Skip to main content
Log in

Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides in Senecio vulgaris L.

  • Published:
Planta Aims and scope Submit manuscript

Abstract

14C-Labelled alkaloid precursors (arginine, putrescine, spermidine) fed to Senecio vulgaris plants via the root system were rapidly taken up and efficiently incorporated into the pyrrolizidine alkaloid senecionine N-oxide (sen-Nox) with total incorporations of 3–6%. Considerable amounts of labelled sen-Nox were translocated into the shoot and were directed mainly into the inflorescences, the major sites of pyrrolizidine-alkaloid accumulation. Detached shoots of S. vulgaris were unable to synthesize pyrrolizidine alkaloids, indicating that the roots are the site of their biosynthesis. Further evidence was obtained from studies with in-vitro systems established from S. vulgaris: root cultures were found to synthesize pyrrolizidine alkaloids but not cell-suspension cultures, tumor cultures or shoot-like teratomas obtained by transformation with Agrobacterium tumefaciens. Studies on transport of [14C]sen-Nox, which was fed either to detached shoots or to the root system of intact plants, indicate that the alkaloid N-oxide does not simply follow the transpiration stream but is specifically channelled to the target tissues such as epidermal stem tissue and flower heads. Exogenously applied [14C]senecionine is rapidly N-oxidized. If the phloem path along the stem is blocked by a “steam girdle” translocation of labelled sen-Nox is blocked as well. Root-derived sen-Nox accumulated below the girdle and only trace amounts were found in the tissues above. It is most likely that the root-to-shoot transport of sen-Nox occurs mainly if not exclusively via the phloem. In accordance with previous studies the polar, salt-like N-oxides, which are often considered to be artifacts, were found to be the real products of pyrrolizidine-alkaloid biosynthesis as well as the physiological forms for long-distance transport, tissue-specific distribution and cellular accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FW:

fresh weight

sen:

senecionine

sen-Nox:

senecionine N-oxide

References

  • Birecka, H., Birecki, M., Frohlich, M.W. (1987) Evidence for arginine as endogenous precursor of necines in Heliotropium. Plant Physiol. 84, 42–46

    Google Scholar 

  • Birecka, H., Birecki, M., Cohen, E.J., Bitonti, A.J., McCann, P.P. (1988) Ornithine decarboxylase, polyamines, and pyrrolizidine alkaloids in Senecio and Crotalaria. Plant Physiol. 86, 224–230

    Google Scholar 

  • Birecka, H., Catalfamo, J.L. (1982) Incorporation of assimilated carbon into aminoalcohols of Heliotropium spathulathum. Phytochemistry 21, 2645–2651

    Google Scholar 

  • Cahill, R., Crout, D.H.G., Mitchell, M.B., Müller, U.S. (1980) Isoleucine biosynthesis and metabolism: stereochemistry of the formation of L-isoleucine and of its conversion into senecic and isatinic acid in Senecio species. J. Chem. Soc. Chem. Commun. 419–421

  • Craig, J.C., Purushothaman, K.K. (1970) An improved preparation of tertiary amine N-oxides. J. Org. Chem. 35, 1721–1722

    Google Scholar 

  • Crout, D.H.G., Brenn, M.H., Imaseki, H., Geissman, T.A. (1966) Pyrrolizidine alkaloids. The biosynthesis of seneciphyllic acid. Phytochemistry 5, 1–21

    Google Scholar 

  • Dreyer, D.L., Jones, K.C., Molyneux, R.J. (1985) Feeding deterrency of some pyrrolizidine, indolizidine, and quinolizidine alkaloids towards pea aphid (Acyrthosiphon pisum) and evidence for phloem transport of the indolizidine alkaloid swainsonine. J. Chem. Ecol. 11, 1045–1051

