Skip to main content
Log in

Gas exchange and control of breathing in the electric eel, Electrophorus electricus

  • Published:
Zeitschrift für vergleichende Physiologie Aims and scope Submit manuscript

Summary

  1. 1.

    The electric eel Electrophorus electricus is an obligate air breather. Its mouth is structurally adapted for air breathing by an extensively diverticulated and richly vascularized oral mucosa. Air is regularly taken into the mouth and later expelled at the opercular openings. The present investigation concerns the respiratory properties of blood, the dynamics of gas exchange and the control of breathing in the electric eel.

  2. 2.

    Fishes were anesthetized and catheters implanted for sampling of gas in the mouth and blood from the jugular vein draining the mouth respiratory organ, and from a systemic artery. A blood velocity transducer was implanted on the ventral aorta. Following recovery, gas from the mouth, blood gases, blood pH as well as other respiratory and circulatory parameters, were monitored during normal breathing cycles and in response to low and high oxygen tensions in both the aquatic and aerial environment surrounding the fish. In addition, the fish were exposed to a CO2 enriched environment.

  3. 3.

    Table 2 summarizes the respiratory properties of blood. The high oxygen capacity and oxygen affinity may be an adaptive measure against the mixed conditions of arterial blood. The oxygen capacity was largely unaffected by CO2.

  4. 4.

    Electrophorus showed arterial CO2 tensions higher than for typical aquatic breathers and other air breathing fishes studied. PCO2 is increased due to the shunting of blood from the mouth organ to the venous side of the systemic circulation. For the same reason arterial oxygen tensions are normally much below the P100 value. The blood bicarbonate concentration is higher than in typical aquatic breathers.

  5. 5.

    The gas exchange ratio was very low for the mouth respiratory organ and tended to decrease still further in the intervals between air breaths. The gills and/or skin are hence important for CO2 elimination.

  6. 6.

    The interval between air breaths rarely exceeded two minutes in intact free-swimming fish surrounded by aerated water and normal ambient air. The fish was irresponsive to changes in oxygen and CO2 tensions in the water, but breathing of hypoxic and hypercarbic atmospheres caused marked and very prompt increase in the rate of air breathing. Inhalation of a hyperoxic atmosphere caused a depression of air breathing.

  7. 7.

    Heart rate and cardiac output values were higher than earlier reported values for fish. Calculations showed that marked changes occured in the fractional distribution of the cardiac output related to the phase of the breathing cycle and the oxygen tension in the mouth organ.

  8. 8.

    When long intervals prevailed between air breaths the heart rate and cardiac output declined late in the breath interval. Inflation of the mouth organ with oxygen or nitrogen both prompted cardioacceleration and increased blood flow. The changes were of reflex nature and caused by pressure or tension changes inside the mouth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böker, H.: Über einige neue Organe bei luftatmenden Fischen und im Uterus der Anakonda. Anat. Anz. 76, 148–155 (1933).

    Google Scholar 

  • Carter, G. S.: Reports of the Cambridge Expedition to British Guiana, 1933. Respiratory adaptations of the fishes of the forest waters, with descriptions of the accessory respiratory organs of Electrophorus electricus L. and Plecostomus plecostomus L. J. Linn. Soc. 39, 219–233 (1935).

    Google Scholar 

  • —, and L. C. Beadle: The fauna of the swamps of the Paraguayan Chaco in relation to its environment. II. Respiratory adaptations in the fishes. J. Linn. Soc. 37, 327–368 (1931).

    Google Scholar 

  • Evans, M.: Some notes on the anatomy of the electric eel, Gymnotus electrophorus, with special reference to a mouth-breathing organ and the swimbladder. Proc. Zool. Soc. Lond. 17–23 (1929).

  • Franklin, D. L., K. E. Pierson, and R. L. Van Citters: A technique for radiotelemetry of blood flow velocity from unrestrained animals. Amer. J. Med. Electron. 5, 24–28 (1966).

