excessive relative to X z it follows from a theorem of Voz-  
~:ONSK~ [7] t ha t  for each 2 > 0 there exists a continuous addit ive functional  A z 
of  the  process X a such t h a t  

Ex A~ ( ~ )  = Ex A~ (Sa) = Ta  (x). 

I f  2 and # are positive and S a and S~ are independent,  then letting a A b = 
= rain (a, b) we have 

(1.4) E x A a ( S  z A S~) = E x A ~ ( S  ~) - -  E x [ A ~ ( S  a) - -  A~(S~); S~ < Sa). 

The first te rm on the r ight  side of (1.4) is }P;,(x), while the second term equals 

E x [ A Z ( c ~ )  - -  Aa(s~) ;  S~ < S ~] = E x { E x ( s ' ) [ A Z ( r  S~ < Sa]} 
o o  

= fl E x .[ e -(z+~)t T z (Xt) dt = # UZ+~ T a . 
0 
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Therefore using the resolvent equation 

E x A  ~ (S~ A S t )  = g/~+t (x). 

Since this last expression is symmetric in ~ and #, Mmr]~R's uniqueness theorem 
[13] implies tha t  A~(t) = A t ( t )  almost surely on {t < S ~ A St}. I t  now follows 
by standard arguments from the independence of X,  S ~, and S t  tha t  there exists a 
continuous additive functional A of the process X such tha t  for each 2 > 0, 
A~(t) = A (t) f f  t < S~. and A~(t) = A (S~) if t => S~. Hence 

c o  

E x ~e-~tdA (t) = E x A  (S~) = ExA~(oo)  = }P~(x). 
o 

The uniqueness of A follows from the fact tha t  A ~ is uniquely determined 
(up to equivalence) by  [P~. This completes the proof of Theorem 1.2. 

Let  us emphasize tha t  A is an additive functional of X and does not depend 
on the auxiliary variables S ~ introduced in the construction. Moreover it is not 
too difficult to see using Lemma 1.1 tha t  ff we had used [P~ in place of ~Pz = [P~" 
in the construction, then the resulting additive functional of X would differ from 
A only by a multiplicative constant. 

We next  examine in more detail the relationship between A and X. The follow- 
ing result is the key step. As usual T is the hitting time of {x0}. 

Theorem 1.3. Let R = inf{t:A (t) > 0} = sup {t:A (t) = 0}, then p x  (R ---- T) = 1 
/or all x. 

Pro@ Clearly R is a stopping t ime and the continuity of A implies tha t  
A (R) = 0 almost surely. We observed at  the beginning of the proof of Lemma 1.1 
tha t  P~  ~b~ = ~ ,  and hence P~  ~Pz - -  kP~. Thus 

0 = ~ (x) --  P~, ~ (x) 
T 

= E x  I e-'~t dA (t). 
o 

But this implies tha t  p x [ A  (T) = 0] = 1 and hence p x [ T  ~ R] = 1. 
To complete the proof of the theorem we will show tha t  p x  (T < R) = 0. To 

this end we first observe tha t  R = T ~ R ( O T )  almost surely on {T < R}. 
Therefore 

p x [ T  < R] = p x [ R ( O T )  > 0; T < R] 

<= E x { p X ( T ) ( R  > 0)} 

< = p x o ( R > O ) ,  

a n d  so i t  w i l l  suf f ice  t o  s h o w  PX~ > O) = O. S i n c e  }p1 = ~bl =< 1, w e  h a v e  

c O  o o  

1 = q51 (xo) = E x~ S e-t  dA (t) = E x~ ~ e - t  dA (t) 
o B 

= E X O { e - R r  <= EXO(e-R).  

But clearly this implies tha t  p z  (R > 0) ~ 0, and so Theorem 1.3 is established. 
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We define the following sets each of which depends on w. 

Z = { t :  Zt = x 0 }  

I = { t : A ( t - k ~ ) - - A ( t ) > O  for all ~ > 0 }  

I '  = {t : A (t -k e) - -  A (t - -  e) > O foral l  e > 0 }  

More descriptively Z consists of the x0 points of X, I the points of right 
increase of A, and I '  the points of increase of A. Since A is almost surley con- 
tinuous it is clear that  I '  = ] (the closure of I). 

Lemma 1.4. Almost  surely Z c I '  and Z = I ' .  

Proo/. As usual T is the hitting time of {x0}, and so t - k  T ( O t ) =  
inf{s > t: Xs  = x0}. Therefore 

{ w : Z ~ :  I ' } c w  { A ( s ) - - A ( r ) = O ;  r -~  T ( O r ) < S }  

where the union is taken over all rationals s ~ r ~ 0. But for any x 

p x [ A ( s ) _ A ( r ) ~ _ O ;  r + T ( O r ) < s ]  

= E x ( p X ( r ) [ A ( s - -  r) ~-- 0; T < s - -  r]} 

Ex{p~:(r) (T  < R)} 

~0~ 

by Theorem 1.3. Thus Z c I '  almost surely. 
To prove the second relationship it now suffices to show I '  c 2 almost surely. 

For a fixed w suppose to ~ I '  and to ~ 2, then since 2 is closed there exist rationals 
r and s such that  r ~ to ~ s, A (s) - -  A (r) ~ 07 and [r, s / n  2 is empty. Thus 

(w : I '  r Z} c w (A (s) --  A (r) > 0; Xt * xo for all t e It, s]} 

where again the union is over all rationals s ~ r ~ 0. But 

Px  (A  (s) - -  A (r) > 0 ;  Xt . xo for all t e [ r , s ]}  

: E x { p  x ( ~ ) [ A ( s -  r) > O; T > s - - r ] }  

E x { p  X(r) (T  > R)} ~- 0. 

Thus Lcmma 1.4 is established. 

Theorem 1.5. Let / be a bounded Borel measurable/unction, then/or  each ~ ~ 0 

o o  

E x f e -zt / (Xt) dA (t) : / (xo) ~ (x). 
0 

Proo/. I t  suffices to consider / non-negative and continuous. Let w be fixed and 
such that  I '  (w) ~--2 (w), t--~ X~(w) is right continuous, and t - ~  A (t, w) is con- 
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tinuous. I n  view of  L c m m a  1.4 the set of  w' s not  having all three of these properties 
is almost  surely null. For  such a w the measure d A  (t, w) is supported by  I '  (w) = 
= Z (w). Since ] is continuous t ---> [ [Xt (w)] is r ight  continuous and hence has at  
most  countably  m a n y  discontinuities, and ff N denotes this set of  discontinuities 
then N has dA (t, w) measure zero. Therefore 

r  

f e -~ / [X, (w)]  dA (t, w) = .[ e - ~ / [ Z t  (w)] aA (t, w). 
o F-2v 

Bu t  if t ~ Z - -  N then  / [Xt (w)] = / (Xo), and so 

r  oo 

(1.5) f e-X~ ] [Xt (w)] dA (t, w) = / (xo) f e -xt dA (t, w). 
0 0 

Thus (1.5) holds almost  surely and integrating with respect to  px  yields Theorem 
1.5. 

The next  theorem is the main  result of this section. 

Theorem 1.6. Almost surely I c Z c I ' .  

Proo/. We have already shown in Lemma 1.4 tha t  Z c I '  a lmost  surely. I t  
follows from Theorem 1.5 and the uniqueness theorem for continuous addit ive 
functionals t ha t  ff / is the characteristic function of  {x0}, then 

t 

(1.6) ] ] ( X s ) d A  (s) = A (t) a .s .  
0 

Let  w he such tha t  (1.6) holds, t --~ Xt (w) is r ight  continuous, and t -~ A (t, w) is 
continuous. For  such a w suppose to ~ Z (w), then there exists an ~ > 0 such tha t  
X t ( w )  * xo for to ~ t ~ to + e. But  (1.6) then  implies A(to ~- e, w) = A(t0, w) 
so tha t  to ~ I(w).  Therefore I c Z  almost  surely; thus  the proof  of Theorem 1.6 
is complete. 