    Google Scholar 

  • Ehmke, A., von Borstel, K., Hartmann, T. (1987) Specific uptake of the N-oxides of pyrrolizidine alkaloids by cells, protoplasts and vacuoles from Senecio cell cultures. In: Plant vacuoles, their importance in solute compartmentation in cells and their application in plant biotechnology, pp. 301–304, Marin, B., ed., Plenum Press, New York

    Google Scholar 

  • Ehmke, A., von Borstel, K., Hartmann, T. (1988) Alkaloid N-oxides as transport and vacuolar storage compounds of pyrrolizidine alkaloids in Senecio vulgaris. Planta 176, 83–90

    Google Scholar 

  • Eilert, U., DeLuca, V., Kurz, W.G.W., Constabel, F. (1987) Alkaloid formation by habituated and tumorous cell suspension cultures of Catharanthus roseus. Plant Cell Rep. 6, 271–274

    Google Scholar 

  • Errera, L. (1906) Some general results on the localisation of alkaloids in plants. Recueil de l'Institut Bot., Univ. Bruxelles, T. II, 185–187

  • Gamborg, O.L., Miller, R.A., Ojima, K. (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151–158

    Google Scholar 

  • Grue-Sorensen, G., Spenser, I.D. (1983) Deuterium nuclear magnetic resonance spectroscopy as a probe of the stereochemistry of biosynthetic reactions: The biosynthesis of retronecine. J. Am. Chem. Soc. 105, 7401–7404

    Google Scholar 

  • Hartmann, T. (1988) Quinolizidines and pyrrolizidines. In: Cell culture and somatic cell genetics of plants, vol. 5: Cell cultures in phytochemistry, pp. 277–288, Constabel, F., Vasil, I.K., eds. Academic Press, New York

    Google Scholar 

  • Hartmann, T., Sander, H., Adolph, R., Toppel, G. (1988) Metabolic links between the biosynthesis of pyrrolizidine alkaloids and polyamines in root cultures of Senecio vulgaris. Planta 175, 82–90

    Google Scholar 

  • Hartmann, T., Toppel, G. (1987) Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Phytochemistry 26, 1639–1643

    Google Scholar 

  • Hartmann, T., Zimmer, M. (1986) Organ-specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annual Senecio species. J. Plant Physiol. 122, 67–80

    Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., Fraley, R.T. (1985) A simple and general method for transferring genes into plants. Science 227, 1229–1231

    Google Scholar 

  • Khan, H.A., Robins, D.J. (1985) Pyrrolizidine alkaloid biosynthesis. Synthesis of 14C-labelled homospermidines and their incorporation into retrorsine. J. Chem. Soc. Perkin Trans. I 819–824

    Google Scholar 

  • Molisch, H. (1923) Mikrochemie der Pflanze, 3nd edn. G. Fischer, Jena

    Google Scholar 

  • Mothes, K., Romeike, A. (1958) Die Alkaloide. In: Handbuch der Pflanzenphysiologie, vol. VIII: Der Stickstoff-Umsatz, pp. 989–1049, Ruhland, W., ed. Springer, Berlin

    Google Scholar 

  • Mothes, K., Schütte, H.R., eds. (1969) Biosynthese der Alkaloide. VEB Dtsch. Verlag der Wissenschaft, Berlin

    Google Scholar 

  • Mothes, K., Schütte, H.R., Luckner, M., eds. (1985) Biochemistry of alkaloids, VCH, Weinheim

    Google Scholar 

  • Nowacki, E., Byerrum, R.U. (1962) A study on the biosynthesis of the Crotalaria alkaloids. Life Sci. 5, 157–161

    Google Scholar 

  • Ondrej, M., Matousek, J., Vlasak, J. (1987) Differentiation of transformed plants from tumors induced by Agrobacterium rubi ATCC 13335. J. Plant Physiol. 126, 397–405

    Google Scholar 

  • Pate, J.S. (1986) Xylem-to-phloem transfer-vital component of the nitrogen-partitioning system of a nodulated legume. In: Phloem transport, pp. 445–462, Cronshaw, J., Lucas, W.J., Giaquinta, R.T., eds. A.L. Liss, New York

