Skip to main content
Log in

Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

In the present study the effects of artificial magnetic fields on pineal serotonin-N-acetyltransferase (NAT) activity and melatonin content in male Sprague-Dawley rats were investigated to study the secretory activity of the pineal gland. Experimental inversion of the horizontal component of the natural magnetic field, performed at night-time, led to a significant decrease of both parameters investigated. During day-time, this effect was less conspicuous. During night-time, inversion of the horizontal component is followed by a reduced pineal secretory activity for about 2 h. After 24 h exposure to the inverted horizontal component, return to the natural condition was followed by a renewed clear depression of pineal NAT activity and melatonin content, indicating that the main stimulus is not the inverted magnetic field itself but rather its change. Changing the inclination of the local magnetic field from 63 ° to 58 °, 68 ° or 78 °, respectively also decreased the secretory activity of the rat pineal gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler K, Taylor DH (1980) Melatonin and thyroxine: Influence on compass orientation in Salamanders. J Comp Physiol A 136: 235–241

    Google Scholar 

  • Arendt J, Wetterberg L, Heyden T, Sizonenko PC, Paunier L (1977) Radioimmunoassay of melatonin: Human serum and cerebrospinal fluid. Horm Res 8: 65–75

    Google Scholar 

  • Bliss VL, Heppner FH (1976) Circadian activity rhythm influenced by near zero magnetic field. Nature 261: 411–412

    Google Scholar 

  • Brown FA, Scow KM (1978) Magnetic induction of a circadian cycle in hamsters. J Interdiscipl Cycle Res 9: 137–145

    Google Scholar 

  • Commentz JC, Willig RP (1981) Radioimmunological determination of diurnal melatonin plasma levels in children with Turner's syndrome using a new antiserum. Acta Endocrinol [Suppl 240] 96: 108–109

    Google Scholar 

  • Deguchi T, Axelrod J (1972) Sensitive assay for serotonin N-acetyl-transferase activity in rat pineal. Analyt Biochem 50: 174–179

    Google Scholar 

  • Fessard A (ed) (1974) Electroreceptors and other specialized receptors in lower vertebrates. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gerisch W, Becker G (1979) Geomagnetisch bedingter Zusammenhang zwischen der Fraßaktivität von Termiten und der Zahl der Sterbefälle. Bundesanstalt für Materialprüfung (Berlin), Forschungsbericht 62, S 1–28

    Google Scholar 

  • Illnerová H, Vanecek J (1979) Response of rat pineal serotonin N-acetyltransferase to one minute light pulse at different night times. Brain Res 167: 431–434

    Google Scholar 

  • Illnerová H, Vanecek J, Krecek J, Wetterberg L, Sääf J (1979) Effect of one minute exposure to light at night on rat pineal serotonin N-acetyltransferase and melatonin. J Neurochem 32: 673–675

    Google Scholar 

  • Johnson LY, Vaughan MK, Richardson BA, Petterborg LJ, Reiter RJ (1982) Variation in pineal melatonin content during the estrous cycle of the rat. Proc Soc Exp Biol Med 169: 416–419

    Google Scholar 

  • Keeton WT, Larkin TS, Windsor DM (1974) Normal fluctuations in the earth's magnetic field influence pigeon orientation. J Comp Physiol 95: 95–103

    Google Scholar 

  • Klein DC, Weller JL (1970) Indole metabolism in the pineal gland: A circadian rhythm in N-acetyltransferase. Science 196: 1093–1095

    Google Scholar 

  • Klein DC, Weller J (1972) Rapid light-induced decrease in pineal serotonin N-acetyltransferase activity. Science 177: 532–533

    Google Scholar 

  • Lynch HJ, Eng JP, Wurtman RJ (1973) Control of pineal indole biosynthesis by changes in sympathetic tone caused by factors other than environmental lighting. Proc Natl Acad Sci USA 70: 1704–1707

    Google Scholar 

  • Mather JG, Baker RR (1981) Magnetic sense of direction in wood-mice for root-based navigation. Nature 291: 152–155

    Google Scholar 

  • Oksche A, Pévet P (1981) The pineal organ. Photobiology-biochronometry-endocrinology. Elsevier/North Holland Biomed Press, Amsterdam New York Oxford

    Google Scholar 

  • Ossenkopp K-P, Koltek WT, Persinger MA (1972) Prenatal exposure to an extremely low frequency — low intensity rotating magnetic field and increase in thyroid and testicle weight in rats. Develop Psychobiol 5: 275–285

    Google Scholar 

  • Ozaki Y, Lynch HJ, Wurtman RJ (1976) Melatonin in rat pineal, plasma and urine: 24-hour rhythmicity and effect of chlorpromazine. Endocrinology 98: 1418–1424

    Google Scholar 

  • Phillips JB (1977) Use of the earth's magnetic field by orienting cave salamanders (Eurycea lucifuga). J Comp Physiol A 121: 273–288

    Google Scholar 

  • Phillips JB, Adler K (1978) Directional and discriminatory responses of salamanders to weak magnetic fields. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Reiter RJ (1981a) The pineal gland, vol I. Anatomy and biochemistry. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Reiter RJ (1981b) The pineal gland, vol II. Reproductive effects. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Semm P, Vollrath L (1980) Electrophysiological evidence for circadian rhythmicity in a mammalian pineal organ. J Neural Transmiss 47: 181–190

    Google Scholar 

  • Semm P, Schneider T, Vollrath L (1980) Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288: 607–608

    Google Scholar 

  • Semm P, Schneider T, Vollrath L, Wiltschko W (1982) Magnetic sensitive pineal cells in pigeons. In: Wallraff W, Papi F (eds) Proceeding in life sciences (avian navigation). Springer, Berlin Heidelberg New York, pp 329–337

    Google Scholar 

  • Vollrath L (1981) The pineal organ. In: Oksche A, Vollrath L (eds) Handbuch der mikroskopischen Anatomie des Menschen, vol VI/7. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wilkinson M, Arendt J, Bradtke J, De Ziegler D (1977) Determination of a dark-induced increase of pineal N-acetyltransferase activity and simultaneous radioimmunoassay of melatonin in pineal, serum and pituitary tissue of the male rat. J Endocrinol 72: 243–244

    Google Scholar 

  • Wiltschko W (1980) The earth's magnetic field and bird orientation. Trends Neurosci 3: 140–144

    Google Scholar 

  • Wurtman RJ, Antón-Tay F (1969) The mammalian pineal as a neuroendocrine transducer. Rec Progr Horm Res 25: 493–522

    Google Scholar 

  • Wurtman R, Axelrod J, Kelly DE (1968) The pineal. Academic Press, New York London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Grant Vo 135/7 from the Deutsche Forschungsgemeinschaft within the Schwerpunktprogramm Neuroendokrinologie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welker, H.A., Semm, P., Willig, R.P. et al. Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Exp Brain Res 50, 426–432 (1983). https://doi.org/10.1007/BF00239209

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239209

Key words

Navigation