I n  general Theorem 1.6 can not  be improved. Namely  ff x0 is a holding point  
then Z ~- I ,  while if X has continuous paths  Z = Z --~ I ' .  But  I . I '  unless x0 
is a trap. LA~]'~nTI [11] has shown tha t  Z = 2 almost surely for an extensive 
class of  processes with independent  increments. 

2. The inverse of the local time 

I n  this section x0 will be a fixed point  of E such tha t  x0 is regular for {x0}, or, 
equivalently, {x0} is not  semi-polar. Let  A be the local t ime of X at  x0 so tha t  A 
is a continuous additive functional with A (t) a. s. finite. Define 

(2.1) (t, w) = inf{s : A (s, w) > t} 

where it is unders tood tha t  r (t, w) = cr if the set in braces is empty.  Since A is 
continuous and non-decreasing it is immediate  t ha t  ~ is r ight  continuous and 
strictly increasing on { t : ~ ( t ) <  c~}, these s ta tements  holding almost  surely. 
The following facts are well known and easy to  check, see [13, par t  I I ,  sec. 7]: 
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(i) Each r(t) is a stopping time and 

(2.2) "c(t + s, w) = "c(t, w) + r(s, Or(t)w), a.s .  

(ii) I f  / is a measurable function from [0, cr to [0, oo] with/(oo)  = 0, then 

] / ( t ) d A ( t ) =  f / [ r ( t ) ]d t  a.s.  
0 0 

We will now compute the distribution of ~ (t). The notation is that  of section 1. 

Theorem 2.1. For each X > 0 

Ex [e-at(t)] = qiz (x) exp [-- t / T  "~ (x0)]. 

Pro@ We define e-Zr(t) to be zero on the set {~(t) = c~} and adopt the con- 
vention that  any function / on E is automatically extended to /~ by setting 
] (A) = 0 unless explicitly stated otherwise. I f / i s  bounded and measurable define 

Q~ / (x) = Ex {~-~r.) / [Xr(t)]}. 

I t  is easily checked using (2.2) and the strong Markov property that  for each 
> 0 the family {Qt~; t => 0} is a semi-group on the space of bounded (uni- 

versally) measurable functions with It Q211 < 1 for all t _--> 0 and 2 > 0. (Note 
that  Q~ is not in general the identity since T(0) need not be zero.) Let 

r 

Jz~ ] (x) = f e-g ~ Q~ / (x) dt 
0 

oo 

= E x ~ e -~t e -~r(t) / [Xr(t)] dt 
0 

be the resolvent of {Qt~}. Note that  

o o  

JO / (x) ~-- E z f e-Z~(t) / [Xr(t)] dt 
0 

oo 

= Ex • e - ~ t / ( i t )  gA (t) 

= / (x0) T~ (x) 

by Theorem 1.5. Therefore jo  is bounded with [[ jo[[  = sup kg~(x)= kgZ(xo). 
The resolvent equation imp]ies J~[ I  + /~ jo]  = jo  and so if 0 G /z  < [ I g  ~ ] ]-1 
we may write 

j~  = jo  [I  + /~  jo] - I  

~ (__/z)]c (fl0)/c+l. 

But J ~  (x) ~ kY~(x) and hence (JO)k+ll (x) = k~Z(x) [~Z(xo)] k. Thus 

(2.3) J g l ( x ) = T Z ( x ) [ l + # T Z ( x o ) ] - l ;  0 G # < [SUZ(xo)]-I. 



58 l:~. M. BLUME:NTKAL and  R.  K.  GETOOR: 

However  # --> J~ 1 (x) is the Laplace t ransform of t --~ E x [e-~r(t)] which is right 
continuous, and so invert ing (2.3) (both sides of  which are analytic in Re  (~) > O) 
we obtain 

T~ (z) 
Ex (e-'~r(t)) - -  T~, (x0) exp [ - -  t /T~ (x0)]. 

Finally Lemma 1.1 implies t ha t  TZ(x) = ~(xo)qh~(x) ,  and thus  the proof  of  
Theorem 2.1 is complete. 

I f  Q = {t < r : 7(s) = t for some s, 0 -< s -< ~ }  is the range of  7, then it 
follows easily f rom the cont inui ty  of A tha t  Q = I a lmost  surely. Here I is the 
set of  points of  r ight  increase of A which was defined in Section 2. I m p o r t a n t  
consequences of  this and Theorem 1.6 are the facts t h a t  

Q : I c Z c I ' : Z : Q  a.s. ,  
(2.4) 

X[7 ( t ) ]  = x0 a . s .  on  {~(t) < oo} .  

We will s tudy  the process ~ (t) with probabil i ty law p~0. Since 7 (0) = R it 
follows from Theorem 1.3 tha t  PX0[7(0) = 0] = 1. 

Theorem 2.2. I] 0 = to < tl < ""  < tn and i[ B1 . . . . .  Bn are Borel subsets o/ 
[0, r then 

PX~ -- ~ ( t j - 1 ) � 9  : 1, . . . , n ;  ~(tn) < oo] 

n 

= 1- [  p~o[7 (tj - tj_~) �9 B j ] .  
] = 1  

Proo]. This is obvious if n = 1 since B1 is a subset of 

An  = (~ {7 (ti) - -  7 (tj-1) �9 Bj} ; then using (2.2) and (2.4) we have 
]=1 

PX~ 7(tn) < oo) 

= Px~ JAn-1 ; 7 (tn --  tn-1, Or(tn_l) W) �9 Bn ; 7 (tn-1) < r 

= EXo (px[~ (t.-1)] [~ (tn - -  tn-1) �9 Bn] ; A n - t  ; 7 (tn-1) < ~ )  

= pxo [7 (tn --  tn-1) �9 Bn] pxo [An- l ;  ~ (tn-1) < r 

[0, cr Let  

and so Theorem 2.2 follows by  induction. 
Roughly  speaking Theorem 2.2 states t ha t  v has s ta t ionary independent  

increments on {T(t) < c~}. Let  us recall t ha t  if {Y(t); t ~ 0} is a real-valued 
process with stat ionary,  independent,  and non-negative increments, Y ( 0 ) =  0, 
and right continuous paths, defined on some probabil i ty space (~*, ~ ,  P)  then 

E[e -'~Y(t) ] = e-tg(~) 

where 

(2.5) g(~) : b~ + 7 ( 1  - -  e-~U)v(dt). 
0 
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co 

I n  (2.5), b > 0 and  v is a Borel  measure  on (0, co) sa t is fying f u  (1 + u ) - i  v (du) < ~ .  
0 

A simple calcula t ion shows t h a t  b = l im X-ig(),).  Us ing  the  t e rmino logy  of  [2] 
~-->oo 

we will call  Y a subordinator;  g is cal led the  exponent  of Y and  v the  L~vY measure  
of Y. See [2] and  [5] for a discussion of the  above  facts.  

The  following theorem gives the  s tochas t ic  s t ruc ture  of  3 (t) under  pxo. 

Theorem 2.3. (i) C = lira [W x @o)] -1 exists  and  0 < C < co. 
)~--> 0 

(ii) There  exists  a subord ina to r  Y such t h a t  i f  S c is an  exponen t i a l ly  d i s t r ibu ted  
random var iab le  wi th  p a r a m e t e r  C t h a t  is i ndependen t  of 3, and  ff v* (t) = Y(t) 
for t < S c a n d  3" (t) = co for t > S c, t hen  3" and  3 under  pxo are s tochas t ica l ly  
equivalent .  Moreover  the  exponen t  g of  Y is given b y  g (A) = [~x  (x0)] - i  - -  C. 