    Google Scholar 

  • Phillipson, J.D., Handa, S.S. (1979) Alkaloid N-oxides. A review of recent developments. Lloydia 41, 385–431

    Google Scholar 

  • Pieters, L.A.C., Vlietinck, A.J. (1985) Quantitative 1H fourier transform nuclear magnetic resonance spectroscopic analysis of mictures of pyrrolizidine alkaloids from Senecio vulgaris. Fresenius Z. Anal. Chem. 321, 355–358

    Google Scholar 

  • Rana, J., Robins, D.J. (1983) Pyrrolizidine alkaloid biosynthesis: incorporation of 2H-labelled putrescine into retrosine. J. Chem. Soc. Chem. Commun. 1222–1224

  • Stahl, E. (1888) Pflanzen und Schnecken. Biologische Studie über Schutzmittel der Pflanzen gegen Schneckenfraß. Jena Z. Naturwiss. 22, 557–684

    Google Scholar 

  • Teuscher, E., Lindequist, U. (1987) Biogene Gifte. G. Fischer, Stuttgart New York

    Google Scholar 

  • Toppel, G., Witte, L., Hartmann, T. (1989) N-Oxidation and degradation of pyrrolizidine alkaloids during germination of Crotalaria scassellatii. Phytochemistry (in press)

  • Toppel, G., Witte, L., Riebesehl, B., von Borstel, K., Hartmann, T. (1987) Alkaloid patterns and biosynthetic capacity of root cultures from some pyrrolizidine alkaloid producing Senecio species. Plant Cell Rep. 6, 466–469

    Google Scholar 

  • Tunmann, O. (1913) Pflanzenmikrochemie. Ein Hilfsbuch beim mikrochemischen Studium pflanzlicher Objekte. Borntraeger, Berlin

    Google Scholar 

  • van Bel, A.J.E. (1984) Quantification of the xylem-to-phloem transfer of amino acids by use of inuline [14C]carboxylic acid as xylem transport marker. Plant Sci. Lett. 35, 81–85

    Google Scholar 

  • von Borstel, K., Hartmann, T. (1986) Selective uptake of pyrrolizidine N-oxides by cell suspension cultures from pyrrolizidine alkaloid producing plants. Plant Cell Rep. 5, 39–42

    Google Scholar 

  • Wagner, J., Danzin, C., Mamont, P. (1982) Reversed-phase ionpair liquid chromatographic procedure for the simultaneous analysis of S-adenosylmethionine, its metabolites and the natural polyamines. J. Chromatogr. 227, 349–368

    Google Scholar 

  • Wink, M. (1986) Storage of quinolizidine alkaloids in epidermal tissues. Z. Naturforsch. 41c, 375–380

    Google Scholar 

  • Wink, M., Hartmann, T. (1981) Sites of enzymatic synthesis of quinolizidine alkaloids and their accumulation in Lupinus polyphyllus. Z. Pflanzenphysiol. 102, 337–344

    Google Scholar 

  • Wink, M., Hartmann, T. (1982) Localization of the enzymes of quinolizidine alkaloid biosynthesis in leaf chloroplasts of Lupinus polyphyllus. Plant Physiol. 70, 74–77

    Google Scholar 

  • Wink, M., Heinen, H.J., Vogt, H., Schiebel, H.M. (1984) Cellular localization of quinolizidine alkaloids by laser desorption mass spectrometry (LAMMA 1000). Plant Cell Rep. 3, 230–233

    Google Scholar 

  • Wink, M., Witte, L. (1984) Turnover and transport of quinolizidine alkaloids. Diurnal fluctuations of lupanine in the phloem sap, leaves and fruits of Lupinus albus L. Planta 161, 519–524

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, T., Ehmke, A., Eilert, U. et al. Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides in Senecio vulgaris L.. Planta 177, 98–107 (1989). https://doi.org/10.1007/BF00392159

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392159

Key words

Navigation