    Google Scholar 

  • —, N. W. Watson, and R. L. Van Citters: Blood velocity telemetered from untethered animals. Nature (Lond.) 203, 528–530 (1964).

    Google Scholar 

  • Hanson, D.: Cardiovascular dynamics and aspects of gas exchange in chondrichtyes. Doctoral Dissert. Univ. of Wash. p. 178, 1967.

  • Hunter, J.: Essays and observations. Posthumous papers by Richard Owen. Vol. 2, 1861.

  • Johansen, K.: Air breathing in the teleost, Symbranchus marmoratus. Comp. Biochem. Physiol. 18, 383–395 (1966).

    Google Scholar 

  • —, D. L. Franklin, and R. L. Van Citters: Aortic blood flow in free swimming elasmobranchs. Comp. Biochem. Physiol. 19, 151–160 (1966).

    Google Scholar 

  • —, and C. Lenfant: Respiration in he African lungfish. II. Control of breathing. J. exp. Biol. 49, 453–468 (1968).

    Google Scholar 

  • —, and G. C. Grigg: Respiratory control in the lungfish, Neoceratodus forsteri, Krefft. Comp. Biochem. Physiol. 20, 835–854 (1967).

    Google Scholar 

  • —, and D. Hanson: Cardiovascular dynamics in the lungfishes. Z. vergl. Physiol. 59, 157–186 (1968).

    Google Scholar 

  • Lenfant, C., and K. Johansen: Gas transport by hemocyanin containing blood of the cephalopod, Octopus dofleini. Amer. J. Physiol. 209, 991–998 (1965).

    Google Scholar 

  • —: Respiratory adaptations in selected amphibians. Respiration Physiol. 2, 247–260 (1967).

    Google Scholar 

  • —: Respiration in the African lungfish, Protopterus aethiopicus. I. Respiratory properties of blood and normal patterns of breathing and gas exchange. J. exp. Biol. 49, 437–452 (1968).

    Google Scholar 

  • —, and G. C. Grigg: Respiratory properties of blood and pattern of gas exchange in the lungfish, Neoceratodus foersteri (Krefft). Respiration Physiol. 2, 1–21 (1966).

    Google Scholar 

  • Murdaugh, H. V., E. D. Robin, J. E. Millen, and W. F. Drewry: Cardiac output determinations by the dye dilution method in Squalus acanthias. Amer. J. Physiol. 209, 723–726 (1965).

    Google Scholar 

  • Rauther, M.: Die akzessorischen Atmungsorgane der Knochenfische. Ergebn. Zool. 2, 517–585 (1910).

    Google Scholar 

  • Richter, H.: Die Luftatmung und die akzessorischen Atmungsorgane von Gymnotus electricus L. Morph. Jb. 75, 469–475 (1935).

    Google Scholar 

  • Satchell, G. H.: The reflex coordination of the heart beat with respiration in the dogfish. J. exp. Biol. 37, 719–731 (1960).

    Google Scholar 

  • Shelford, V. E., and W. C. Allee: The reactions of fishes to gradients of dissolved atmospheric gases. J. exp. Zool. 14, 107–266 (1913).

    Google Scholar 

  • Willmer, E. N.: Some observations on the respiration of certain tropical fresh water fishes. J. exp. Biol. 11, 281–306 (1934).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by: NSF Grant GB-1766, NIH Grants HE-02228 and HE-08465. This investigation was performed aboard the research vessel Alpha Helix on the Brazilian-American Amazon expedition 1967, and was made possible by support from the National Science Foundation.

Established Investigator, Amer. Heart Association.

National Institutes of Health Research Career Award 1-K6-GM-21, 522.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansen, K., Lenfant, C., Schmidt-Nielsen, K. et al. Gas exchange and control of breathing in the electric eel, Electrophorus electricus . Z. vergl. Physiologie 61, 137–163 (1968). https://doi.org/10.1007/BF00341112

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00341112

Keywords

Navigation