Proof .  Theorem 2.1 wi th  x = x0 implies  t h a t  [ ~ ( x 0 ) ]  - i  is an  increasing 
func t ion  of X on 0 < ), < c~ and  hence s t a t e m e n t  (i) is obvious.  Le t  R + ---- [0, oo) 
and  for each t > 0 define a measure  ttt on R+ b y  ~ut(B) = PX~ B]. A n  
immed ia t e  consequence of  Theorem 2.1 is t h a t  #t+s = t t t  * #s  for all  t, s > 0 
where " , "  denotes  convolut ion.  Also since p~0 [3 (t) -+  0 as t $ 0] = 1 i t  is easy  to  
see t h a t / t t  --> SO weak ly  as t ~ 0. F ina l l y  using Theorem 2.1 we see t h a t  

~ t t ( R  +) = PX~ < c~] 

= l im E ~~ (e-X~(t)) = e - c t  . 
) . - + 0  

Thus  if  we define vt = eCt~t,  the  f ami ly  {vt; t > 0} is a semi-group o f  probabi l i ty  
measures  on R+ such t h a t  ?~t "--> 80 weak ly  as t ~ 0. Unde r  these c i rcumstances  i t  is 
well  known t h a t  there  exists  a subord ina to r  Y defined on some p r o b a b i h t y  space 
(/2*, N, P )  wi th  s t a t iona ry ,  independen t ,  and  non-nega t ive  increments ,  r ight  
cont inuous  sample  funct ions,  and  Y(0) = 0 such t h a t  ~'t is the  d i s t r ibu t ion  of 
Y(t). Moreover  

E(e -zY(t)) ~- ~ e -Auvt (du) 
o 

= eCtEXo (e-).v(t)) 

= exp {- -  t ( [ ~ ( x o ) ]  - i  - -  C)} .  

Thus  the  exponen t  of  Y is g (2) = [ ~  (x0)] - i  - -  C. 
I f  B is a Borel set of  R +, t hen  

P [~*( t )  ~ B] = P [  Y (t) ~ B ;  t < S c] 

= e - c t P [ Y ( t )  ~ B] 

= e - C t ~ t ( B  ) 

= P~o[3 (t) e B] .  

I t  is now an easy  consequence of Theorem 2.2 and  the  defini t ion of T*, t h a t  T and  
~* are  s tochas t ica l ly  equivalent .  This  completes  the  proof  of  Theorem 2.3. 
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Theorem 2.3 gives the stochastic structure of ~ under  pzo. Under  px  for an 
arbi t rary  x the process ~(t) - -  ~(0) on {~(0) < c~} has the stochastic s t ructure 
indicated by  Theorem 2.3. More precisely let ~0 = { ~ ( 0 ) <  oo} and suppose 
PZ(~o) > 0. Define Qz on ~0 by  Qx(/l) = Pz(A)/px(.(2o). Then ~(t) - -  ~(0) on 
(~0, Qx) is stochastically equivalent to ~*. Moreover it is not  difficult to  see tha t  

(t) - -  ~(O) and r (0) are independent  on (~0, Qx). 
R e m a r k .  u(R+) _~ oo if and only if xo is not  a holding point. 
Recall t ha t  f[(a,  oo)] is the expected number  of jumps of  Y of magni tude  

exceeding a in uni t  time, so tha t  v (R+) < oo if and only if the expected number  
of jumps of  Y in uni t  t ime is finite. Bu t  this last s ta tement  is easily seen to be 
equivalent  to  

(2.6) lira P[Y( t )  - -  bt = 0 for all t ~ s] = 1 
e$0 

where b is the constant  appearing in (2.5). Thus if ~ (R+) ~ c~ there exists an 
e > 0  such t h a t  P ~ ~  I n  this si tuation b > 0  since 

(t) is strictly increasing. Hence p~0 (A (t) -~ b -1 t on [0, e]} > 0 and thus Theorem 
1.6 implies t ha t  x0 is a holding point. Conversely ff x0 is a holding point  the first 
jump of  ~ is positive with p~0 probabil i ty one and hence (2.6) mus t  be valid. 
Therefore v(R +) ~ c~. 

We will prove in section 5 tha t  under  a mild additional assumption v is absolu- 
te]y continuous. 

3. ttypothesis (F) 

I n  this section we will investigate certain special facts which hold when our 
process X satisfies HUNT's hypothesis  (F) [9, I I I ]  in addit ion to hypothesis  (A). 
This is of  some importance since most  familiar processes satisfy (F). We refer the 
reader to [4, sec. 2] or [13, pt. I I ,  sec. 6] for a summary  of the relevant conse- 
quences of (F), or to  [9, I I I ]  for a complete discussion. The basic fact  is the 
existence of a Radon  measure ~ on E and point  kernels U~(x, y) such tha t  the 
potential  kernels U~ (x, dy) of X are given by  

(3.]) U~ (x, dy) ~- U~ (x, y) ~ (dy). 

Of course (3.1) is equivalent  to the s ta tement  t ha t  for a bounded measurable / 
o o  

Ez .[ e-~  ] (Xt) dt = .[ V~ (x, y) / (y) ~ (gy) . 
o 

U 0 m a y  be identically infinite. We will write dx for ~ (dx) in the sequel. 
As in the previous sections T will denote the hit t ing t ime of {x0}, ~ ( x )  = 

= Ex(e-~T);  and ~ was defined in (1.3). Applying HUNT's general theory  of 
capaci ty  [9, sec. 19] to  the singleton {x0} yields the existence for each ~ > 0 of 
a unique measure 7~ z concentrated on {x0} such tha t  ~5~ = U ~ .  The A-capacity, 
C(2), of {xo} is defined to be the total  mass of 7~ ~. Since ~z is concentrated at  x0 
we have in this simple case za ~ C (A) e~0, and hence ~b~ (x) = C (~) U ~ (x, x0). 
The resolvent equation and the properties of U~ (x, y) imply  tha t  

(3.2)  W ~ = U~ye ~ = C(1 )  U ~(  ", x0) .  
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Final ly  C (2) = 0 if and  only if ~ z  - -  0, t h a t  is if and  only if {x0} is polar. 
The  following result  is a useful sufficient condit ion for x0 to be regular  for {x0}. 

Theorem 3.1. Suppose (F) holds and that/or some 2 > 0 the/unction x --> U ~ (x , xo) 
is bounded and continuous at x =- xo. Then xo is regular/or {x0}. 

Pro@ Let  us suppose t h a t  x0 is not  regular  for {x0}. The  fact  t ha t  x --> U z (x, x0) 
is bounded  implies t h a t  {x0} is not  polar,  t h a t  is C(A) > 0. (See formula  (19.6) of  
[9, I I I ] . )  Therefore  there  exists an x ~: x0 such t ha t  p x ( T  < co) > O. Let  {Gn} 
be a decreasing sequence of open sets with x ~ G1 and  c~ Gn = {x0}. Let  Tn be the 

n 

first hi t t ing t ime  of Gn. Since no point  is regular  for {x0}, Proposi t ion 18.5 of 
[9, I I I ] ,  implies t h a t  Tn ]' T and  Tn < T for all n a lmost  surely p x  on {T < co}. 
Bu t  now Theorem 6.2 of  [9, I] implies t h a t  q3~[X(Tn)] --> 1 a lmost  surely p x  on 
{T < oo}. B y  hypothesis  q~(x)  = C(~) UZ(x, xo) is continuous a t  x0 and  since 
X (Tn) ---> xo almost  surely on {T < co}, i t  follows t h a t  q~ (x0) -= 1. However  this 
contradicts  the assumpt ion  t h a t  x0 is not  regular  for {x0}, and  so Theorem 3.1 is 
established. 

I n a s m u c h  as the  local t ime  a t  x0 is only de termined up to  a mul t ip l ieat ive  
constant  it will be convenient  to absorb the  cons tant  C(1) in (3.2) into the local 
t ime.  Thus  whenever  (F) holds and  x0 is regular  for {xo} the  local t ime a t  xo will 
be unders tood to be the unique continuous additive/unctional A of X satisfying for 
all ~ > 0 

oo 

(3.3) E x f e-~tdA (t) - -  U~(x, Xo) . 
0 

Since C(~) = [U z (x0, x0)] -1 we have  in this case 

(3.4) E x (e-Z~(t)) = q)~, (x) e -tc(~) . 

Also in Theorem 2.3 the exponent  g of the  subordinator  Y becomes g (2) -~ C (2) - -  C 
where now C = lim C(2). Moreover  we can identify the  linear component  b2 of 

~- ->0  

g(2) in the  present  si tuation,  l%ecall t h a t  b = l im ~ - lg  (2) = l im )~-1C(~). I f  we 
2- ->0o  ~---. 0o 

fix )~0 > 0 then  specializing equat ion (19.7) of [9, I I I ]  to the present  ease, we see 
t h a t  for A > ).0 

C (,t) = C (~o) + (,t - ~o) ~ r (x) q~o (x) dx 

where ~ z  (x) = / ~ z  (e-~ T) and  Nz is the expecta t ion  opera tor  relat ive to the  dual 

process 2~ and  T is the  first hi t t ing t ime of {x0}. Since semi-polar and  cosemi-polar 

sets  are the  same,  x0 is coregular for {x0}. H e n c e  5z(x) -+ t*x(T = 0) = 1(~)  as 
A -+ co where I is the characterist ic  funct ion of {x0}. Also 

.[ ~ o  (x) dx = C (Zo) .[ dx U ~~ (x , xo) <= C(A0)/Z0 �9 

Combining these facts  with the domina ted  convergence theorem yields 

b : l im C (2)/A = f I (x) qS~.o (x) dx 
).--> 0o 

= ~ ({x0}) �9 
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Thus writing ~o for ~ ({Xo}) we have under (F) 

(3.5) g(~ )~ -C(2 ) - -C;  C=l imC(X) ;  b----lim~-lC()~)=$o. 
~ - - > 0  ,~--+ c o  

We will now show tha t  if the local t ime exists at all points of E then it is a 
density with respeet to ~ for the occupation times. To this end the following 
measurability result is basic. 

Theorem 3.2. Suppose that x is regular/or {x}/or all x in E and let Ax denote the 
local time of X at x. Then assuming (F), the/unction (x, w) -> Az  (t, w) is jointly 
measurable with respect to the v • P~ completion o/ ~ • ~ t  /or all finite measures 
v, # on ,~. 

Proo[. Standard considerations show tha t  it will suffice to prove tha t  A~ has 
the required measurabili ty properties where Az ~ is the additive functional of 
(X, S ~) defined in the proof of Theorem 1.2. For typographical convenience we 
will suppress the 2 in our notation for the remainder of this proof. We will need the 
following lemma which is a routine extension of an important  result of MEYER [13]. 
Recall that  a semi-group {Qt} is said to be subordinate to {Pt}, the semi-group of 
X, provided Q t / ~  Pt / for  all bounded, non-negative, measurable / and the function 
t -+ Qt 1 (x) is continuous at  t = 0 for all x. 

Lemma 3.3. For each y in E let {Qt y} be a semi-group subordinate to {Pt}, and 
suppose that (y, x) ~ QUt l(x ) is jointly (Borel) measurable in (y, x) /or each t and 
bounded continuous /. Then there exists a multiplicative [unctional M~ such that 
Q~/(x) = Ex[/(Xt)M~] /or each bounded measurable ] and (y, w) -+ MYt(w) is 
measurable with respect to the ~ • P~ completion o / ~  • ~ t  /or all v, # and t. 

The proof of the lemma is exactly the same as the proof of Theorem 2.2, Par t  I 
of [13] except tha t  one must  keep track of the parameter  y at each step. 

Returning to the proof of Theorem 3.2, let us define 

gn(x, y) = n[U (x, y) -- P1/~ U (., y)(x)]. 

Clearly gn is ~ • ~ measurable for each n. Define 

t 

A~(t, w) = fgn(Zu(w) ,  y)du 
0 

so tha t  (y, w) ---> A~ (t, w) is ~ • ~ t  measurable for each n and t. I t  is well known 
tha t  in the present situation (x -+ U (x, y) is uniformly excessive) 

E .  [(A~ (t) - -  Ay (t))~] --~ 0 

for each tt and t. See [17] or [15]. Thus ffwe let 

n yQt / (x) = E x {/(Xt) exp [--A~ (t)]}, 

it follows tha t  uQt~ / (x) ---> Q~/(x) as n -> oo for each x and bounded Borel measur- 
able / ,  where {Qt ~} is a semi-group subordinate to {Pt} and satisfying the measur- 
ability assumption of Lemma 3.3. See [3, pp. 411,412]. Applying Lemma 3.3 and 
letting .4y (t) = - - log  M~ it is clear tha t  (y, w ) - +  Ay (t, w) is measurable with 
respect to the v • P~ completion of ~ • ~-t for all v, # ,  and t, and tha t  for each 
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y the addit ive functionals Ay  and  ~iy are equivalent. Thus we m a y  take Ay to be 
the local t ime of X at y and so the proof of Theorem 3.2 is complete. 

t~EMA~K. Since the  set of  (x, w) for which t -~ As  (t, w) is not  cont inuous is 
v • P "  null, it  is immediate  t ha t  (t, x ,  w) --> Ax  (t, w) is measurable with respect to 
3 -  • ( ~  • o~)~,~ for all v, # where ~-  is the  Borel sets of [0, c~) and ( ~  • ~-)~',~ 
is the v • Pz  completion of  ~ • o~. 

Corollary 3.4. Under the assumptions o/ Theorem 3.2 we have/or each B G .~ 

t 

S  (t)dx= as. 
B 0 

where IB is the characteristic/unction o/ B. 
Proo/. Let  A (t) = ] A x  (t)dx. Then using FUBINI'S Theorem several t imes it 

B 

is easy to check t h a t  A (t) is a finite continuous addit ive functional of  X. Also 
t 

L (t) = f IB (Xu)du  is a continuous addit ive functional.  I f  2 > 0, then 
0 

oo 

Ev f e-at dA (t) = ~ U a (y, x) dx 
0 B 

oo 

= By ~ e-at dL (t), 
0 

and so MEYE~'s uniqueness theorem yields the equivalence of  A and  L. 
I t  is perhaps worthwhile to note  t ha t  ff m is any  positive measure on E such 

t h a t  Uam is bounded  for each ~ > 0, then under  the conditions of  Theorem 3.2 

A (t) = f a x  (t) m (dx) 

is a finite continuous addit ive functional  whose A-potential (i. e., E x A  (Sa)) is Uam 
for all ~ > 0. The proof  is similar to tha t  of  Corollary 3.4. We are, of  course, still 
assuming tha t  all points are non-semi-polar.  I t  is also possible to prove the con- 
verse of  the above s ta tement  under  these assumptions by  methods similar to  
those used in [4], bu t  we will not  enter into this. 

4. Applications 

In this section we will give some applications of the results of section 3. Many 
of these applications are the same as those given by ~[cKEAN and ITO [12, Ch. 6] 
for diffusion theory or by STONE [14] for semi-stable processes. We will not strive 
for the utmost generality, but rather we will he content to indicate the type of 
results that may be obtained. 

We begin with some results on the IIausdorff dimension of Z = {t:X (t) = x0}. 
We assume that {xo} is not semi-polar and we use the notation of the preceding 
sections. 

Theorem4.1 .  Let fi-=inf{~:),~Wa(xo)--->oo as ~--+c~} and ( ; =  sup 
{~:~lPa(x0)  -+ 0 as ~ -+ oo}. Then 0 <-- ~ <-- fi <__ 1 and px0[~ <= d i m Z  =< fi] = 1.  
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Proof. I t  follows f rom Theorem 2.3 tha t  [ ~ a ( x 0 ) ] - I - +  b as 2 - +  co where 
0 ~ b < co. Hence i f e  > 1 then ~ k g a  (x0) --> co as ~ -+ co and so/5 ~ 1. Obviously 
0 --< a ~ / 5 .  I n  view of (2.4) and the fact  t ha t  Q (w) - Q (w) is at  most  countable 
(Q is the range of T as defined above (2.4)), it will suffice to prove pxo[(~ <= d im 
Q ~ / 5 ]  = 1. However,  this follows from Theorem 2.3 and the known results 
on the  dimension of the range of  a subordinator  ([2], Theorem 8.3 and Corollary 
9.1). I n  [2] we assumed tha t  b = 0, bu t  the extension of  the results of [2] to the ease 
b > 0 is simple. 

Suppose X is a real valued process with s ta t ionary  independent  increments and 
right continuous paths ; then as is well known 

where 

(4.1) 

Ex (ely X (t)) = eiYX e t T ( y )  

o o  

- - o o  

o o  

with v satisfying f x 2 (1 + X2)-lv (dx) < co. For  simplicity we assume m = 0 and 
- - o o  

a2 = 0. I n  addition, writing }/JR for the real par t  of  W, we assume 

c ~  

(4.2) ~[~ + ~ R ( x ) ] - l d x  < co 
- - o o  

for all positive 4. I f  we take  Lebesgue measure as our basic measure then X satisfies 
hypotheses (A) and (F),  and in fact  

1 r~176 
(4.3) 19 (t, x ,  z) = - ~  J e - i y ( z - x )  e -t~y(y) dy 

- - o o  

l y e-iy(z-x) 
(4.4) U ~ (x, z) = ~ ~ + T(y) dy 

- - o o  

are the transit ion densi ty and potential  kernel for X, the integrals in question 
existing absolutely under  the assumption (4.2). Moreover U~ is bounded and 
continuous and so each {x} is not  semi-polar. Let  us take  x0 = 0; then we have the 
following corollary to Theorem 4.1. 

Corollary 4.2. Using the above notation define 

/5(/) = inf{~ >= 0: I x l - = ~ R ( x ) + 0 a s  Ixl + co}, 

/5 , , (x )  = sup {~ >= 0: l x I - ~ R ( x ) +  co as ix[  + co} 

where/5" (X) = 0 if there are no such c~. Then under  the above assumptions 

p0[1 - -  1//5"(X) _< d i m Z  ~ 1 - -  1//5(X)] = 1. 

Proof. I n  light of Theorem 4.1 it suffices to prove a ~ 1 - -  1//5" (X) and 
/5 =< 1 - -  1//5(X). Clearly (4.2) implies/5(X) >= 1. I n  [2, Th. 3.2] we showed tha t  
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t x ]-~ I T(x) [  ~ 0 as Ix I --~ oo for any  ~ > fl (X). Choosing ~ > / ~  (X) we have  

f 2 7~ U "~ (0, O) : ), + T(y) 

= 2 ~/~-~ [1 + 2-~ T(21/~ y)]-~ dy 

+ ~ [] + ;.-~ T(,l~/~y)]-~cly 1 
lyl>l J 

Since WR ~ 0, ] 1 ~- )~-1~](~1/Cr < 1 and  since 0r > fi(X), 1 -~- ,~-l~s()~l/~y) __+ 1 
as ~ --> oo provided y ~: 0. Thus  b y  the  bounded  convergence theorem I1 ()~) --> 2 
as i --> oo. Also Re([1 -~ ~-l~p(~l /~y)]- l )  ~ 0 and  so Re  I2(~) ~ 0. Since U~(0, 0) 
is real this shows t h a t  U~ (0, 0) = ~1/~-1A (~) where A ()~) is bounded away  f rom 
zero for large ~. Thus  ~ '  U~(0, 0)--> c~ as ~--> c~ provided 0r > 1 - -  1/~, and 
since ~ > f i (X)  was a rb i t r a ry  it  follows t h a t  fl =< 1 - 1/fi(X). The fact  t ha t  
a >= 1 - -  l i f t"  (X) can be p roved  by  ~ similar a rgumen t  which we omit  

As a final appl icat ion of Theorem 4.1 let X( t )  be the  symmet r ic  stable process 
of index ~ in Eucl idean N-space,  R N. I f  R~ (t) ~- I X (t) ] is the  radial  pa r t  of  X, 
then  R~ is a Markov  process wi th  s ta te  space [0, oo) satisfying hypothesis  (A). 
I f  ~ = 2, then  X is N-dimensional  Brownian  and it is known, see [10] or [12], t h a t  
the t ransi t ion funct ion P2 (t, x,  A) for R2 is given by  

P2 (t, x ,  A)  -~ f p2 (t, x ,  y) ~(dy) 
A 

where ~(dy) = 2-(7+1/2)[/~(~-~ 3/2)]-ly2"+ldy, y ~-- (N - 1)/2 and p2(t ,  x ,  y) = 

x2+y 2 

- -  e -  4t I r - 1 / 2  ~ y  

where Iv  is the usual  modified Bessel function. 
Le t  T~ be the  stable subordina tor  of  index fi, 0 < fl < 1, with T~ (0) ---- 0. 

Then  R~(t) and R2[T~/2(t)] are s tochast ical ly equivalent  provided T~.lz and R2 
are  complete ly  independent .  Therefore  if  g~ (t, u) is the probabi l i ty  densi ty  func- 
t ion of T~ (t), then  the t ransi t ion funct ion of R~ is given b y  

P~(t,  x ,  A)  = fp=(t ,  x ,  y)~(dy) 
A 

where ~ was defined above and  
co 

p~(t, x ,  y) = fg~/2(t, u )p2(u ,  x ,  y ) d u .  
0 

I t  is now clear t h a t  for each ~, R~ satisfies hypothesis  (F) with ~ as basic measure  
and  since p= is symmet r i c  in x and  y, a set is polar  if  and  only ff it is semi-polar.  
See HU~T [9, Sec. 20]. 

Le t  x0 > 0 and  let Z = {t: R~ (t) = x0} = {t: ] X (t) l ~- x0} be the x0-points of 
R~.  

Z. Wahrscheinlichkeitstheorie, Bd. 3 5 
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Corollary 4.3. I /  0 ~ ~ ~ 1 then P'~~ = (0}] = 1, while i/ 1 ~ o: ~= 2 then 
PX~ - -  1 - -  l/m] = 1. 

Proo/. The asymptotic expansion o/ I~ implies t h a t  P2 (t, x0, Xo) ~ at-1/~ as 
t -+ 0 where a ~ 0; of course, a depends  on x0. Since g~(t, u) = t-1/Zg~(1, t-lieu) 
we ob ta in  

c o  

.[ g~I2 (t, u) u-I/2 du = b t-1/~ 
o 

2 
where b = - ~  F ( 1  ~- 1/~), a l though the  precise value  of b is of no impor tance .  

Given e > 0 there  exists  u0 > 0 such t h a t  (1 - -  e)au -1/2 ~ p ~ ( u ,  xo, xo) ~= 
(1 + e)au-1/2forO < u ~ u0. Also 

c o  

t 1/~ ~g~/~ (t, u)p~ (u, xo, xo) dn ~ 0 
no 

as t --> 0 since P2 (u, xo, xo) is bounded  for u ~ u0. S imi lar ly  

c o  

t~l~fg~m(t,u)u-1/2du-~O as t - + O .  

Combining these  facts  we easi ly see t h a t  

p~(t, Xo, xo) ~ abt -1/~ 
as t --~ O. Hence  

c o  

U z (xo, xo) = f e-~tp~ (t, x0, x0)dt 
0 

is infinite if  0 < ~ ~ 1. This  implies  t h a t  {x0} is polar  for R~ and  so the  first 
s t a t emen t  follows. I f  1 < ~ ~ 2 an  Abel ian  theorem for Laplace  t rans forms  
implies t h a t  

U ~ (x0, x0) ~ dX 1/~ 

as ~ --~ c~ where d is a posi t ive  constant ,  and  so Corol lary 4.3 follows f rom Theo- 
rein 4.1. 

Pe rhaps  i t  is worthwhi le  to  r e m a r k  t h a t  if  :r > l ,  t hen  for an  a r b i t r a r y  x, 
d im Z = 1 - -  1/c~ a lmost  surely px  on the  set {T < c~}, where T is the  first 
h i t t ing  t ime  of {x0}. 

We re tu rn  now to a general  process X on E and  we will compute  

pxo[X( s )=xo  for some s , a ~ s _ ~ a ~ - t ]  

under  the  following assumpt ion  : 
(D) X satisfies hypothes is  (F) and  for each t ~ 0, x e E the  t r ans i t ion  funct ion 
Pt (x, dy) of X is abso lu te ly  cont inuous  wi th  respect  to $, and  there  exists  a dens i ty  
p(t ,  x, y) j o in t ly  measurab le  in (t, x) such t h a t  t - ~ p ( t ,  x,  x0) is bounded  on 
[e, I/e] for each x ~ E ,  e > 0, and  sa t is fying 

c o  

(i) U~(x, xo)=~e-~ . tp( t , x ,  xo)dt; ~ > 0 ,  x ~ E ,  
0 

(ii) p ( t ~ - u , x o , x o ) = ~ P t ( x o , d y ) p ( u , y , x o ) ;  t , u ~ O .  
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Note  t ha t  if  X is a process on the real line with s ta t ionary  independent  incre- 
ments  satisfying (4.2), then  (D) holds. I f  ~0 > 0 then,  of course, p(t,  x, xo) 
= ~o -1 Pt (x, {x0}) and  hence (i) and (ii) are au tomat ica l ly  satisfied for any  density.  

Theorem 4.4. Assuming xo is regular /or {x0} and (D), let h(u) ~-- u[(u, c~)] 
where ~ is the Ldvy measure o/T, I / T  is the first hitting time o/xo, then/or t > 0 

t 

PY[T ~ t] = $op(t, y, xo) § f [C § h( t - -  u)]p(u, y, xo)du 
0 

where C was defined in Theorem 2.3. (See also (3.5).) Moreover ]or any a > 0 

pzo[X(s )=xo  ]or some s ,a~--s~--a~-t]  

t 

= ~op(a @ t, xo, xo) @ .[[C + h( t - -  u)]p(a d- u,xo, xo)du. 
0 

Pro@ Because of the right cont inui ty  of the pa ths  and the  fact  t ha t  x0 is 
regular  for {x0}, the  probabi l i ty  appear ing  in the second s t a t ement  is just  
pxo [T (Oa w) ~ t]. Thus the second s t a t ement  follows f rom the first and condition 
(ii) of (D). To prove  the  first s t a t ement  let F(t) = Py[T ~ t] for a fixed y. Then 

o o  

~)~(y) = P Y [ T  < S ~] = PY[T ~= S~] = 2 fe-~tF( t )d t .  
0 

But  ~bz (y) = C (2) U ~ (y, x0) and  f rom Theorem 2.5 and  (3.5) C (~) = C § $0 ~ ~- 
o o  

§ g* (2) where g* (~) = j'(1 - -  e -~u) ~ (du). I t  is easily seen t h a t  u h (u) -~ 0 as u -~ 0 
0 

and so we m a y  integrate  by  par ts  obtaining 

Hence  

o o  

g*(~) f e-~uh(u)du - -  

c o  

fe-~F(t)dt={~o§ U~(y, x0) 
0 

and it now follows f rom the uniqueness and convolut ion theorems for Laplace 
t ransforms  t h a t  

t 

(4.5) F(t) = ~op(t, y, xo) § f [C d- h(t -- u)Jp(u, y, xo)du 
o 

for a lmost  all (Lebesgue measure)  t. Bu t  F(t) is r ight  continuous. On the other  
hand  it is not  difficult to see t h a t  the integral  appear ing  in (4.5) is continuous in 
t on {t > 0} by  mak ing  use of the facts t ha t  h is decreasing (and hence has a t  mos t  
a countable  n u m b e r  of discontinuities) and  t h a t  p is bounded on [s, I/s] for every  
s > 0. Thus  (4.5) holds for t > 0 if  ~0 = 0. I f  $0 > 0 then  as pointed  out  above 
p(t,  y, xo) -~ ~olPt (y ,  {x0}), and  it is known [1] t h a t  t -~ Pt(Y, B) is continuous 
on {t > 0} for any  Borel set B under  assumpt ion  (D). Thus the proof  of Theorem 
4.4 is complete.  

5* 
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Since Z is closed [0, u] - - Z  consists of at  most  countably  m a n y  disjoint 
(relatively) open intervals provided u > 0. Let  N (u, e) be the number  of such 
intervals which exceed ~ in length. 

Theorem 4.5. I / x o  is not a holding point then as ~ --> O, 1V (u, ~)/h (~) --> A (u) 
with pxo probability one. 

Proof. I f  C---- 0 and h is continuous this m a y  be proved exactly as in [12, 
section 6.3]; h(e) -+ c~ as e -> 0 since x0 is not  a holding point. I f  h is not  conti- 
nuous the proof  in [12] m a y  still be carried through by  decomposing h into a 
continuous component  and a pure jump component .  Final ly ff C > 0 s tandard  
considerations show tha t  the conclusion os Theorem 4.5 is still valid. We will not  
enter into the details. 

One final remark:  Suppose (D) holds and $0 ~ C : 0, then the distribution of 
A (u) under  pxo m a y  be computed  just  as in section 3 of [8]. I n  particular the 
moments  of  A (u) are given by  

u 
EX~ (u) ~] --~ ]c! f pk(t)dt; lc ~ 1 

0 

where Pi  (t) ---- p (t, x0, x0) and 

t 
p~+i(t) z f p k ( t - -  u)pi(u)du, k ~ 1. 

0 

Thus A (u) h~s a generalized "Mittag-Leffler" distribution based on the generalized 
" p o w e  r s ~  Pk .  

5. The absolute continuity of 

I n  this section x0 is a fixed point  such tha t  {xo} is not  semi-polar. We use the 
same notat ion as in the previous sections. I n  part icular  T is the hit t ing t ime of 
{x0}, v the L~vY measure of T (or more accurately of  the corresponding subordi- 
nator),  and h(u) ~ rE(u, c~)]. We will prove the following two theorems. 

Theorem 5.1. Suppose that PY ( T E dr) is absolutely continuous on (0, co)/or all 
y. Then v is absolutely continuous. 

Theorem 5.2. Suppose condition (D) o/section 4 holds with ~o : O, then pu ( T ~ dr) 
is absolutely continuous on (0, c~) ]or all y. 

We will give the proof  of  Theorem 5.2 first since it is simpler than  the proof of 
Theorem 5.1. 

Proof of Theorem 5.2. Let  F(t) =- Pu(T <= t). Note  tha t  dF : to if y : x0, 
while dF is concentrated on (0~ co) is y ~: x0. Now according to Theorem 4.4 
(~0 =-- 0) we have for t > 0 

t 
F(t) = f [C ~- h(t -- u)]p(u, y, xo)du. 

0 

t 

I t  will suffice to show G(t )= f h ( t -  u)p(u)du is absolutely continuous as 
0 
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measure on (0, co), where we have wri t ten p (u) for p (u, y, xo). I t  will be convenient 
to define p(u) = 0 for u ~ 0. Let  ~b0 be the characteristic funct ion of (1, co) and 

~n  the characteristic funct ion of . + 1 ' ~ for n _> 1. Define hn(t) ~-- ~n(t)h(t) .  

In tegra t ing  by  parts  one obtains 

G (t) = 
n ~ 0  

t =/ 
0 

h .  (t - -  u ) p  (u) du 

o o  

n~-O 0 

and since all quantit ies are non-negative the expression in square brackets is 
finite for almost  all s. Hence G is absolutely continuous on (0, co). 

Proo/ o/ Theorem 5.1. We begin by  introducing some terminology. For  a fixed 
w and b ~ 0 we say tha t  X (., w) has an xo-/ree interval o/length exactly b if there 
is a number  a ~ 0 such tha t  X (t, w) 4: xo for all t in (a, a + b), X (a + b, w) = x0, 
and for all 6 ~ 0 there exists t in (a --  6, a] such t h a t  X (t, w) = x0. The terminology 
is not  perfect since it rules out  the si tuation in which X (t, w) , x0 for all t ~ b 
and X (b, w) ~- xo. Given a set J we will say tha t  X (., w) has an xo-/ree interval o/ 
length in J if  it has an x0-free interval of  length exactly b for some b in J .  

Now suppose tha t  v is not  absolutely continuous with respect to Lebesgue 
measure (which we will denote by  m in the present proof);  then there exists a 
compact  set J contained in [~, co) for some ~ ~ 0 such tha t  v (J) ~ 0 -~ m (J). 
Since ~ (J) is the expected number  jumps of  the subordinator  Y(t) (notation of 
Theorem 2.3) with magni tude  in J ,  and since { Y (t), t ~ 0} and S c are independent,  
it follows tha t  the event 

(5.1) {T(t) - -  ~(t - -  ) e J  and ~(t) < co for some t ~ 0} 

has positive px0 measure, t~ecalling the relationship between A and v, and making 
use of Theorem 1.6 and the fact  t ha t  a point  of  increase of A is either a point  of  
r ight  increase or the limit f rom the left of points of r ight  increase, one sees t ha t  
the event, in (5.1) is pxo almost  surely contained in the set 

(5.2) (X  has an x0-free interval  of  length in J } .  

Thus the proof  of Theorem 5.1 is reduced to showing tha t  the set in (5.2) is px0 null. 
I t  is necessary to t reat  certain measurabi l i ty  problems before proving this last 
s tatement .  

As above J is a non-void compact  set contained in [~, co) for some ~ ~ 0. 
For  a fixed w we say tha t  r ~ 0 is a J point/or X (., w) if; 

(i) X (r, w) = x0. 

(fi) There exists t in J such tha t  X (s, w) 4:x0 for all s in (r - -  t, r) and for 
every 6 ~ 0 there exists u in (r - -  t - -  6, r - -  t] with X (u, w) z x0. 

I f  (rn} is a sequence of  J points for X (., w) which converges to r, then it is 
obvious tha t  r is a J point  for X (., w). I n  fact, rn must  equal r for all n such tha t  
l ~  - rl  < ~I2.  
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We now define 

(5.3) T j  (w) = inf{r : r is a J point  for X (', w)}. 

According to the above discussion T j ( w )  is a J point  of X(. ,  w) provided it is 
finite. The next  few paragraphs are devoted to showing tha t  Tj is a stopping time. 

Given positive numbers  e, r l ,  r2 with rl  < re, let 

/A (rl, r2, e) = {w : X (t, w) = xo for some t in [re, r2 -~ e) ; 

X (t, w) * xo for all t in (rl + s, r2) ; 

X (t, w) = x0 for some t in (ri - -  e, rl ~- s)}. 

Clearly A (ri, re, e) is in ~r~+e. Now let {t~} be a countable dense subset of J .  

Given b > 0 define 

A = u  n u u A(q-- t~,q ,@) 
m n > m q < _ b  k 

where q is rational. I t  is immediate  t ha t  A e ~-b and we will now show tha t  
= { T j  __< b}. 
Suppose w is such tha t  Tj  (w) ~ b ; then there exist numbers  r =< b and t in J ,  

which will be held fixed, satisfying conditions (i) and (ii) in the definition of  a J 
point  given above. Given a positive integer n choose a rational q ~ b such tha t  

1 and then choose tk f rom our dense subset of J such tha t  [ t - -  t~ I < q < r < q + - ~ ,  

< ~- - -  (r - -  q). E lementa ry  considerations now show tha t  w is in A q - -  t~, q, -~- 

with the above choice of q and tk. Therefore {T j  ~ b} c A. 
Conversely suppose w is in A ; then there exists an no such tha t  for all n > no ( 1) 

there exist a rat ional  qn <---- b and a tn in {t~} such tha t  w is in A qn -- tn, qn,-~ �9 

By passing to a subsequenee we m a y  assume qn ~ r <= b and tn -+ t E J.  In  order 
to show A c {T j  =< b} it will suffice to show tha t  r is a J point  of X(-, w). 

(i) I f  qn >= r for infinitely m a n y  n, then the r ight cont inui ty  of X (., w) implies 
t ha t  X (r, w) = x0. Suppose tha t  qn < r for all large n and X (r, w) + x0. F rom the 
right cont inui ty  one obtains a 8 > 0 such tha t  X (r + u, w) 4= x0 for all u in 
[0, 8]. Choose N such tha t  1IN < d and 0 =< r - -  qn < ~ for all n ~ N ;  then there 

exists a point  u in [q~v, r) such tha t  X (u, w) = x0. But  then u is in qm -- tm -t- ~ ,  qm ( 1) 
for all large m and this contradicts the fact  tha t  w is in A qm -- tin, q m , ~  for 

r e > n 0 .  Thus X ( r , w ) = x 0 .  

(ii) Since X (u, w) * xo for any  u in (qn -- tn + l ,  qn) and qn -> r, q~ -- tn + 

1 
+ n --> r - -  t, it  follows tha t  X (u, w) + x0 for any  u in (r --  t, r). Finally given ( 1) 
8 > 0 w e h a v e  q n - - t n - - l ,  q n - - t n + - ~  contained i n ( r - - t - -  6, r - - t +  8) 

for all large n, and so it follows from the right continuity of  X (-, w) tha t  for every 
> 0 there is a u in (r --  t - -  8, r - -  t] such tha t  X (u, w) = x0. Thus r is a J point  

for X (., w), and hence the proof  t ha t  T j  is a stopping t ime is complete. 
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Clearly 

{X has an x0-free interval  of length in J}  = { T j  < co}, 

and so to complete the proof  of  Theorem 5.1, we must  show tha t  P~~ ( T j  < co) = O. 
We will need one more stopping time. I f  q > 0 let Tq = inf{t ~ q : X (u) ~: x0 

for all u in (t - -  q, t)}. An argument  similar to (but much simpler than) tha t  just  
given for T j  shows tha t  Tq is a stopping time. We are finally ready to show tha t  
Pz'~ < co] = 0 under  the assumption of Theorem 5.1 and m(J)  = O. 

Recall t ha t  J is a compact  subset of  [~, co) with ~ > 0. Choose q such tha t  
0 < q < ~ and let R be the stopping t ime Tq defined above. Define stopping times 
as follows: (here T is the first hit of {x0}) 

K1 = T L1 = K1 + R (O jr,) 

Kn+i = Ln ~- T(OL.) Ln+l = Kn+l @ R(OK,.~) 

Note  tha t  Kn+l >= i n  and tha t  Ln >= q + Kn. Also X(u,  w) :~ x0 ff Ln(w) < 
< u < Kn+i(w). Since X ( T j )  =- xo on {T j  < co} the events {Ln < T j  < Kn+l} 
are impossible for any  n. I t  is easy to see tha t  if Q is any  stopping t ime such tha t  
X ( Q) = xo on {Q < co}, then T j  = Q + T j (  OQ) on {Q < Tj}.  But  pzo [ T j  ~ R; 
T j  ~ co] ~ 0 and so for any  n and y 

PY[Kn < T j  ~ Ln; Td < co] 

<= PY[Tj(OK.)  <= R(OKn); TJ(OK. ) < co; Kn < oo] 

<= P"~ <__ R; T j  < co] = O. 

Suppose tha t  pXo[Tj % c~] > O. Clearly T j  > K i  almost surely pxo and 
Kn --> oo as n --> co. Thus the above remarks imply  tha t  for some n 

pZO[Ln ~ T j  ~-- Kn+l ~ oo] ~ O. 

Using the fact  tha t  Kn+l = Ln almost  surely on ( X  (Ln) = xo} (since x0 is regular 
for xo) we see tha t  T j  -- Ln is in J - -  q almost  surely on {Ln ~ T j  = Kn+l ~ co}. 
Hence 

0 ~ PX~ ~ T j  = Kn+l < co] 

<= pxo [Kn+l -- Ln E J -- q ; Ln ~ co] 

---- E x ~ 1 7 6  q]; Ln < co} = O, 

since m ( J -  q ) =  m ( J ) =  0 and T has an absolutely continuous distribution 
on (0, oo) under  px  for all x. This completes the proof  of Theorem 5.1. 

Similar, bu t  simpler, considerations show tha t  if px  (T E dr) is continuous on 
(0, co) for all x then v is continuous. 
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6. Local Times: Non-Regular ease 

In  this section xo will denote a fixed point  of  E such tha t  {xo} is not  polar and 
xo is not  regular for {xo}, tha t  is {xo} is semi-polar. As before T denotes the first 
hi t t ing t ime of  {xo}, ~ ( x ) =  Ex(e-~T), and ~/~ = ~ b l _  ( ~ _  1) U~bl .  Our 
hypotheses on xo are equivalent  to ~5x (xo) < 1 and ~z  # 0. One could use the 
method  of  section 1 to construct  the local t ime of X at xo. However,  in the present 
case, the local t ime has a very  simple structure and we will give an elementary 
construct ion of it. 

Define R0 = 0, Ri  = T, and Rn+i = Rn + T(Onn ) for n _>_ 1, so tha t  Rn 
is the t ime of the n- th  visit to  x0. Note  tha t  Rn < Rn+i almost  surely on {Rn < ~} ,  
since the fact  t ha t  x0 is not  regular for {x0} implies t h a t  PX~ > 0) = 1. 

Lemma 6.1. There are almost surely only a finite number o/ the R'~ s contained 
in any finite interval [0, to]. 

Pro@ I t  suffices to show tha t  almost  surely only a finite number  of the events 
{Rn < S ~} oeur, where, as usual, S ~ is an exponential ly distr ibuted r andom 
variable independent  of the process X. For  each x we have 

Px[Rn+i < S l] = px[Rn + T(OB=) < Sx] 

<= Px[T(OR~) < S~; Rn < S x] 

= P'~~ < Sa) px (Rn  < S1), 

a n d  so 

px(Rn+i < S z) ~ [P'~~ < Sz)]n p x ( T  < S~). 

But  P~'~ < S ~) = ~b~(xo) < 1 and hence Lcmma 6.1 follows from the Borel- 

Cantelli Lemma.  
We now define V (t) to  be the number  of visits to  xo by  X during the interval 

[0, t]. Clearly V is an addit ive functional of X which is constant  except for jumps 
of magni tude  one at the Rn' s. Lemma 6.1 implies t ha t  V (t) is almost  surely finite 
for each t. 

Theorem 6.2. Let ] be a bounded continuous/unction. Then/or each ,~ > 0 

o o  

E x f e -~t / (Xt) d V (t) ---- B ~ (x) / (xo) 
0 

where B = ([1 --  ~5~(x0)] [1 - -  ($ --  1) U ~ ~bi(xo)])-i is positive and independent 

ol ~. 
Pro@ The computat ions  leading to formula (1.2) are independent  of the 

assumption tha t  xo is regular for {x0} and so we have 

( 6 . 1 )  T ~  = [1  - -  (~  - -  1 ) U Z ~ l ( x o ) ]  ~ . .  

Under  the present assumptions on xo, 4 1 (xo) < 1, and so 

1 - -  (~ - 1) Ua~bl (xo) > ~bi(xo) - -  (~ - 1) U ~ b l ( x 0 )  = 0 .  

The last inequali ty following as in the proof  of Lemma 1.1. 
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F rom the definition of V and the fact  t ha t  X ( R n )  = xo almost  surely on 
{R~ < ~} we obtain 

co oo 

Ex f e - ~ / ( X t )  d V  (t) = ~ E x [ e - ~ / ( X j ( , ) ]  
0 n = l  

= 1 (x0) ~ ~ (z) [ ~  (x0)P -1 
7 1 = 1  

- / (x0) [1 - -  ~z  (x0)] -1 ~Sx (x). 

I n  view of  (6.1) this proves Theorem 6.1 except for showing tha t  B is independent  
of 2. 

Define B ( 2 ) =  ( [ 1 -  ~X(x0)] [ 1 -  (2 - - 1 )  U't~il(x0)]) -1. I f  S z and Su are 
independent,  a calculation similar to t ha t  used in the proof  of Theorem 1.2 yields 

E~ V (Sx A S~) = E~ V (S~.) - -  Ex { V (Sz) - -  V (S.);  S~ < S~} 

= B (2) Ta+~ (x). 

Since Tz+~ is a non-zero multiple of r there is at  least one x for which }pz+# (x) 4: 
~= 0, and hence B (2) = B (#). This completes the proof  of  Theorem 6.2. 

I f  we define A (t) = B -1 V (t), then A is an additive functional of X tha t  is 
uniquely determined by  the relationship ([13, Pt.  I I ,  Th. 4.4]) 

oo 

(6.2) E z  f e -~t / (Xt) dA (t) -~ T '~ (x) / (xo) 
0 

for all bounded continuous ] and all x. Thus we m a y  call A (or V) the local t ime at 
x0 under  the present assumptions. 

I f  X satisfies (F), then using Proposit ion 18.5 of  [9] one can show tha t  the 
sample paths  t - + X t ( w )  are almost  surely continuous at  T on {T < oo}. I t  
follows from this t ha t  V is a natura l  addit ive functional (that is, t -~ X t  (w) and 
t --> A (t, w) have almost  surely no common discontinuities). I n  the general case 
t -* X t  (w) m a y  be discontinuous at  T and so V need not  be natural .  
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